Potential scientific synergies in weak lensing studies between the CSST and Euclid space probes
Résumé
Aims. With the next generation of large surveys coming to the stage of observational cosmology soon, it is important to explore their potential synergies and to maximise their scientific outcomes. In this study, we aim to investigate the complementarity of the two upcoming space missions Euclid and the China Space Station Telescope (CSST), focusing on weak lensing (WL) cosmology. In particular, we analyse the photometric redshifts (photo-zs) and the galaxy blending effects. For Euclid, WL measurements suffer from chromatic PSF effects. For this, CSST can provide valuable information for Euclid to obtain more accurate PSF, and to calibrate the color and color-gradient biases for WL measurements. Methods. We create image simulations for different surveys, and quantify the photo-z performance. For blending analyses, we employ high-resolution HST/CANDELS data to mock Euclid, CSST, and an LSST-like survey. We analyse the blending fraction for different cases, and the blending effects on galaxy photometry. Furthermore, we demonstrate that CSST can provide a large enough number of high SNR multi-band galaxy images to calibrate the color-gradient biases for Euclid. Results. The sky coverage of Euclid lies entirely within the CSST footprint. The combination of Euclid with CSST data can be done more uniformly than with the various ground-based data. Our studies show that by combining Euclid and CSST, we can reach a photo-z precision of $\sigma_{\rm NMAD} \approx 0.04$, and an outlier fraction of $\eta\approx 2.4\%$. Because of the similarly high resolutions, the data combination of Euclid and CSST can be relatively straightforward for photometry. To include ground-based data, however, sophisticated deblending utilizing priors from high-resolution space data is demanded. The color-gradient biases for Euclid can be well calibrated to the level of 0.1% using galaxies from CSST deep survey.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|