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Abstract
We provide upper and lower bounds on the lowest free energy of a classical system at given
one-particle density ρ(x). We study both the canonical and grand-canonical cases, assuming
the particles interact with a pair potential which decays fast enough at infinity.

Keywords Classical density functional theory · Optimal transport · Representability ·
Upper and lower energy bounds · Statistical mechanics · Mathematical physics

1 Introduction

Density functional theory (DFT) is a powerful tool used in quantum physics and chemistry
to model quantum electrons in atoms, molecules and solids [8, 27, 30, 65, 67, 73]. However,
DFT is based on a rather general mathematical scheme and it can be applied to many other
situations. This work is devoted to the rigorous study of classical DFT, which is used for
finite or infinite systems of interacting classical particles.

Classical DFT is widely employed in materials science, biophysics, chemical engineering
and civil engineering [109]. It has a much lower computational cost than the more precise
molecular dynamics simulations, which are limited to small systems and short times [38, 56,
89]. Classical DFT is typically used at interfaces between liquid–gas, liquid–liquid (in fluid
mixtures), crystal-liquid and crystal-gas phases at bulk coexistence. The density is then non
constant in space and varies in the interfacial region between the two phases.
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The physical theory of inhomogenous fluids goes essentially back to the 60s [19, 20, 58,
72, 100]. Functionalmethods and their applications to the theory of the structure of bulk fluids
were described in [75, 99]. The realization that methods developed in the quantum case by
Hohenberg–Kohn–Sham [46, 55] could be transferred to classical fluids arose in the middle
of the 70s, in particular in the works of Ebner–Saam [28, 29, 95] andYang et al. [110]. Several
authors then developed approximate free-energy functionals to calculate the density profile
and surface tension of the liquid–gas interface. The square-gradient approximation could
later be derived rather systematically, following the important works of Hohenberg–Kohn–
Sham on the gradient expansion of the uniform (quantum) electron gas. Deriving efficient
functionals for the solid–liquid transition was harder and took longer [45, 85, 86]. Well-
known references on classical DFT are the two reviews by Evans [31, 32]. Other important
physical references on the subject include [1, 2, 33, 43, 44, 69, 84, 97].

Rigorous works on classical DFT are rather scarse. Most of the mathematical works are
about proving that one can find an external potential V whose interacting equilibrium Gibbs
measure has any desired given density ρ. This is called the inverse or dual problem and
justifies the use of density functional methods. In quantum DFT, V is called the Kohn–Sham
potential and its existence is unclear in most situations. However, in the classical case, V is
usually well defined.

The grand-canonical 1D hard-core gas was solved exactly in a celebrated work by Percus
[76], who provided an exact expression of the external potential V . This was used and
extended in later works [77–79, 106]. In two famous works [10, 11], Chayes, Chayes and
Lieb proved in a quite general setting (in particular any space dimension d) the existence and
uniqueness of the dual potential V at any positive temperature T > 0.At T = 0, the canonical
model can be reformulated as a multi-marginal optimal transport problem [17, 18, 23, 74,
96], where V is usually called the Kantorovich potential. Its existence and properties are
known in many cases [5, 22, 49] but uniqueness usually does not hold. The grand-canonical
case was studied in the recent article [24]. Most of these works are based on compactness
arguments and do not furnish any quantitative information on the shape of the potential V
in terms of the given density ρ. In the recent paper [47], a novel Banach inversion theorem
was used to provide an explicit formula for V in terms of ρ in the form of a convergent
series, under the assumption that ρ is small in L∞(Rd). This is the equivalent of the Virial
expansion for uniform systems.1

In this work and the companion paper [48] we do not discuss the dual potential V and
instead focus on more quantitative properties of the model depending on the shape of the
density ρ. The case of the three dimensional Coulomb interaction w(x) = |x |−1 or, more
generally long range Riesz interactions |x |−s with s < d has been the object of several recent
works [61, 65]. Here we always assume that the interaction potential w decays fast enough
at infinity and do not discuss more complicated long range potentials such as Coulomb.

Our main goal in this paper is to show universal local bounds on the free energy FT [ρ]
at given density ρ ∈ L1(Rd). By local we mean that we only use terms in the form∫

Rd
ρ(x)p dx,

∫
Rd

ρ(x)q log ρ(x) dx .

The admissible values of p and q will depend on the temperature T as well as on the
singularity of the interaction potential w at the origin, that is, how strong the particles repel

1 Recall that one can express the constant density ρ of an infinite gas as a convergent series in terms of the
activity z = eβμ, in the regime z � 1 [94]. This corresponds to placing the system in the constant external
potential V (x) = −μ. Since ρ ∼z→0 z, the series is invertible and any small uniform density is therefore
representable by such a uniform potential, with μ ∼ρ→0 β−1 log ρ.

123



Classical Density Functional Theory: Representability... Page 3 of 47 73

each other when they get close. Such universal bounds are important in DFT. They can help
to find the natural form of approximate functionals to be used for practical computations.2 In
addition, these bounds will be useful in our next work [48] where we study the local density
approximation.

Deriving simple lower bounds is usually easy, under reasonable stability assumptions on
the interaction potentialw. Obtaining upper bounds can be muchmore difficult. They require
constructing a good trial state, but the constraint that the density is given and must be exactly
reproduced can generate important mathematical complications.

The simplest trial state is obtained by taking i.i.d. particles, that is, a factorized N -particle
probability (ρ/N )⊗N where N = ∫

Rd ρ ∈ N. Doing so provides an upper bound on the
free energy in terms of mean-field theory, often called in this context the Kirkwood-Monroe
functional [54]:

1

2

∫∫
Rd×Rd

w(x − y)ρ(x)ρ(y) dx dy + T
∫
Rd

ρ(x) log ρ(x) dx . (1)

This only makes sense when the pair interaction potential w is locally integrable. If w

is globally integrable, one can use Young’s inequality and estimate the first integral by the
local energy (

∫
Rd w+/2)

∫
Rd ρ(x)2 dx , where w+:=max(w, 0) denotes the positive part.

The simplest models of classical DFT use (1) as a basis.
In classical statistical mechanics, it is often convenient to consider potentials w diverging

fast enough at the origin, which helps to stabilize the system [25, 26, 39, 83, 87, 94]. This
divergence implies that the particles can never get too close to each other, and this requires
that the trial state contains rather strong correlations. A factorized state is not appropriate
and (1) is infinite. The simplest singular interaction is of course the hard-core potential
w(x) = (+∞)1(|x | < r0), which is simply infinite over a ball and vanishes outside.

In this paper we provide two different constructions of a correlated trial state, which give
reasonable upper bounds on the classical free energy at given density, for singular interaction
potentials at the origin. Our first method uses some ideas from harmonic analysis in the
form of a Besicovitch-type covering lemma [21]. We cover space with cubes whose size is
adapted to the local value of the density, and put essentially one particle per cube, with the
constraint that the cubes are far enough from each other. This method works very well in
the grand-canonical setting where the number of particles is allowed to fluctuate. In order to
handle the canonical ensemble, a different construction is needed. We instead use techniques
from optimal transport theory developed in [14], which give a rather good bound at zero
temperature, T = 0. For T > 0 we couple this to the Besicovitch-type covering lemma and
obtain an upper bound which is not as good as the grand-canonical one.

In [48] we will study the behavior of FT [ρ] in some particular regimes and the upper
universal bounds derived here will be useful. Namely we will consider the thermodynamic
limit where ρ is essentially constant over a large domain as well as the local density approx-
imation when ρ varies slowly over big regions. Such regimes have been recently considered
for the three dimensional Coulomb potential w(x) = |x |−1 in [63, 66], for more general
Riesz potentials in [15, 16] and for a special class of positive-type interactions in [71]. The
methods used in these works all rely on the assumption that the potential is positive-definite,
and new ideas are necessary in the general (short-range) case.

2 As an example, in the quantum case the Lieb-Oxford inequality [68] was used to calibrate some famous
functionals such as PBE and SCAN [59, 80–82, 101–104].
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2 Main Results

2.1 Free Energies at Given Density

This subsection is mainly devoted to precisely introducing models and notation used in the
paper. Our main results are stated in the next subsections.

2.1.1 The Interaction Potentialw

For convenience, we work in R
d with a general dimension d ≥ 1. The physical cases of

interest are of course d ∈ {1, 2, 3} but the proofs are the same for all d , except sometimes
for d = 1. We consider systems of indistinguishable classical particles interacting through a
short-range pair potential w. Throughout the paper, we work with an interaction satisfying
the following properties.

Assumption 1 (on the short-range potential w) Let w : Rd → R ∪ {+∞} be an even lower
semi-continuous function satisfying the following properties, for some constant κ > 0:

(1) w is stable, that is,
∑

1≤ j<k≤N

w(x j − xk) ≥ −κ N , (2)

for all N ∈ N and x1, . . . , xN ∈ R
d ;

(2) w is upper regular, that is, there exist r0 ≥ 0, 0 ≤ α ≤ ∞ and s > d such that

w(x) ≤ κ

(
1(|x | < r0)

(
r0
|x |
)α

+ 1

1 + |x |s
)

. (3)

The lower semi-continuity of w will be used later to ensure that the energy is lower
semi-continuous as a function of the one-particle density (see Remark 3 below). In statistical
mechanics, the stability condition (2) is used to ensure the existence of the thermodynamic
limit [94]. On the other hand, upper bounds of the form (3) are sometimes used to get more
information on the equilibrium states [93]. At infinity, we assume that our potential w is
bounded above by |x |−s , which is integrable since s > d . It could of course decay faster. On
the other hand, the parameter α determines the allowed repulsive strength of the interaction
at the origin. If α = 0, then w is everywhere bounded from above, and if 0 < α < d , then
w has at most an integrable singularity at the origin. In particular, the positive part w+ is
integrable over the whole of Rd (since we are interested in upper bounds, the negative part
w− will not play a role in this paper). In the case where α ≥ d , w can have a non-integrable
singularity at the origin. If α = ∞, then w can have a hard-core. Our convention is that
(r0/|x |)α = (+∞)1(|x | < r0) for α = +∞. When α < ∞ we can always assume that
r0 = 1, possibly after increasing κ .

Most short range potentials of physical interest are covered by Assumption 1, including
for instance the simple hard-core and the Lennard–Jones potentialw(x) = a|x |−12−b|x |−6.

2.1.2 The Canonical Free Energy

In this subsection we define the canonical free energy FT [ρ] at given density ρ.
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Suppose that we have N particles in R
d , distributed according to some Borel probability

measure P on Rd N . Since the particles are indistinguishable, we demand that the measure P
is symmetric, that is,

P(Aσ(1) × · · · × Aσ(N )) = P(A1 × · · · × AN ),

for any permutation σ of {1, . . . , N }, and any Borel sets A1, ..., AN ⊂ R
d . The one-body

density of such a symmetric probability P equals N times the first marginal of P, that is,

ρP = N
∫
Rd(N−1)

dP(·, x2, . . . , xN ),

where the integration is over x2, . . . , xN . Equivalently, ρP(A) = NP(A × (Rd)N−1) for
every Borel set A. Note the normalization convention ρP(Rd) = N . For a non-symmetric
probability P we define ρP as the sum of the N marginals.

Notice that any positive measure ρ on R
d with ρ(Rd) = N ∈ N arises from at least one

N -particle probability measure P. One can take for instance P = (ρ/N )⊗N for independent
and identically distributed particles.

The pairwise average interaction energy of the particles is given by

UN (P) =
∫
Rd N

∑
1≤ j<k≤N

w(x j − xk) dP(x1, . . . , xN ).

It could in principle be equal to +∞, but it always satisfies UN (P) ≥ −κ N due to the
stability condition on w in Assumption 1. When considering systems at positive temperature
T > 0, it is necessary to also take the entropy of the system into account. It is given by

SN (P):= −
∫
Rd N

P(x) log
(
N !P(x)

)
dx . (4)

If P is not absolutely continuous with respect to the Lebesgue measure on R
d N , we use

the convention that SN (P) = −∞. The factor N ! appears because the particles are indistin-
guishable. In fact, we should think that N !P defines a probability measure over (Rd)N /SN

whereSN is the permutation group.We need tomake sure that SN (P) < +∞, which follows
if we assume for instance that ρP is absolutely continuous with

∫
Rd ρP| log ρP| < ∞. This

is due to the well-known inequality (see, e.g., [24, Lemma 6.1])

SN (P) ≤ −
∫
Rd

ρP(x) log ρP(x) dx + N . (5)

The latter follows immediately from writing the relative entropy of P with respect to
(ρ/N )⊗N , which is non-negative, and using (N/e)N ≤ N !.

The total free energy of the system in the state P at temperature T ≥ 0 equals

FT (P):=UN (P) − TSN (P) =
∫
Rd N

∑
j<k

w(x j − xk) dP(x) + T
∫
Rd N

P log(N !P). (6)

It can be equal to +∞ but never to −∞ due to the stability of w and thanks to the
inequality (5) if T > 0 and

∫
Rd ρP| log ρP| < ∞.

Throughout the paper, we will only consider systems with a given one-body density ρ,
which is absolutely continuous with respect to the Lebesgue measure. At T > 0 we also
assume that

∫
Rd ρ| log ρ| < ∞. This allows us to consider the minimal energy of N -particle
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classical systems with density ρ, given by

FT [ρ]:= inf
ρP=ρ

FT (P) , (7)

where the infimum is taken over N -particle states P on R
d N with one-particle density ρP

equal to ρ. At T = 0, the entropy term disappears and we obtain

F0[ρ]:= inf
ρP=ρ

∫ ∑
1≤ j<k≤N

w(x j − xk) dP(x). (8)

This is a multi-marginal optimal transport problemwith symmetric cost
∑

j<k w(x j −xk)

andwith all themarginals ofP equal toρ/N [17, 18, 23, 74, 96]. From the stability assumption
on w and (5), we have

FT [ρ] ≥ −(κ + T )N + T
∫
Rd

ρ(x) log ρ(x) dx . (9)

One of our goals will be to find simple conditions ensuring that FT [ρ] < ∞. Before we
turn to this question, we first introduce the grand-canonical problem.

Remark 2 (Symmetry) In the definition (7) we can freely remove the constraint that P is
symmetric. Since the interaction is a symmetric function and the entropy SN is concave,
the minimum is the same as for symmetric P’s. Recall that for a non-symmetric P, ρP is by
definition the sum of the N marginals.

Remark 3 (Lower Semi-continuity) The function ρ �→ FT [ρ] is lower semi-continuous for
the strong topology. That is, we have

FT [ρ] ≤ lim inf
n→∞ FT [ρn] if

∫
|ρn − ρ| → 0 and T

∫
ρn | log ρn | ≤ C . (10)

At T > 0 this is valid under the sole condition that w is measurable (since the limiting
probability P is necessary absolutely continuous) but at T = 0, this uses the lower semi-
continuity of w. The details of the argument are provided later in the proof of Theorem 29,
for the convenience of the reader.

Remark 4 (Convexity and duality) Using the concavity of the entropy SN , one can verify that
ρ �→ FT [ρ] is convex. This can be used to derive the dual formulation of FT [ρ] in terms of
external potentials

FT [ρ] = T
∫
Rd

ρ log ρ + sup
Ṽ

{
−
∫
Rd

ρ(x)Ṽ (x) dx

− T log
∫
Rd N

exp

⎛
⎝− 1

T

∑
1≤ j<k≤N

w(x j − xk) − 1

T

N∑
j=1

Ṽ (x j )

⎞
⎠ dρ⊗N

}
, (11)

see [11].Our notation Ṽ is because the final physical dual potential is, rather,V :=Ṽ −T log ρ.
The existence of a maximizer Ṽ realizing the above supremum is proved in [11]. It is the
unique potential (up to an additive constant) so that the corresponding Gibbs state has density
ρ, that is,

ρP = ρ, P = 1

Z
exp

(
− 1

T

∑
1≤ j<k≤N

w(x j − xk) − 1

T

N∑
j=1

Ṽ (x j )

)
ρ⊗N ,
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with Z a normalization constant. At T = 0, we have the similar formula

F0[ρ] = sup
Ṽ

{
EN [V ] −

∫
Rd

ρ(x)V (x) dx

}
,

where

EN [V ] = inf
x1,...,xN ∈Rd

⎧⎨
⎩
∑

1≤ j<k≤N

w(x j − xk) +
N∑

j=1

V (x j )

⎫⎬
⎭ ,

is the ground state energy in the potential V [49]. Although there usually exist dual potentials
at T = 0, those are often not unique.

2.1.3 The Grand-Canonical Free Energy

In the grand-canonical picture, where the exact particle number of the system is not fixed, a
state P is a family of symmetric n-particle positive measures Pn on (Rd)n , so that

∑
n≥0

Pn
(
(Rd)n) = 1.

Here P0 is just a number, interpreted as the probability that there is no particle at all in
the system. After replacing Pn by Pn/Pn(Rdn), we can equivalently think that P is a convex
combination of canonical states. The entropy of P is defined by

S(P):=
∑
n≥0

Sn(Pn) = −P0 log(P0) −
∑
n≥1

∫
Rdn

Pn log(n!Pn), (12)

and the single particle density of the state P is

ρP =
∑
n≥1

ρPn =
∑
n≥1

n
∫

(Rd )n
dPn(·, x2, . . . , xn).

The grand-canonical free energy of the state P at temperature T ≥ 0 is

GT (P):=U(P) − TS(P), (13)

where U(P) denotes the interaction energy in the state P,

U(P):=
∑
n≥2

Un(Pn) =
∑
n≥2

∫
Rdn

n∑
j<k

w(x j − xk) dPn(x1, ..., xN ). (14)

From the stability of w we have

Un(Pn) ≥ −κn Pn(Rdn),

so that, after summing over n,

U(P) ≥ −κ

∫
Rd

ρP(x) dx .

By [24, Lemma 6.1] we have the universal entropy bound

S(P) ≤ −
∫
Rd

ρP
(
log ρP − 1). (15)
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This is because the entropy at fixed density ρ is maximized by the grand-canonical Poisson
state

Q:=
(

e− ∫
Rd ρ

n! ρ⊗n

)

n≥0

, (16)

whose entropy is the right side of (15).
When keeping the one-particle density ρ = ρP ∈ L1(Rd) fixed, we denote the minimal

grand-canonical free energy by

GT [ρ]:= inf
ρP=ρ

GT (P). (17)

Using (15), we obtain

GT [ρ] ≥ − (κ + T )

∫
Rd

ρ + T
∫
Rd

ρ log ρ, (18)

where κ is the stability constant of w in Assumption 1.

Remark 5 (Comparing FT and GT ) Since a canonical trial state is automatically also
admissible for the grand-canonical minimisation problem (17), we have the bound

GT [ρ] ≤ FT [ρ],
for any density 0 ≤ ρ ∈ L1(Rd)with integer mass. Hence, any universal lower energy bound
for the grand-canonical ensemble is also a lower bound for the canonical ensemble. A natural
question to ask is under which condition we have FT [ρ] = GT [ρ] for a density ρ of integer
mass. In general this is a difficult problem. See [24] for results and comments in this direction
at T = 0.

If
∫
Rd ρ = N + t with t ∈ (0, 1) and N ∈ N, we can write ρ = (1 − t) N

N+t ρ + t N+1
N+t ρ

and obtain after using the concavity of the entropy

GT [ρ] ≤ (1 − t) FT

[
N

N + t
ρ

]
+ t FT

[
N + 1

N + t
ρ

]
. (19)

This can be used to deduce an upper bound on GT [ρ], once an upper bound has been
established in the canonical case. We will see, however, that it is usually much easier to
directly prove upper bounds on GT [ρ] than on FT [ρ].
Remark 6 (Weak lower semi-continuity) The functional ρ �→ GT [ρ] is weakly lower semi-
continuous and, in fact, a kind of lower continuous envelope of FT [ρ] (see [24, 65]). At
T = 0 this uses the lower semi-continuity of w.

Remark 7 (Duality II) Like in the canonical case, we have the dual formulation

GT [ρ] = T
∫
Rd

ρ log ρ + sup
Ṽ

{
−
∫
Rd

ρ(x)Ṽ (x) dx

− T log

[∑
n≥0

∫
Rdn

exp

(
− 1

T

∑
1≤ j<k≤n

w(x j − xk) − 1

T

n∑
j=1

Ṽ (x j )

)
dρ⊗N
]}

,

(20)

see [10, 11] and the more recent work [24, Sects. 4, 6].
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2.2 Representability

Next we turn to the problem of representability. Namely, we are asking what kind of densities
ρ can arise from N -particle probabilities with finite free energy. This depends on the shape of
the interaction potential w. We only address this question for ρ ∈ L1(Rd) and do not look at
general measures. The main result is that all densities are representable at zero temperature
in the non-hard-core case (α < ∞). At positive temperature, it is sufficient to assume in
addition that

∫
Rd ρ| log ρ| < ∞.

Theorem 8 (Representability in the canonical case) Let ρ ∈ L1(Rd) with
∫
Rd ρ(x) dx ∈ N.

There exists a symmetric probability measure P on (Rd)N of density ρ so that |x j − xk | ≥
δ > 0 P—almost everywhere, for some δ > 0.

If w satisfies Assumption 1 without hard-core (α < ∞), we obtain F0[ρ] < ∞. If
furthermore

∫
Rd ρ| log ρ| < ∞, thenP can be assumed to have finite entropy and FT [ρ] < ∞

for any T > 0.

The theorem follows from results in optimal transport theory and we quickly outline the
proof here for the convenience of the reader. In this paper we will prove much more. We will
in fact need some of these tools and more details will thus be provided later in the paper.

Proof If
∫
Rd ρ = 1, we must take P = ρ and end up with FT [ρ] = T

∫
ρ log ρ. In the rest

of the proof we assume that
∫
Rd ρ ≥ 2.

For ρ ∈ L1(Rd), the existence of P is proved in [14, Theorem 4.3]. The number δ must
be so that

∫
B(x,δ)

ρ < 1 for any x ∈ R
d , where B(x, R) denotes the ball centered at x and of

radius R. Such a δ > 0 always exists when ρ ∈ L1(Rd). See Sect. 5.1 below for more details
on the results from [14].

Next we prove that F0(P) < ∞. Since α < ∞ (no hard-core), we can assume r0 = 1.
We then have w(x) ≤ Cδ|x |−s for all |x | ≥ δ, with the constant Cδ = κ(1 + δs−α), due to
Assumption 1. Hence, on the support of P we have

∑
1≤ j<k≤N

w(x j − xk) = 1

2

N∑
j=1

∑
k = j

w(x j − xk) ≤ Cδ

2
N max|y j |≥δ

|y j −yk |≥δ

N−1∑
j=1

1

|y j |s .

The maximum is bounded by Cδ−s independently of N due to [61, Lemma 9]. Integrating
with respect to P we have proved that F0(P) ≤ Cδδ

−s N . This bound is not very explicit but
it only depends on δ and N . Of course, δ itself depends on ρ in a rather indirect way.

The probability measure P obtained by the optimal transport method of [14] is probably
a singular measure, hence with an infinite entropy. In [9], it is explained how to regularize
any given P using a method called the Block approximation. This method works well for a
compactly supported density, for which it easily implies FT [ρ] < ∞. We quickly describe
the method here and refer to Sect. 5.3 below for details. In short, we split the space into small
cubes {C j } of size proportional to δ and introduce the trial probability measure

P̃ =
∑

j1,..., jN

P(C j1 × · · · × C jN )
ρ1C j1

⊗ · · · ⊗ ρ1C jN∫
C j1

ρ · · · ∫C jN
ρ

.

That is, we take a convex combination of independent particles over small cubes with
probability P(C j1 × · · · × C jN ). Choosing the cubes small enough, we can ensure that
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|x j − xk | ≥ δ/2 on the support of P̃ and
∫
C j

ρ < 1. A computation gives ρ
P̃

= ρP = ρ. The
entropy can be estimated by

∫
Rd N

P̃ log(N ! P̃) ≤
∫
Rd

ρ log ρ −
∑

j

(∫
C j

ρ

)
log

(∫
C j

ρ

)
,

(see Lemma 26 below). Estimating the last sum is not an easy task for a general density. For
a compactly supported density we can simply bound it by 1/e times the numbers of cubes
intersecting the support of ρ. Since the energy of P̃ is finite by the previous argument, we
deduce that FT [ρ] < ∞ for any ρ of compact support.

It thus remains to explain how to prove that FT [ρ] is finite for a density ρ of unbounded
support. The idea is of course to truncate it. We choose two radii R1 < R2 so that∫

Rd\BR2

ρ =
∫

BR2\BR1

ρ = 1

2
,

(using here
∫

ρ ≥ 2) and we define for shortness ρ1:=ρ1BR1
, ρ2:=ρ1BR2\BR1

and
ρ3:=ρ1Rd\BR2

. We can write

ρ = ρ1 + 2ρ2
2

+ ρ1 + 2ρ3
2

,

where
∫
Rd (ρ1 + 2ρ2) = ∫

Rd (ρ1 + 2ρ3) = N . From the convexity of FT we obtain

FT [ρ] ≤ 1

2
FT [ρ1 + 2ρ2] + 1

2
FT [ρ1 + 2ρ3].

Thefirst densityρ1+2ρ2 has compact support hence has afinite energy, as explained above.
For the second density ρ1 + 2ρ3 we use an uncorrelated trial state in the form P1 ⊗s (2ρ3)
where P1 is also constructed as before, but with ρ replaced by ρ1 which has mass N − 1.
Here ⊗s means the symmetric tensor product. A calculation shows that

FT [ρ1 + 2ρ3] ≤ FT
(
P1 ⊗s (2ρ3)

)

= FT (P1) + 2
∫∫

R2d
w(x − y)ρ1(x)ρ3(y) dx dy

+ 2T
∫

ρ3 log(2ρ3)

≤ FT (P1) + (N − 1) sup
|x |≥R2−R1

|w(x)| + 2T
∫
Rd\BR2

ρ log(2ρ).

Thus the finiteness for densities of compact support implies the same for all densities. In
fact, after optimizing over P1 we have proved the bound

FT [ρ] ≤ FT [ρ1 + 2ρ2] + FT [ρ1]
2

+ N − 1

2
sup

|x |≥R2−R1

|w(x)| + T
∫
Rd\BR2

ρ log(2ρ).

This concludes the proof of Theorem 8. ��
We have not considered here the hard-core potential, to which we will come back later in

Sect. 2.4. Representability is much more delicate in this case. From the inequality (19), we
immediately obtain the following.
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Corollary 9 (Representability in the grand-canonical case) Let ρ ∈ L1(Rd). Then we have
G0[ρ] < ∞ if w has no hard-core (α < ∞). If furthermore

∫
Rd ρ| log ρ| < ∞, then

GT [ρ] < ∞ for all T > 0.

2.3 Local Upper Bounds

Recall thatwe alreadyhave rather simple lower bounds in (9) and (18). Theproof ofTheorem8
furnishes an upper bound on FT [ρ] but it depends on the smallest distance δ between the
particles in the system, which is itself a highly nonlinear and nonlocal function of ρ. For non
compactly-supported densities, the proof also involves the two radii R1, R2 which depend
on ρ as well.

Our goal here is to provide simple local upper bounds involving only integrals of the
given density ρ. We start in the next subsection by recalling the simple integrable case at the
origin α < d , for which we can just choose i.i.d. particles. The case α ≥ d is much more
complicated since particles cannot be allowed to get too close.

2.3.1 Upper Bound in the Weakly Repulsive Case˛ < d

In the case where w+ is integrable at the origin, it is easy to provide a simple upper bound.

Theorem 10 (Weakly repulsive case α < d) Let w satisfy Assumption 1 with α < d. Let
0 ≤ ρ ∈ L1(Rd) ∩ L2(Rd) with integer mass

∫
ρ ∈ N. Let also T ≥ 0 and assume that∫

Rd ρ| log ρ| < ∞ if T > 0. Then we have

FT [ρ] ≤ 1

2

∫∫
Rd×Rd

w(x − y)ρ(x)ρ(y) dx dy + T
∫
Rd

ρ log ρ

≤ ‖w+‖L1

2

∫
Rd

ρ2 + T
∫
Rd

ρ log ρ. (21)

In the grand-canonical case we have the exact same bound on GT [ρ], this time without
any constraint on

∫
Rd ρ and with ρ log ρ replaced by ρ(log ρ − 1) in the last integral.

As we have mentioned in the introduction, the functional appearing on the right side of
the first line of (21) is the so-called Kirkwood–Monroe free energy [54], which is the simplest
approximation of FT [ρ]. It only makes sense for a locally integrable potential w. In addition
to being an exact upper bound, the Kirkwood–Monroe free energy also provides the exact
behavior of FT [ρ] in some regimes. This was studied in many works, including for instance
[4, 36, 37, 41, 57] for the infinite gas at high density and [3, 6, 7, 50, 51, 53, 70, 90, 98] for
trapped systems in the mean-field limit.

Proof We denote N = ∫
Rd ρ and simply take as a trial state the pure tensor product

P:=(ρ/N )⊗N . The interaction energy satisfies

UN (P) = N (N − 1)

2

∫
Rd N

w(x1 − x2)
( ρ

N

)⊗N
(x) dx1 · · · dxN

= 1 − 1/N

2

∫∫
Rd×Rd

w(x1 − x2)ρ(x1)ρ(x2) dx1 dx2

≤ ‖w+‖L1

2

∫
Rd

ρ2. (22)
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From the stability condition on w, we know that for any η ≥ 0 with
∫

η = 1,

UK (η⊗K ) = K (K − 1)

2

∫∫
Rd×Rd

w(x − y)η(x)η(y) dx dy ≥ −κK .

Letting K → ∞, we find
∫∫

Rd×Rd
w(x − y)η(x)η(y) dx dy ≥ 0, ∀η ≥ 0.

This is how the stability is expressed in mean-field theory [62]. Since the double integral
in (22) is non-negative, we can remove the 1/N for an upper bound. The entropy can itself
be estimated by

−SN (P) =
∫
Rd N

( ρ

N

)⊗N
log

(
N !
( ρ

N

)⊗N
)

= log

(
N !
N N

)
+
∫
Rd

ρ log ρ ≤
∫
Rd

ρ log ρ,

showing that (21) holds. In the grand-canonical case we use instead the Poisson state in (16)
and exactly obtain the mean-field energy on the right side of (21) with ρ log ρ replaced by
ρ(log ρ − 1) in the last integral. ��

2.3.2 Upper Bounds in the Strongly Repulsive Case˛ ≥ d

When α ≥ d the right side of (21) is infinite due to the non-integrability ofw at the origin.We
cannot use a simple uncorrelated probability P as a trial state and it is necessary to correlate
the particles in such a way that they never get too close to each other. The difficulty is to
do this at fixed density, with a reasonable energy cost. Also, we expect the typical distance
between the particles to depend on the local value of ρ. If we imagine that there are ρ(x)

particles per unit volume in a neighborhood of a point x , then the distance should essentially
be proportional toρ(x)−1/d .We thus expect a bound in terms ofρ(x)1+α/d for large densities.
We can only fully solve this question in the grand-canonical case. In the canonical case we
can only treat T = 0 in full. The following is our first main result.

Theorem 11 (Strongly repulsive case α ≥ d) Suppose that the interaction w satisfies
Assumption 1 with d ≤ α < ∞. Let T ≥ 0 and assume that for T > 0, we have∫
Rd ρ| log ρ| < ∞.

• In the grand-canonical ensemble, we have for any 0 ≤ ρ ∈ L1(Rd),

GT [ρ] ≤ Cκ

∫
Rd

ρ2 + CT
∫
Rd

ρ + T
∫
Rd

ρ log ρ

+

⎧⎪⎨
⎪⎩

Cκrα
0

∫
Rd

ρ1+ α
d for α > d,

Cκrd
0

(∫
Rd

ρ2 +
∫
Rd

ρ2( log rd
0 ρ
)
+

)
for α = d.

(23)

Here the constant C only depends on the dimension d and the powers α, s from
Assumption 1.
• In the canonical ensemble we have the same estimate on FT [ρ] for all T ≥ 0 in dimension
d = 1 and on F0[ρ] at T = 0 for d ≥ 2, provided of course that ρ has an integer mass.
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In the proof we provide an explicit value for the constant C in (23) but we do not display
it here since it is by no means optimal and depends on the cases. The parameters κ and r0
can be used to track the origin of the different terms in our bound (23). The integrable part
of the potential gives the ρ2 term as it did in Theorem 10. The terms involving rα

0 on the
second line are solely due to the divergence ofw at the origin. It is important that we get here
the expected and optimal ρ1+α/d due to the singularity. Finally, we have an additional term
involving T ρ which is an error in the entropy due to our construction. We otherwise get the
optimal T ρ log ρ.

In dimension d = 1, the proof of Theorem 11 is relatively easy, both in the canonical and
grand-canonical cases. It is detailed for convenience in Sect. 3. The idea is to split the density
ρ into successive intervals of mass 1/2 and then write ρ = (2ρodd + 2ρeven)/2 where ρodd
is the density restricted to the odd intervals and ρeven to the even ones. We then take a trial
state of the form (Podd + Peven)/2, where Podd corresponds to placing exactly one particle
per odd interval at density 2ρ and Peven is defined similarly. This way we have inserted some
distance between the particles. It depends on the form of ρ in the opposite set of intervals.
The interaction between the particles can then be easily controlled in terms of ρ1+α/d , as we
explain in Sect. 3.

In higher dimensions, there seems to be no general way of splitting Rd into disjoints sets
containing a fixed mass of ρ, so that each set has finitely many neighbors at a given distance
(except perhaps for very special densities [40]).We can however carry over a similar argument
as in the 1D case if we allow a covering with intersections. The Besicovitch covering lemma
[21] allows us to work with cubes Q j intersecting with finitely many other cubes, such that∫

Q j
ρ is any given number. We can also distribute the Q j into a finite (universal) number of

subcollections so that the cubes in each family are disjoint and not too close to each other. For
each collection of disjoint cubes we then use a simple tensor product similar to the 1D case.
The interaction is estimated using that the length of the cubes is related to

∫
Q j

ρ1+α/d , leading

to a bound involving only
∫
Rd ρ1+α/d . This proofwas inspired by the presentation in the recent

book [35] of a proof of the Lieb–Thirring and Cwikel–Lieb–Rozenblum inequalities from
[91, 92, 108], thus in a completely different context. The difficulty here is that we have no
information on the number of particles in each subcollection, due to the overlaps. This is the
reason why the proof works well in the grand-canonical setting, but not in the canonical case.
The details are given in Sect. 4.

To prove the result in the canonical case at T = 0 for d ≥ 2, we use a completely different
method based on optimal transport tools from [14]. As we will explain in Sect. 5, the latter
work can be used to construct a trial state P with ρP = ρ so that the distance between any
two given particles on the support can be related to some average local value of the density
around the particles. This is how we can obtain the bound (23) at T = 0 in the canonical
case.

The next natural step is to smear this trial measure P and use it at T > 0 but we could
unfortunately not give an optimal bound on the entropy of the smearing. Our bound relies on
the local radius R(x) of a density ρ, which is thoroughly studied in Sect. 5.1 and is defined
as follows. Let 0 ≤ ρ ∈ L1(Rd) with

∫
Rd ρ(y) dy > 1. For each x ∈ R

d , we define the local
radius R(x) to be the largest number satisfying

∫
B(x,R(x))

ρ(y) dy = 1. (24)

This number is always bounded below for a given ρ ∈ L1(Rd) but behaves like |x | at
infinity. If ρ has compact support, then R(x) is bounded on the support of ρ.
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Theorem 12 (Strongly repulsive case α ≥ d II) Suppose that the interaction w satisfies
Assumption 1 with 2 ≤ d ≤ α < ∞. Let T > 0 and 0 ≤ ρ ∈ L1(Rd) of integer mass with∫
Rd ρ| log ρ| < ∞. Then we have

FT [ρ] ≤ C(κ + T )

∫
Rd

ρ2 + CT
∫
Rd

ρ + T
∫
Rd

ρ log ρ + T
∫
Rd

ρ log Rd

+

⎧⎪⎨
⎪⎩

Cκrα
0

∫
Rd

ρ1+ α
d for α > d,

Cκrd
0

(∫
Rd

ρ2 +
∫
Rd

ρ2( log rd
0 ρ
)
+

)
for α = d,

(25)

where the constant C only depends on the dimension d and the powers α, s from Assumption 1.

The main difference compared to (23) is the additional term T
∫

ρ log Rd , which we
conjecture should not be present. It is only affecting the bound in places where R is large on
the support of ρ, that is, where one cannot find a sufficient amount of mass at a finite distance
of x . Another small difference is the additional term CT

∫
ρ2 due to our way of estimating

the entropy. The proof is detailed in Sect. 5.4 below.
The upper bounds in Theorems 11 and 12 will be very useful for our next work [48] where

we study FT [ρ] and GT [ρ] for extended systems. The sub-optimal upper bound (25) in the
canonical case will be sufficient in this context.

Remark 13 (Lower bounds) Even whenw really behaves like |x |−α at the origin (for instance
satisfies w(x) ≥ c|x |−α for some c > 0), a lower bound in the form (23) cannot hold in
general. This is because the density can be large in regions where there is only one particle at
a time, which does not create any divergence in the interaction. As an example, consider N
points X1, ..., X N ∈ R

d and place around each point one particle in the state χr :=|Br |−11Br ,
with r small enough. The corresponding state is the (symmetrization of the) tensor product
Pr =⊗N

j=1 χr (· − X j ). Assuming that w is continuous, its interaction energy behaves as

lim
r→0

UN (Pr ) =
∑

1≤ j<k≤N

w(X j − Xk),

hence stays finite, whereas the entropy equals

SN (Pr ) = −N
∫

χr logχr = N log(|B1|rd) −→
r→0

−∞.

On the other hand, the right side of (23) diverges much faster, like Nr−α . This proves that
a lower bound of the form (23) cannot hold for all possible densities.

Nevertheless, it is expected that the term
∫

ρ1+α/d should appear when there are many
particles in a small domain and is thus optimal in such situations. For instance, assuming
w ≥ c|x |−α for |x | ≤ r0 and taking ρ = N |Br0/2|−11Br0/2 (N particles at uniform density
in the small ball), we see that

FT [ρ] ≥ min
x1,...,xN ∈Br0/2

⎛
⎝ ∑

1≤ j<k≤N

c

|x j − xk |α

⎞
⎠+ T log(N/|Br0/2|) − T N .

The first minimum is known to behave like N 1+α/dr−α
0 in the limit N → ∞ [61,

Lemma 1], which is exactly proportional to
∫

ρ1+α/d . Thus in this case, the lower bound
holds and the power 1 + α/d is optimal.
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2.4 The Hard-Core Case

We conclude this section with a discussion of the hard-core case, which is notoriously more
difficult [11, Sect. 9]. We start with the question of representability of a given density and
then turn to some upper bounds on the free energy.

2.4.1 Representability

Let r0 > 0 be a positive number and consider the hard-core potentialwr0(x) = (+∞)1(|x | <

r0). Then we have for any N -particle probability measure P

UN (P) =
{
0 if |x j − xk | ≥ r0∀ j = k,P − almost surely,

+∞ otherwise.

The set of P’s such that UN (P) = 0 is convex and its extreme points are the symmetric
tensor products of Dirac deltas located at distance ≥ r0 from each other. It follows that the
convex set of wr0–representable densities is the convex hull of the densities in the form

ρ =
N∑

j=1

δx j , min
j =k

|x j − xk | ≥ r0. (26)

There is a similar result in the grand-canonical case. In spite of this simple characterization,
it seems very hard, in general, to determine whether a given density belongs to this convex
set or not.

In dimension d = 1, the problem can be solved exactly. Any extreme point (26) satisfies

ρ
([x, x + r0)

) ≤ 1, ∀x ∈ R, (27)

since there is always at most one Dirac delta in any interval of length r0. This property
pertains on the whole convex hull of wr0—representable densities. Conversely, any positive
measure ρ with ρ(R) = N satisfying (27) can be written as a convex combination of Dirac
deltas at distance ≥ r0. To see this, assume for simplicity ρ ∈ L1(R) and define as in [13]
the non-decreasing function t �→ x(t) on (0, N ) so that

∫ x(t)

−∞
ρ(s) ds = t, ∀t ∈ (0, N ).

To avoid any ambiguity when the support of ρ is not connected, we can choose x(t) to
be the largest possible real number satisfying the above condition. The function t �→ x(t)
is differentiable, except possibly on a countable set, with x ′(t) = ρ(x(t))−1. When ρ > 0
almost surely, we have limt→0+ x(t) = −∞ and limt→N− x(t) = +∞. From the definition
of x(t) we have

ρ =
∫ N

0
δx(t) dt . (28)

Indeed, if we integrate the right side against some continuous function f we find∫ N
0 f (x(t)) dt = ∫

R
f (s)ρ(s) ds after changing variable s = x(t). Now we can also

rewrite (28) as

ρ =
∫ 1

0

N−1∑
k=0

δx(t+k) dt . (29)
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By definition of x(t) we have
∫ x(t+k+1)

x(t+k)

ρ(s) ds = 1, ∀k = 0, ..., N − 2, ∀t ∈ (0, 1),

and therefore |x(t +k +1)−x(t +k)| ≥ r0 when the condition (27) is satisfied. Hence (29) is
the sought-after convex combination of delta’s located at distance ≥ r0. The corresponding
N -particle probability is

P = 
s

∫ 1

0
δx(t) ⊗ δx(t+1) ⊗ · · · ⊗ δx(t+N−1) dt (30)

where


s( f1 ⊗ · · · ⊗ fN ) = 1

N !
∑

σ∈SN

fσ(1) ⊗ · · · ⊗ fσ(N ), (31)

is the symmetrization operator. At positive temperature, the previous state can be regular-
ized using the block approximation described in the proof of Theorem 8, provided that∫
R

ρ| log ρ| < ∞ and (27) holds with a strict inequality.
In dimensions d ≥ 2, the situation is much less clear. The condition (27) can be re-

expressed in the form

Rρ := min
x∈Rd

R(x) ≥ r0
2

, (32)

where R(x) is the radius previously defined in (24). This can also be written in the form∫
B(x,r0/2)

ρ ≤ 1, ∀x ∈ R
d .

This is definitely a necessary condition for a density to be wr0—representable, in dimen-
sion d ≥ 1. Otherwise we would be able to find an x ∈ R

d and an R < r0/2 such that∫
B(x,R)

ρ > 1. But then the probability that there are at least two particles in the ball B(x, R)

cannot vanish for any P of density ρ and those are at distance < r0. This was already
mentioned in [11, Sect. 9].

For d ≥ 2 the condition (32) is definitely not sufficient for a density to be representable.
A counter example arises naturally within the sphere packing problem. Recall that the d-
dimensional sphere packing density

ρc(d):= lim
�→∞

max{N ∃x1, ..., xN ∈ ��, |x j − xk | ≥ 1}
|��| , (33)

gives the maximal number of points per unit volume one can put while ensuring that they are
at distance≥ 1 to each other. Here� is any fixed smooth domain and�� = ��. The packing
density equals ρc(1) = 1 in dimension d = 1 and is otherwise only known in dimensions
d ∈ {2, 3, 8, 24}, for which it is given by some special lattices [12, 107]. The sphere packing
fraction is defined by

vc(d):=ρc(d)|B1/2| = 2−dρc(d)|B1|,
and represents the fraction of the volume occupied by the balls. This is simply vc(1) = 1 in
dimension d = 1 but is strictly less than 1 for d ≥ 2. Some volume has to be left unoccupied
due to the impossibility to fill space with disjoint balls of fixed radius. It has been shown
that vc(d) tends to 0 exponentially fast in the limit d → ∞ but its exact behavior is still
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unknown [105]. Let us now consider a constant densityρ(x) = ρ01��
(x) over a large domain

�� = �� (for instance a ball). Then we have R(x) = (ρ0|B1|)−1/d well inside ��, whereas
R(x) ≥ (ρ0|B1|)−1/d close to the boundary. This shows that for this density

Rρ = min
x∈Rd

R(x) = (ρ0|B1|)− 1
d = r0

2

(
r−d
0 ρc(d)

ρ0vc(d)

) 1
d

.

In particular, the condition (32) is satisfied whenever ρ0 ≤ r−d
0 ρc(d)/vc(d). On the other

hand, it is clear from the packing problem (rescaled by r0) that when ρ0 > r−d
0 ρc(d) the

density cannot be representable for � large enough. Otherwise we would be able to place
N = ρ0|��| > r−d

0 ρc(d)|��| points in �� at distance r0, which contradicts the definition
of ρc(d). In conclusion, we have found that, in dimensions d ≥ 2, constant densities ρ01��

with

r−d
0 ρc(d) < ρ0 ≤ r−d

0 ρc(d)

vc(d)
,

satisfy (32) but cannot be wr0—representable for � � 1.
As a side remark, we mention that there are representable densities satisfying (32), with

Rρ as close as wewant to r0/2.We can just take the sum of twoDirac deltas placed at distance
R ≥ r0 or a smooth approximation of it. This proves that there cannot exist a simple necessary
and sufficient condition of hard core representability involving Rρ only, in dimensions d ≥ 2.
This is in stark contrast with the one-dimensional case.

There exists, however, a simple sufficient condition in a form that was conjectured in [11,
p. 116]. In [14, Theorem 4.1] (see also Theorem 21 below), it is proved that any density
satisfying

Rρ ≥ r0 ,

is wr0–representable. The same holds when T > 0 if one puts a strict inequality. It would
be interesting to know if such a result is valid for Rρ ≥ cdr0 with cd < 1, depending on the
dimension.

The conclusion of our discussion is that there seems to exist no simple characterization
of hard core representability in dimensions d ≥ 2, involving averages of ρ over balls. There
are necessary or sufficient conditions but they do not match.

2.4.2 Upper Bounds

Next we discuss upper bounds in the hard core case. Even if we do not completely understand
when a density is hard-core representable, the energy is very easy to bound when it is the
case. Let us assume that w satisfies Assumption 1 with α = +∞ and that ρ ∈ L1(Rd) is w–
representable. For simplicity we also assume that w = +∞ on Br0 . Then, for any optimizer
P, we have |x j − xk | ≥ r0 for j = k, P–almost surely. This implies

F0[ρ] = UN (P) ≤
∫

(Rd )N

∑
1≤ j<k≤N

κ1(|x j − xk | ≥ r0)

|x j − xk |s dP ≤ Cκ Nr−s
0 , (34)

by [61, Lemma 9]. The constant C only depends on s and d . Upper bounds are easy once we
know that the particles cannot get too close.
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Constructing trial states with a good entropy is more difficult. Our proofs of Theorems 11
and 12 work in the hard-core case, but they require additional conditions, of the form

Rρ > r0 or
∫

B(x,r0/2)
ρ ≤ ε,

for a sufficiently small ε. We do not state the corresponding results here and rather refer the
reader to Remarks 16, 20, and 28 below. In the rest of this section we quickly discuss the
grand-canonical 1D case which has been studied in a famous paper of Percus [76] and the
situation where ρ is bounded uniformly.

The 1D Grand-Canonical Percus Formula

The grand-canonical inverse problem was completely solved by Percus in dimension d = 1
in [76] (see also [88]). Under the optimal assumption that Rρ > r0/2, he proved that the
grand-canonical Gibbs state with external potential

V (x) = − log ρ(x) + log

(
1 −
∫ x

x−r0
ρ

)
−
∫ x+r0

x

ρ(s)

1 − ∫ s
s−r0

ρ
ds

and hard-corewr0 has the densityρ. Since the potential Ṽ = V +T log ρ solves the supremum
in the dual formula (20), we obtain

GT [ρ] = T
∫
R

ρ(x)
(
log ρ(x) − 1

)
dx − T

∫
R

ρ(x) log

(
1 −
∫ x

x−r0
ρ

)
dx , (35)

for the hard core potential wr0 . This explicit expression shows us that, in one dimension, the
nonlocality is solely due to the second logarithmic term, which involves the local average∫ x

x−r0
ρ over a window of length r0. This is further discussed in [88].

For a general potential w satisfying Assumption 1, we only obtain an upper bound and
need to add Cκr−s

0

∫
R

ρ by (34). We can estimate the logarithm by assuming, for instance,
that
∫ x

x−r0
ρ ≤ 1 − ε for all x ∈ R.

To our knowledge the canonical problem was never solved in the manner of Percus. It
would be interesting to derive an upper bound on FT [ρ] of the same form as the right side
of (35).

Bound for Densities Uniformly Bounded by the Packing Density

In dimensions d ≥ 2 we have no simple criterion of representability, as we have seen. One
simpler situation is when ρ is everywhere bounded above by the sphere packing density,
which we have defined in (33). Then we can prove it is representable and furnish an explicit
upper bound on its grand-canonical free energy.

Theorem 14 (Hard-core case with packing density bound) Assume that w satisfies Assump-
tion 1 with α = +∞. Let ρc(d) be the sphere packing density in (33) and vc(d) =
2−dρc(d)|B1| be the volume fraction. Let ρ ∈ L1(Rd ,R+) be such that

ρ(x) ≤ (1 − ε)dr−d
0 ρc(d),

for some ε ∈ (0, 1). We also assume that
∫
Rd ρ| log ρ| < ∞ if T > 0. Then

GT [ρ] ≤ Cκ

rs
0

∫
Rd

ρ + T
∫
Rd

ρ log ρ + T log

(
2d

εdvc(d)

)∫
Rd

ρ,
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Fig. 1 Sketch of intervals

with a constant C depending only on the dimension d and the power s from Assumption 1.
The idea of the proof is to first construct a trial state for a constant density ρ0 ≈ (1 −

ε)dr−d
0 ρc(d) by using a periodic sphere packing with a large period, uniformly averaged

over translations (often called a “floating crystal” [64]). We then “geometrically localize”
[60] this state to make it have density ρ. The proof is detailed later in Sect. 6.

3 Proof of Theorem 11 in Dimension d = 1

We start with the one-dimensional canonical case, for which the argument is relatively easy.
We detail the proof for the convenience of the reader and because this will pave the way for
the more complicated covering methods in higher dimensions. We only consider here the
canonical case. The grand-canonical bound (23) follows using (19), but in the next section
we will provide a direct proof in the grand-canonical case which also works in dimension
d = 1.

Theorem 15 (d = 1) Suppose the interaction w satisfies Assumption 1 with 1 ≤ α < ∞. Let
T ≥ 0 and assume that

∫
R

ρ|log ρ| < ∞ for T > 0. Then for any density 0 ≤ ρ ∈ L1(R)

with
∫
R

ρ ∈ N, we have

FT [ρ] ≤ 4κs

s − 1

∫
R

ρ2 + log(2)T
∫
R

ρ + T
∫
R

ρ log ρ

+

⎧⎪⎪⎨
⎪⎪⎩

23+2α

α − 1
κrα

0

∫
R

ρ1+α for α > 1,

25κr0

(
2 log(2)

∫
R

ρ2 +
∫
R

ρ2 (log r0ρ)+
)

for α = 1.
(36)

Proof Denoting N = ∫
R

ρ, we can split the real numbers R into two families (L j )
N
j=1,

(L∗
j )

N
j=1 of disjoint intervals in such a way that the mass of ρ in each of these intervals is

exactly
∫

L j
ρ = 1/2, and such that each L j has neighboring intervals only among the L∗

j ,
and vice versa (see Fig. 1).

This allows us to write

ρ = 1

2

⎛
⎝∑

j

2ρ1L j +
∑

j

2ρ1L∗
j

⎞
⎠ ,
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a convex combination of two measures with mass equal to N . As trial states for each of these,
we take the symmetric tensor products

Q = 
s

⎛
⎝⊗

j

(2ρ1L j )

⎞
⎠ , Q

∗ = 
s

⎛
⎝⊗

j

(2ρ1L∗
j
)

⎞
⎠ ,

where 
s denotes the symmetrization operator in (31). Then the state

P:=1

2
(Q + Q

∗),

has one-body density equal to ρP = ρ. Using that the intervals (L j ) are all disjoint, we have
for instance

−SN (Q) =
∫
RN

1

N !
∑

σ∈SN

⊗
j

(2ρ1Lσ( j) ) log

⎛
⎝⊗

j

(2ρ1Lσ( j) )

⎞
⎠

=
N∑

j=1

∫
R

2ρ1L j log(2ρ1L j ) =
∫
⋃

j L j

2ρ log(2ρ),

and similarly for Q∗. By concavity of the entropy, we conclude that

−SN (P) ≤ − 1

2
SN (Q) − 1

2
SN (Q∗) = log 2

∫
R

ρ +
∫
R

ρ log ρ.

To estimate the interaction energy in the state P, it suffices to provide an estimate for both
Q and Q

∗. We write here the argument only for Q, since the argument for Q∗ is exactly the
same. By Assumption 1 and the construction of Q, we immediately have

UN (Q) =
∫∫

R2
w(x − y)ρ

(2)
Q

(x, y) dx dy

≤ 4κ
∑
i< j

∫∫
R2

(
rα
0 1(|x − y| < r0)

|x − y|α + w2(x − y)

)

× ρ(x)1Li (x)ρ(y)1L j (y) dx dy,

where w2(x) = (1 + |x |s)−1 and ρ
(2)
Q

is the two-particle correlation function. For the
contribution from the tail of the interaction, we have by Young’s inequality

∑
i< j

∫∫
R2

w2(x − y)ρ(x)1Li (x)ρ(y)1L j (y) dx dy

≤ 1

2

∫∫
R2

w2(x − y)ρ(x)ρ(y) dx dy

≤ ‖w2‖L1

2

∫
R

ρ2 ≤ s

s − 1

∫
R

ρ2.

From the core of w we get

4
∑
i< j

∫∫
R2

1(|x − y| < r0)

|x − y|α ρ(x)1Li (x)ρ(y)1L j (y) dx dy ≤
∑
i< j

1d(Li ,L j )<r0

d(Li , L j )α
.
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The idea now is to use the intervals (L∗
j ) to estimate the sum above. For each i we denote

by ηi the minimal length of neighboring intervals,

ηi = min{�∗
j | d(Li , L∗

j ) = 0},
where �∗

j :=|L∗
j | is the interval length, and we re-order the collection (Li ) such that η1 ≤

· · · ≤ ηN . Fixing the index i , we now clearly have for j > i ,

d(Li , L j ) ≥ η j ≥ ηi ,

in particular, ηi is smaller than the side length of any interval neighboring L j . Pick x j ∈ Li

and y j ∈ L j such that d(Li , L j ) = |x j − y j |, and let L∗
k be the neighboring interval of L j

facing y j , that is, d(y j , L∗
k) = 0. Defining

L̃ j :=(y j − ηi/2, y j + ηi/2) ∩ L∗
k ,

then |L̃ j | = ηi/2, and ηi/2 ≤ |x j − y| ≤ |x j − y j | for all y ∈ L̃ j , so we can estimate

1d(Li ,L j )<r0

d(Li , L j )α
≤ 2

ηi

∫
L̃ j

1(|x j − y| < r0)

|x j − y|α dy = 2

ηi

∫
L̃ j −x j

1(|y| < r0)

|y|α dy.

Now summing over j gives

N∑
j=i+1

1d(Li ,L j )<r0

d(Li , L j )α
≤ 2

ηi

∫
R

1(ηi/2 ≤ |y| < r0)

|y|α dy = 4

ηi

(∫ r0

ηi /2

1

|y|α dy

)
+

≤

⎧⎪⎪⎨
⎪⎪⎩

21+α

α − 1

1

ηα
i

for α > 1,

4

ηi

(
log

(
2r0
ηi

))
+

for α = 1.
(37)

By Hölder’s inequality, we have by construction of the intervals L∗
j

1

(�∗
j )

α
≤ 21+α

∫
L∗

j

ρ1+α,

for any α > 1, so in this case we conclude that

∑
i< j

1d(Li ,L j )<r0

d(Li , L j )α
≤

N∑
i=1

21+α

α − 1

1

ηα
i

≤ 22+α

α − 1

N∑
i=1

1

(�∗
i )

α
≤ 23+2α

α − 1

N∑
i=1

∫
L∗

i

ρ1+α.

The same bound holds for the interaction energy ofQ∗, but with the intervals L∗
i replaced

by Li at the end. This finishes the proof of the α > 1 case in (36).
To finish the α = 1 case, we note that applying Jensen’s inequality on the function

t �→ t2(log(2λt))+ for λ > 0 yields

1

�∗
j

(
log

(
λ

�∗
j

))

+
= 4�∗

j

(
1

�∗
j

∫
L∗

j

ρ

)2 (
log

(
2λ

�∗
j

∫
L∗

j

ρ

))

+
≤ 4
∫

L∗
j

ρ2(log(2λρ))+.

Hence, continuing from (37), we get

∑
i< j

1d(Li ,L j )<r0

d(Li , L j )α
≤

N∑
i=1

4

ηi

(
log

(
2r0
ηi

))
+

≤ 8
N∑

i=1

1

�∗
i

(
log

(
2r0
�∗

i

))
+
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≤ 25
N∑

i=1

∫
L∗

i

ρ2(log(4r0ρ))+.

Since the corresponding bound also holds for Q∗, this concludes the proof. ��

Remark 16 (Hard-core case) In the casewherew has a hard-corewith range r0 > 0, it follows
from the proof above that

FT [ρ] ≤
(

4κs

(s − 1)r0
+ log(2)T

)∫
R

ρ + T
∫
R

ρ log ρ, (38)

for any density ρ ∈ L1(R) satisfying the (sub-optimal) condition
∫ x+r0

x ρ ≤ 1
2 for all x ∈ R.

4 Proof of Theorem 11 in the Grand-Canonical Case

In the course of our proof we need to cover the support of our density using disjoint cubes
separated by a distance depending on the local value of the density, in order to have a
reasonable control of the interaction.Weobtain such a covering by a variant of theBesicovitch
lemma [21], which we first describe in this subsection. It is different from the standard
formulation.

For simplicity we work with a compactly supported density ρ with
∫
Rd ρ > 1. For every

x ∈ R
d , we define �(x) to be the largest number such that

∫
x+�(x)C

ρ(x) dx = 1

3d(4d + 1)
, (39)

where C = (−1/2, 1/2)d is the unit cube centered at the origin. It is convenient to work with
cubes instead of balls. It is important that the chosen value of the integral in (39) is universal
and only depends on the space dimension d . This value is motivated by the estimates which
will follow, it could be any fixed number < 1 at this point. The number �(x) always exists
since the full integral is larger than 1. The function x �→ �(x) is upper semi-continuous. To
simplify our notation we denote by C(x):=x + �(x)C the cube centered at x of side length
�(x). By Hölder’s inequality we get

1

3d(4d + 1)
=
∫
C(x)

ρ ≤ �(x)
αd

α+d

(∫
C(x)

ρ1+ α
d

) d
d+α

,

and thus obtain the estimate

1

�(x)α
≤ 3α+d(4d + 1)1+

α
d

∫
C(x)

ρ1+ α
d , ∀x ∈ R

d , (40)

on the local length �(x). The standard Besicovitch covering lemma (as stated for instance in
[21, 35]) implies for compactly supported densities that there exists a set of points x ′(k)

j with

1 ≤ k ≤ K ′ ≤ 4d + 1 and 1 ≤ j ≤ Jk such that

• the cubes
(C(x ′(k)

j )
)
1≤k≤K ′
1≤ j≤Jk

cover the support of ρ and each x ∈ R
d is in at most 2d such

cubes,
• for every k, the cubes

(C(x ′(k)
j )
)
1≤ j≤Jk

are all disjoint.
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Weneed to obtain different families which satisfy additional properties, namelywe require
the cubes to have a safety distance to all the larger cubes within the same family, this distance
being comparable to the side length of the cube in question. The precise statement is the
following.

Lemma 17 (Besicovitch with minimal distance) Let ρ be a compactly supported density
with
∫
Rd ρ > 1. Then there exists a set of points x (k)

j with 1 ≤ k ≤ K ≤ 3d(4d + 1) and
1 ≤ j ≤ Jk < ∞ such that

• the cubes
(C(x (k)

j )
)
1≤k≤K
1≤ j≤Jk

cover the support of ρ and each x ∈ R
d is in at most 2d such

cubes,
• for every k, the cubes

(C(x (k)
j )
)
1≤ j≤Jk

in the kth collection satisfy

d
(
C(x (k)

j ), C(x (k)
� )
)

≥ 1

2
min
{
�(x (k)

j ), �(x (k)
� )
}
.

Proof Westart the proof by applying the standardBesicovitch covering lemma recalled above.
We obtain K collections of disjoint cubes. To impose the minimal distance we separate each
family into 3d subfamilies. Specifically, we use that the maximal number of disjoint cubes of
side length ≥ � intersecting a cube of side length 2� is at most 3d . Thus if we look at a given
cube of side length �, only 3d − 1 other bigger cubes can be at distance ≤ �/2. By induction
we can thus always distribute all our cubes into 3d subfamilies, while ensuring the distance
property for all the bigger cubes. ��

Using Lemma 17 we obtain the following partition of unity

1supp ρ =
K∑

k=1

Jk∑
j=1

1C(x (k)
j )∩supp ρ

η
, 1supp ρ ≤ η:=

K∑
k=1

Jk∑
j=1

1C(x (k)
j )

≤ 2d , (41)

which we are going to use to construct our trial state for the upper bound on GT [ρ]. We split
the proof into several steps. We start with the case α > d and treat the special case α = d at
the very end.

Step 1: Less than one particle. If
∫
Rd ρ ≤ 1, we consider the probability P = (Pn) given

by

P0 = 1 −
∫
Rd

ρ, P1 = ρ, Pn = 0 for n ≥ 2, (42)

which has density ρ and no interaction energy. Its free energy is thus just equal to the entropy
term

−TS(P) = T

(
1 −
∫
Rd

ρ

)
log

(
1 −
∫
Rd

ρ

)
+ T
∫
Rd

ρ log ρ.

The first term is negative and thus we obtain the desired inequality

GT [ρ] ≤ T
∫
Rd

ρ log ρ for
∫
Rd

ρ ≤ 1. (43)

Step 2: Compactly supported densities (α > d). Next we consider the case of a compactly
supported density ρ with

∫
Rd ρ > 1. Using the partition (41) we write

ρ = 1

K

K∑
k=1

⎛
⎝∑

j

ρ
(k)
j

⎞
⎠ , ρ

(k)
j :=

Kρ1
Q(k)

j

η
,
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where we abbreviated Q(k)
j = C(x (k)

j ) for simplicity. This is a (uniform) convex combination

of the K densities ρ(k) =∑ j ρ
(k)
j . For fixed k, the ρ

(k)
j have disjoint supports with distance

greater or equal to min{�(x (k)
j ), �(x (k)

j ′ )}/2. In addition, we have
∫

ρ
(k)
j = K

∫
Q(k)

j

ρ

η
≤ 3d(4d + 1)

∫
Q(k)

j

ρ ≤ 1.

This is the reason for our choice of the constant in (39). Our trial state is given by

P:= 1

K

K∑
k=1

P
(k),

where

P
(k) =

Jk⊗
j=1

((
1 −
∫
Rd

ρ
(k)
j

)
⊕ ρ

(k)
j ⊕ 0 ⊕ . . .

)
,

is the symmetrized tensor product of the states in (42), which has density ρ(k). Using the
concavity of the entropy, our upper bound is, thus,

GT [ρ] ≤ 1

K

∑
k

GT (P(k))

≤ 1

K

K∑
k=1

( ∑
1≤i< j≤Jk

∫∫
Rd×Rd

ρ
(k)
i (x)ρ

(k)
j (y)w(x − y) dx dy

+ T
Jk∑

j=1

∫
Q(k)

j

ρ
(k)
j log ρ

(k)
j

)
.

We have

1

K

K∑
k=1

Jk∑
j=1

∫
Q(k)

j

ρ
(k)
j log ρ

(k)
j = 1

K

K∑
k=1

Jk∑
j=1

∫
Q(k)

j

ρ
(k)
j log

Kρ

η

=
∫
Rd

ρ log
Kρ

η
≤
∫
Rd

ρ log ρ + 3d
∫
Rd

ρ,

since K ≤ 15d ≤ e3d and η ≥ 1. Thus we obtain

GT [ρ] ≤ 1

K

K∑
k=1

∑
1≤i< j≤Jk

∫∫
Rd×Rd

ρ
(k)
i (x)ρ

(k)
j (y)w(x − y) dx dy

+ T
∫
Rd

ρ log ρ + 3T d
∫
Rd

ρ.

Our next task is to estimate the interaction, for every fixed k. By Assumption 1 we have
w ≤ w1 + w2 with w1(x) = κ(r0/|x |)α1(|x | < r0) and w2(x) = κ(1 + |x |s)−1. We first
estimate the term involving the integrable potential w2 using Young’s inequality as

∑
1≤i< j≤Jk

∫∫
Rd×Rd

ρ
(k)
i (x)ρ

(k)
j (y)w2(x − y) dx dy
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≤ 1

2

∫∫
Rd×Rd

ρ(k)(x)ρ(k)(y)w2(x − y) dx dy

≤ ‖w2‖L1

2

∫
Rd

(ρ(k))2 = ‖w2‖L1

2
K 2
∫

∪i Q(k)
i

ρ2

η2
.

After summing over k this gives

1

K

K∑
k=1

∑
1≤i< j≤Jk

∫∫
Rd×Rd

ρ
(k)
i (x)ρ

(k)
j (y)w2(x − y) dx dy ≤ ‖w2‖L1

2
K
∫
Rd

ρ2

η
.

Using for instance

∫
Rd

w2 = κ|Sd−1|
∫ ∞

0

rd−1

1 + rs
dr ≤ κ|Sd−1| s

d(s − d)
,

and recalling that η ≥ 1 and K ≤ 3d(4d + 1), we obtain

1

K

K∑
k=1

∑
1≤i< j≤Jk

∫∫
Rd×Rd

ρ
(k)
i (x)ρ

(k)
j (y)w2(x − y) dx dy

≤ κ
s|Sd−1|

2d(s − d)
3d(4d + 1)

∫
Rd

ρ2.

Next we consider the more complicated term involving the singular part w1 = κ1(|x | <

r0)(r0/|x |)α . To simplify our notation, we remove the superscript (k) and thus consider the
collection (ρ j )

J
j=1 of functions supported in the disjoint cubes Q j with the safety distance.

For every i = j , using
∫
Rd ρ j ≤ 1, we can estimate

∫∫
ρi (x)ρ j (y)w1(x − y) dx dy ≤ κrα

0

d(Qi , Q j )α
.

Recall that when |Qi | ≤ |Q j |, the distance d(Qi , Q j ) is at least equal to �i/2. We can
order our J cubes so that the volume is increasing: |Q1| ≤ |Q2| ≤ · · · ≤ |Q J |. We need to
estimate

J−1∑
i=1

J∑
j=i+1

1

d(Qi , Q j )α
=

J−1∑
i=1

1

�α
i

J∑
j=i+1

1

d(C, Q′
i, j )

α
,

where C = (−1/2, 1/2)d and for every i , we have denoted by Q′
i, j the cube centered

at (x j − xi )/�i , of volume |Q j |/|Qi | ≥ 1. To estimate the sum in j , we use the following
lemma, which is based on the integrability at infinity of |x |−α and is similar to [61, Lemma 9].

Lemma 18 Let C = (−1/2, 1/2)d be the unit cube and consider any collection of non-
intersecting cubes Q j with the property that |Q j | ≥ 1 and d(C, Q j ) ≥ 1

2 . Then we have

∑
j

1

d(C, Q j )α
≤ 3α27dd2

|Sd−1|(α − d)
. (44)

The constant on the right of (44) is not at all optimal and is only displayed for concreteness.
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Proof of Lemma 18 Let X j ∈ C and Y j ∈ Q j be so that d(C, Q j ) = |X j − Y j | ≥ 1
2 . For any

x ∈ B(X j , 1/8) and y ∈ B(Y j , 1/8) we have

|X j − Y j |
2

≤ |X j − Y j | − 1

4
≤ |x − y| ≤ |X j − Y j | + 1

4
≤ 3

2
|X j − Y j |.

Integrating over x ′ ∈ C ∩ B(X j , 1/8) and y′ ∈ Q j ∩ B(Y j , 1/8) we obtain

1

d(C, Q j )α
= 1

|X j − Y j |α

≤ (3/2)α

|C ∩ B(X j , 1/8)| |Q j ∩ B(Y j , 1/8)|
∫
C

∫
Q j

dx dy

|x − y|α .

The volume of the intersection of a ball of radius 1/8 centered at X j in a cube of volume
≥ 1 and that of the other cube is bounded away from 0. It is in fact minimal when X j , Y j are
located at a corner, yielding

|C ∩ B(X j , 1/8)| ≥ |Sd−1|
24dd

, |Q j ∩ B(Y j , 1/8)| ≥ |Sd−1|
24dd

.

Thus, we obtain

1

d(C, Q j )α
≤ 3α28d−αd2

|Sd−1|2
∫
C

∫
Q j

dx dy

|x − y|α .

Summing over j using that the cubes are disjoint we obtain

∑
j

1

d(C, Q j )α
≤ 3α28d−αd2

|Sd−1|2
∫
C

∫
Rd

1(|x − y| ≥ 1
2 ) dx dy

|x − y|α = 3α27dd2

|Sd−1|(α − d)
,

as was claimed. ��
From the estimates (40) and (44), we deduce that

∑
1≤i< j≤Jk

∫∫
|x−y|≤r0

ρi (x)ρ j (y)w1(x − y) dx dy

≤ κrα
0

d23d+2α27d(4d + 1)1+ α
d

|Sd−1|(α − d)

∫
∪i Qi

ρ1+ α
d .

Using that
∫
∪i Qi

ρ1+ α
d ≤ ∫

Rd ρ1+ α
d and summing over K , we obtain our final estimate

GT [ρ] ≤ κ
s|Sd−1|

2d(s − d)
3d(4d + 1)

∫
Rd

ρ2 + κrα
0

d23d+2α27d(4d + 1)1+ α
d

|Sd−1|(α − d)

∫
Rd

ρ1+ α
d

+ T
∫
Rd

ρ log ρ + 3T d
∫
Rd

ρ. (45)

This is our final upper bound, with non-optimal constants only displayed for concreteness.
Step 3: General densities (α > d). In order to be able to use the Besicovitch lemma,

we restricted ourselves to compactly supported densities. We prove here that the exact same
estimate holds for general densities. Let ρ ∈ (L1 ∩ L1+α/d)(Rd ,R+), ε ∈ (0, 1) and write

ρ = (1 − ε)
ρ1CL

1 − ε
+ ε

ρ1Rd\CL

ε
,
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with CL = (−L/2, L/2)d . Using the concavity of the entropy, we obtain

GT [ρ] ≤ (1 − ε)GT

[
ρ1CL

1 − ε

]
+ ε GT

[
ρ1Rd\CL

ε

]
. (46)

We choose L so large that ∫
Rd\CL

ρ ≤ ε,

which allows us to use (43) for the second term on the right of (46). For the first term we just
use Step 2. We find

GT [ρ] ≤ Cκrα
0

(1 − ε)
α
d

∫
CL

ρ1+ α
d + Cκ

1 − ε

∫
CL

ρ2 + CT
∫
CL

ρ + T
∫
Rd

ρ log ρ

+T log ε−1
∫
Rd\CL

ρ + T log(1 − ε)−1
∫
CL

ρ.

By passing first to the limit L → ∞ and then ε → 0, we conclude that ρ satisfies the
same estimate (45) as for compactly supported densities.

Step 4: Case α = d . The case when the core of the interaction behaves as w1(x) =
κrd

0 |x |−d1(|x | ≤ r0) is similar to the previous situation with some small changes. The
function is not integrable around the origin which requires to have a safety distance between
particles in our trial state. However this interaction is also non-integrable without cutoff at
infinity so we need to use that the core of our interaction is compactly supported on the ball
of radius r0. The following alternative to Lemma 18 is going to be useful.

Lemma 19 Let C0 = (−�0/2, �0/2)d and consider any collection of non-intersecting cubes
Q j with the property that |Q j | ≥ �d

0 and d(C0, Q j ) ≥ �0
2 . Then we have

∑
j

1d(C0,Q j )≤r0

d(C0, Q j )d
≤ C�−d

0

(
log

(
2r0
�0

))
+

. (47)

Proof We assume �0 ≤ 2r0 otherwise there is nothing to prove. Let X j ∈ C0 and Y j ∈ Q j

be such that d(C0, Q j ) = |X j − Y j | ≥ �0
2 . For any x ∈ B(X j , �0/8) and y ∈ B(Y j , �0/8)

we have

|X j − Y j |
2

≤ |X j − Y j | − �0

4
≤ |x − y| ≤ |X j − Y j | + �0

4
≤ 3

2
|X j − Y j |.

Integrating over x ′ ∈ C0 ∩ B(X j , �0/8) and y′ ∈ Q j ∩ B(Y j , �0/8) we obtain

1d(C0,Q j )≤r0

d(C0, Q j )d
= 1d(C0,Q j )≤r0

|X j − Y j |d

≤ (3/2)d

|C0 ∩ B(X j , �0/8)| |Q j ∩ B(Y j , �0/8)|
∫
C0

∫
Q j

1d(|x−y|)≤r0

|x − y|d dx dy.

Summing over all cubes we get

∑
j

1d(C0,Q j )≤r0

d(C0, Q j )d
≤ 27d3dd

|Sd−1|�d
0

∫ r0

�0
2

r−1 dr = 27d3dd

|Sd−1|
log(2r0/�0)

�d
0

.

��
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Next we explain how to relate the right side of (47) with the density ρ. Recall from (39)
that ∫

C(x)

ρ(y) dy = 1

3d(4d + 1)
, (48)

where C(x) is the cube of side length �(x) centered at x . By Jensen’s inequality, we have for
every convex function F

�(x)d F

(
1

�(x)d3d(4d + 1)

)
= �(x)d F

(
1

�(x)d

∫
C(x)

ρ

)
≤
∫
C(x)

F
(
ρ(y)
)
dy. (49)

Applying this to

F(t) = t2
(
log
(
6d(4d + 1)rd

0 t
))

+,

we obtain

�(x)−d
(
log

(
2r0
�(x)

))
+

≤ 32d(4d + 1)2

d

∫
C(x)

ρ(y)2
(
log
(
6d(4d + 1)rd

0 ρ(y)
))

+ dy

≤ 32d(4d + 1)2

d

∫
C(x)

ρ(y)2
(
4d + ( log rd

0 ρ(y)
)
+
)
dy. (50)

The rest of the proof is similar to the case α > d , using (50) and Lemma 19. We omit the
details. This concludes the proof of Theorem 11. ��
Remark 20 (Hard-core case) The previous proof can be used in the hard core case α =
∞, under the (sub-optimal) condition that

∫
x+r0C ρ < 1

3d (4d+1)
for all x , where C =

(−1/2, 1/2)d . The interaction can be bounded by κC N as we have seen in (34), leading
to the bound

GT [ρ] ≤ Cκ

∫
Rd

ρ + CT
∫
Rd

ρ + T
∫
Rd

ρ log ρ.

5 Proofs in the Canonical Case

5.1 The Local Radius R(x) in Optimal Transport

Here we explain how to construct canonical trial states using a result from optimal transport,
in order to obtain bounds at zero temperature for a singular interaction (d ≤ α ≤ ∞).

Consider any density ρ with
∫

ρ > 1, and recall the local radius R(x) from (24). Note that
R(x) can never be zero because ρ as a measure does not have any point mass. The function
R is connected to the Hardy–Littlewood maximal function Mρ , defined by

Mρ(x):= sup
r>0

1

|Br |
∫

B(x,r)

ρ(y) dy, (51)

where |Br | denotes the volume of a ball in Rd of radius r . By definition of R it is clear that

1

|B1|R(x)d
= 1

|B1|R(x)d

∫
B(x,R(x))

ρ(y) dy ≤ Mρ(x),
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so that we have the pointwise bound

1

R(x)
≤ (|B1|Mρ(x))

1
d . (52)

Furthermore, using Hölder’s inequality gives for any p > 0,

1 =
∫

B(x,R(x))

ρ ≤ |B(x, R(x))| p
p+d

(∫
B(x,R(x))

ρ1+ p
d

) d
p+d

,

implying for ρ ∈ L
1+ p

d
loc (Rd) the bound

1

R(x)p
≤ |B1| p

d

∫
B(x,R(x))

ρ1+ p
d . (53)

It is also apparent that R is 1-Lipschitz-continuous, see e.g. [14, Theorem 4.1]. One might
also remark that R always stays away from zero, i.e.

Rρ := min
x∈Rd

R(x) > 0. (54)

This is an immediate consequence of the facts that R is continuous and that, necessarily,
lim|x |→∞ R(x) = ∞, because ρ ∈ L1(Rd).

To obtain an upper bound on the canonical energy at a fixed density 0 ≤ ρ ∈ L1(Rd),
it is convenient to have existence of states P in which the distance between the particles is
bounded from below in terms of the function R from (24). The following is a consequence
of a result from [14].

Theorem 21 (Optimal transport state) Let 0 ≤ ρ ∈ L1(Rd) with N = ∫
Rd ρ ∈ N. There

exists an N-particle state P with density ρP = ρ such that

|xi − x j | ≥ max
(

Rρ,
R(xi )+R(x j )

3

)
for 1 ≤ i = j ≤ N . (55)

P—almost everywhere, where R is the function defined by (24), and Rρ is its minimum in (54).

Proof The proof is a simple application of [14, Theorem 4.3]. For any 0 < η < 1 (we will
choose η = 1/3 in a moment) and any x ∈ R

d , define a set

B̃(x) = {y ∈ R
d | |x − y| < η(R(x) + R(y))}.

Then we have for any 0 < t < 1 − η, using the Lipschitz continuity of R,

B̃(x) ⊆ {y ∈ R
d | t |x − y| < ηR(x)} ∪ {y ∈ R

d | (1 − t)|x − y| < ηR(y)}
⊆ B(x,

η
t R(x)) ∪ {y ∈ R

d | (1 − t)|x − y| < η(R(x) + |x − y|)}
= B(x,

η
t R(x)) ∪ B(x,

η
1−t−η

R(x)).

We wish to choose t and η such that the measure of right hand side is equal to one (with
respect to the measure ρ). First, requiring the two balls to have the same radius leads to
the choice t = 1−η

2 . Next, we choose η such that η
t = η

1−t−η
= 2η

1−η
= 1, which implies

η = 1/3.
Now, defining an open and symmetric set D ⊆ R

d × R
d by

D =
{
(x, y) ∈ R

d × R
d
∣∣∣ |x − y| < max

(
Rρ,

R(x)+R(y)
3

)}
,
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then B(x):={y ∈ R
d | (x, y) ∈ D} satisfies

B(x) = B(x, Rρ) ∪ B̃(x) ⊆ B(x, R(x)).

Thus, by definition of R, we have ρ(B(x)) ≤ ρ(B(x, R(x))) = 1, and since D is open
and symmetric, [14, Theorem 4.3] asserts the existence of a P with the claimed properties.
Specifically, one can take P to be the optimizer for the multi-marginal optimal transport
problem associated to the cost

c(x) = min{d(x, A), 1},
where A denotes the set containing the (x1, ..., xN ) satisfying (55). ��

5.2 Proof of Theorem 11 in the Canonical Case at T = 0

The existence of the state from Theorem 21 allows us to prove the last part of Theorem 11
about the canonical free energy at zero temperature. For convenience we state a proposition
valid for any state P for which the particles satisfy an inequality similar to (55). Along with
Proposition 23 below (which covers the case α = d), this immediately implies Theorem 11
in the canonical case.

Proposition 22 (Zero temperature energy bound, d < α < ∞) Let w satisfy Assumption 1
with d < α < ∞. Let P be any N-particle probability measure with one-body density
ρ := ρP satisfying

|xi − x j | ≥ η
(
R(xi ) + R(x j )

)
for 1 ≤ i = j ≤ N , (56)

P—almost everywhere, for some 0 < η ≤ 1. Then the interaction energy in the state P is
bounded by

F0[ρ] ≤ UN (P) ≤ Cκrα
0

ηα

∫
Rd

ρ(x)1+
α
d dx + Cκ

ηd

∫
Rd

ρ(x)2 dx (57)

with C a constant depending only on d, α, s.

Proof of Proposition 22 In this proof wewill not keep track of the exact value of the constants,
since we will need the (unknown) one from the Hardy–Littlewood inequality. Hence C
denotes here a generic constant depending only on d, α, s. By the assumptions on w, we
have

UN (P) ≤ κ

∫
Rd N

∑
1≤i< j≤N

(
rα
0 1(|xi − x j | ≤ r0)

|xi − x j |α + 1

1 + |xi − x j |s
)
dP(x). (58)

Let x = (x1, . . . , xN ) be in the support of P. After permutation we can assume that
R(x1) ≤ R(x2) ≤ · · · ≤ R(xN ). We fix the index i and consider the points xi − x j in Rd for
j = i +1, . . . , N . Because of (56), these points are all at a distance at least η(R(xi )+ R(x j ))

from the origin, and

|(xi − x j ) − (xi − xk)| = |x j − xk | ≥ η(R(x j ) + R(xk)).

Hence we can place N − i disjoint balls in R
d with radii ηR(x j ), centered at the points

xi − x j , respectively. Inside each of these balls, we place a smaller ball of radius η
2 R(x j ),

centered at

z j =
(
1 − ηR(x j )

2|xi − x j |
)

(xi − x j ).
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Fig. 2 Sketch of Construction

Then xi − x j is the point on the boundary of B(z j ,
η
2 R(x j )) which is the farthest from

the origin (see Fig. 2), so that

1

|xi − x j |α = min
y∈B(z j ,

η
2 R(x j ))

1

|y|α .

Note that the distance from B(z j ,
η
2 R(x j )) to the origin is bounded from below by

d
(
0, B(z j ,

η

2
R(x j ))
)

≥ |z j | − η

2
R(x j ) = |xi − x j | − ηR(x j ) ≥ ηR(xi ).

Using this, along with the fact that all the balls are disjoint, we get the pointwise bound

N∑
j=i+1

1

|xi − x j |α ≤
N∑

j=i+1

1

|B(z j ,
η
2 R(x j ))|

∫
B(z j ,

η
2 R(x j ))

1

|y|α dy

≤ 1

|B(0, η
2 R(xi ))|

∫
B(0,ηR(xi ))

c

1

|y|α dy (59)

= 2d

|B1|
1

(ηR(xi ))α

∫
B(0,1)c

1

|y|α dy,

for P-a.e. x ∈ R
d N . We conclude that the contribution to the energy from the core of w can

be bounded by

∫
Rd N

N∑
i=1

N∑
j=i+1

1

|xi − x j |α dP(x) ≤ C

ηα

∫
Rd N

N∑
i=1

1

R(xi )α
dP(x)

= C

ηα

∫
Rd

ρ(x)

R(x)α
dx . (60)

Similarly, we get for the contribution from the tail of w,

∑
j=i+1

1

1 + |xi − x j |s ≤
∑

j=i+1

1

|B(z j ,
η
2 R(x j ))|

∫
B(z j ,

η
2 R(x j ))

1

1 + |y|s dy
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≤ 2d

|B1|
1

(ηR(xi ))d

∫
Rd

1

1 + |y|s dy,

so
∫
Rd N

N∑
i=1

N∑
j=i+1

1

1 + |xi − x j |s dP(x) ≤ C

ηd

∫
Rd

ρ(x)

R(x)d
dx . (61)

Finally, recalling from (52) that R(x) is bounded from below in terms of the maximal
function of ρ, we apply the Hölder and Hardy–Littlewood maximal inequalities to obtain for
any power p > 0,∫

Rd

ρ(x)

R(x)p
dx ≤ C

∫
Rd

ρ(x)(Mρ)(x)
p
d dx

≤ C

(∫
Rd

ρ(x)1+
p
d dx

) d
d+p
(∫

Rd
(Mρ)(x)1+

p
d dx

) p
d+p

≤ C
∫
Rd

ρ(x)1+
p
d .

Using this on (60) and (61), and combining with (58), we obtain the claimed bound (57).
��

Proposition 23 (Special case α = d) Let w be an interaction satisfying Assumption 1 with
α = d, and 0 ≤ ρ ∈ L1(Rd) a density with

∫
ρ = N. Then, for any N-particle probability

measure P with one-body density ρP = ρ satisfying (56) for some 0 < η ≤ 1, the interaction
energy is bounded by

F0[ρ] ≤
∫
Rd N

∑
1≤i< j≤N

w(xi − x j ) dP(x1, . . . , xN )

≤ κrd
0 C

η2d

∫
Rd

ρ2

(
log

(
crd

0

η2d
ρ

))

+
+ κC

η2d

∫
Rd

1

1 + |y|s dy
∫
Rd

ρ2, (62)

where the constants c and C depend only on the dimension d.

Proof The proof goes along the same lines as the proof of Proposition 22. However, compli-
cations arise due to the fact that 1/|x |d is not integrable at infinity, so we need to take into
account the finite range r0 of the core of w. Incidentally, this also forces us to avoid using the
Hardy-Littlewood maximal inequality later in the proof. Following the proof of Proposition
22 up to (59) and noting that B(z j ,

η
2 R(x j )) ⊆ B(0, |xi − x j |), we have

N∑
j=i+1

1(|xi − x j | ≤ r0)

|xi − x j |d ≤
N∑

j=i+1

1(|xi − x j | ≤ r0)

|B(z j ,
η
2 R(x j ))|

∫
B(z j ,

η
2 R(x j ))

1

|y|d dy

≤ 1

|B(0, η
2 R(xi ))|

∫
ηR(xi )≤|y|≤r0

1

|y|d dy

= |Sd−1|
|B(0, η

2 R(xi ))|
(∫ r0

ηR(xi )

1

r
dr

)
+

= 2d

ηd R(xi )d

(
log

(
rd
0

ηd R(xi )d

))

+
.
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This leads to the bound

∫
Rd N

N∑
i=1

N∑
j=i+1

w(xi − x j ) dP(x)

≤ κrd
0
2d

ηd

∫
Rd N

N∑
i=1

1

R(xi )d

(
log

(
rd
0

ηd R(xi )d

))

+
dP(x)

+ κ
2d

|B1|ηd

∫
Rd

1

1 + |y|s dy
∫
Rd N

N∑
i=1

1

R(xi )d
dP(x), (63)

where, in this case, we cannot use the Hardy–Littlewoodmaximal inequality on the first term.
However, this can be circumvented using the fact that |xi − x j | ≥ η(R(xi ) + R(x j )) on the
support of P, which is the content of Lemma 24 below. Using the lemma, we conclude

F0[ρ] ≤ κrd
0 C

η2d

∫
Rd

ρ2

(
log

(
2d |B1|rd

0

η2d
ρ

))

+
+ κC

η2d

∫
Rd

1

1 + |y|s dy
∫
Rd

ρ2,

where the constant C depends only on the dimension d . ��

Lemma 24 Let 0 ≤ ρ ∈ L1(Rd) be any density with
∫

ρ > 1, and take any configuration
of points x1, . . . , xM ∈ R

d satisfying |xi − x j | ≥ η(R(xi ) + R(x j )) for i = j , for some
0 < η ≤ 1. Then we have the bounds

M∑
i=1

1

R(xi )p
≤ Cd,p

ηp

∫
Rd

ρ1+ p
d (64)

for any p > 0, and for any λ > 0,

M∑
i=1

1

R(xi )d

(
log

(
λ

R(xi )d

))
+

≤ Cd

ηd

∫
Rd

ρ2
(
log

(
2dλ

ηd
|B1|ρ
))

+
. (65)

Proof We consider any configuration x1, . . . , xM as in the statement, and seek to provide
a bound on the sum

∑M
i=1

1
R(xi )

p . We order the points such that R(x1) ≤ · · · ≤ R(xM ),
and assume first for simplicity that all the balls B(x j , R(x j )) intersect the smallest ball
B(x1, R(x1)). The main idea of the following argument is to split the space Rd into shells of
exponentially increasing width, centered around x1, and arguing that the number of points
among x2, . . . , xM that can lie in each shell is universally bounded. To elaborate, take any
τ > 1 and consider for m ∈ N0 the spherical shell of points y ∈ R

d satisfying

τmηR(x1) ≤ |x1 − y| < τm+1ηR(x1). (66)

Note that if x j lies in this shell, then by Lipschitz continuity of R,

2η

1 + η
R(x j ) ≤ |x1 − x j | < τm+1ηR(x1),

immediately implying that

R(x j ) <
1 + η

2
τm+1R(x1). (67)
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This means that the ball B(x j , ηR(x j )) is contained in

B(x j , ηR(x j )) ⊆ B(x1, |x1 − x j | + ηR(x j )) ⊆ B

(
x1,

3 + η

2
τm+1ηR(x1)

)
.

Furthermore, by the assumption that B(x1, R(x1)) ∩ B(x j , R(x j )) = ∅, we have that
τm

2
ηR(x1) ≤ 1

2
|x1 − x j | <

1

2
(R(x1) + R(x j )) ≤ R(x j ). (68)

Since the balls B(x j , ηR(x j )) are all disjoint, we conclude that the number of x j ’s that
can lie in the m’th shell around x1 is bounded by the ratio of the volumes

#{ j | τmηR(x1) ≤ |x1 − x j | < τm+1ηR(x1)} ≤
|B
(

x1,
3+η
2 τm+1ηR(x1)

)
|

|B(0, τm

2 ηR(x1))|
≤ 4dτ d .

Note also that no x j can be placed inside the first shell (corresponding to |x1 − x j | <

ηR(x1)), because we always have |x1 − x j | ≥ η(R(x1) + R(x j )) by assumption. Now, for
any power p > 0, this allows us to bound, using (53),

M∑
j=1

1

R(x j )p
≤ 4dτ d

∞∑
m=0

2p

(τmηR(x1))p
≤ 2p+2dτ p+d

ηp(τ p − 1)

1

R(x1)p

≤ 2p+2dτ p+d

ηp(τ p − 1)
|B1|

p
d

∫
B(x1,R(x1))

ρ(y)1+
p
d dy. (69)

To bound the sum involving the logarithm, we note first that for any λ > 0, applying
Jensen’s inequality to the function t �→ t2(log λt)+ yields

1

R(x)d

(
log

(
λ

R(x)d

))
+

= |B1|
|B(x)|
(∫

B(x)

ρ

)2 (
log

(
λ|B1|
|B(x)|
∫

B(x)

ρ

))
+

≤ |B1|
∫

B(x)

ρ2(log(λ|B1|ρ))+. (70)

Using this, we obtain by again summing over all the shells,

M∑
i=1

1

R(xi )d

(
log

(
λ

R(xi )d

))
+

≤
∞∑

m=0

4dτ d2d

(τmηR(x1))d

(
log

(
2dλ

(τmηR(x1))d

))
+

≤ 23dτ d

ηd

∞∑
m=0

1

τ dm R(x1)d

(
log

(
2dλ

ηd R(x1)d

))
+

≤ 23dτ 2d |B1|
ηd(τ d − 1)

∫
B(x1,R(x1))

ρ2
(
log

(
2dλ

ηd
|B1|ρ
))

+
.

Finally,we generalize to the casewhere not all the balls B(x j , R(x j )) intersect the smallest

ball B(x1, R(x1)). We split the configuration (x j )1≤ j≤M into clusters
(

x (k)
j

)
1≤ j≤nk

with

1 ≤ k ≤ K , such that:

• For any k, R(x (k)
1 ) ≤ · · · ≤ R(x (k)

nk ).

• B(x (k)
1 , R(x (k)

1 )) ∩ B(x (k)
j , R(x (k)

j )) = ∅ for any j, k.
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• The balls B(x (k)
1 , R(x (k)

1 )) are all pairwise disjoint for k = 1, . . . , K .

Then, using (69) on each cluster, we get for instance

M∑
j=1

1

R(x j )p
≤ 2p+2dτ p+d

ηp(τ p − 1)
|B1|

p
d

K∑
k=1

∫
B(x (k)

1 ,R(x (k)
1 ))

ρ(y)1+
p
d dy

≤ 2p+2dτ p+d

ηp(τ p − 1)
|B1| p

d

∫
Rd

ρ(y)1+
p
d dy,

which concludes the proof of (64). (65) follows in the same way. ��

Remark 25 (Hard-core at zero temperature) As we have mentioned in Sect. 2.4, in the hard
core case α = +∞, we know from (34) that for any representable density ρ, we have

F0[ρ] ≤ κC

rs
0

∫
Rd

ρ(x) dx, (71)

where the constant C depends only on d and s. The problem is to determine when ρ is
representable. Using Theorem 21, this is the case when for instance Rρ = minx R(x) ≥ r0.

5.3 The Block Approximation

While the state from Theorem 21 is useful for obtaining energy bounds at zero temperature,
it might be singular with respect to the Lebesgue measure on R

d N , leaving it unsuitable to
use for the positive temperature case, because the entropy in this case will be infinite. Here
we describe a simple way of regularizing states, while keeping the one-body density fixed,
which is a slight generalization to any partition of unity of the construction in [9]. Essentially,
it works by cutting R

d into “blocks” and then locally replacing the state by a pure tensor
product.

Let
∑

χ j = 1Rd be any partition of unity, and P any N -particle state with density ρ. The
corresponding block approximation is defined by

P̃ :=
∑

i1,...,iN

P(χi1 ⊗ · · · ⊗ χiN )
(ρχi1) ⊗ · · · ⊗ (ρχiN )∏N

k=1

∫
Rd ρχik

, (72)

where we denote

P(χi1 ⊗ · · · ⊗ χiN ) :=
∫
Rd N

χi1 ⊗ · · · ⊗ χiN dP.

That is, P̃ is a convex combination of tensor products of the normalized ρχi∫
ρχi

. One can

easily show that P̃ has one-body density ρ
P̃

= ρ. Furthermore, it is clear that P̃ is a symmetric
measure whenever P is, so we can also write

P̃ =
∑

i1,...,iN

P(χi1 ⊗ · · · ⊗ χiN )
s

(
ρχi1∫
ρχi1

⊗ · · · ⊗ ρχiN∫
ρχiN

)
,

where 
s denotes the symmetrization operator in (31). In [9] the chosen partition of unity
is just a tiling made of cubes, but in fact any partition works. Applying Jensen’s inequality
yields the following.
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Lemma 26 (Entropy of the block approximation) Suppose that the stateP and the partition of
unity (χ j ) are such that χi1 , . . . , χiN all have disjoint supports wheneverP(χi1⊗· · ·⊗χiN ) =
0. Then we have ∫

Rd N
P̃ log(N ! P̃) ≤

∫
Rd

ρ log ρ +
∫
Rd

ρ
∑

i

χi logχi

−
∑

i

(∫
Rd

ρχi

)
log

(∫
Rd

ρχi

)
. (73)

Remark 27 Since (χi ) is a partition of unity, the term above involving χi logχi can always
be estimated from above by zero. On the other hand, it is not clear that the sum in last term
above is even finite for an arbitrary partition (χi ). However, it turns out to behave nicely
in many situations. For instance, if

∫
ρχ j ≤ 1 for all j , we can estimate it by 1/e times

the number of terms in the partition of unity, which is typically finite when ρ has compact
support.

Proof The entropy of the block approximation can be estimated using Jensen’s inequality by∫
P̃ log(N ! P̃)

≤
∑

i1,...,iN

P(χi1 ⊗ · · · ⊗ χiN )

∫

s

(⊗
k

ρχik∫
ρχik

)
log

(
N !
s

⊗
k

ρχik∫
ρχik

)

=
∑

i1,...,iN

P(χi1 ⊗ · · · ⊗ χiN )

∫ ⊗
k

ρχik∫
ρχik

log

⎛
⎝ ∑

σ∈SN

⊗
k

ρχiσ(k)∫
ρχiσ(k)

⎞
⎠ .

We have here used the symmetry of P to remove the first
s . It is important that the N ! has
disappeared in the logarithm. For any non-zero term, the supports of the χik are all disjoint,
hence only the case σ = Id remains in the sum. Using that

∫ ⊗
k

ρχik∫
ρχik

log

(⊗
k

ρχik∫
ρχik

)
=

N∑
k=1

∫
ρχik∫
ρχik

log
ρχik∫
ρχik

,

and plugging this into the previous expression, we conclude that (73) holds. ��

5.4 Proof of Theorem 12 in the Canonical Case at T > 0

We assume first that the density ρ is compactly supported, and then remove this assumption
at the end. Applying the Besicovitch covering lemma [21, 35] on the cover {B(x, εR(x)) |
x ∈ supp ρ} gives the existence of a (finite) set of points (y j ) ⊆ supp ρ satisfying that (B j ) :=
(B(y j , εR(y j ))) covers the support of ρ, and the multiplicity of the cover is universally
bounded, i.e.,

1 ≤ ϕ(x) :=
∑

j

1B j (x) ≤ Cd , x ∈ supp ρ,

where the constant Cd depends only on the dimension d , and thus not on ε or ρ. This gives

us a partition of unity (χ j ) defined by χ j := 1B j
ϕ

. One way of constructing the Besicovitch

cover is to inductively maximize εR(y j ) over the remaining volume y j ∈ supp ρ\⋃ j−1
k=1 Bk ,
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supposing that y1, . . . , y j−1 have already been chosen. This construction implies the bound
on the distances

|y j − yk | ≥ max(εR(y j ), εR(yk)) ≥ ε

2
(R(y j ) + R(yk)), (74)

for all j = k.
We now take the optimal transport state P obtained from Theorem 21, and denote by

m j := ∫ ρχ j = ∫B j

ρ
ϕ
the local mass of ρ with respect to the partition of unity (χ j ). As a

trial state for the free energy, we take the block approximation (72) of P using the χ j , i.e.,

Pε :=
∑

j1,..., jN

P(χ j1 × · · · × χ jN )

(
ρχ j1

m j1

)
⊗ · · · ⊗

(
ρχ jN

m jN

)
.

We show that the support of Pε satisfies the condition (56) for some η. For any point
(x1, . . . , xN ) ∈ suppPε, theremust be a term in the sum above such thatP(χ j1 ×· · ·×χ jN ) =
0, and xk ∈ B jk = B(y jk , εR(y jk )) for all k. In particular, since the support of P satisfies
(55), there exist z1, . . . , zN with zk ∈ B jk and |zk − z�| ≥ 1

3 (R(zk) + R(z�)) for any k = �.
By the Lipschitz continuity of R, xk ∈ B jk implies that R(y jk ) ≤ 1

1−ε
R(xk), so

|xk − zk | ≤ 2εR(y jk ) ≤ 2ε

1 − ε
R(xk).

Finally, this gives us the bound

|xk − x�| ≥ |zk − z�| − |xk − zk | − |x� − z�|
≥ 1

3
(R(zk) + R(z�)) − |xk − zk | − |x� − z�|

≥ 1

3
(R(xk) + R(x�)) − 4

3
(|xk − zk | + |x� − z�|)

≥ 1

3

(
1 − 8ε

1 − ε

)
(R(xk) + R(x�)). (75)

This argument also shows that if P(χ j1 × · · · × χ jN ) = 0, then the sets B jk are disjoint
for k = 1, . . . , N , provided that ε < 1

9 .
Now, since Pε satisfies (75), it follows from Proposition 22 that the interaction energy (in

case α > d) is bounded by

UN (Pε) ≤ Cκrα
0

∫
Rd

ρ1+ α
d + Cκ

∫
Rd

ρ2,

and similarly for α = d , using Proposition 23. Thus, to show (25), it only remains to provide
a bound on the entropy of the state Pε. First, applying Lemma 26 immediately gives∫

Rd N
Pε log(N !Pε) ≤

∫
Rd

ρ log ρ −
∑

j

m j logm j .

Then, for any numbers s, t ≥ 0, we can use the elementary bound

−s log(ts) ≤ 1

et
,

to conclude that

−
∑

j

m j logm j =
∑

j

m j log(R(y j )
d) − m j log(R(y j )

dm j )
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≤
∑

j

d
∫

ρ(x)χ j (x) log((1 + ε)R(x)) dx + 1

eR(y j )d

≤ d log(1 + ε)

∫
Rd

ρ + d
∫
Rd

ρ log R + C

εd

∫
Rd

ρ2,

where the last inequality uses (74) and Lemma 24. This proves Theorem 12 for compactly
supported densities. ��
Remark 28 (Hard-core case) In the hard core case α = +∞, the above proof provides the
bound

FT [ρ] ≤ C
κ

rd
0

∫
Rd

ρ + CT
∫
Rd

ρ + T
∫
Rd

ρ log ρ + CT rd
0

(Rρ − r0)d

∫
Rd

ρ2

+ T
∫
Rd

ρ log Rd , (76)

under the assumption that Rρ = minx R(x) > r0, where C only depends on d and s. The
main difference is the estimate on the distance between the particles in (75). We need to keep
the maximum and use

|xk − x�| ≥ max

{
Rρ,

1

3
(R(xk) + R(x�))

}
− 8ε

3(1 − ε)
(R(xk) + R(x�))

≥
(
1 − 8ε

1 − ε

)
Rρ.

Taking ε = min(Rρ/r0 − 1, 1)/100 provides (76).

5.5 Removal of the Compactness Condition

To finish this section we describe how to extend a result holding for compactly supported
densities to general integrable ones, using this time a compactness argument.

Theorem 29 Assume that w satisfies Assumption 1. If we have for some 1 ≤ p ≤ q < ∞
with q ≥ 2 and some constants C j ≥ 0

FT [ρ] ≤ C0

∫
ρ + C1

∫
ρ p + C2

∫
ρq + T

∫
ρ log ρ

+ C3

∫
ρ2(log ρ)+ + C4

∫
ρ log R, (77)

for all ρ ∈ L1 ∩ Lq of compact support, then the same holds with the same constants for all
ρ ∈ L1 ∩ Lq . If T > 0 we assume in both cases that

∫
Rd ρ| log ρ| < ∞.

Proof Let us first assumeC4 = 0 for simplicity. Our proof uses that the energy ρ �→ FT [ρ] is
lower semi-continuous for the strong topology of L1, as previously mentioned in Remark 3,
that is,

FT [ρ] ≤ lim inf
n→∞ FT [ρn]

if ρn → ρ strongly in L1(Rd) with
∫

ρ
q
n + T
∫

ρn | log ρn | ≤ C . (78)
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The theorem then follows immediately by letting

ρn := N∫
Bn

ρ
ρ1Bn

the truncation of ρ over the ball of radius n. Note that ρn ≤ (1 + o(1))ρ. The sequence ρn

clearly satisfies the convergence properties of (78) and therefore the lower semi-continuity
provides

FT [ρ] ≤ lim inf
n→∞ FT [ρn]

≤ lim inf
n→∞

{
C0N + C1

(
N∫

Bn
ρ

)p ∫
Bn

ρ p + C2

(
N∫

Bn
ρ

)q ∫
Bn

ρq

+ T
N∫

Bn
ρ

∫
Bn

ρ log ρ + T
N∫

Bn
ρ
log

(
N∫

Bn
ρ

)∫
Bn

ρ

+ C3

(
N∫

Bn
ρ

)2 ∫
B′

n

ρ2 log ρ + 2

(
N∫

Bn
ρ

)2
log

(
N∫

Bn
ρ

)∫
B′

n

ρ2
}

= C0N + C1

∫
ρ p + C2

∫
ρq + T

∫
ρ log ρ + C3

∫
ρ2(log ρ)+,

where B ′
n := Bn ∩ {ρ ≥ N−1

∫
Bn

ρ
}
.

When C4 > 0 the proof is similar. We need to use that (1 + |x |)/C ≤ R(x), Rn(x) ≤
C(1+|x |) for some C > 0 (depending on ρ), where Rn(x) is the local radius of the truncated
density ρn , which converges locally to R. The uniform bounds on R and Rn imply that we
must work under the assumptions that

∫
ρ(log |x |)+ is finite (otherwise there is nothing to

show). The limit follows from dominated convergence.
For the convenience of the reader, we conclude by quickly recalling the proof of the lower

semi-continuity (78). We consider an arbitrary sequence ρn converging to ρ strongly in L1

and satisfying the bounds in (78). It is known that there exists an optimal Pn for FT [ρn] (but
we could as well use a quasi-minimizer). From the upper bound we have FT [ρn] ≤ C for
some constant C and therefore

C ≥ FT [ρn] = FT (Pn)

=
∫

(Rd )N

∑
1≤ j<k≤N

w(x j − xk)Pn + T
∫

Pn log(N !Pn)

=
∫

(Rd )N

⎛
⎝ ∑

1≤ j<k≤N

w(x j − xk) + κ N

⎞
⎠Pn + T

∫
Pn log

(
Pn

(ρn/N )⊗N

)

− κ N + T
∫

ρn log ρn + T log
N !
N N

.

The first term is non-negative from the stability property of w and the second is a relative
entropy, hence is also non-negative. We have thus proved that

T
∫

Pn logPn ≤ C(ρ, N , T ),
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where the constant can depend on ρ, N , T but not on n. On the other hand, we know that the
sequence (Pn) is tight, that is,

∫
max |x j |≥R

dPn ≤
∫ N∑

j=1

1(|x j | ≥ R) dPn =
∫

|x |≥R
ρn,

where the right side is small due to the strong convergence in L1. After extraction of a
subsequence, this implies

∫
F dPn → ∫ F dP for every F ∈ C0

b . Taking F(x1, ..., xN ) =∑N
j=1 f (x j ) with f ∈ C0

b , we find that
∫

f ρPn → ∫ f ρP, that is, ρP = ρ. In addition, we
have (by convexity)

T
∫

P logP ≤ T lim inf
n→∞

∫
Pn logPn ≤ C . (79)

Hence P is admissible for FT [ρ], and absolutely continuous with respect to the Lebesgue
measure if T > 0. We thus have

lim inf
n→∞

∫
F dPn ≥

∫
F dP,

for every measurable function F ≥ 0 if T > 0 (using the absolute continuity of P) and for
every lower semi-continuous function F ≥ 0 if T = 0. This is satisfied for our interaction
w by Assumption 1 and therefore we obtain as we wanted

lim inf
n→∞

∫
(Rd )N

⎛
⎝ ∑

1≤ j<k≤N

w(x j − xk) + κ N

⎞
⎠ dPn

≥
∫

(Rd )N

⎛
⎝ ∑

1≤ j<k≤N

w(x j − xk) + κ N

⎞
⎠ dP.

Together with the entropy bound (79) when T > 0, this proves that

lim inf
n→∞ (FT [ρn] + κ N ) ≥ FT [ρ] + κ N

which is the claimed lower semi-continuity (78). ��

6 Proof of Theorem 14 in the Hard-Core Case

In this section we prove Theorem 14 concerning densities which are uniformly bounded in
terms of the tight packing density ρc(d). We start by constructing a trial state with constant
density by averaging a periodic tight packing over translations. Such a uniform average of a
periodic lattice is often called a “floating crystal” [64, 65] in Physics and Chemistry. Finally,
we estimate the entropic cost of “geometrically localizing” [60] this state to enforce the
desired density.

Step 1: Constant density. We have assumed ρ ≤ (1 − ε)dr−d
0 ρc(d). Let η > 0 be a

fixed small number which will later be chosen in terms of ε. From the definition of ρc(d)

we can find a large cube C� = (−�/2, �/2)d and n = (1 + 2η)−dr−d
0 ρc(d)�d ∈ N points

x01 , ..., x0n ∈ C� satisfying |x0j − x0k | ≥ r0(1 + η) for all j = k. We can also assume that
no point is at a distance less than r0 to the boundary of C�. We are using here that the tight
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packing density for r0(1 + η) is (1 + η)−dr−d
0 ρc(d) > (1 + 2η)−dr−d

0 ρc(d) and that the
limit (33) is the same for cubes and for balls.

Now, we replace each point x0j by a smeared measure

χ0
j (x) = 2d

(r0η)d
χ

(
2

x − x0j
r0η

)
,

where χ = |B1|−11B1 . The smearing radius ηr0/2 has been chosen so that the supports of
the χ0

j remain at distance at least r0.

Finally, we consider (2K + 1)d copies of our system (K ∈ N), repeated in a periodic
fashion so as to form a very large cube CL = (−L/2, L/2)d of side length L = (2K + 1)�.
In other words, we define the N := (2K +1)dn points xk

j := x0j +kL with k ∈ {−K , ..., K }d .

The smeared measures χk
j are defined similarly. The state

P = 
s

⊗
j∈{1,...,n}

k∈{−K ,...K }d

χk
j ,

has the density ρ =∑ j,k χk
j and the finite entropy

∫
(Rd )N

P log(N !P) = N
∫
Rd

χ logχ = N log

(
2d

|B1|rd
0 ηd

)
,

(recall 
s is the symmetrization operator in (31)). Finally, we average over translations of
the big cube and define the trial state

P̃ = 1

�d

∫
C�

P(· + τ) dτ,

which has the density

ρ̃ = 1

�d

∑
j

χ0
j ∗ 1CL .

The latter is constant, equal to n/�d = (1 + 2η)−dr−d
0 ρc(d) well inside the large cube.

Note that, by concavity, the entropy of P̃ can be estimated by that of P.
Step 2: Geometric localization. We assume for the rest of the proof that ρ has a compact

support andwe choose K large enough so that ρ̃ is constant on the support of ρ. Our estimates
will not depend on K . One can then deduce the bound for general densities by adapting the
proof of Theorem 29, or by passing to the limit K → ∞ in the formulas (80)–(81) of the
trial state.

We pick η so that (1 − ε)d = (1 + 2η)−d , that is,

η = ε

2(1 − ε)
.

Then we have ρ ≤ ρ̃ a.e. This enables us to consider the localization function

θ := ρ

ρ̃
= ρ

(1 + 2η)−dr−d
0 ρc(d)

≤ 1,

and the θ–localized state P̃|θ , which has the desired density θρ
P̃

= ρ.
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We recall that the θ—localization Q|θ of a state Q (with 0 ≤ θ ≤ 1) is the unique state

which has the correlation functions ρ(k) = ρ
(k)
Q

θ⊗k for all k, see [34, 42, 60]. In our case we
only need the definition for a tensor product since we have by linearity

P̃|θ = 1

�d

∫
C�

P(· + τ)|θ dτ. (80)

For a symmetric tensor product Q = 
s(q1 ⊗ · · · ⊗ qN ) with probabilities q j of disjoint
support, the θ -localized state can be expressed as

Q|θ =
N⊕

n=0

(
N

n

)
1

N !
∑

σ∈SN

(θqσ(1)) ⊗ · · · ⊗ (θqσ(n))×

×
(
1 −
∫

θqσ(n+1)

)
· · ·
(
1 −
∫

θqσ(N )

)
. (81)

We will need the following.

Lemma 30 (Entropy of localization of tensor products) Let Q = 
s(q1 ⊗ · · · ⊗ qN ) be a
symmetric tensor product, with q1, ..., qN probability measures of disjoint supports. For any
0 ≤ θ ≤ 1, we have

S(Q|θ ) = −
∑

j

∫
Rd

(θq j ) log(θq j ) −
∑

j

(
1 −
∫
Rd

θq j

)
log

(
1 −
∫
Rd

θq j

)
. (82)

In particular, we deduce

− S(Q|θ ) ≤
∑

j

∫
Rd

(θq j ) log(θq j ). (83)

As a side remark we also note also that (82) provides

S(Q|θ ) + S(Q|1−θ )

= S(Q) −
∑

j

[(
1 −
∫

θq j

)
log

(
1 −
∫

θq j

)
+
(∫

θq j

)
log

(∫
θq j

)]

−
∫

ρ
(
θ log θ + (1 − θ) log(1 − θ)

)
.

The additional terms are positive and therefore we recover the subadditivity of the entropy
S(Q) ≤ S(Q|θ ) + S(Q|1−θ ) [42, Appendix A].

Proof Each tensor product (θqσ(1)) ⊗ · · · ⊗ (θqσ(n)) appears exactly (N − n)! times with
the same weight in (81). We can thus write it in the better form

Q|θ =
N⊕

n=0

1

n!
∑

j1 =···= jn

(θq j1) ⊗ · · · ⊗ (θq jn )
∏

k /∈{ j1,..., jn}

(
1 −
∫

θqk

)
,

where now the terms all have disjoint supports. We obtain that the entropy equals

S(Q|θ ) = −
N∑

n=0

1

n!
∫
Rdn

∑
j1 =···= jn

(θq j1) ⊗ · · · ⊗ (θq jn )
∏

k /∈{ j1,..., jn}

(
1 −
∫

θqk

)
×
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× log

⎡
⎣(θq j1) ⊗ · · · ⊗ (θq jn )

∏
k /∈{i1,...,in}

(
1 −
∫

θqk

)⎤
⎦ .

Note that the n! in the logarithm simplifies with the 1/n!. Expanding the logarithm and
collecting the terms we obtain the claimed formula. ��

In our case, we deduce by concavity that

−S (̃P|θ ) ≤ − 1

�d

∫
C�

S(P(· − τ)|θ
)
dτ

≤ 1

�d

∑
j,k

∫
C�

∫
Rd

θ(x)χk
j (x − τ) log

(
θ(x)χk

j (x − τ)
)
dτ dx

= 1

�d

∑
j,k

∫
C�

∫
Rd

θ(x)χk
j (x − τ) log

ρ(x)χk
j (x − τ)

(1 + 2η)−dr−d
0 ρc(d)

dτ dx .

We estimate χk
j in the logarithm by its supremum ‖χk

j ‖∞ = 2d

(r0η)d |B1| and use that

θ(x)

�d

∑
j,k

∫
C�

χk
j (x − τ) dτ = θ(x)ρ̃(x) = ρ(x).

We obtain

−S (̃P|θ ) ≤ log

(
(1 + 2η)d

ηdvc(d)

)∫
ρ +
∫

ρ log ρ

= log

(
2d

εdvc(d)

)∫
ρ +
∫

ρ log ρ.

On the other hand, the energy bound (34) applies since we still have |x j − xk | ≥ r0 on
the support of the localized state P̃|θ . This concludes the proof of Theorem 14. ��
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