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Abstract—The objective of this paper is to provide a step-
forward towards the per procedural visualisation of the electric
field distribution during a clinical irreversible electroporation
(IRE) procedure. To this end, an automated workflow is needed
to compute the electric field distribution on a single Cone Beam
Computed Tomography (CBCT) scan.

The aim of the current paper is to propose a deep learn-
ing strategy for the automatic segmentation of the needles.
In particular, a novel coarse-to-fine approach is proposed to
extract relevant needle information from the CBCT scan, despite
inherent artefacts generated during capture. The obtained needle
information is subsequently fed into a standard static linear
model for the electric field computation. Since the set-up is
performed in the medical image framework, the electric field
distribution and the region of interest are visible to provide to
the radiologist a visual evaluation of the treatment.

The segmentation results are evaluated on 8 of the 16 patients
of the dataset using the Dice coefficient to compare the predicted
segmentation with the ground truth. The proposed segmentation
method is fast (around 2 minutes are needed with a commodity
hardware), allowing its use in a clinical setting.

Index Terms—Deep Neural Network, Fine-object Segmenta-
tion, CBCT, Electric field distribution.

I. INTRODUCTION

Irreversible electroporation (IRE) is a minimally invasive
ablation technique notably used in the ablation of deep-seated
tumour. It consists in delivering localised high electric pulses
through conductive needles to permeabilise cell membranes
and lead to apoptosis. It is mostly non-thermal, thus suitable
for treating tumours near major blood vessels and organs as
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it will not affect nearby vital structures. However, due to the
complexity of the technique, thorough treatment planning and
assessment based on medical imaging are required.

In [1] the clinical workflow to perform IRE liver ablation
was described: the target tumour is localised on a high resolu-
tion image, then the needles are inserted percutaneously and a
low resolution Cone Beam Computed Tomography (CBCT)
scan is acquired to verify the positioning. Finally the IRE
pulses are delivered. Following this clinical workflow, a nu-
merical workflow was described in [1] to provide a numerical
assessment of the IRE procedure. The current paper proposes
here an automated needle extraction method to automatically
perform the treatment assessment.

Indeed one of the most important steps for the compu-
tation of the electric field during an IRE procedure lies in
the localisation of the percutaneously inserted needles, as
previously shown in [2]. The captured information is then used
to determine the method (needle placement, etc) and efficacy
of IRE for a patient.

CBCT scan is an image modality which is particularly bene-
ficial intra-operatively since it is fast, restricted to the targeted
organ and with lower radiation exposure than conventional
Computed Tomography (CT) scans. However, the CBCT scans
are subjected in turns to low contrast, low signal-to-noise
ratio, and artifacts especially when needles are inserted. These
drawbacks hamper the automated needle extraction task and
require the development of novel deep learning approaches.

Artificial neural networks have been increasingly used in
image processing tasks such as segmentation, classification or
object tracking. In the past decade, it has come to outperform
more traditional techniques thanks to great improvements in
Graphics Processing Unit (GPU) technology, allowing more
complex architectures, and to the growing number of datasets,



required for supervised training. In particular for the seg-
mentation task, most state-of-the-art convolutional network
approaches are based on an architecture designed in 2015
in [3]: the U-Net. The output combines contextual informa-
tion as well as detailed information, achieving high quality
segmentation maps. It was first applied to biomedical data,
specifically neuronal structure and cell segmentation. The
simple yet powerful architecture has then been declined to
fit specific data (i.e., liver and liver tumor [4], liver lesion
[5], etc). One advantage of this kind of approach is that they
rely on features learned by the network during training and
not hand-crafted features whose quality and suitability limit
performance. However, data presented to the network in the
training phase should be chosen carefully and fine-tuning of
the model might be necessary if used on a very different
dataset.

The aim of this paper is a strategy to obtain accurately and
fastly the position of the needles from medical imaging. This
automated segmentation is the first step towards an on-line
visualization of the electric field distribution as delivered by
the clinical IRE procedure described in [1]. The automated
workflow is designed to enable the visualization of the elec-
tric field distribution directly on a single CBCT scan. The
proposed strategy for automated needle segmentation tackles
the following successive tasks:

1) The needles are coarsely segmented in the CBCT scan
using a deep convolutional network. Challenges arise
from the nature of the scan (i.e., CBCT low contrast,
low signal-to-noise ration and needle artefacts) and from
the label imbalance in the dataset. We address this issue
by the use of a suited loss function along a patch-based
optimization strategy.

2) A fine representation of the tip of the electrode is
subsequently obtained. However, incomplete coarse seg-
mentation makes the precise detection of the needles
more difficult. The proposed solution consists in com-
pleting the missing data by using an analytical needle
representation based on the Hough transform [6].

The distribution of the electric field is then numerically
computed using the standard static non linear model as pre-
sented in [2] directly in the CBCT framework.

II. METHOD

A. Coarse needle segmentation

1) Implemented deep neural network: A U-Net model is
adapted to the segmentation of the needles used for the IRE
of liver tumor. The architecture is presented in Fig. 1.

A contracting path encodes the input into a space of
lower dimensionality via down-sampling operations, here max-
pooling. An expanding path then decodes the smaller vec-
tors into the required output via up-sampling operations that
increase the output resolution, here up-sampling, faster than
the original deconvolution layer. At each level of the encoder
and the decoder, two 3× 3× 3 zero-padded convolutions are
applied, followed by a ReLU activation function and a Batch

Fig. 1. Proposed 3D U-Net architecture for the calculation of the coarse needle
segmentation map: Max pooling is the down-sampling operation, ReLU and
Sigmoid are activation functions and BN is batch normalisation. The number
of input channels (NC) as well as the number of 3×3×3 filters are indicated
on the top of each block and the size of the feature maps are on the left.

Normalisation (BN) layer while in the original U-Net, un-
padded convolutions were used. The feature maps thus had
to be cropped before the concatenation allowing to combine
contextual information from the encoder and detailed informa-
tion from the decoder. Padding the input prior to convolution
allows to avoid an additional operation and to have a quicker
training and inference. Only two levels are used in the adapted
U-Net as it is sufficient for the patch size considered and
again allows a less time consuming processing of the data.
Also, more importance is given to detailed information by
concatenating twice more decoder feature maps than there are
encoder feature maps as very fine objects are being segmented.

The proposed training strategy is designed to counterbalance
the highly skewed data, as background is more represented
than needles in the labels. The network is trained using
supervised training. Input is fed to the network whose output
is compared with ground truth data using a loss function that
measures similarity according to the objective. The loss func-
tion (L) is a combination of binary cross entropy (LBCE [7])
and Dice loss (LD [8]), which is based on the Dice coefficient
[9] and demonstrated to be well suited for imbalanced structure
segmentation [10]. L is mathematically expressed as follows:

L = LBCE + LD (1)

with

LBCE = − 1

|Ω|
∑
r⃗∈Ω

(yr⃗ log(pr⃗) + (1− yr⃗) log(1− pr⃗)) (2)

LD = 1−
2
∑

r⃗∈Ω yr⃗pr⃗ + ε∑
r⃗∈Ω yr⃗ +

∑
r⃗∈Ω pr⃗ + ε

(3)

where Ω is the image domain, r⃗ the 3D voxel coordinate, y the
true segmentation map, ε a smoothing factor (we took ε = 1)
and p the predicted probability map (a value pr⃗ close to 1
means that a high probability for the presence of a needle is
predicted at the voxel coordinate r⃗).

The loss function is minimized with the gradient descent
method: weights of network are updated in the direction
opposite the gradient, proportionally to a learning rate. These
steps are repeated until a convergence criterion is fulfilled: in
this case, a number of iteration.

The following parameters were used for training of the 3D



U-Net: batch size = 1 and optimizer = Adam with a fixed
learning rate of 1e−3. The number of epochs and the resolution
of the input depend on the experiment.

2) Proposed patch-based approach: Though patches are
used as in the original paper in order to reduce the memory
requirements while maintaining good resolution, the patch-
overlap strategy [3] is not.

CBCT scans captured during operation with needles in place
for electroporation constitute highly imbalanced data label-
wise. Indeed, the needles only take a small part of the image.
Thus, a convolutional network trained on these data will have
more difficulty learning the needles than the background.

One way to give more importance to needles is to select
patches of the image where at least one voxel belongs to a nee-
dle. In this way, the ratio of “needle” voxels to “background”
voxels may be increased and the label imbalance is reduced.
The “needle” patches are selected using the true background
segmentation maps.

An equilibrium between “needle” information and “back-
ground” information is reached when the training set consists
of 50% of patches containing part of a needle and 50% of
empty patches. This optimised patch set is referred to as the
balanced set.

“Background” patches used to complete the set come from
a single scan in order to ensure that all background structures
are represented and learned: ribs, liver, etc.

3) Inference threshold optimization: The label imbalance,
explained in the section above, is noticeable in the probability
maps pr⃗, then thresholded to obtain binary segmentation
maps (noted ŷr⃗ throughout the rest of the manuscript): the
probabilities when predicting a “background” voxel are much
higher than the probabilities predicting a “needle” voxel. To
improve the segmentation quality, we propose to vary the
inference threshold θ in order to artificially give more weight
to the needles when deciding on a label.

B. Fine needle segmentation of the tip of the electrodes

Difficulties arise when parts of the needles are not seg-
mented on the mask. One can note that only the tips of the
electrodes are useful for the computation of the electric field
distribution as it is where the pulses are delivered. The above-
mentioned coarse segmentation masks are processed to extract
a finer representation of the tips of the electrodes. Practically,
a Hough transform [6] is used to detect needles represented
by lines despite the missing data as follows.

The coarse binary mask is first converted to a point cloud
in order to apply the Hough transform. It consists in param-
eterizing the curve to detect, and fill an accumulator array
whose dimensions correspond to each parameter of the curve.
The scores of the cell in the accumulator then correspond to
how represented the curves are in the image, i.e., the number
of points belonging to a given curve. In this implementation,
Roberts’ optimal line representation [12] is used and additional
parameters are taken into account: the number of lines to
be detected (chosen as the number of needles N multiplied
by a coefficient), the maximum distance allowed between the

detected line and the points belonging to the line (i.e., the
radius of the needles, 8 to 9.5 gauge for NanoKnife probes
[13]), the minimum score in the accumulator array for a line
to be detected and the maximum distance between two points
of a line.
After the given number of lines is selected, a voting procedure
further selects the curves representing the needles. Several
criteria are taken into account: the inverse of the number
of points belonging to the line, the distance between the
extremities of the segment as represented in the point cloud,
i.e., the length of the needle segmented by the 3D U-Net,
the mean distance from the points to their projection on the
line and the distance between the extremity of the segment
and the centre of the image. The latter constraint comes from
the hypothesis that the tip of the needle where the pulses are
delivered is the furthest extremity from the border of the scan.
The 4 scores are normalised across the set of lines detected by
the Hough algorithm and summed to produce the final score.
Then, the N lines with the lowest final scores are selected as
the finer representation of the needles extremities.

C. Assessment of the proposed needle extraction approach

1) Datasets: During IRE of liver tumours, a CBCT scan
of the abdominal cavity is captured after needle insertion and
before pulse delivery. Low signal to noise ratio, low contrast
and artefacts typical to CBCT present an additional challenge
to the segmentation task.

The patient dataset is divided into a training set and a testing
set as follows. It consists of a total of 16 patients: 8 patients
are randomly selected for training and the last 8 are used to
assess the segmentation accuracy of the algorithm.

Ground truth, consisting of binary masks, is generated for
all patients using the segmentation tool available in ITK-SNAP
[16].

The dimension of the scans are 512 in the Right-Left and
Anterior-Posterior directions and between 195 and 512 in the
Superior-Inferior directions. The voxel sizes are 0.45 mm in
all directions. Every scan is set to common dimensions before
being presented to the convolutional network.

An intensity-scale is applied on CBCT scans prior to being
processed by the neural network, during learning and testing
phases. As intensity values are absolute, the same intensity
scaling may be applied to the whole dataset (Fig. 2).

Fig. 2. Typical example of an intensity-scaled scan and the corresponding
segmentation maps: (a) is a slice of the scan to be segmented with intensity
(min, max) = (-999, 1500), (b) is the region framed in a with manual
segmentation in red and (c) is the region framed in a with automatic
segmentation in red.



The data is highly imbalanced label-wise. Indeed, the needle
only constitutes a small portion of the CBCT scans: in the
case of our dataset, there is 1 “needle” voxel for 10 000
“background” voxels in average.

2) Performance assessment: On the one hand, coarse seg-
mentation masks are individually assessed prior to the Hough
transform. To do so, the ground truth data generated for the
test set (yr⃗) are used, and compared to the predicted labels
(ŷr⃗) using the Dice score (noted DSC):

DSC =
2
∑

r⃗∈Ω yr⃗ŷr⃗∑
r⃗∈Ω yr⃗ +

∑
r⃗∈Ω ŷr⃗

(4)

On the other hand, fine segmentation is assessed by con-
sidering the coordinate of the extremity of the needle. It is
compared to the manual coordinates using the Euclidean norm:

D =
√

(xt − xp)2 + (yt − yp)2 + (zt − zp)2 (5)

where xt, yt, zt are the true coordinates and xp, yp, zp are
the predicted coordinates.

3) Hardware and implementation: The adapted 3D U-Net
was implemented with the Tensorflow 1.4 [17] and Keras 2.2.4
[18] packages. The platform used for the training of the CNN
is an Intel Xeon E5-2683 2.4 GHz (2 Hexadeca-core) with
256 GB of RAM equipped by a GPU Nvidia Tesla P100 with
16 GB of memory. The commodity hardware used to test the
segmentation is an Intel 2.5 GHz i7 workstation (8 cores) with
32 GB of RAM.

D. Preliminary assessment of an IRE procedure

To compute the electric field in tissues, different models
of tissue electroporation can be chosen, and there is currently
no definitive answer neither on the best choice of the model
(static, nonlinear, dynamical, biphasic... ) nor on the value of
the parameters. One can refer to [19] for a comparison of
different models. However, it is well-known that the linear
static model under evaluate the region of electroporation,
compared with other non linear models. Therefore, from a
medical point of view, it is sufficient, as a first approximation,
to compute the electric field as the gradient of the linear static
potential φ satisfying:

−∇ · (σ∇φ) = 0, in the region of computation Ω, (6)

complemented with Dirichlet boundary conditions on the ac-
tive needles, a floating potential condition [15] on the passive
needle and a Fourier-Robin condition on the boundary of the
simulation box. The liver conductivity was set to σ = 0.5
S/m while the tumour conductivity was set to σ = 0.7 S/m
following [20]. The isolines 400 V/cm and 650 V/cm and
the manually segmented tumour are then superimposed on the
CBCT with needles, in the same way as [1].

III. RESULTS

A. Assessment of the proposed patch-based approach

Three sets are created with different proportions of “needle”
and “background” voxels to compare with the balanced set,

designed to counter-balance the skewed data. The first one
has 100% “needle” patches, the second has approximately
66% “needle” patches, and the balanced set has nearly 50%
“needle” patches. The segmentation results, of the network
when all patches are used, are also considered for comparison.
We observe increasing segmentation quality as a balance
is found between “needle” information and “background”
information (Table I).

The first dataset is composed of 100% “needle” voxel. 38
patches across the training set were detected for common di-
mension = 256×256×256 voxels and patch size = 64×64×64
voxels. The segmentation quality is slightly over a half of what
was obtained when all patches were used (DSC = 0.2552). It
is due to the fact that the network does not have enough data
to fully learn what the background looks like. This is further
shown by the lack of efficiency of decreasing the inference
threshold θ, as seen in Table I. Indeed, since the network does
not learn the background as much as before, it cannot predict
with its previous confidence the “background” labels.

The second dataset is composed of the 38 patches previously
mentioned and 23 “background” patches, all extracted from
the same image in order to ensure that every structures
present in the background are included. That is, there are
62% of “needle” patches for 38% of “background” patches.
The segmentation quality is doubled as compared to the
previous dataset. The performance obtained using every patch
is exceeded while the training time is lowered and the network
learned better the “needle” class. Furthermore, decreasing the
inference threshold θ allows again to improve the segmenta-
tion: the network learns the background better than previously.

The balanced set is composed of the 61 patches included in
the second patch set and the last 35 “background” patches in
the randomly chosen scan used previously. That is, there are
44% of “needle” patches for 56% of “background” patches.
We notice a smaller increase of segmentation quality. Also, de-
creasing the inference threshold θ still improves performance.

B. Inference threshold optimization

In order to counter-balance the effect of a skewed dataset
on learning, different inference thresholds are considered.

We observe that the regular threshold, θ = 0.5, may not be
optimal on the used dataset (Fig. 3c).

On the one hand, for difficult images (i.e., low contrast,
weak signal, etc), needles are hardly recognizable. There is an
almost linear relationship between the segmentation quality

TABLE I
PERFORMANCE OF THE COARSE NEEDLE SEGMENTATION APPROACH

USING THE DIFFERENT PATCH SETS

Set Mean Dice Standard Time/epoch (s)
coefficient deviation

All Patch 0.4532 0.0272 6749
Patch Set 100-0% 0.1310 0.0075 847
Patch Set 67-33% 0.5179 0.0227 1701

Balanced Set% 0.5536 0.0163 2698
* Using an inference threshold of 0.2



Fig. 3. Segmentation quality for varying inference threshold: (a) is the plot
of the Dice coefficient against the inference threshold for a high quality scan,
(b) is the plot of the Dice coefficient against the inference threshold for a low
quality scan and (c) is the plot of the mean Dice coefficient computed across
the test set against the inference threshold (error bar = standard deviation).
The network was trained on 64×64×64 patches extracted from CBCT scans
re-sampled to a common dimension of 128×128×128 voxels and using 30
epochs.

and the inference threshold (Fig. 3b). We suppose it is due to
the difficulty to discern needles from background. That is, the
more positive labels the threshold allows, the more the needles
have a chance to be segmented.

On the other hand, for higher quality images, the relation-
ship is parabolic with a peak between θ = 0.2 and θ = 0.3 (Fig.
3a). We believe that this is due to the fact that the network
was able to learn what a needle is and recognizes the object
on the scans with good signal. It can thus predict with a higher
precision which voxels correspond to a needle.

The best results are obtained for θ = 0.2 in average (Fig.
3c). This value is used in the all experiments presented in this
paper.

C. Assessment of the fine segmentation

From the fine representation of the needles extremities, the
coordinates of the probe end is extracted and compared to
the manually obtained coordinates to evaluate the quality of
segmentation. The mean distances between predicted and true
coordinates across all needles detected in a given scan are
shown in Table II for the 8 patients of the test set. We compare
different coarse segmentation methods: the proposed 3D U-
Net and a simpler intensity thresholding method (the scan is
first thresholded with a high threshold of 500 to determine the
best needle, then with a low threshold of 100 around the best
needle to detect the other curves).

TABLE II
PERFORMANCE OF THE FINE NEEDLE SEGMENTATION WITH A SIMPLE

INTENSITY THRESHOLDING METHOD AND WITH THE PROPOSED 3D
U-NET

Patient Average distance* Average distance*
(mm) with thresholding (mm) with 3D U-Net

1 76.98 1.88
2 0.97 1.44
3 1.25 0.72
4 1.11 1.17
5 7.69 5.80
6 4.99 6.07
7 3.66 2.18
8 18.13 1.56

* Over all needles in the given CBCT scan

Using the commodity hardware, the coarse segmentation
requires about 2 minutes and the fine segmentation algorithms
less than 10 seconds to compute the representation of the
needles extremities. The speed of computation could be further
enhanced by GPU acceleration during the coarse segmentation
but is already suitable for clinical settings.

Including the 3D U-Net in the coarse-to-fine approach
allows a significant improvement in the needle localisation
in many cases. Indeed, in average, the distance between
prediction and ground truth is of 2.61 mm against 14.35
mm without the deep learning method (Table II). Also, the
statistical range is smaller with the 3D U-Net, indicating that
the proposed method is more robust. Finally, the algorithm
always outputs a needle representation whereas, without the
deep learning based segmentation, the method may crash.

D. Numerical assessment of the IRE procedure

The fine representation of needle extremities is then entered
in the standard static non linear model of the electric field to
produce visuals such as Fig. 4.

Two isolines corresponding to 400 V/cm and 650 V/Cm
are represented on the CBCT with needles. These thresholds
are supposed to be sufficient for reversible and irreversible
electroporation respectively in the liver. The tumor, manually
segmented by the surgeon, is added to the image so that a
quick visual assessment of the IRE procedure is possible.

IV. DISCUSSION AND CONCLUSION

The proposed method greatly enhances localisation of nee-
dles utilized in the IRE process. Improving the quality of
needle detection with a coarse-to-fine approach and a convolu-
tional network leads to more precise simulation of the electric
field distribution.

The U-Net architecture and learning strategy were adapted
to highly skewed 3D data and to the clinical settings in
which it will be used. Firstly, the Dice loss associated with
binary cross-entropy constitutes the loss function instead of
a weighted cross-entropy. The Dice coefficient is also used
for the evaluation of the segmentation quality. Experiments
using the weighted Dice coefficient, a modified Dice coeffi-
cient that includes weights for false negatives and for false



Fig. 4. Computation of the delivered electric field on the CBCT scan with
needles in 3D (with slices): the tumor is in blue, the 400 V/cm isoline in red,
the 650 V/cm isoline in green and the needles, as detected by the 3D U-Net,
are represented in yellow. We note that the coverage of the tumor in this case
is not perfect: some of the red sphere, representing the tumor, is not within
the isoline in white.

positives in the denominator, to evaluate a network trained
with the weighted Dice loss function confirmed that the Dice
coefficient does not favor networks trained with the Dice
loss function. It is thus suitable for the evaluation of the
segmentation quality, including when comparing different loss
functions. Secondly, the original patch-overlapping strategy [3]
is not used. Preliminary experiments showed that increasing
patch-overlapping does not improve segmentation quality but
nearly triples processing time. Thirdly, changing the inference
threshold enables to give more importance to the needle
information, less represented in the data. Lastly, selecting
patches considering the needle information they contain allows
to focus the network learning on the needle information or on
the background information depending on which set is used.
However, this last option makes the training more unstable.
Using a deeper network stabilises slightly the training but leads
to a decrease in segmentation quality, probably due to over-
fitting.

To conclude, our contribution consists in a learning strategy
allowing good counter-balancing of highly skewed data by
using an appropriate loss function, by carefully selecting
images to be fed to the network during learning based on the
class information they provide and by modifying the inference
threshold to take advantage of the different amount of class
information learned. Indeed, the main control parameters in
this case are identified as the loss function, the inference
threshold and the ratio of “needle” information to “back-
ground” information during training. The gain in segmentation

quality leads to a more precise modelling of the IRE process.
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