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A B S T R A C T   

Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by 
developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by 
FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in 
DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, 
since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, 
recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and 
ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, 
biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how 
these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to 
determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the 
consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.   

1. Introduction 

Fanconi anemia (FA) is a rare genetic disease classified as an 
inherited bone marrow failure syndrome (iBMFS). Patients with an 
iBMFS present with quantitative and/or qualitative defects in hemato
poietic stem cells (HSCs) and/or their precursor cells (HSPCs), which are 
associated with pancytopenia or single-lineage cytopenia. These pa
tients are at high risk of their iBMFS progressing toward myelodysplastic 
syndrome (MDS) or acute myeloid leukemia (AML). In addition to BMFs 
caused by the loss of function of a protein due to the heritage of a 
mutated allele from each parent or to germline mutations in a single 
allele, resulting in haploinsufficiency or dominant-negative protein, the 
diseases are usually associated with a variety of developmental defects, 
justifying their classification as "syndromes", i.e. diseases with multiple 
clinical stigmatas [1]. 

iBMFSs were initially described through three main categories of 
disorders, and each category was associated with mutations in genes 
defining specific molecular or functional pathways that converge on a 
common outcome, BMF (Fig. 1A): diseases caused by dysfunction in 
ribosome biogenesis (RiBi) and called “ribosomopathies”, as the 

Diamond-Blackfan anemia (DBA) and the Shwachman-Diamond syn
drome (SDS); those caused by dysfunctional telomere biology and called 
“telomeropathies”, as the dyskeratosis congenita (DC) and its variants, 
the Revesz and Hoyeraal-Hreidarsson syndromes (RS and HHS); and FA, 
associated with alterations in DNA damage responses (DDRs). In addi
tion, the iBMFSs category includes also patients with severe congenital 
neutropenia of different genetic and molecular origins and individuals 
with mutations seldom reported in genes associated with BMF; these 
mutations are generally identified following genome sequencing of pa
tients presenting with an unclassified BMF [1–4]. Each iBMFS affects 
1–10 (or considerably fewer) individuals per million live births every 
year worldwide. However, the incidence of the iBMF and the number of 
involved genes are probably underestimated because several patients 
are underdiagnosed, and some of the idiopathic BMFs that develop in 
adulthood may be caused by previously unrecognized inherited muta
tions whose effects remain hidden for years [1–4]. Thus, iBMFSs 
represent a genetically and clinically heterogeneous group of rare pa
thologies with overlapping phenotypes and pathophysiologies that 
present diagnostic and therapeutic challenges for clinicians (Tables 1 
and 2). 
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The ribosomopathies present genetic alterations affecting the RiBi 
process that requires approximately 80 ribosomal proteins (RPs) and 
several additional factors encoded by nuclear genes that, following their 
translation in the cytosol, migrate to the nucleolus where they assemble 
with four different ribosomal RNAs (rRNAs), three of which had been 
transcribed inside the nucleolus by RNA-Pol I, to form the 40S and 60S 
pre-ribosomal subunits. After their return to the cytosol to mature, these 
two subunits together with several other factors involved in translation 
initiation, progression and completion, associate with mRNA to poly
merize proteins [5,6]. Perturbations in cell homeostasis, induced by 
DNA damage, replication stress, transcription alterations, nutrient or 
energy deprivation, generally lead to modifications in the RiBi processes 
that mediate cellular adaptation to stress through either p53-dependent 
or p53-independent responses [7–9]. Inversely, mutations/hap
loinsufficiency in RPs or other RiBi factors, in addition to dysfunction 
that exerts direct impact on the quantity and/or quality of translated 
proteins, lead to mitochondrial, nuclear and nucleolar stress impacting 
the energetic/oxidative status of a cell, as well as its replication, tran
scription and intra- and extracellular signaling [6,10]. Moreover, 
beyond of their “indirect” effects on cellular physiology, RPs may affect 
several pathways and functions via their direct interactions with non
ribosomal components of the cell, including the nucleolar protein NPM1 
[11,12], the p53 inhibitor MDM2 [13], the oncogene c-Myc [14–16], or 
the DNA repair protein APE1/OGG1 [17]. 

Telomeropathies harbor defects in the maintenance of the structure 

and length of telomeres that depend on several proteins and complexes 
(see [18] for references). Telomeric complexes play two key roles: they 
“close” the chromosome extremity, preventing its recognition as a DNA 
double-strand break, and “limit” the progressive telomere shortening 
caused by the “end” replication problem [19]. The loss of these pre
ventative processes leads to genetic instability and to a shortened 
cellular lifespan [20–23]. However, several of the proteins involved in 
telomere maintenance have “individual”, telomere-independent, 
biochemical roles in both DNA repair and in the RiBi process [24–30]. 

Evoked by specific DNA lesions or nuclear stress, several proteins and 
pathways ensure the maintenance and transmission of the genetic in
formation from mother to daughter cells. In addition to their DNA lesion 
specificity [31], each pathway is largely interconnected with the others, 
constituting the DDR network. It emerges that several regulators and 
effectors are shared between the individual, alternative and parallel 
DNA repair pathways, as, for instance, the ATM and ATR signaling ki
nases, the canonical base excision repair (BER) proteins PARP1 or 
NEIL1–3, or the nucleotide excision repair (NER) XP-F/ERCC1 hetero
dimer [32–41]. The loss of function of a DDR pathway leads to several 
inherited human disorders classified as DNA repair and/or chromosome 
fragility syndromes associated with developmental abnormalities, can
cer predisposition, accelerated aging, infertility, immunodeficiency 
and/or neurodegeneration [42–44]. Recently, however, as for certain 
proteins associated with FA and discussed below, several key DDR 
proteins as PARP1, CSA, CSB and DNA-PK have been associated 
“directly” with the RiBi process and, eventually, telomere maintenance, 
adding to the complexity of the cellular phenotype associated with their 
deficiency [45–50]. 

Even if iBMFSs appear to be specifically related to the loss of a 
’specific’ biochemical activity in RiBi, telomere maintenance or DDR 
(Fig. 1A), recent findings have revealed that they share several cellular 
phenotypes, including altered proteostasis, DNA damage accrual and 
DDR alterations (Fig. 1B). Thus, questions arise regarding the genotype- 
phenotype relationship that underlies the clinical, cellular, and molec
ular phenotypes of iBMFSs. These questions are not simply matters of 
academic curiosity. Establishing biochemical, molecular and functional 
connections between the proteins encoded by the mutant genes that 
cause BMF (and similar genetic disorders) is critical to the development 
of new holistic pharmacological approaches to alleviate/delay symp
toms or avoid MDS/AML progression in patients with either inherited or 
idiopathic BMF. Such new treatments could be used to complement 
current approaches, which include red blood cell transfusion, trans
plantation and recently developed strategies based on gene therapy. 

Here, we review the different cellular, biochemical and molecular 
anomalies associated with proteins encoded by mutant FA-associated 
genes (FANCs) and discuss how they potentially contribute to the 
phenotype of patients by comparing FA to other major iBMFSs. With the 
first patients diagnosed with FA approximately 100 years ago by the 
Swiss pediatrician Guido Fanconi [51], FA is probably the most common 
iBMFS worldwide and one the most genetically heterogeneous [52]; in 
fact, FA probably encompasses many slightly different clinical entities 
(Fig. 2) [53]. The median age at diagnosis is approximately 10 years, 
with hematological abnormalities present at birth or appearing pro
gressively during infancy and adolescence to adulthood. FA is syn
dromic, and patients can present with a plethora of extrahematopoietic 
clinical features, including skeletal, epithelial, endocrine, sensorial, 
reproductive, immunological and cognitive abnormalities. However, 
although the majority of patients present with one or more additional 
physical and/or functional abnormalities, 20–30% of these patients are 
symptomless before the development of hematopoietic failure, which 
mainly leads to anemia or thrombocytopenia [54]. The observed clinical 
heterogeneity of FA patients results from genetic heterogeneity, gene 
variants differentially affecting encoded protein function(s) and envi
ronmental interactions. Compared to individuals of the same age, FA 
patients have observed/expected risk factor ratios of 6000 and 700 for 
MDS and AML, respectively [55]. 

Fig. 1. Models linking genetics and biochemistry to BMF. A) BMF as a conse
quence of alterations in independent functional pathways. B) BMF as a conse
quence of the addition and convergence of alternative functions of the proteins 
encoded by inherited mutated genes. 
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In the remainder of this review, our aim is to highlight the similar
ities between the major iBMFSs and discuss the extent to which alter
ations in the DDR contribute to BMF in FA compared to the other defects 
associated with alternative functions of the mutated proteins. This line 
of inquiry is of interest since 1) new FANC genes are described on the 
basis of DDR function maintenance even though more than 30% of the 
genes critical to iBMFSs remain unrecognized [56]; 2) new findings on 
the FANC/BRCA pathway have been focused on DDR function and toxic 
metabolite clearance by FANC proteins; and 3) determining the role of 
DDR alterations in BMF in FA will help to better define the FA phenotype 
and its diagnostic criteria [53]. 

2. BMF in FA: contribution of abnormalities in DNA damage 
signaling and repair 

2.1. Fanconi anemia and the DNA damage response 

Considered a “pure” DNA repair and chromosomal fragility syn
drome, FA is caused by mutations in more than 20 genes [52] that 
encode proteins assembled in several biochemical and/or functional 
modules [57] that act in concert forming the FANC/BRCA-homologous 
recombination (HR) and the replication rescue DNA repair pathway 
(FANC/BRCA pathway) [58] (Fig. 2). The first module of the FANC/ 
BRCA pathway consists of FANCM, a large cargo protein with translo
case activity that is likely critical for the localization of the second 
module of the FANC/BRCA pathway acting on the stalled/delayed 
replication fork. The second module is constituted by the assembly of 
three subcomplexes into the FANC core complex: FANCA-FANCG- 
FAAP20 (FA-associated protein 20); FANCB-FANCL-FAAP100; and 
FANCC-FANCE-FANCF. The FANC core complex acts as a ubiquitin-E3- 
ligase that transitorily interacts with the E2 enzyme UBE2T/FANCT to 
monoubiquitinate the two proteins of the third module, FANCD2 and 
FANCI. Monoubiquitinated FANCD2 and FANCI assemble at the 
chromatin-associated nuclear foci required for the optimal establish
ment of the downstream steps mediated by the fourth heterogeneous 
FANC/BRCA pathway module, which includes helicases, translesion 
DNA polymerases, nucleases and HR-associated proteins, whose action 
is required for DNA repair and replication restart. Finally, FANCD2- and 
FANCI-mediated USP1 deubiquitylation is required for their release 
from chromatin-associated foci, marking the completion of the DNA 
repair process [52,57,59]. Although no patients with BMF-bearing mu
tations in USP1 have been described to date, cell and mouse models with 
USP1 downregulation recapitulate the key FA phenotypes [60,61]. 
Thus, timely activation and inactivation of the FANC/BRCA pathway is 
required for cell homeostasis and individual health. 

The FANC/BRCA pathway is embedded in the DDR network and is 
connected to signaling proteins, including ATM, ATR and CHK1 kinases 
[62–65]; structural and enzymatic proteins and complexes, such as BLM 
and the MRE11/RAD50/NBS1 (MRN) and SMC5/SMC6 complexes 
[66–70]; histone marks [71,72]; chromatin modifiers [73,74]; and key 
proteins belonging to the BER, NER and mismatch repair (MMR) path
ways, including NEIL-1, NEIL-3 MSH2 and MutLα [37,41,75–78]. The 
DDR network contributes to genome integrity maintenance and optimal 
DNA replication, allowing cell relief from stress conditions. Accordingly, 
inactivation of the FANC/BRCA pathway leads to hypersensitivity to 
replication stress, particularly because of the DNA interstrand crosslinks 
(ICLs) induced by endogenous or exogeneous stress, such as aldehydes, 
mitomycin C (MMC) and cisplatin. Inhibitors of the replicative ma
chinery, such as aphidicolin or hydroxyurea, also activate the FANC/ 
BRCA pathway and lead to chromosomal instability upon pathway 
dysfunction [57,79]. Finally, the FANC/BRCA pathway exhibits broad
est functions in genome integrity maintenance, including common 
fragile site protection [80–82], transcription and R-loop homeostasis 
[83,84], telomere length maintenance [85,86] and mitotic cell division 
safeguards [87–89]. 
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Table 2 
Genetics of inherited bone marrow syndromes.  

Syndrome Extimated 
prevalence 

Gene Inheritance Frequency of 
patients 

Protein full name Usual 
protein 
acronyme 

Protein 
major 
aliases 

iBMFS subgroup 

Fanconi Anemia (FA) 5 x 106 FANCA AR 60%-70% Fanconi anemia group A 
protein 

FANCA  DNA repair and 
Chromosome 
Breakage Syndrome 

FANCB X-linked 2% 
Fanconi anemia group B 
protein FANCB FAAP95 

FANCC AR 14% Fanconi anemia group C 
protein 

FANCC  

BRCA2 AR 2% Breast cancer type 2 
susceptibility protein 

BRCA2 FANCD1 

FANCD2 AR 3% 
Fanconi anemia group D2 
protein FANCD2  

FANCE AR 3% 
Fanconi anemia group E 
protein FANCE  

FANCF AR 2% Fanconi anemia group F 
protein 

FANCF  

FANCG AR 10% Fanconi anemia group G 
protein 

FANCG XRCC9 

FANCI AR 1% 
Fanconi anemia group I 
protein FANCI  

BRIP1 AR 1% 
Fanconi anemia group J 
protein FANCJ BRIP1 

FANCL AR Rare E3 ubiquitin-protein 
ligase FANCL 

FANCL  

PALB2 AR Rare Partner and localizer of 
BRCA2 

PALB2 FANCN 

RAD51C AD Rare 
DNA repair protein 
RAD51 homolog 3 RAD51 FANCO 

SLX4 AR Rare 
Structure-specific 
endonuclease subunit 
SLX4 

SLX4 FANCP 

ERCC4 AR Rare DNA repair endonuclease 
XPF 

XPF FANCQ 

RAD51 AD Rare 
DNA repair protein 
RAD51 homolog 1 RAD51 FANCR 

BRCA1 AR Rare 
Breast cancer type 1 
susceptibility protein BRCA1 FANCS 

UBE2T AR Rare Ubiquitin-conjugating 
enzyme E2 T 

UBE2T FANCT 

XRCC2 AR Rare DNA repair protein 
XRCC2 

XRCC2 FANCU 

REV7 AR Rare 
Mitotic spindle assembly 
checkpoint protein 
MAD2B 

REV7 FANCV/ 
MAD2L2 

RFWD3 AR Rare 
E3 ubiquitin-protein 
ligase RFWD3 

RFWD3 FANCW  

Diamond Blackfan Anemia 
(DBA) 5 -10 x 106 

RPS7 AD <5% 40S ribosomal protein S7 eS7 
RPS7, 
DBA8 

Ribosomopathy 

RPS10 AD Rare 
40S ribosomal protein 
S10 eS10 

RPS10, 
DBA9 

RPS15A AD Rare 
40S ribosomal protein 
S15a uS8 

RPS15A, 
DBA20 

RPS17 AD Rare 
40S ribosomal protein 
S17 eS17 

RPS17, 
DBA4 

RPS19 AD Rare 
40S ribosomal protein 
S19 eS19 

RPS19, 
DBA1 

RPS24 AD Rare 
40S ribosomal protein 
S24 eS24 

RPS24, 
DBA3 

RPS26 AD Rare 
40S ribosomal protein 
S26 eS26 

RPS26, 
DBA10 

RPS27 AD <5% 
40S ribosomal protein 
S27 eS27 

RPS27, 
DBA17 

RPS28 AD <10% 
40S ribosomal protein 
S28 eS28 

RPS28, 
DBA15 

RPS29 AD <5% 
40S ribosomal protein 
S29 uS14 

RPS29, 
DBA13 

RPL5 AD Rare 60S ribosomal protein L5 uL18 
RPL5, 
DBA6 

RPL11 AD <5% 
60S ribosomal protein 
L11 uL5 

RPL11, 
DBA7 

RPL15 AD 25% 
60S ribosomal protein 
L15 eL15 

RPL15, 
DBA12 

RPL18 AD <5% 
60S ribosomal protein 
L18 eL18 

RPL18, 
DBA18 

(continued on next page) 
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2.2. Evidence showing that the DDR contributes to the BMF in FA and the 
limitations of the DDR contribution 

In the 30 years of elegant cellular, molecular and biochemical studies 
that followed the cloning of the first FA-associated gene, FANCC, [90], 
the “linear” FANC/BRCA pathway was extensively characterized and its 
centrality for genetic stability maintenance was thoroughly established 
[57–59,79,88,91,92]. Thus, it has been proposed that the BMF in FA is 
caused by intrinsic HSC defects stemming from aberrancies in DNA 
repair and/or DDR. Indeed, mis- or unrepaired DNA damage in awak
ened HSCs is thought to trigger signaling that leads to cell death or 
differentiation, with either outcome affecting the self-renewal capability 
of HSCs, causing their attrition [93,94]. Accordingly, compared to those 
in age-matched healthy individuals, HSPCs (CD34+ cells in BM) in FA 
patient are less numerous and less functional; i.e., they exhibit highly 
impaired in vitro colony-forming unit (CFU) formation capability [95]. 
Notably, the percentage of cells in the G0/G1 phase was found to be 
higher in FA than in control HSPCs. More than 90% of the total BM cells 
obtained from FA patients were Ki-67 negative (i.e., nonproliferating) 
compared to 40% of the BM cells isolated from healthy donors, and those 

from the FA patients showed a spontaneously increased level of DNA 
damage (i.e., γH2AX positive staining) [95]. Recently, it was reported 
that HSC awakening and proliferation are associated with a “physio
logical” intracellular burst of aldehydes that generate DNA ICLs that are 
safely managed in FANC pathway-proficient cells but that cause genetic 
and chromosomal instability, decreased self-renewal capabilities, an 
increased cell death rate, telomere shortening and accelerated/ 
increased cellular senescence in FANC/BRCA pathway-deficient cells, 
globally resulting in HSC attrition and loss of functionality [96–98]. The 
phenotype of BM cells isolated from Fanc-KO mouse models, which 
poorly recapitulate the canonical clinical phenotype observed in pa
tients, differs from that of BM cells isolated from patients. Similar to 
HSCs in humans, HSCs released from dormancy in Fanc-KO mice induce 
DNA damage accumulation [99,100] and show decreased repopulating 
ability [100,101]. However, compared to their WT counterparts, 
Fanca-/-, Fancc-/-, Fancg-/- and Fancd2-/- hematopoietic stem/progenitor 
cells exhibit increased cycling and diminished quiescence 
[99,100,102–104]. In conclusion, regardless of their proliferative status 
or cycling characteristics, BM hematopoietic stem/progenitor cells are 
associated with decreased repopulating capacity and greater attrition (i. 

Table 2 (continued ) 

Syndrome Extimated 
prevalence 

Gene Inheritance Frequency of 
patients 

Protein full name Usual 
protein 
acronyme 

Protein 
major 
aliases 

iBMFS subgroup 

RPL26 AD <10% 
60S ribosomal protein 
L26 uL24 

RPL26, 
DBA11 

RPL27 AD Rare 
60S ribosomal protein 
L27 eL27 

RPL2, 
DBA16 

RPL31 AD Rare 
60S ribosomal protein 
L31 eL31 RPL31 

RPL35 AD Rare 
60S ribosomal protein 
L35 uL29 

RPL35, 
DBA19 

RPL35A AD Rare 
60S ribosomal protein 
L35a eL33 

RPL35A, 
DBA5 

TSR2 X-linked Rare 
Pre-rRNA-processing 
protein TSR2 homolog TSR2 DBA14 

GATA1 X-linked Rare 
Erythroid transcription 
factor GATA1 ERYF1 

Shwachman-Diamond 
Syndrome (SDS) 1-10x106 

SBDS AR >90% 
Ribosome maturation 
protein SBDS SBDS  

DNAJC21 AR Rare 
DnaJ homolog subfamily 
C member 21 DNAJA5 DJC21 

EFL1 AR Rare 
Elongation factor-like 
GTPase 1 EFTUD1 EFL1 

SRP54 AD Rare 
Signal recognition 
particle 54 kDa protein SRP54 SCN8  

Dyskeratosis congenita 
(DC) Revesz syndrome 
(RS) Hoyeraal- 
Hreidarsson (HSS) 

Rare <500 
families 
wordlwide 

ACD AD, AR Rare 
Adrenocortical dysplasia 
protein homolog ACD  

Telomeropathy 

CTC1 AR 1%-3% 
CST complex subunit 
CTC1 CTC1  

DKC1 X-linked 20%-25% 

H/ACA 
ribonucleoprotein 
complex subunit DKC1 Dyskerin DKC1 

NHP2 AR Rare 

H/ACA 
ribonucleoprotein 
complex subunit 2 DKCB2 

NHP2, 
NOLA2 

NOP10 AR Rare 

H/ACA 
ribonucleoprotein 
complex subunit 3 NOP10 DKCB1 

PARN AR Rare 
Poly(A)-specific 
ribonuclease PARN PARN DKCB6 

RTEL1 AD, AR 2%-8% 
Regulator of telomere 
elongation helicase 1 RTEL1 

DKCA4, 
DKCB5 

WRAP53 AR Rare 
Telomerase Cajal body 
protein 1 TCAB1 DKCB3 

TERC AD 5%-10% 
Telomerase RNA 
component   

TERT AD, AR 1%-7% 
Telomerase reverse 
transcriptase TERT 

DKCA2, 
DKCB4 

TINF2 AD 12%-20% 
TERF1-interacting 
nuclear factor 2 TINF2 

TIN2, 
DKCA3  
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e., a reduced quiescent cell population) and an increased level of DNA 
damage. Is DNA damage accumulation the direct link between the 
FANC/BRCA pathway mediated DDR loss of function and BMF in FA? 

The phenotypic consequences of the loss of function of FANCM and 
of certain FANCA mutations epitomize the current difficulty in corrob
orating a simple and direct link between DNA repair abnormalities and 
BMF. FANCM is a “cargo” protein, biochemically and/or functionally 
interacting with several proteins and complexes involved in the DDR, 
including PCNA, FAAP24, MHF1/2, HCLK2, BLM-associated proteins 
(BLAP) and the FANC core complex [67,105–108]. FANCM is at the apex 
of the FANC/BRCA pathway, and its loss of function leads to canonical 
cellular abnormalities associated with FANC/BRCA pathway inactiva
tion: cellular and chromosomal hypersensitivity to ICLs and replication 
stress, severely impaired FANCD2 monoubiquitination, alterations in 
HR and abnormalities in replication rescue [109]. FANCM is required for 
optimal DNA damage signaling [109–112] but FANCM mutation- 
carrying individuals do not present with BMF, MDS, AML or develop
mental abnormalities [53]. Patients expressing mutated FANCM present 
with hypogonadism/infertility, which can be logically considered to be 
related to HR alterations affecting the meiotic process, and a high risk, as 
validated in heterozygous carriers, of developing breast or ovarian 
cancer, also likely due to HR deficiency [109,113–120]. The phenotype 
of FANCM-mutant-expressing individuals suggests that impaired DNA 
repair and genetic instability are not sufficient per se to generate 
developmental abnormalities, BMF, MDS or AML. Supporting the pre
vious posit, it has also been reported that missense mutations in the 
FANCA-encoding gene (compromised in approximately 2/3 of FA pa
tients worldwide) in patients presenting with BMF can be linked with 
three phenotypic cellular groups that show high, intermediate and low 
MMC sensitivity and weak, mild and strong (i.e., normal) FANCD2 
monoubiquitination [121]. The observed variability in the severity of 
the cell phenotypes of the different FANCA mutants has been proposed 
to be dependent on the interaction of FANCA with chaperones (HSP70 
and HSP90), which allows “normal” folding of certain FANCA mutant 

proteins, rescuing their DDR functions through the FANC/BRCA 
pathway [122]. 

Thus, although the biochemical and molecular functions of the 
FANC/BRCA pathway in DNA repair, replication rescue and chromo
some integrity maintenance are undoubtedly established, it is becoming 
increasingly apparent that BMF in FA patients does not rely on DNA 
damage accumulation or genetic instability per se but requires additional 
events. 

2.3. Evidence of the contribution of DNA damage and DDR defects in 
other iBMFSs 

Questioning the role of DNA damage and genetic instability in the 
BMF of DDR-deficient FA patients raises the question of the role(s), if 
any, of DDR abnormalities and genetic instability in other iBMFSs. 
Interestingly, several observations provide evidence of genomic integ
rity loss, increased DNA damage and/or constitutive overactivation of 
DNA damage signaling in other major iBMFSs, regardless of the main 
function(s) associated with the protein encoded by the mutated gene. 

Mutations in ribosomal protein-encoding genes (DBAs) or in genes 
associated with SDS lead to reduced levels of global and/or specific 
protein synthesis, the major hallmark of ribosomopathy [123]. Similar 
to FA, DBA is also extremely heterogeneous from a genetic point of view: 
mutations in at least 21 genes have been identified as the cause of the 
syndrome [124]. All DBA-associated mutations are in RPs [125], except 
for mutations in GATA1 [126] and TSR2 [127]. However, beyond 
altered RiBi, several other cellular abnormalities have been described as 
being associated with DBA gene mutations, including an imbalanced 
dNTP pool, replication stress, oxidative DNA damage accrual and al
terations in DNA damage signaling [128–131]. All reported abnormal
ities have been considered downstream consequences of qualitative 
and/or quantitative alterations in protein translation, affecting nuclear 
and mitochondrial activities. However, recent data indicate that ribo
somal proteins or RiBi-associated proteins may directly interact and 

Fig. 2. Fanconi anemia proteins, modules, pathway and key phenotypes.  

A. Gueiderikh et al.                                                                                                                                                                                                                             

Téléchargé pour Anonymous User (n/a) à Gustave Roussy à partir de ClinicalKey.fr par Elsevier sur octobre 17, 2023. Pour un 
usage personnel seulement. Aucune autre utilisation n´est autorisée. Copyright ©2023. Elsevier Inc. Tous droits réservés.



Blood Reviews 52 (2022) 100904

7

affect DDR proteins and pathways [132–140]. This is the case, in SDS: 
SBDS mutations alter a protein involved in the assembly of mature ri
bosomes leading to altered RiBi. Nevertheless, SBDS also participates to 
DNA repair via its interactions with DNA-PK and RPA70, and its loss of 
function leads to cellular and chromosomal hypersensitivity to DNA 
damage [141–143]. If mutations in DNAJC21, EFLI1, or SRP54, which 
are rarely identified in SDS patients, participate to altered DDR remains 
to be determined. 

In light of their role in telomere maintenance and in limiting/pre
venting DNA double-strand break accumulation as a consequence of 
fusion-breakage cycle caused by downstream telomere fusion events, 
alterations in the proteins encoded by genes mutated in DCs and their 
variants, which are components of the telomerase holoenzyme, TERT, 
TERC, DKC1, NHP2, NOP10, TCAB1, in the shelterin complex TINF2, 
and RTEL1 and PARN, have direct roles in DNA repair, DDR and genetic 
stability maintenance. Thus, unsurprisingly, DC, RS and HHS present 
with higher levels of DNA damage in addition to telomere shortening 
[144–147]. 

In conclusion, increased DNA damage and genetic and/or genomic 
instability are widely associated with different iBMFSs, regardless of the 
“biochemical/molecular” key function(s) of the proteins encoded by the 
mutated genes. Thus, considering that FANC/BRCA pathway deficiency 
is not sufficient per se for BMF but that alterations in DDR and/or 
increased genetic instability are also characteristic of iBMFSs due to 
defects in telomere maintenance and in RiBi and protein translation, it 
seems that DDR abnormalities and/or DNA damage accumulation are 
potentially necessary but not sufficient for BMF. 

3. BMF in FA: contributions of nucleolar stress and altered RiBi 

3.1. Fanconi anemia: nucleolar stress and RiBi 

To better understand the biochemical and molecular basis of the 
origin of BMF in FA, several recently published manuscripts revealing 
previously unsuspected links between the FANC/BRCA pathway and 
nucleolar and RiBi homeostasis are worth highlighting. The loss of 
function of FANCA and, to a lesser extent, that of its partner FANCG, 
observed in more than 75% of FA patients worldwide (60–70% of pa
tients lose FANCA plus 10–15% for FANCG), induce nucleolar stress and 
nucleolar protein mislocalization [148,149]. FANCA coimmunopreci
pitated with Nucleolin and Nucleophosmin 1 (NPM1), two of the major 
nucleolar proteins, suggesting its participation in the process of protein 
aggregation inside the nucleolus, the membrane-less condensate 
assembled around ribosomal DNA (rDNA) repeats, whose structural and 
genetic integrity requires the FANC/BRCA pathway [149,150]. Our 
observations validated and extended previous data generated by Pang’s 
group demonstrating that FANCC and FANCA interact and stabilize 
NMP1 proteins confined in the cytoplasm because their NLS is mutated 
[151]. These mutations have been observed in approximately 30% of 
sporadic AML [152,153]. Thus, members of the FANC core complex 
interact with both WT and mutated NPM1, participating in NPM1 sta
bility and subcellular localization. FANCA and FANCI loss of function 
affects rDNA transcription and pre-rRNA processing, and FANCA and 
FANCI are required, together with FANCG, to maintain the global pro
tein synthesis rate [149,150]. Mass spectrometry analysis revealed that 
only FANCA, FANCI and FANCD2 were present in the 40S, 60S and 80S 
ribosome fractions, with FANCD2 and FANCI being the only FANC/ 
BRCA pathway-associated proteins retrieved in the polysome fraction 
[149]. FANCD2 and FANCI coimmunoprecipitated with ribosomal pro
tein S27-like (RPS27L), whose downregulation impacts FANCD2 and 
FANCI stability, leading to impairment in DNA ICLs repair [133]. The 
first single-cell transcriptome profile of primary HSPCs from healthy 
donors and FA patients showed higher expression levels of MYC and its 
targets in an important fraction of BM-derived FA cells, which was 
counterbalanced by elevated induction of p53- and TGFβ-associated 
intracellular signaling pathways in the remaining minority of the cells 

[154,155]. MYC is a recognized master regulator of RiBi and protein 
synthesis [156]. Accordingly, the expression of several mRNAs encoding 
ribosomal proteins and translation factors, including RPL19, RPL13, 
eIF4A1, eIF4E, eIF4B, RPL5, and RPL27A, is deregulated in HSPCs of FA 
patients [155]. Hence, the analysis of the transcriptional profile in 
patient-derived models of hematopoietic differentiation as well as the 
proteomic profile of BM samples obtained from FA patients revealed 
enriched signatures consistent with alterations in RiBi and translation in 
FANCA-deficient cells [157,158]. Accordingly, we reported that FANCA 
deficiency led to imbalances in the stoichiometry of ribosomal proteins 
and translation factors associated with ribosome subunits, monosomes 
and polysomes, including eIF4G1, eIF4E, eIF5A and RPL22A [149]. 
Moreover, BRCA1/FANCS colocalized with RNA Pol I at the rDNA repeat 
and coimmunoprecipitated with the RNA Pol I holoenzyme, which is 
critical for rDNA transcription, which is reduced in the absence of 
BRCA1 [159]. Thus, alterations in RiBi may be associated and directly 
linked to at least 4 proteins encoded by genes defining three different 
modules of the FANC/BRCA pathway, namely, FANCA, FANCG, FANCI 
and BRCA1/FANCS. 

3.2. Evidence showing that nucleolar stress and altered RiBi contribute to 
BMF in FA and the limits of their contributions 

The discovery of proteostasis alterations in FA is very recent, and no 
study has yet focused on the direct involvement of these alterations in 
BMF. However, in an induced pluripotent stem cell (iPS) model, Marion 
and collaborators demonstrated that alterations in terminal erythro
poiesis in FA are associated with altered expression of RiBi-encoding 
genes, supporting the idea that these alterations are involved in red 
cell aplasia in FA [158]. Therefore, the evidence of nucleolar stress and 
altered RiBi in FA cell lines and hematopoietic cell models implies that 
they contribute to the phenotype of both FA cells and patients. This 
conclusion is important to a better understanding of the physiopa
thology of FA. 

3.3. Nucleolar stress and RiBi in other iBMFSs 

Indeed, it has been clearly demonstrated that altered proteostasis 
impacts erythropoiesis, mainly through studies of human patients, 
mouse models or cells haploinsufficient for DBA- or SDS-associated 
genes [160–162]. 

DBA is associated with heterozygous inactivating mutations in genes 
encoding ribosomal proteins or regulators of the ribosomal machinery 
devoted to mRNA translation [123]. DBA mutations were identified in 
genes encoding: a) the small ribosome subunit (40S) components RPS7, 
RPS10, RPS15A, RPS17, RPS19, RPS24, RPS26, RPS27, RPS28 and 
RPS29; b) the large ribosome subunit (60S) components RPL5, RPL11, 
RPL15, RPL18, RPL26, RPL27, RPL31, RPL35, RPL35A; and, c) TSR2, a 
pre-RNA processing protein (TSR2) that appears to repress the tran
scription of NF-kB and plays an essential role in the formation of a 
mature ribosome, potentially via its interaction with the ribosomal 
protein RPS26 [163,164], encoded by a known DBA-causing gene [125]. 
Finally, DBA has been also associated to mutations of the key lineage- 
determining erythropoietic transcription factor GATA1[165]. Notably, 
the expression of GATA1 is generally downregulated in all DBA cases 
[166–168]. Thus, diminished GATA1 expression appears to be the key 
trigger for altered erythropoiesis in DBA patients. Similar to DBA, SDS is 
associated with alterations in RiBi owing to mutations in the genes 
encoding SBDS, DNAJC21, EFL1, or SRP54. SBDS, DNAJC21 and EFL1 
promote the assembly and stabilization of monosome 80S, and SRP54 
facilitates protein trafficking from the ribosome to the membrane 
[169–172]. 

Several, but not all, of the telomeropathy-related proteins, namely, 
Dyskerin, NHP2, PARN, NOP10 and TCAB1, in addition to their roles in 
telomere maintenance, have clearly established direct roles in RiBi and 
nucleolar homeostasis, affecting proteostasis [24,25,173–177]. Whether 
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defects in telomeric protein that are not directly involved (either bio
chemically or molecularly) in RiBi or nucleolar homeostasis affect pro
teostasis, by disturbing the physiology of their partners, remains to be 
determined. 

Consequently, in addition to DNA damage accumulation and DDR 
abnormalities, all major iBMFSs share defective RiBi, even if not all the 
proteins encoded by the mutated genes have direct consequences on 
proteostasis. Notably and more importantly, altered proteostasis is not a 
simple perturbation of cellular homeostasis due to mutations in DNA 
repair or telomere maintenance proteins but is a direct consequence of 

the loss of additive functions performed by the same proteins whose 
inherited mutation leads to the disorder. 

4. BMF in FA: downstream DNA repair, DNA damage responses 
and ribosome biogenesis involving redox homeostasis and the 
p53-p21 axis 

Independent of the key functions attributed to each individual pro
tein encoded by their mutated genes, iBMFSs share DNA repair defi
ciency, DNA damage accumulation, genetic instability, telomere 
shortening, nucleolar stress, and ribosomal and translational abnor
malities. All previous alterations converge on two usual suspects: the 
control of redox homeostasis and the overactivation of the p53-p21 axis 
(Fig. 3). 

Increased ROS levels and/or inflammation per se are known to in
fluence HSC exit from dormancy or to bias differentiation toward spe
cific lineages [178,179]. In FA, altered redox homeostasis has been 
considered a major physiological abnormality for 40 years [180–182], 
although its origins and consequences for in terms of clinical and cellular 
phenotype acquisition are still debated [183,184]. The reduced ability 
to cope with intracellular free radical oxygen species (ROS) has been 
proposed as a major determinant of FA clinical and cellular phenotypes, 
suggesting that altered redox metabolism likely plays a greater role and 
is not a mere hallmark of the syndrome [185–188]. However, although 
certain FANC core complex proteins, e.g., FANCC and FANCG, have 
been identified in immunocomplexes in conjunction with proteins 
involved in mitochondrial activities [189–192], how the FANC/BRCA 
pathway, as a whole, associates with oxidative metabolism is still poorly 
understood. Indeed, the ROS increases in FA cells are probably results of 
accumulated old/damaged misfunctioning mitochondria, a conse
quence of altered mitophagy [193], with widely observed abnormalities 
in the secretion of proinflammatory factors, including cytokines (TNFα), 
lymphokine (IL1β), growth factor (TGFβ) and/or interferons (IFNs), 
and/or in the activation of their signaling pathways (the p38, SMAD, 
and NF-kB pathways, respectively) [155,194–198]. Moreover, the ma
jority of the data attesting to ROS overaccumulation or hypersensitivity 
in FA stems from in vitro or ex vivo studies, which are potentially cor
rupted by O2 tension caused by exposure to atmospheric air, which 
contains 21% oxygen. Data generated under condition of 3%-5% of O2, i. 
e. a level of O2 close to the physiological level similar to that inside 
tissues demonstrated reduced, if any, sensitivity to oxygen than at 21% 
O2 [180–184,187,199]. Therefore, the data seem to support a patho
logical problem in ROS accumulation/detoxication under stress that is 
minimal present under basal physiological conditions. In other words, 
we speculate that FA cells “in vivo” can survive with a basal level of ROS 

Fig. 3. Convergence of independent genetic defects on BMF via functional aberrancies in several common pathways that lead to p53-p21 axis activation.  

Fig. 4. The ROS rheostat as an example of the proposed dynamic equilibrium 
that allows survival in a steady state. In a steady state, FA cells can cope with 
abnormally elevated levels of ROS caused by altered mitochondrial metabolism 
and with increased DNA damage and/or proinflammatory cytokine production; 
this situation is equivalent to that reached in WT cells under mild “physiolog
ical” stress, for example, in response to unavoidable DNA damage due to in
dividual lifestyle or life events, including sun exposure, smoking and drinking 
alcohol, therapeutic or accidental exposure to chemicals and radiation, in
fections and bleeding. When FA cells experience similar additive stress, how
ever, ROS levels overcome the already overloaded antioxidant defenses of these 
cells, seriously damaging or killing them. 
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that is probably higher than in WT cells but not pathological per se until 
additive stresses overload saturated cell defenses (Fig. 4). Heinrich and 
collaborator proposed a similar explanation for the prolonged G2/M 
arrest, a key FA hallmark, of FA cells treated with low doses of DNA 
cross-linking agents [200]. On the basis of their experimental approach, 
they suggested that aberrant G2/M arrest does not reflect an abnormal 
cell cycle response but represents a normal cellular response to “exces
sive” genotoxic stress induced in FA cells as a consequence of the ad
ditive DNA lesions caused by exposure to DNA-damaging agents [200]. 
Regardless of the cause(s), increased ROS levels in FA appear to be a 
potential and promising therapeutic targets [201]. Based on the rescue 
effect of antioxidant treatment in vitro and in animal models [202–205], 
a clinical trial of quercetin, a flavonoid polyphenol with antioxidant 
properties, is ongoing (clinicaltrials.gov NCT01720147) to address its 
effects on hematopoiesis [206]. 

Contributing to the argument that accumulating ROS and/or a 
proinflammatory status can be a key contributor to BMF, these hall
marks characterize other major iBMFSs. In DBA, an FA-like inflamma
tory signature indicated by TNFα, IL6 and IL1β overexpression was 
observed in patients and in a zebrafish model, and it was associated, 
similar to FA [100,194,207–212], with p38 activation [130,213]. 
Importantly, in DBA, proinflammatory cytokine inhibition partially at
tenuates oxidative DNA damage levels and restores hematopoiesis 
[130,213]. SDS is also characterized with impaired energetic meta
bolism (i.e., altered mitochondrial homeostasis) and increased intra
cellular ROS levels [214–217]. Oxidative stress is an established 
hallmark of DC, and it is involved in the prosenescent DC phenotype 
[218–221]. In a Dkc1 mouse model of DC, treatment with the antioxi
dant N-acetyl cysteine partially reversed the growth disadvantage 
conferred by mutant cells in vitro and in competitive BM repopulation 
experiments in vivo, suggesting that increased oxidative stress might 
play a role in the pathogenesis of DC and that some manifestations of DC 
may be prevented or delayed by antioxidant treatment [222]. Thus, ROS 
accumulation and the inflammatory phenotype appear to be potential 
mediators of the BMF observed in FA, DBA, DC and associated 
syndromes. 

Increased intracellular ROS levels, which lead to an increase in 
oxidative DNA lesions and alters enzymatic activities through protein 
oxidation, together with alterations in DNA repair, telomere meta
bolism, nucleolar homeostasis and RiBi contribute to the activation of 
p53 and its major target p21 [223], which are constitutively turned on in 
FA, DBA, DC and associated disorders. Indeed, p53 is activated as a 
consequence of replication stress, DNA damage and telomere attrition 
that leads to ATM/ATR-mediated p53 phosphorylation [224] but also 
downstream the ‘inhibition’ of its inhibitor, MDM2, which is seques
tered via its interaction with nucleolar or ribosomal proteins [8,225]. 
Moreover, p21 expression, at both the transcriptional and post
transcriptional levels, can be induced in a p53-independent manner, 
notably by NPM1 when the protein is displaced outside the nucleolus 
under nucleolar stress conditions [148,226]. 

In FA, p53 overexpression in the absence of exogenous stress was 
described 30 years ago, extensively validated, considered a consequence 
of increased DNA damage and obviously associated with increased 
apoptosis and senescence, which are potentially major causes of HSC 
attrition and BMF [95,155,227–234]. It has been recently shown with 
patient samples that depletion of p53 or p21 restores the clonogenicity 
of CD34+ cells isolated from FA patients [95]. This observation is 
intriguing because it suggests that is the overexpression of p21, and not 
that of p53, that affects BM homeostasis in FA. Thus, it is tempting to 
hypothesize that BMF emerges, at least in FA and possibly in the other 
iBMFSs, as a result of crosstalk among components of several functional 
abnormalities that result in constitutive p21 expression due to its 
increased transcription and stabilization, which are known to be per
nicious to cell physiology [235]. 

5. Conclusions and future considerations 

In conclusion, we propose that BMF in FA is a sum of events (and not 
necessarily the same events in each complementation group and/or in 
each kind of primary cell in organisms and in vitro and animal models) 
leading to alterations in both genetic and protein homeostasis, ulti
mately impacting redox (inflammatory) metabolism and (p53)-p21 axis 
expression, which probably represents the central hub in the patholog
ical traits of the syndrome. 

Nevertheless, two paradoxes remain unresolved: i) How does FA 
progress from BMF to MDS or AML? and ii) Despite the unscheduled and 
potential toxicity of the improper activation of several cellular and 
molecular pathways in FA cells, why is the normalization of just one end 
point, as in the case of p53 or p21 [95], TGFβ [236,237] or TNFα [197], 
sufficient for rescuing, at least transitorily, several cellular and tissue 
phenotypes? 

FA and the other iBMFSs globally present a growth inhibitory 
phenotype with p53-p21 axis overactivation, compromised mitochon
drial metabolism, altered levels and quality of proteins and accelerated 
cellular senescence. How does thes phenotypes progress toward hyper
proliferative MDS and/or AML? All previous outcomes of BMF may 
represent the “Darwinian pressure” required to enable selected cells to 
overcome their initial inhibitory/hypoproliferative growth phenotype 
leading to MDS and leukemia. The recent observation that the BM of FA 
patients shows a higher frequency of cells with overexpression of MYC 
and MYC-dependent pathways cohabitating with p53-overexpressing 
cells supports the previous posit [155]. 

How do FANC cells survive against the “Darwinian pressure” 
generated by the addition of the described abnormalities in nuclear, 
nucleolar, mitochondrial and ribosomal (i.e., cytoplasmic) homeostasis? 
We assume that an FA cell “survives” despite a situation in which several 
physiological parameters are “individually” deregulated and potentially 
toxic because, ultimately, this cell has found an alternative “homeo
static” point, in which the relative balance between the different pa
rameters is maintained as it is in normal cells. Such “higher” homeostasis 
enables cell and individual survival at the expense of tissue health in the 
long term (BMF develops progressively and is often absent at birth). 
According to the principle of communicating vessels, modifying the 
level of liquid in one vessel (one of the parameters) re-equilibrates the 

Fig. 5. Cartoon illustrating the dynamic cellular homeostasis that allows FA 
cell survival and a partial or transient rescue of their phenotypes when one of 
the altered pathways is normalized. 
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level in the others. Thus, “normalizing” one of the pathways is enough to 
rescue at least transitorily some FA phenotypes, whereas increasing the 
level of one “vessel” is sufficient to collapse the system (Fig. 5). 

In conclusion, although the idea that one of the proteins associated 
with the FANC/BRCA pathway has novel functions in addition to func
tions in DNA repair has long been considered unsubstantiated, it is time 
to reconsider this possibility. A better understanding of the cellular and 
clinical phenotypes of FA, as well as a better management of patients 
with FA, requires “a shared axiom” [186], in which several alternative 
functions of FA proteins, spanning from DNA repair to ribosome 
biogenesis, are included. FA depends on the association of several ab
normalities in cellular, biochemical and molecular pathways outside 
DNA repair [238]. Obviously, the loss of DNA repair functions clearly 
remains central to the FA phenotype and they are, probably, key for the 
BMF-to-MDS/AML transition. However, in addition to their DNA repair 
functions, at least FANCA, FANCG, FANCI and BRCA1 clearly have 
biochemical/functional activities and are involved in RNA and/or pro
tein metabolism, the loss of which impact BM functionality. and 
providing further support for the importance of nucleolar activity and 
RiBi involved in BM physiology with the dependence on a virtuous cycle 
linking gene maintenance and protein expression. Thus, to the question 
posed at the end of a manuscript authored by Sondalle and collabora
tors, who asked whether FA must also be considered a ribosomopathy 
[150], our answer is yes: FA is also a ribosomopathy. 

Practice points  

• A future goal is to determine how impairment of ribosome biogenesis 
in FA impacts the bone marrow microenvironment and contributes 
to bone marrow failure (BMF) and myelodysplastic syndrome/acute 
myeloid leukemia (AML) initiation/progression. 

• Describing differences in cell physiology, in addition to those asso
ciated with DNA damage responses, and the biology of hematopoi
etic stem cells may lead to new therapeutic opportunities that merit 
further exploration with patients and in vivo models.  

• Therapeutic approaches targeting recombinant DNA transcription, 
ribosome biogenesis and/or translation may attenuate BMF and/or 
delay AML initiation or progression. 

Research agenda  

• Collaborative studies involving experts from different disciplines are 
needed to better understand the pathophysiology of FA and IBMFS 
and their cell biology.  

• How do FANC proteins ensure erythropoietic and megakaryocytic 
differentiation? Is it through their contribution to DNA repair and 
genetic stability or through their involvement in ribosome biogenesis 
and proteostasis? Or is it a result of FANC protein involvement in 
processes other than those of ribosome biogenesis and proteostasis?  

• How does altered proteostasis associated with the loss of function of 
the FANC/BRCA pathway contribute to the progression of MDS and 
AML in FA? 

• Is rDNA transcription in MDS and AML of FA patients a novel ther
apeutic target? 
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