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Abstract: Certain holographic states of matter with a global U(1) symmetry support
a sound mode at zero temperature, caused neither by spontaneous symmetry breaking of
the global U(1) nor by the emergence of a Fermi surface in the infrared. In this work, we
show that such a mode is also found in zero density holographic quantum critical states.
We demonstrate that in these states, the appearance of a zero temperature sound mode is
the consequence of a mixed ‘t Hooft anomaly between the global U(1) symmetry and an
emergent higher-form symmetry. At non-zero temperatures, the presence of a black hole
horizon weakly breaks the emergent symmetry and gaps the collective mode, giving rise to
a sharp Drude-like peak in the electric conductivity. A similar gapped mode arises at low
temperatures for non-zero densities when the state has an emergent Lorentz symmetry, also
originating from an approximate anomalous higher-form symmetry. However, in this case
the collective excitation does not survive at zero temperature where, instead, it dissolves
into a branch cut due to strong backreaction from the infrared, critical degrees of freedom.
We comment on the relation between our results and the application of the Luttinger
theorem to compressible holographic states of matter.
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1 Introduction and summary of results

1.1 Introduction

The Landau paradigm classifies phases of matter depending on their pattern of spontaneous
symmetry breaking: an ordered phase is separated from a disordered phase by a critical
point, where the dynamics are governed by fluctuations of the order parameter. Over the
years, many phases have been characterized as falling outside the remit of the Landau
paradigm, including quasi-long-ranged ordered two-dimensional superfluids [1], quantum
topological phases of matter [2], and the deconfined quantum critical points mediating a
continuous transition between two phases with different order parameters, for instance in
quantum antiferromagnets [3, 4]. In the latter case, the quantum critical theory features
an emergent topological conservation law and deconfined gapless degrees of freedom with
fractional quantum numbers.

In recent developments, the Landau paradigm has been extended to capture such situ-
ations using the concept of higher-form (or ‘generalized’) global symmetries [5] (see [6] for
a review). Familiar global continuous symmetries generate a charge that counts point-like
objects and give rise to a conserved 1-form current. These are 0-form symmetries. Higher-
form symmetries are instead related to spatially extended objects: a p-form symmetry gives
rise to a (p + 1)-form conserved current. Such symmetries arise, for example, in (d + 1)-
dimensional superfluids where a continuous global U(1) 0-form symmetry is spontaneously
broken. In the absence of mobile topological defects, the conservation of the winding of
the superfluid phase can be reformulated as an emergent (d− 1)-form symmetry.1

In fact, the emergent (d−1)-form symmetry of superfluids is not exact [16]: it exhibits a
mixed ‘t Hooft anomaly with the 0-form U(1) symmetry. This has profound consequences:
the anomaly is ultimately responsible for the emergence of a gapless, propagating excitation
— the superfluid sound mode [17] — which in turn is responsible for a dissipationless δ(ω)
contribution to the electric conductivity σ(ω). An alternative to Goldstone’s theorem can
be established that does not require spontaneous symmetry breaking [17] — all that is
required is the emergence of the anomalous higher-form symmetry described above.

Emergent anomalous symmetries also arise at zero temperature in Luttinger and Fermi
liquids, as recently emphasized in [18]. In a Luttinger liquid, the left- and right-moving
charge densities are separately conserved. In the presence of an external electric field, the
axial combination is anomalous which in turn directly implies the existence of a propagating
mode. In a Fermi liquid, the anomaly is only present at the linearized level [19], but plays
a similar role. The anomaly is also crucial in order for the state to be compressible, i.e. for
its density per unit lattice cell to be continuously tunable rather than an integer.

Similar collective propagating modes exist in (d + 1)-dimensional holographic phases
of quantum matter described by Dirac-Born-Infeld (DBI) actions and generalized Maxwell
actions at zero density [10, 20–30]. These holographic modes were dubbed ‘holographic
zero sound’ [20], in analogy to the collective excitation present in a zero temperature Fermi

1Higher-form symmetries also arise in the description of magnetohydrodynamics [7–13] and crystalline
solids [14, 15].
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liquid [31]. In this work, we investigate Maxwell actions with a running coupling, to linear
order in perturbations. Building in particular on [21], we will demonstrate that at zero
density, an anomalous (d− 1)-form conservation law emerges in the infrared description of
these states and is ultimately responsible for the presence of a propagating mode in their
spectrum at zero temperature.

The emergent higher-form conservation law of a superfluid is violated in the presence
of mobile vortices. These are gapped in the infrared and so only affect the dynamics at high
enough energies. For example, in (2 + 1)-dimensions, they give a finite lifetime to the su-
perfluid Goldstone above the Berezenski-Kosterlitz-Thouless temperature and destroy the
associated superfluid sound mode of the infrared theory [32]. Traditional gapless superfluid
hydrodynamics [1] can be augmented to capture the relaxation due to vortices [17, 33]. This
transition falls within the Landau paradigm after its extension to incorporate higher-form
symmetries and their anomalies [17].

Similarly, at any non-zero temperature, the presence of a black hole horizon in the
holographic phases explicitly breaks the emergent (d− 1)-form symmetry and removes the
holographic zero sound mode from the low energy spectrum. At low temperatures the
symmetry is broken weakly, which leaves a strong imprint in the electric conductivity of
the state in the form of a sharp Drude-like peak. The fact that such Drude-like peaks are
caused by an approximate higher-form symmetry was previously demonstrated in [10, 29].

It is important to ask whether the higher-form symmetry persists for holographic states
with a non-zero charge density. Indeed, it is known that, as long as the state exhibits an
emergent Lorentz symmetry, the electrical conductivity will exhibit an extra Drude-like
contribution that is characteristic of an approximate symmetry (in addition to the delta
function arising from momentum conservation) [34, 35]. Here, we demonstrate that this
Drude-like conductivity is in fact the consequence of an approximate anomalous higher-form
conservation law that gives rise to a long-lived collective excitation at low temperatures,
though, for reasons we illustrate, the excitation does not survive at zero temperature.

Finally, compressibility and the presence of anomalous higher form symmetries are
deeply related to charge fractionalization and the Luttinger theorem, which in its simplest
instance states that the microscopic charge of a metal with a Fermi liquid fixed point is
equal the volume of the Fermi surface. The anomaly of the emergent loop group of the
Fermi liquid provides the link between the microscopic charge per unit cell and properties
of the infrared effective theory, [18]. A similar result is obtained in a superfluid, where there
is also an emergent anomalous (higher-form) symmetry. Motivated by extensions of the
Luttinger theorem to phases with fractionalized degrees of freedom, where the microscopic
charge is equal the sum of the volume of the Fermi surface and a contribution from the frac-
tionalized excitations, [36–38] and the connection of horizons to deconfinement [39], such
charged horizons have been argued to be composed of fractionalized excitations (see [40]
and references therein). We point out that in compressible holographic states, whether
or not they support a long-lived excitation at low temperatures due to an approximate
emergent higher-form symmetry of the kind discussed here, the boundary charge density
remains carried entirely by the black hole horizon. Nevertheless, identifying an emergent
anomalous symmetry in holographic compressible states would allow to write down their

– 3 –



J
H
E
P
1
2
(
2
0
2
3
)
0
4
0

low-energy effective theory as well as illuminate the connection between the Luttinger
theorem and the nature of the degrees of freedom of charged black holes.

A full understanding of emergent higher-form symmetries in holographic compressible
states would therefore illuminate the connection between the Luttinger theorem and the
nature of the degrees of freedom of charged black holes.

In the remainder of this section, we proceed to give a more detailed summary of
our results, followed by a discussion and outlook, where amongst other things, we offer
more comments on the relation between our results and the Luttinger theorem. Technical
derivations are given in the subsequent sections and appendices.

1.2 Summary of results

Holographic setup. We will study compressible phases of quantum matter that are de-
scribed by gauge/gravity duality [41–43]. This duality provides a way of modeling metallic
phases without long-lived quasiparticles that is complementary to other treatments such as
theories of non-Fermi liquid quantum critical metals [44] or the Sachdev-Ye-Kitaev model
and its generalizations [45]. In the large-N limit, the gravitational description of these
phases makes manifest the renormalization group flow and allows the Lorentzian signature
correlation functions to be directly computed. While in some examples the microscopic
quantum field theory degrees of freedom can be explicitly identified [46, 47], we will ex-
trapolate beyond just these particular examples and study a more general class of phases
with the same type of infrared symmetries.

We focus in particular on (d+ 1)-dimensional compressible states of quantum matter
that arise when a holographic conformal field theory with a global 0-form U(1) symme-
try is deformed by a relevant scalar operator. The holographic duals to these states are
asymptotically Anti de Sitter (AdS) solutions to Einstein-Maxwell-scalar theories of gravity,
characterized by the emergence of a scale-covariant metric [48–50]

ds2 = R
2θ
d

(
− dt2

R2z
+ dx⃗2 + dR2

R2

)
, (1.1)

in the infrared of the spacetime, where R is the radial coordinate and (t, x⃗) the coordinates
of the (d+1)-dimensional Minkowski spacetime where the state lives. This infrared space-
time is the gravitational representation of infrared quantum critical degrees of freedom,
characterized by the dynamical critical exponent z and hyperscaling violation exponent
θ. These scaling exponents control the temperature dependence of thermodynamic ob-
servables, for instance the entropy density s ∼ T (d−θ)/z. It can be helpful to think of θ
as setting the effective dimensionality deff = (d − θ) of these degrees of freedom. These
infrared spacetimes are not the result of fine-tuning: each one typically arises for a contin-
uous range of values of the ultraviolet couplings and so the corresponding states constitute
a critical line [51–55].

Our main result is to demonstrate that, at low temperatures, an approximate global
(d − 1)-form symmetry emerges for linearized perturbations around large classes of these
states. As in superfluids, this emergent symmetry exhibits a mixed ‘t Hooft anomaly with
the 0-form U(1) symmetry. As a consequence, these states share many of the properties of
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superfluids despite the fact that the 0-form U(1) symmetry is not spontaneously broken.
This occurs for states with both zero and non-zero density of the 0-form charge, as we
will now describe. We also discuss the impact of this emergent symmetry on the zero
temperature spectrum, which is very different for zero and non-zero density states.

Throughout this work, Greek indices µ, ν, . . . = 1, . . . , d + 1 run over all field theory
spacetime coordinates, while Latin indices i, j, . . . = 1, . . . , d run over spatial field theory
coordinates. At non-zero wavevector k⃗, Latin indices a, b, . . . run over the field theory
spatial coordinates transverse to k⃗. Finally, capital Latin indices M,N, . . . = 1, . . . , d + 2
run over the bulk spacetime coordinates.

Zero density. For the zero density states, at zero temperature and at the lowest energies
the linearized dynamics of the charges is governed by the anomalous conservation equations

∂µj
µ = 0 , ∂µK

ν1...νd−1µ = 1
2ϵ

ν1...νd−1κλF̄κλ . (1.2)

Here jµ is the conserved 1-form current that derives from the 0-form U(1) symmetry,
while Kµν1...νd−1 is the d-form current that derives from the (d − 1)-form symmetry and
F̄κλ = ∂κĀλ − ∂λĀκ is the field strength of the external gauge field that couples to jµ.
These anomalous conservation equations are identical to those of a superfluid with frozen
temperature and velocity fluctuations [17]. These states support a propagating, Goldstone-
like mode with dispersion relation

ω(k) = ±vk − iγk1+α + . . . . (1.3)

This can be understood as following from the aforementioned alternative to Goldstone’s the-
orem [17]. In contrast to zero temperature superfluids, the velocity v is non-universal [56].
Similarly, the exponent α governing the attenuation can be continuously tuned, unlike in
a superfluid where the attenuation scales like kd+2 due to phonon scattering.

The attenuation in (1.3) arises due to a deformation of the universal infrared the-
ory (1.2) that explicitly breaks the (d − 1)-form symmetry, and which originates from
coupling to the quantum critical degrees of freedom associated to the infrared spacetime.
This correction is irrelevant when α > 0, which is therefore the condition for the emergence
of this symmetry in the infrared. In this sense, the state is less robust than a superfluid,
where the explicit breaking is exponentially suppressed at small temperatures. This defor-
mation governs the leading dissipative part of the T = 0 optical conductivity

Imσ(ω) = χJJ

ω
+ . . . , Reσ(ω) ∝ ωα−1 + . . . , (1.4)

where χJJ is the 0-form current susceptibility and the constant of proportionality in the
second expression is related to a universal scaling function of the infrared quantum critical
degrees of freedom. We emphasize that the irrelevant deformation is crucial for certain
low energy properties like the dissipative part of the conductivity (1.4), as it breaks a
symmetry, and so is ‘dangerously’ irrelevant.

At small non-zero temperatures, the state is governed by a theory similar to superfluid
hydrodynamics. The weak explicit breaking of the (d − 1)-form symmetry due to the
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irrelevant deformation modifies the effective conservation equations (1.2) to

∂νK
µ1...µd−1ν = 1

2ϵ
µ1...µd−1κλF̄κλ + 1

τ
uνK

µ1...µd−1ν , (1.5)

in the absence of an external magnetic field, where uµ = (1, 0⃗) is a fixed timelike unit vector.
The relaxation timescale τ is controlled by the irrelevant deformation and is parametrically
long compared to the inverse temperature Tτ ∼ T−α ≫ 1. This is the same approximate
conservation law in phase-relaxed superfluids due to the presence of free vortices above the
BKT temperature [17, 33]. Correspondingly, as in a phase-relaxed superfluid, there is a
crossover between slowly attenuating sound modes at frequencies ωτ ≳ 1 with dispersion
relations

ω = ±vk − i

2τ
−1 + . . . , (1.6)

and diffusive and relaxational modes at frequencies ωτ ≲ 1 with dispersion relations

ω = − i

τ
+ . . . , ω = −iv2τk2 + . . . , (1.7)

where . . . denote subleading terms in a small ω ∼ k ∼ τ−1 ≪ T expansion. The electrical
conductivity

σ(ω) = σdc

1− iωτ
, σdc = χJJτ, T τ ∼ T−α , (1.8)

has a sharp Drude-like peak of width τ−1 ≪ T . We emphasize that this is completely un-
related to the translational symmetry of the state — in these zero density states there is no
overlap between the electric current and momentum operators. Instead, it is a consequence
of the (approximate) higher-form conservation law (1.5). The susceptibility is χJJ ∼ T 0

and so the T dependence of the dc conductivity is entirely controlled by the timecale τ .
Specifically σdc ∼ T−α−1 and so there is an emergent symmetry for states with a large dc
conductivity σdc ≫ 1/T at low T . In the limit ωτ ≫ 1, (1.8) reproduces the dissipationless
part of the T = 0 conductivity (1.4).

These properties should be contrasted with the α < 0 cases, where the infrared symme-
try is just the usual 0-form U(1) symmetry and no higher-form symmetry emerges. In these
cases the electrical conductivity at zero temperature has no i/ω contribution but instead
the low frequency form σ(ω) ∼ ω−α−1. At small non-zero temperatures, the conductivity
is a universal scaling function of ω/T , with σdc ∼ T−α−1 ≪ 1/T and no Drude-like peak.

These infrared dynamics are captured by the effective action

S =
∫
dd+1x

[
−χρρ

2
(
∂tφ+ at − Āt

)2
+ χJJ

2
(
∂iφ+ ai − Āi

)2
]
+
∫
dωddk

f2
ti

2g(ω, T ) , (1.9)

where χρρ is the 0-form charge susceptibility and φ is the Goldstone-like field associated
to the emergent (d − 1)-form symmetry. It is coupled to an external gauge field Āµ (the
source for the 0-form U(1) current) and an emergent dynamical gauge field aµ with f = da.
The coupling to the emergent gauge field explicitly breaks the higher-form symmetry: in
superfluid language it acts as an electric field in the Josephson equation and relaxes φ.
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The Maxwell-like term for the emergent gauge field arises from integrating out the near-
horizon spacetime (1.1) representing the quantum critical degrees of freedom and in general
is neither local nor Lorentz invariant. The effective electromagnetic coupling g(ω, T ) =
−ω2G−1

IR(ω, T ) is controlled by the retarded Green’s function GIR(ω, T ) of an operator
in the critical theory. This is a universal scaling function GIR(ω, k, T ) = ω−αh(T/ω),
where α is related to the dimension of the operator. The precise value of this dimension
(and hence whether the higher-form symmetry emerges in the infrared) depends on the
details of the holographic theory: essentially, the higher-form symmetry emerges when the
bulk electromagnetic coupling is small enough near the horizon. The relation of effective
couplings to lifetimes was emphasized in [57].

In cases with an emergent symmetry, the interpretation of the quantum critical degrees
of freedom represented by the infrared spacetime (1.1) requires some care. The correct in-
frared theory is obtained by imposing mixed boundary conditions on the bulk Maxwell field
in this spacetime. From the perspective of holographic renormalization, this means that
the identification of operator dimensions in this spacetime requires alternate quantization,
and that the naive action must be supplemented by relevant double-trace deformations of
these operators. The importance of mixed boundary conditions for higher-form symmetries
(in the ultraviolet) was discussed in [8, 14, 16]. Alternate boundary conditions also play an
important role in the holographic description of phases with spontaneous symmetry break-
ing, where they are satisfied by the bulk field dual to the phase of the order parameter —
see e.g. [58, 59] for the case of broken translations.

Non-zero density. We now turn to holographic states with a non-zero density of the
0-form U(1) charge, which have important differences to those described above. In the in-
frared, the corresponding spacetimes still have the form (1.1) and are solutions to equations
of motion that either neglect terms involving the bulk Maxwell field or include such terms.
It is the former case that will be of interest to us. The corresponding infrared spacetimes
necessarily have dynamical exponent z = 1, and θ < 0. Furthermore, changing the density
of 0-form charge corresponds to deforming the infrared theory by an irrelevant operator
whose coupling has dimension ∆A < 0.

At low temperatures, these states support long-lived excitations that carry 0-form U(1)
charge. The conductivity of this charge at low temperatures and frequencies is [34, 35]

σ(ω) = σdc
inc

1− iωτ
+ σcoh(ω) , σdc

inc = χJincJincτ , T τ ∼ T 2∆A . (1.10)

σcoh(ω) =
(
χ2

JP /χP P

)
(i/ω) is the contribution of coherent processes which drag momen-

tum, where χ denote the static susceptibilities of the current J and momentum P operators.
In the zero density states discussed before, χJP = 0 and so this contribution vanishes. The
remaining Drude-like term arises from processes that do not drag momentum. It origi-
nates from the ‘incoherent’ part of the current Jinc ≡ χP PJ − χJPP , so named because
it does not overlap with the momentum: χJincP = 0. In [34, 35] we argued that (1.10)
followed from slow relaxation of Jinc over a timescale τ ≫ T−1 governed by the irrelevant
coupling ∆A. We showed that at low frequencies, there is thermal diffusion with diffusiv-
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ity DT = c2
IRτ/(d − θ), and conjectured that when ωτ ≳ 1 long-lived propagating modes

should emerge with velocity v2
inc = c2

IR/(d− θ) where cIR is the infrared speed of light.
Here we show that these expectations are borne out by deriving the linearized effective

theory governing the low temperature dynamics of these states. Similarly to the zero
density states above, at low but non-zero temperatures, the theory features an emergent,
approximate (d− 1)-form symmetry, mixing with the 0-form U(1) symmetry through a ‘t
Hooft anomaly. The associated d-form current is the Hodge dual of the incoherent current
density. The emergent higher-form symmetry is only approximate as it is weakly broken
by the irrelevant coupling. At intermediate times and distances τ−1 ≪ ω, k ≪ T these
states indeed support (in addition to the normal sound modes) a pair of propagating modes
which attenuate slowly at a rate governed by the dangerously irrelevant coupling. At the
longest times and distances ω, k ≪ τ−1 the effects of symmetry breaking become important
and these modes mutate into diffusive and relaxational modes, while at shorter times and
distances ω, k ≫ T the effects of other excitations become important.

There are key differences between zero and non-zero density states. Firstly, the velocity
of the propagating mode is now universal: v2

inc = c2
IR/(d− θ). Accounting for the effective

dimensionality deff = d− θ of our states, this is analogous to the velocity of second sound
in a superfluid, which takes the universal value v2

inc = 1/d at low temperatures. This
reflects the fact that this subsector of the effective theory is approximately described by a
superfluid Goldstone-like action in this regime of energy scales.

Secondly, the static susceptibility of the 0-form current χJincJinc ∼ T d+1−θ now vanishes
at zero temperature. Equivalently, the static susceptibility of the (d− 1)-form charge χKK

diverges at low temperature as T θ−(d+1). This is also in stark contrast with superfluids,
where the superfluid density ∼ χKK is non-vanishing at zero temperature. This important
difference is rooted in the linearized constitutive relation for the higher-form current, which
reads (⋆K)t = δµ − (µ/T )δT in our case, while (⋆K)t = δµ for a superfluid [17]. The
divergent susceptibility of the (d− 1)-form charge constitutes an example of critical drag ,
which has been recently argued in [60, 61] to be relevant for strange metallic transport in
high Tc superconductors. The emerging symmetry tends to produce a large σdc

inc due to the
diverging relaxation time, while the diverging (d− 1)-form susceptibility tends to produce
a small σdc

inc. The result of this is that σdc
inc ∼ T d−θ+2∆A , which may vanish or diverge at

low temperatures depending on whether θ − d < 2∆A < 0 or 2∆A < θ − d < 0. This is in
contrast to the zero density case where the emergent symmetry is always correlated with
a diverging dc conductivity.

However, the most important difference from the zero density states, and from su-
perfluids, is that the emergent propagating mode does not survive at zero temperature.2

Instead, at zero temperature the infrared dynamics is dominated by the quantum critical
degrees of freedom associated to the near-horizon spacetime. This is consistent with the
absence of a delta function contribution in the T = 0 optical conductivity [34, 35]

σinc(ω, T = 0) ∼ ωd−θ−2∆A + . . . , (1.11)
2We thank Dominic Else for discussions on the fate of the emergent higher-form symmetry at zero

temperature.
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and we present evidence that the low energy response function of the 0-form charge density
at T = 0 is characterized by branch points at ω = ±cIRk.

1.3 Discussion and outlook

Other holographic examples of ‘zero sound’. There are further examples of holo-
graphic theories that exhibit a slowly relaxing current, to which our results could be ex-
tended: those with higher-derivative [25, 62] or probe DBI [20, 29, 30] actions for the gauge
field. For the probe DBI cases, it was argued in [29] using the square root form of the action
that the non-linear effective theory is qualitatively different than the linearized one. Our
zero density states exhibit a slowly relaxing current without a square root action and so
it would be very interesting to determine whether the linearized effective theory we have
derived can be smoothly extended to include non-linear effects, and whether the emergent
higher-form conservation law persists. For probe DBI examples, incorporating an external
magnetic field in the effective theory we have described should allow one to interpret the
results obtained for the ac conductivity in [63, 64]. Higher-derivative and massive gravity
theories [65, 66] also support emergent long-lived modes when a higher-derivative coupling
is made comparable to the leading Einstein term. We expect that such modes can be
understood by a suitable extension of our results.

Effective theories of holographic matter. Elucidating the effective theories governing
the low energy, low or zero temperature dynamics of holographic matter is an essential
step in order to connect to non-holographic phases of matter. This program was initiated
in [21, 67, 68], mostly in the probe limit where the backreaction of scalar, gauge or fermionic
probes on the spacetime geometry is neglected. There is good reason for this, as with this
approximation much analytical control is gained. This is clear from our results as well, as
the probe limit allowed us to write down very explicitly the effective field theory governing
the zero density holographic states at low and zero temperature. On the other hand, we
saw that when backreaction is included (at non-zero density), the coupling to the infrared,
critical degrees of freedom cannot be neglected at zero temperature, even when it is weak
at small, non-zero temperatures. This had an important impact on the spectrum: the
would-be propagating mode observed at non-zero temperatures dissolves into a branch cut
at zero temperature.

Here we have focussed on the case of non-zero density states with an emergent Lorentz-
invariant, hyperscaling-violating infrared. Holographic states with an emergent AdS2 ×Rd

infrared metric play a prominent role in applications of holography to strongly coupled
condensed matter systems [42, 43] and are closely related to Sachdev-Ye-Kitaev models
of non-Fermi liquids [45]. These states exhibit gapless collective modes at zero tempera-
ture [30, 69–75], with sound velocities and diffusivities given by the naive T → 0 limit of
the corresponding coefficients entering in their T ̸= 0 hydrodynamics. Given the results we
obtained, we expect that this feature can be explained by constructing the zero tempera-
ture effective holographic theory of these states, including the backreaction of the critical
degrees of freedom (see [21, 76–78] for related work on coupling AdS2 degrees of freedom
to holographic matter).
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Fermionic probes of holographic states also reveal the existence of Fermi surfaces and
associated (non-Fermi liquid) gapless collective modes, depending on the details of the
underlying spacetime and of the fermionic action [79–81]. Studying whether these fea-
tures survive when including backreaction would also be very interesting. However, fully
backreacting the fermion fields in the bulk on the spacetime geometry remains an open
challenge [82–89].

Deconfined quantum critical points. The infrared physics we have described in the
previous section bears some similarity to that near deconfined quantum critical points,
which are also characterized by an emergent global symmetry. In (2+1)-dimensions and at
zero density, our Goldstone-like mode can be dualized into a U(1) gauge field for which the
0-form symmetry is exact and the emergent 1-form symmetry is broken by a dangerously
irrelevant deformation. These symmetries resemble those at the deconfined phase transition
between two valence bond solid phases, which is described by a theory of emergent spinons
coupled to a gauge field. This critical point is characterized by an emergent 0-form U(1)
symmetry that is broken by dangerously irrelevant monopole operators in the valence
bond solid phase. The spinons are gapped at low energies and so the spectrum exhibits a
(quadratically-dispersing) Goldstone-like mode described by the critical quantum Lifshitz
model [90].

In contrast to this, at the deconfined quantum critical point separating the Néel anti-
ferromagnetic phase from the resonating valence bond phase in (2+1)-dimensions [3, 4]
the deconfined spinons are gapless. The coupling between the spinons and the emergent
gauge field breaks the emergent electric 1-form symmetry in the infrared. This destroys
the would-be gapless mode, and correlation functions instead display a branch cut. These
properties bear a resemblance to those of the non-zero density holographic quantum critical
phases described above.

Holography, Luttinger theorem and fractionalized degrees of freedom. At non-
zero density, it has been emphasized that emergent anomalous symmetries have a deep
relation to the Luttinger theorem [18]. The Luttinger theorem states that the filling (the
density per unit cell) of a quantum phase of matter on a lattice is given by the volume of the
Fermi surface if the ground state is a Fermi liquid. It is thus a non-perturbative statement
directly connecting a microscopic property of the state (the filling) and its infrared proper-
ties (the volume of the Fermi surface). A topological proof relying on threading a unit flux
of magnetic field through one of the cycles of a periodic lattice was given in [36]. When
the infrared theory includes a non-trivial topological sector, such as in phases of matter
featuring fractionalized degrees of freedom, there is no longer a one-to-one correspondence
between the filling and the Fermi volume [37, 38].

The applicability of the Luttinger theorem to non-zero density, compressible holo-
graphic phases of matter was investigated in a series of works [40, 49, 51, 82, 84, 91–94]. In
the absence of spontaneous breaking of the 0-form U(1) symmetry, the total density is the
sum of the charge density in the bulk and of the black hole horizon. The Luttinger relation
is most obviously recovered in cases when no charge is left on the horizon at zero temper-
ature and all the density is carried by Fermi surface-forming bulk fermions [82, 92]. The
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charge of the horizon was correspondingly interpreted as ‘fractionalized’, further motivated
by the fact that the presence of a horizon is a holographic signature of the deconfinement
of gauge fields [39, 95].

The total boundary charge density in the family of holographic states considered in
this work is always equal to the charge of the horizon, independently of whether the state
exhibits a long-lived excitation at low temperatures or not. On the other hand, it remains
unclear how the charge behind the horizon should be understood from the Luttinger per-
spective. In particular, one would like to ascertain whether an emergent symmetry can ex-
plicitly be identified (different than the one discussed in the context of this work) that would
lend further support to the interpretation of such degrees of freedom as fractionalized [40].

This would also presumably shed some light on the scaling theories that describe the
infrared, low temperature dynamics of these states and the presence of large, anomalous
dimensions for the charge density and current in the infrared effective theory [35, 96, 97]
(see also [98] on the interpretation of these states as fractional electromagnetism). There is
a long-standing debate on the origin of various scaling behaviours in transport observable
in so-called strange metals, which are incompatible with conventional quantum critical
scenarios and simple scale invariance (see [99] for a recent review). Identifying fractionalized
excitations in holographic quantum critical metals would bring them a step closer to the
unconventional quantum criticality of strange metals and theoretical models thereof based
on fractionalized degrees of freedom and topological order [100, 101].

2 Equilibrium properties of the holographic states

We still study classical solutions of the Einstein-Maxwell-scalar theories with action

S =
∫
dd+2x

√
−g

(
R− 1

2∂MΦ∂MΦ+ V (Φ)− Z(Φ)
4 FMNF

MN
)
, (2.1)

where R is the Ricci scalar, FMN = ∇MAN −∇NAM is the field strength of the bulk U(1)
gauge field AM and Φ is a neutral scalar field. Specifically, we are interested in asymptoti-
cally AdS (Anti de Sitter) planar solutions supported by a running scalar field Φ = Φ(r) and
a radial electric field A = At(r)dt. This allows a very large family of solutions dual to field
theories with an ultraviolet (UV) fixed point that exhibit non-trivial renormalization group
flow towards the infrared (IR), driven by a relevant scalar operator and a chemical potential
for a conserved 0-form U(1) charge. We will consider cases where there are flows to a class
of IR spacetimes characterized by a scaling symmetry that is not necessarily relativistic nor
satisfies hyperscaling. The infrared theories are interpreted as a class of strongly-interacting
quantum critical states of matter [35, 48–50, 53, 102, 103] as we will now review.

More specifically we consider spacetimes of the form

ds2 = −D(r)dt2 + C(r)dx⃗2 +B(r)dr2, (2.2)

where r is the radial coordinate. At the asymptotically AdS boundary r → 0 we require
that

B(r) → r−2 + . . . , C(r) → r−2 + . . . ,

D(r) → r−2 + . . . , At(r) → µ− ρr + . . . ,
(2.3)
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where ellipses denote terms subleading in the r → 0 limit. µ and ρ are the chemical
potential and density of the conserved U(1) charge. There are solutions of this type for
potentials of the form V (Φ → 0) → 6 + O(Φ2) and Z(Φ → 0) → 1 + O(Φ2), where we
have set the UV AdS radius and the UV gauge coupling to unity without loss of generality.
The asymptotic form of Φ(r) depends on the quadratic term in the potential V (i.e. on the
scaling dimension of the relevant scalar operator).

We consider solutions that furthermore have a planar horizon at r = r0 > 0, near
which they are of the form

B(r → r0) → (4πT (r0 − r))−1 + . . . , C(r → r0) →
(
s

4π

)2/d

+ . . . ,

D(r → r0) → 4πT (r0 − r) + . . . , At(r → r0) → Ah(r0 − r) + . . . ,

Φ(r → r0) → Φ0 + . . . ,

(2.4)

where ellipses denote terms subleading in (r0 − r) as r → r0. T and s correspond to the
temperature and entropy density of the field theory state. Integrating the t-component of
the bulk Maxwell equation between the horizon and the boundary gives a relation for Ah

in terms of the charge density

0 =
(
ZCd/2A′

t√
BD

)′

⇒ ρ = −ZC
d/2A′

t√
BD

=
r=r0

s

4πZ(Φ0)Ah . (2.5)

The scaling symmetry of the infrared theory manifests itself in a scaling symmetry
of the near-horizon metric at low temperatures. In order to see this, it is convenient
to introduce an alternative radial coordinate R(r), for which the horizon is located at
R(r0) = R0. We assume that we can appropriately define such a coordinate in order that
our solution is

ds2 = −f(R)L
2
tL

2(z−θ/d)

R2(z−θ/d) dt2 + L2
xL

2(1−θ/d)

R2(1−θ/d) dx⃗2 + L̃2L−2θ/d

R2(1−θ/d)
dR2

f(R) ,

f(R) = 1−
(
R

R0

)d+z−θ

,

(2.6)

for R0 > R ≫ RUV . In other words, we consider solutions which, sufficiently close to the
horizon, take the form (2.6). RUV is typically set by the chemical potential and can be
thought of as the UV cut-off of the IR scaling region. Its precise value is state-dependent
and is not important for our purposes. The temperature T may be written as

T = Lt

L̃

(d+ z − θ)
4π

(
R0
L

)−z

, (2.7)

and hence in the zero temperature limit (f → 1), the near-horizon metric manifestly
exhibits covariance under the scaling transformation (t, R, x⃗) 7→ (λz, λR, λx⃗), characterized
by the two exponents z and θ. L is a length scale related to RUV and defined more precisely
below in (2.9). We will restrict to d ≥ 2 as well as z ≥ 1. In order to satisfy the null energy
condition and to ensure positivity of heat capacity, we also require d(z − 1) − θ ≥ 0,
(z − 1)(d+ z − θ) ≥ 0 and d− θ ≥ 0.
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Spacetimes of the form (2.6) have been studied intensely. Their scaling symmetries
are manifestations of the scaling properties of the dual field theory: z is the dynamical
critical exponent of the fixed point and θ parameterises the violation of hyperscaling (such
that the effective dimensionality of the fixed point is (d − θ)). Note that we will always
be considering cases in which the metric (2.6) is only realised in the IR i.e. for R≫ RUV ,
the UV cutoff of the near-horizon spacetime. RUV denotes the scale at which irrelevant
deformations to the infrared theory (that ultimately lead to the flow to a CFT in the
ultraviolet) become important. The precise values of RUV , z and θ depend on the particular
gravitational solution. For a given choice of V and Z, varying µ and the UV source for
the scalar operator typically changes the length scales Lt and Lx in the IR spacetime (2.6)
but not the values of z or θ. The zero temperature states should therefore be considered
as comprising quantum critical lines, rather than points. When z = 1 the IR metric is
conformal to that of planar AdSd, with a speed of light cIR given by

cIR = Lt

Lx
. (2.8)

The near-horizon spacetimes (2.6) are supported by matter fields. An exponential
potential V (Φ → ∞) → V0e

−δΦ and a logarithmically running scalar

Φ(R) = κ log
(
R

L

)
, κ2 = 2

d
(d− θ)(d(z − 1)− θ), κδ = 2θ

d
, (2.9)

are responsible for the violation of hyperscaling in the infrared (θ ̸= 0).
The gauge field is instead responsible for the fate of relativistic symmetry in the IR.

We will consider theories which have an exponential gauge coupling Z(Φ → ∞) → Z0e
γΦ,

and there are two qualitatively different cases to consider. When κγ is sufficiently large, the
backreaction of the gauge field is small in the IR, and so the IR metric preserves relativistic
symmetry (z = 1) but violates hyperscaling (θ < 0). In this case, the gauge field in the IR
region R0 ≪ R≪ RUV is

At(R) = LtA0

(
R

L

)θ−d−1+2∆A

, (2.10)

where ∆A = d − θ + θ/d − κγ/2 < 0. The backreaction of the gauge field gives small
corrections to the zero temperature metric that are suppressed in the IR by powers of R2∆A .
On the other hand, when κγ is sufficiently small, the backreaction becomes important and
destroys the relativistic symmetry of the IR metric (z ̸= 1).3 Note that scale invariance is
restored only if κ = 0, not just if θ = 0, due to the matter field profiles.

In the language of the quantum criticality, A0 is a coupling with dimension ∆A that
deforms the IR fixed point. The corresponding operator, dual to the field At, has scaling
dimension d + 1 − θ − ∆A. For fixed points with z = 1 this is an irrelevant deformation
while for fixed points with z ̸= 1 it is marginal and has scaling dimension d+ z − θ.

The following relation between A0 and the charge density is found upon using equa-
tion (2.5)

ρ = (d+ 1− θ − 2∆A)L̃−1Ld
xZ0A0 . (2.11)

3In this case we have At(R) ∼ Rθ−d−z.
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3 Dynamics of zero density states

In this section, we will illustrate the emergence of an anomalous (d−1)-form global symme-
try in a simple context. We will consider the equilibrium states described in section 2, but
in theories with an additional 0-form U(1) global symmetry. The states have zero density
of the additional U(1) charge density, and we still study the dynamics of small amplitude
perturbations of this additional charge. This is a helpful technical simplification as these
decouple from the dynamics of the energy and momentum of the state, as well as from
perturbations of the original U(1) charge. In the gravitational language, these dynamics
are captured by the Maxwell action

S = −1
4

∫
dd+2x

√
−gZ(Φ)FMNF

MN , (3.1)

in the ‘probe’ limit. In other words, the spacetime metric gMN (r) and dilaton Φ(r) are
fixed functions corresponding to the black hole solutions of the Einstein-Maxwell-dilaton
theories described in section 2. We are abusing notation here by labelling the additional
U(1) gauge field F and its coupling Z with the same name as those of the original U(1).
Everywhere where they appear in this section, it should be understood that these refer to
the additional U(1) field. We will take the coupling to be of the power law form

Z = Z0

(
R

L

)d−θ−z+2 θ
d
−∆χ

, (3.2)

in the IR region of the spacetime R0 ≫ R ≫ RUV where the metric has the scaling
form (2.6). We will show later that the constant ∆χ sets the infrared scaling dimension of
the additional U(1) charge operator.

The main result of this section is that a (d− 1)-form global symmetry emerges in the
deep infrared when ∆χ + 2(z − 1) < 0. There is a mixed ’t Hooft anomaly between this
(d− 1)-form symmetry and the original 0-form U(1) symmetry, so that the symmetries are
the same as those of a superfluid [17]. These states therefore exhibit many of the properties
of a superfluid — such as a gapless Goldstone-like mode — but without the spontaneous
breaking of a 0-form U(1) symmetry. We start by considering the hydrodynamic equations
of the additional 0-form charge, showing that they exhibit an approximate higher-form
conservation law at low temperatures, broken by a dangerously irrelevant deformation. We
then give a complementary description in terms of a superfluid-like action, where the weak
breaking of the (d−1)-form symmetry is realised by a coupling to an emergent U(1) gauge
field. Finally we show that the symmetry persists in the infrared of the zero temperature
state, clarifying the nature of the dangerously irrelevant coupling that weakly breaks the
emergent symmetry.

3.1 Relaxed hydrodynamics of 0-form charge density

We begin by deriving the hydrodynamic-like equations governing small amplitude pertur-
bations of the additional 0-form U(1) charge and current density. We will show that for the
holographic states just described, this current density relaxes parametrically slowly at low
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temperatures. This is the first indication of the emergence of the (anomalous) (d−1)-form
symmetry. Throughout this section we will use jµ to denote linear perturbations of the
additional 0-form U(1) charge and current densities, and Āµ to denote the corresponding
external sources.

The U(1) charge density identically obeys the local conservation equation

∂µj
µ = 0. (3.3)

A hydrodynamic theory for this charge is obtained by supplementing this with a constitu-
tive relation for ji, obtained by finding the ingoing solution to the linearized bulk Maxwell
equations ∂M (

√
−gZ(Φ)FMN ) = 0 in a derivative expansion. At leading order, this is

simply [104]
ji = −σdc

(
χ−1

ρρ ∂ij
t + F̄ti

)
+O(∂2), (3.4)

where σdc and χρρ are the dc conductivity and susceptibility of the 0-form charge and
F̄ = dĀ is the field strength of the external source. In terms of bulk fields, they are given by

σdc = Z(Φ0)C(r0)d/2−1, χ−1
ρρ =

∫ r0

0
dr

√
B(r)D(r)

Z(Φ(r))C(r)d/2 . (3.5)

Note that the specific combination that appears in the dissipative term in (3.4) is fixed by
the requirement that it vanishes in static equilibrium [105, 106], and so there is only one
independent dissipative coefficient at this order in the derivative expansion.

Higher derivative corrections to the constitutive relation (3.4) become important at
shorter scales. We will focus on one such correction and move it to the left hand side to give

(τ∂t + 1) ji = −σdc

(
χ−1

ρρ ∂ij
t + F̄ti

)
+O(∂2). (3.6)

Physically this correction accounts for the fact that perturbations of the current do not
relax instantaneously, but rather over the timescale τ . Following the same steps as in [10],
the relaxation timescale is related to the conductivity by

τ = σdcχ
−1
JJ , (3.7)

where

χ−1
JJ =

∫ r0

0
dr

(√
B(r)
D(r)

1
Z(Φ(r))C(r)d/2−1 − 1

4πTσdc(r0 − r)

)
. (3.8)

χJJ corresponds to the static susceptibility of the current in the theory obtained by taking
τ∂t ≫ 1 in equation (3.6) (i.e. in the theory where the current is exactly conserved).

At this stage the expression (3.6) is formal: we have chosen to retain just one of the
many corrections. This is only sensible if this correction is parametrically larger than
those we are ignoring, i.e. when the current relaxes parametrically slowly compared to
generic quantities. This should be the case when τT ≫ 1, and the equation (3.6) should
be understood as being valid at leading order in a generalised derivative expansion where
τ−1 ∼ ∂ ≪ T . This derivative expansion is a generalization of hydrodynamics that accounts
for the dynamics of slowly relaxing quantities, in addition to exactly conserved ones [10].
We will refer to these equations as those of ‘relaxed hydrodynamics’.
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By calculating τ directly from the expressions above, we now determine whether the
relaxed hydrodynamic equation (3.6) is meaningful for a particular gravitational state. By
focusing on the low temperature limit, we can obtain the T -scaling of τ from properties of
the scaling region near the horizon. We can evaluate the integral (3.8) in this limit using a
similar strategy to the evaluation of χρρ [107]. We split the integral into two parts: one over
the IR region (R ≥ RUV ) of the spacetime and one over the UV region (R ≤ RUV ). At low
temperatures the latter integral is insensitive to the presence of the small horizon in the
IR region and so is T -independent. The value of ∆χ determines whether this contribution
from the UV region, or the contribution from the IR region, dominates the integral. For
∆χ +2(z− 1) > 0 the contribution from the IR region to the integral is cutoff independent
and diverges at low temperatures while for ∆χ+2(z−1) < 0 it is temperature independent
but cutoff dependent. Therefore

χJJ(T → 0) ∼

T
∆χ+2(z−1)

z ∆χ + 2(z − 1) > 0
T 0, ∆χ + 2(z − 1) < 0

. (3.9)

At low temperatures, the dc conductivity σdc ∼ T
∆χ+z−2

z [107] and so

Tτ(T → 0) ∼

T
0 ∆χ + 2(z − 1) > 0

T
∆χ+2(z−1)

z , ∆χ + 2(z − 1) < 0
. (3.10)

Equation (3.10) is the key result: for states with ∆χ + 2(z − 1) < 0 the current
relaxes parametrically slowly and so these states are governed by the relaxed hydrodynamic
equations (3.3) and (3.6) for times much longer than the inverse temperature. Naively one
might expect that the strong interactions in a holographic theory cause all non-conserved
quantities to relax quickly, but when ∆χ + 2(z − 1) < 0 the current does not. ∆χ controls
the U(1) gauge coupling near the horizon, and smaller ∆χ corresponds to a smaller gauge
coupling. From this perspective, the slow relaxation of the current is a consequence of it
coupling weakly to the thermal bath represented by the horizon. The relation of lifetimes
to near-horizon couplings was emphasize in [57].

The slow relaxation of the current in the relaxed hydrodynamic equation (3.6) has an
important impact on the low energy properties of the state. Firstly, the conductivity of
the corresponding charge has a sharp Drude-like peak with a width much narrower than
the inverse temperature

σJJ(ω) =
i

ω
GR

JJ = σdc

1− iωτ
. (3.11)

This is unrelated to the translational symmetry of the state — in these zero density states
there is no overlap between the 0-form U(1) current and the momentum operators. It
stands in contrast to the incoherent low frequency conductivity found when the current
relaxes quickly, σJJ(ω) = σdc. Note that from (3.8), (3.9) and (3.10), the dc conductivity
σdc is a direct indicator of the relaxation time of the current: when the current decays
slowly, the state is highly conductive σdcT ≫ 1 (and vice versa).

Secondly, the spectrum of collective excitations that carry the 0-form U(1) charge dis-
plays a characteristic crossover when the current relaxes slowly. Their dispersion relations
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are given by solutions to the quadratic equation

ω2 + iωτ−1 − v2k2 = 0, v2 = χJJ

χρρ
. (3.12)

At very low frequencies ω, k ≪ τ−1 ≪ T there is diffusion of the charge density

ω(k) = −iDk2 + . . . , D = v2τ, (3.13)

and relaxation of the current ω(k) = −iτ−1 + . . .. At higher frequencies τ−1 ≪ ω, k ≪ T

the current is approximately conserved and the modes propagate coherently at speed v

ω(k) = ±vk − i

2τ
−1 + . . . . (3.14)

As the charge susceptibility of the states with a slowly relaxing current is temperature-
independent at low temperatures [107], slow relaxation of the current is associated with a
parametrically large diffusivity that depends sensitively on ∆χ

D ∼ T
∆χ+z−2

z . (3.15)

The propagating speed v ∼ T 0 at low temperatures, and in appendix A.1 we show that v
is bounded from above by the speed of light.

Figure 1 shows a comparison between the numerically-determined dispersion relations
of a collective excitation of a low temperature state with ∆χ + 2(z − 1) < 0 and the
expressions (3.5), (3.8) and (3.12). There is extremely good agreement for ω, k ≪ T

where the relaxed hydrodynamic theory should apply, including a crossover from diffusive
and relaxational modes to propagating modes as the wavevector is increased. For large
wavevectors k ≳ T , the imaginary part of the frequency ω deviates from the predictions of
the relaxed hydrodynamic theory and instead is governed by the zero temperature dynamics
of the state, as we explain in section 3.5. Details of the numerical calculations can be found
in appendix C.1.

3.2 Higher-form formulation of relaxed hydrodynamics

We will now show that the relaxed hydrodynamic theory governing the state at low temper-
atures can be recast as the relaxed hydrodynamics of an approximately conserved higher-
form charge. The same hydrodynamic theory governs a phase-relaxed superfluid.

From (3.3), (3.6) and (3.7), the two equations of the relaxed hydrodynamic theory are

∂tj
t + ∂ij

i = 0, ∂tj
i + χJJ

χρρ
∂ij

t = −1
τ
ji + χJJ F̄it, (3.16)

and these are valid in the generalised derivative expansion ∂ ≪ T with τ∂ ∼ 1. We first
consider the limit τ−1 ≪ ω, k ≪ T , in which the current relaxation term can be neglected.
In terms of the d-form K defined by (⋆K)µ =

(
−jt/χρρ, j

i/χJJ

)
, the relaxed hydrodynamic

equations in this limit can be written as the closure of the 1-form (⋆K + Ā)

∂µ(⋆K)ν − ∂ν(⋆K)µ = −F̄µν ⇐⇒ ∂[µ(⋆K + Ā)ν] = 0. (3.17)
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Figure 1. Real (squares) and imaginary (circles) parts of the dispersion relations of the long-lived
collective modes of a state with d = 2, θ = −2, z = 3/2 and ∆χ = −3 at T/µ = 7.5× 10−4. There
is excellent agreement with the real (dashed line) and imaginary (solid line) parts of the solutions
of the equation (3.12) of relaxed hydrodynamics. For clarity, the dispersion relation of only one of
the propagating modes is shown.

Assuming that this 1-form is also smooth then it must be exact and so can be written as
the gradient of a smooth single-valued scalar field φ

(⋆K)µ + Āµ = ∂µφ ⇐⇒ (⋆K)µ = Dµφ, (3.18)

where the U(1) covariant derivative is Dµφ = ∂µφ− Āµ. φ is reminiscent of the Goldstone
mode of a superfluid.

The similarity to a superfluid in this limit can be made precise by writing the equation
of motion (3.17) as

d ⋆ K = −F̄ . (3.19)

When F̄ = 0, this equation signifies the local conservation of the d-form current K and
therefore the existence of a (d− 1)-form symmetry. The state also retains the 0-form U(1)
symmetry associated to the conservation law (3.16). The source term F̄ on the right hand
side of (3.19) is a mixed anomaly of these two symmetries: the d-form current is no longer
conserved in the presence of an external source for the 1-form current. This anomalous
symmetry is precisely that of a superfluid with frozen temperature and velocity fluctua-
tions [16, 17]. In the superfluid case, the higher-form symmetry describes the conservation
of winding in the absence of free vortices.
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Unlike in a superfluid, however, in the holographic states we have described, the anoma-
lous symmetry emerges without the spontaneous breaking of a 0-form U(1) symmetry.
Nevertheless, as many of the properties of a superfluid follow from the anomalous symme-
try alone [17], they will also be valid for the holographic states. The most basic of these
is the existence of a gapless degree of freedom which we will refer to as Goldstone-like. In
the hydrodynamic regime, this gapless mode is guaranteed by the following argument [17].
The hydrodynamic variables are the charge densities jt and (⋆K)i and the constitutive
relations for the corresponding currents are

ji = µ̃i + . . . , (⋆K)t = µ+ . . . , (3.20)

where (µ, µ̃i) are the chemical potentials for the charges (jt, (⋆K)i). The anomaly term in
equation (3.19) (alongside Onsager reciprocity and consistency with the static limit) fixes
these constitutive relations at leading order in the derivative expansion and so is responsible
for ensuring the existence of gapless hydrodynamic modes with dispersion relations

ω(k) = ± 1
√
χρρχKK

k +O(k2), (3.21)

where χρρ ≡ ∂jt/∂µ and χKK ≡ ∂(⋆K)i/∂µ̃i (no sum) are the static susceptibilities
of the charges. The propagating modes (3.14) that we identified earlier in the regime
τ−1 ≪ ω, k ≪ T are precisely those (3.21) necessitated by the anomaly. The susceptibility
of the d-form charge is related to the parameters in the original relaxed hydrodynamic
equations (3.16) by χKK = χ−1

JJ . These modes produce the dissipationless conductivity
σ(ω) → χ−1

KK(i/ω) found in a superfluid, as can be seen by taking the appropriate limit of
the Drude-like expression (3.11).

However, unlike in a superfluid, in the holographic states, the anomalous conservation
law is only valid in the strict ωτ, kτ → ∞ limit. Beyond this, the non-zero relaxation time of
the current explicitly violates it. The small symmetry-breaking parameter τ−1 is important
at low energies where it produces a large, but finite, dc conductivity (3.7). In a superfluid,
such explicit breaking occurs when the phase is relaxed by mobile vortices on which winding
planes can end. When this breaking is weak, and in the absence of an external magnetic
field, the corresponding anomalous conservation equation is modified to [10, 17]

∂νK
µ1...µd−1ν = 1

2ϵ
µ1...µd−1κλF̄κλ + 1

τ
uνK

µ1...µd−1ν , (3.22)

where uµ is a fixed timelike unit vector. The hydrodynamics of our holographic states
therefore coincides with that of a phase-relaxed superfluid (with frozen temperature and
velocity fluctuations) [33]: this exhibits the Drude-like conductivity in (3.11) and hydro-
dynamic modes with dispersion relations given by solutions to the equation (3.12).

Unlike in a conventional superfluid — where vortices are gapped at low temperatures
— in the holographic states the higher-form symmetry is explicitly broken at any non-zero
T and so the emergence of the higher-form symmetry in the infrared is less robust. We will
later move beyond the hydrodynamic limit to the T = 0 state, where the weak symmetry
breaking term transforms from power law in T to power law in ω, and so the effects of
the explicit symmetry breaking vanish as ω → 0. In this sense, the holographic states are
similar to the quantum Lifshitz model [60].
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3.3 Effective action for the Goldstone-like mode φ

We have argued using symmetries that the holographic states should support a super-
fluid Goldstone-like mode at low temperatures, despite the lack of spontaneous symmetry
breaking. We will now show how to make this mode manifest at the level of the action.

A description of the low energy charge transport in a holographic theory can be ob-
tained by integrating out the spacetime beyond a radial hypersurface. In [21] it was shown
that this description comprises a massless mode φ— the radial Wilson line — coupled to the
remaining spacetime, and this idea has been further developed in [68, 108–112], connecting
to Schwinger-Keldysh constructions of effective hydrodynamic actions for a conserved U(1)
charge [113]. This description can be formally obtained whether the current relaxes slowly
or not. The key distinction is in the coupling of φ to the remaining spacetime. We will show
that it is only when the current relaxes slowly that this coupling is unimportant and thus
that the description of the system in terms of a superfluid-like Goldstone mode is useful.

Following [21], we first split the bulk action integral (3.1) into two pieces S = SUV +SIR

by dividing the spacetime along a radial hypersurface r = r∗ and imposing boundary con-
ditions on this hypersurface such that Aµ(r∗) = aµ. Ultimately the generating functional
is (minus) the on-shell action as a functional of the external gauge field Aµ(r = 0) = Āµ,
which we obtain by evaluating S[Āµ, aµ] = SUV [Āµ, aµ]+SIR[aµ] for linearized solutions to
Maxwell’s equations and then putting aµ on-shell. To see the Goldstone-like mode, we will
do this in stages. We first evaluate SUV for solutions that obey only the (t, x⃗) components
of Maxwell’s equations and not the r component. These solutions are

At=ct

((
Āt+∂t

∫ r

0
Ardr

)∫ r∗

r

√
BD

Cd/2Z
dr+

(
at+∂t

∫ r

r∗
Ardr

)∫ r

0

√
BD

Cd/2Z
dr

)
+..., (3.23)

Ai=cx

(Āi+∂i

∫ r

0
Ardr

)∫ r∗

r

√
B

D

dr

Cd/2−1Z
+
(
ai+∂i

∫ r

r∗
Ardr

)∫ r

0

√
B

D

dr

Cd/2−1Z

+...,

where

c−1
t =

∫ r∗

0

√
BD

Cd/2Z
dr, c−1

x =
∫ r∗

0

√
B

D

dr

Cd/2−1Z
, (3.24)

and . . . denote terms that are higher order in derivatives. The on-shell action for such
solutions is

SUV [φ, Āµ, aµ] =
1
2

∫
dd+1x

(
−ct

(
∂tφ− Āt + at

)2
+ cx

(
∂iφ− Āi + ai

)2
+ . . .

)
, (3.25)

where the Goldstone-like field φ is the radial Wilson line

φ =
∫ 0

r∗
Ardr. (3.26)

Physically, we have integrated out the high energy degrees of freedom associated to the UV
region of the spacetime. In doing so we have explicitly retained the massless field φ: this is
the hydrodynamic degree of freedom associated to the conserved 0-form U(1) charge, and
is important at low energies. Ultimately we will want to integrate over this field, as this
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corresponds to imposing the remaining r component of Maxwell’s equations. Doing so will
yield the local conservation of 0-form U(1) charge

∂µj
µ = 0, (3.27)

where

jt = ct

(
∂tφ− Āt + at

)
+ . . . , ji = cx

(
∂iφ− Āi + ai

)
+ . . . . (3.28)

At this stage, the low energy theory SUV [φ, Āµ, aµ]+SIR[aµ] is that of a Goldstone-like
mode coupled via aµ to the low energy degrees of freedom associated to the IR region of the
spacetime (and to an external gauge field Āµ). If we were to turn off this coupling — for
example by introducing a hard wall at r = r∗ such that aµ = 0 — then the action would be
exactly that of a superfluid Goldstone mode with characteristic speed v2 = cx/ct, paralleling
the Schwinger-Keldysh construction of effective actions for superfluid hydrodynamics [114].

To determine to what extent this superfluid Goldstone-like mode survives in genuine
black hole solutions (where aµ is a dynamical field), we now turn to SIR. This is a (d+2)-
dimensional holographic action for AM (r, xµ), that represents a set of strongly coupled
low energy degrees of freedom of the state. It is helpful to integrate out the interior
region r > r∗ to obtain a (d+1)-dimensional action for aµ(xµ). Considering perturbations
whose wavevector is aligned with the x-axis (without loss of generality, due to rotational
symmetry), this procedure yields the Fourier space action4

SIR[aµ] = −1
2

∫
dωdk

(
f̃tx(−ω,−k)f̃tx(ω, k)

g∥(ω, k)
+ f̃tb(−ω,−k)f̃tb(ω, k)

g⊥(ω, k)

)
, (3.29)

where tildes denote Fourier transforms, f̃tx(ω, k) = ωãx(ω, k) + kãt(ω, k), f̃tb(ω, k) =
ωãb(ω, k) and the index b here runs over all spatial coordinates x⃗ except the longitudi-
nal direction x. Integrating out the interior region of spacetime corresponds to integrating
out low energy degrees of freedom, and the price to be paid for this is that SIR[aµ] is
generally non-local. This integration can be done order by order in a derivative expansion
ω, k ≪ T , along the lines described in [35, 115]. The result of this calculation is that the
effective gauge couplings are

g∥(ω, k) = σ−1
dc

(
iω − k2σdc(cIR

t )−1 − ω2σdc(cIR
x )−1 + . . .

)
,

g⊥(ω, k) = σ−1
dc

(
iω − ω2σdc(cIR

x )−1 + . . .
)
,

(3.30)

where

(cIR
t )−1 =

∫ r∗

r0
dr

√
BD

ZCd/2 ,

(cIR
x )−1 =

∫ r∗

r0
dr

√B

D

1
ZCd/2−1 − 1

4πTσdc(r0 − r)

−
log

(
1− r∗

r0

)
4πTσdc

,

(3.31)

and σdc is as defined in (3.5) above.
4We will implicitly impose ingoing boundary conditions on solutions at the horizon so that this action

produces the retarded Green’s function, in the sense described in [21].
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After integrating out the UV and IR regions of the spacetime as described above, we
have obtained a (d+ 1)-dimensional effective theory of a Goldstone-like field φ coupled to
an emergent U(1) gauge field aµ. To make contact with a local hydrodynamic theory, we
will first push the cutoff r∗ → r0 so that the emergent gauge field aµ corresponds to the
thermal bath represented by the black hole horizon. With this choice

g∥(ω, k) = iσ−1
dc ω − (cIR

x )−1ω2 + . . . ,

g⊥(ω, k) = iσ−1
dc ω − (cIR

x )−1ω2 + . . . ,

ct = χρρ,

(3.32)

and we will deal with the divergence in (cIR
x )−1 in this limit shortly.5 The Fourier space

action (3.29) becomes rotationally invariant

SIR[aµ] = −1
2

∫
dωdk

f̃ti(−ω,−k)f̃ti(ω, k)
g(ω) , (3.33)

where g(ω) = iσ−1
dc ω − (cIR

x )−1ω2 and the i index now runs over all x⃗ coordinates. This is
not Lorentz invariant because the near-horizon degrees of freedom that it represents are in
a thermal state. After fixing the gauge at = 0 we can put ai on-shell to obtain the following
constitutive relations for the current defined in equation (3.28)

jt = χρρ

(
∂tφ− Āt

)
+ . . . ,

ji = σdc∂t + . . .(
1 + χ−1

JJσdc∂t + . . .
) (∂iφ− Āi

)
+ . . . .

(3.34)

Noting that the last two terms in (cIR
x )−1 can be rewritten as a single integral of 1/(r0 − r)

from 0 to r0, the terms in c−1
x and (cIR

x )−1 that are divergent in the limit r∗ → r0 cancel out
in the expression for ji, leaving behind χ−1

JJ , defined in (3.8). As indicated above, putting
the final dynamical field φ on-shell ensures that jt and ji obey the local conservation
equation (3.27).

The constitutive relation (3.34) for the current ji clearly has two different regimes.
At energies ω ≫ χJJσ

−1
dc it reduces to that of a superfluid Goldstone mode. However, at

the lowest energies ω ≪ χJJσ
−1
dc it is qualitatively different: the interactions of φ with the

emergent gauge field aµ become important at these energies and destroy the superfluid-
like physics. This latter limit is the more familiar one: the coupling of the current to
the thermal bath is important and the constitutive relation reduces to that of diffusive
hydrodynamics: ji = σdc∂t(∂iφ− Āi) + . . . = −σdcχ

−1
ρρ ∂ij

t − σdc

(
∂tĀi − ∂iĀt

)
. . ..

Our main focus is instead the former limit, where the effect of the emergent gauge
field is small (i.e. the current couples weakly to the thermal bath) and thus the super-
fluid Goldstone-like mode is long-lived. Since the corrections neglected in (3.34) become
important at the thermal energy scale, this superfluid-like regime exists in states with
χJJσ

−1
dc ≪ T . This is only the case for the holographic theories with ∆χ + 2(z − 1) < 0

at low temperatures, for which χJJσ
−1
dc = τ−1 ≪ T . From this perspective, the relaxation

of the Goldstone-like mode when ωτ ≪ 1 in these states occurs due to its coupling to the
emergent gauge field that represents the degrees of freedom at the black hole horizon.

5Since (cIR
t )−1 → 0 when r⋆ → r0, there is no k dependence left to the order we are working.
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3.4 Explicit breaking of higher-form symmetry

From now on we will focus on states that have ∆χ+2(z−1) < 0 and so exhibit a superfluid-
like regime. In this subsection we will explore in more detail the role of the emergent gauge
field for these states, explaining how it explicitly breaks the higher-form symmetry.

The effective action for the Goldstone-like mode is given by the sum of (3.25)
and (3.29), and we can make the (d − 1)-form symmetry manifest by defining the d-form
K in terms of the fields in our effective action by

(⋆K)t =
(
∂tφ− Āt + at

)
, (⋆K)i =

(
∂iφ− Āi + ai

)
. (3.35)

The difference from the case of a superfluid is the aµ terms required by gauge-invariance.
By construction K satisfies the equation

d ⋆ K = −F̄ + f. (3.36)

where F̄ = dĀ and f = da.
In a superfluid, where there is no emergent gauge field (f = 0), the equation (3.36)

is that of an anomalous (d− 1)-form symmetry. The anomaly is a mixed anomaly, as the
right hand side of equation (3.36) is proportional to the field strength of the external source
Āµ for the current of the 0-form U(1) symmetry. Physically, this anomaly means that an
external electric field creates winding planes of the superfluid phase — in more familiar
words, it generates an electric current.

The coupling of the Goldstone-like mode to the emergent gauge field aµ also results in
non-conservation of the higher-form charge K. However, in this case it corresponds to an
explicit breaking of the symmetry since f is a dynamical field that is sourced by current
flow, rather than an external one. In superfluid language, we would say that an external
electric field creates winding planes of the phase causing a current to flow. However, this
current sources an emergent electromagnetic field which then destroys the winding planes
according to equation (3.36) and relaxes the current. In this sense, the role of the emergent
electromagnetic field is analogous to that of vortices in a superfluid.

The result of the explicit breaking of the symmetry is sensitive to the form of the effec-
tive coupling g in equation (3.33). If the emergent gauge field had a Maxwell action, then
the effective action would just be that of a superconductor, in which a mass is generated
by the Higgs mechanism. In our case the action is not Lorentz invariant, non-local, and at
the level of dimension counting the action has one less derivative than the Maxwell action.
Furthermore, this coupling explicitly breaks time reversal invariance as the emergent gauge
field represents the coupling to a thermal bath. As a consequence, the explicit breaking of
the symmetry does not generate a mass but rather a small lifetime for the Goldstone-like
mode. In this sense, our states are somewhat similar to phase-relaxed superfluids in which
interactions with an emergent Chern-Simons gauge field slowly relax the phase [33], but
with an unbroken parity symmetry.

3.5 Zero temperature dynamics

Until now, we have focused on states at non-zero temperature T , illustrating the existence
of a superfluid-like regime for τ−1 ≪ ω ≪ T . The lower cutoff τ−1 is set by the explicit
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symmetry breaking scale. As τ−1 vanishes as T → 0, it is conceivable that for zero
temperature states, the superfluid-like regime extends all the way to zero frequency. The
subtlety, of course, is that this involves exiting the hydrodynamic regime ω ≪ T . In this
section, we will study the holographic states at T = 0. We will show that a truly gapless
superfluid-like mode survives, with an unconventional attenuation due to an irrelevant
coupling that explicitly breaks the higher-form symmetry.

To illustrate this, we will proceed as in section 3.3, integrating out the UV part of the
spacetime (r ≤ r∗) and leaving a Goldstone-like mode φ with action SUV [φ, Āµ, aµ] coupled
to the IR spacetime (r > r∗). At zero temperature, the metric deep in the interior of the
spacetime has the scaling form (2.6) with f = 1, and the natural choice for r∗ is close to
the boundary of this scaling region: R∗ ≡ R(r∗) ≫ RUV . With this choice, the physics
is that of a Goldstone-like mode interacting with the infrared quantum critical degrees of
freedom represented by the scaling spacetime (2.6) near the horizon, as we show below
in (3.44) and (3.49).

There is a subtlety associated with this choice. Suppose we temporarily ignore SUV

and interpret just the IR action as a standalone holographic theory in its own right. In
order to do this, we have to renormalize it, as the IR on-shell action is not finite in the
limit R∗ → 0 where we remove the cutoff. More precisely, in the IR spacetime the general
solutions near the cutoff are

Ai = a
(1)
i

(
R

L

)∆χ+2(z−1)
+. . .+a(0)

i +. . . , At = a
(1)
t

(
R

L

)∆χ

+. . .+a(0)
t +. . . , (3.37)

where a(0,1)
µ are independent functions of xµ, and the corresponding on-shell action is

SIR= Z0L
d
x

2L̃Lt

∫
dd+1x

(
∆χa

(1)
t a

(1)
t

(
R∗
L

)∆χ

−c2
IR(∆χ+2(z−1))a(1)

i a
(1)
i

(
R∗
L

)∆χ+2(z−1)
+...

)
.

(3.38)
The cutoff dependence of the IR action (3.38) is not a fundamental problem: physical
answers of course do not depend on our arbitrary choice of separating the system into two
parts using a hard radial cutoff. However, by making a more refined separation into UV
and IR contributions, we obtain a simple interpretation of the IR theory as we remove the
cutoff. Specifically, we renormalize both the UV and IR parts of the action by counterterms
of opposite sign S = (SUV − Sct) + (SIR + Sct). The counterterm action is

Sct = L̃

∫
dd+1x

√
−γZ

(
R

L

)θ/d
(
FAtnAF

B
tnB

2∆χ
+ FAinAF

B
inB

2(∆χ + 2(z − 1))

)∣∣∣∣∣
r=r∗

, (3.39)

where n is the unit vector normal to the surface r = r∗ and γ is the induced metric on this
surface.

We can now go partially on-shell as before, using the renormalized actions. We start
by considering the partially on-shell UV action (3.25) where the interior cutoff R∗ is cho-
sen to be in the scaling region and we express the interior boundary fields aµ using the
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expansions (3.37)

SUV = 1
2

∫
dd+1x

(
− ct

(
∂tφ− Āt + a

(1)
t

(
R∗
L

)∆χ

+ a
(0)
t + . . .

)2

+ cx

(
∂iφ− Āi + a

(1)
i

(
R∗
L

)∆χ+2(z−1)
+ a

(0)
i + . . .

)2)
.

(3.40)

The contribution to the integrals c−1
t and c−1

x from this scaling region diverge at small R∗
such that ct ∼ (R∗/L)−∆χ and cx ∼ (R∗/L)−(∆χ+2(z−1)) vanish as the cutoff is removed.
The terms that survive this limit are

SUV = Ld
xZ0

LtL̃

∫
dd+1x

(
−∆χa

(1)
t

(
∂tφ−Āt+a(0)

t

)
+c2

IR (∆χ+2(z−1))a(1)
x

(
∂xφ−Āx+a(0)

x

)

−∆χ

2 a
(1)
t a

(1)
t

(
R∗
L

)∆χ

+c2
IR

∆χ+2(z−1)
2 a(1)

x a(1)
x

(
R∗
L

)∆χ+2(z−1)
)
. (3.41)

The terms on the second line diverge but are cancelled exactly by the counterterms (3.39).
So the renormalized UV action is given by the terms on the first line.

The constants a(1)
µ can be related to a(0)

µ by using (3.37) and (3.39) by matching the
solutions (3.37) to (3.23) in the R→ 0 region, leading to:

Ld
xZ0

LtL̃
∆χa

(1)
t = c̃t

(
∂tφ− Āt + a

(0)
t

)
,

Ld
xZ0

LtL̃
c2

IR (∆χ + 2(z − 1)) a(1)
x = c̃x

(
∂xφ− Āx + a(0)

x

)
.

(3.42)

The tildes on c̃µ indicate that we have subtracted the terms that diverge as the cutoff is
removed

c̃−1
t = c−1

t − LtL̃

Ld
xZ0

1
∆χ

(
R∗
L

)∆χ

, c̃−1
x = c−1

x − LtL̃

Ld
xZ0

c−2
IR

∆χ + 2(z − 1)

(
R∗
L

)∆χ+2(z−1)
.

(3.43)
As a result, the partially on-shell renormalized UV action is again that of a superfluid
Goldstone-like mode

SUV − Sct =
1
2

∫
dd+1x

(
−c̃t

(
∂tφ− Āt + a

(0)
t

)2
+ c̃x

(
∂iφ− Āi + a

(0)
i

)2
)
, (3.44)

where now a
(0)
µ are the constant terms in the expansions (3.37) and the coefficients have

been renormalized from those in equation (3.24) to

c̃t = χρρ(T = 0) + . . . , c̃x = χJJ(T = 0) + . . . , (3.45)

where χρρ and χJJ are the T = 0 (r0 → +∞) limits of the expressions defined in equa-
tions (3.5) and (3.8), and . . . are terms that vanish as R∗ → 0. Earlier, around (3.9), we
noted that after a naive radial separation of the degrees of freedom, the IR contributions
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to the susceptibilities are cutoff-dependent. In this more refined separation, the role of the
counterterms is to remove the cutoff dependence by shifting the full susceptibility into the
UV (Goldstone-like) part of the action.

We now obtain our low energy theory by formally taking the limit R∗ → 0. The action
consists of the Goldstone-like mode in (3.44) coupled to the quantum critical degrees of
freedom represented by the renormalized IR action in the zero temperature spacetime (2.6)
(with f = 1) with a boundary at R = 0. As they are now described by a standalone
holographic theory, we can now be more precise about the nature of these quantum critical
degrees of freedom. Varying the renormalized IR action (and imposing the equations of
motion in the bulk of the IR spacetime) yields

δSIR + δSct =
Z0L

d
x

L̃Lt

∫
dd+1x

(
∆χa

(1)
t δa

(0)
t − c2

IR(∆χ + 2(z − 1))a(1)
i δa

(0)
i

)
, (3.46)

which indicates that we should interpret Jµ = a
(0)
µ as the sources of operators in the

quantum critical theory, and

Ot = −Z0L
d
x

L̃Lt
∆χa

(1)
t , Oi = Z0L

d−2
x Lt

L̃
(∆χ + 2(z − 1)) a(1)

i , (3.47)

as their expectation values. From this point of view, the role of the counterterms is to
enforce alternate quantisation for these spacetimes, i.e. we identify the field theory sources
as the subleading terms in the near-boundary expansions (3.37). By treating the R direction
as the energy scale in the usual way, and recalling that the quantum critical state has
effective dimensionality (d + z − θ), we can then obtain the following scaling dimensions
(with the conventions [t] = −z and [x] = −1)

∆Ot = 1
2(d+ z − θ +∆χ), ∆Oi =

1
2(d+ z − θ +∆χ + 2(z − 1)),

∆Jt = 1
2(d+ z − θ −∆χ), ∆Ji =

1
2(d+ z − θ −∆χ − 2(z − 1)).

(3.48)

These scaling dimensions are the key properties of the infrared degrees of freedom rep-
resented by the scaling spacetime (2.6). The quantity ∆χ, which determines whether a
higher-form symmetry emerges in the infrared or not, is a parameterisation of the scaling
dimensions of the operators dual to the Maxwell field in the IR spacetime.

To understand the effect that the interactions with the infrared quantum critical de-
grees of freedom have on the Goldstone-like mode, it is again helpful to integrate out the IR
spacetime. Considering perturbations whose wavevector is aligned with the x-axis (again
without loss of generality, due to rotational symmetry), this yields a Fourier space effective
action for an emergent U(1) gauge field

SIR + Sct = −1
2

∫
dωdk

(
f̃tx(−ω,−k)f̃tx(ω, k)

g∥(ω, k)
+ f̃tb(−ω,−k)f̃tb(ω, k)

g⊥(ω, k)

)
, (3.49)

where the index b here again runs over the spatial coordinates x⃗ except x, but now f̃tx =
ωã

(0)
x (ω, k)+kã(0)

t (ω, k) and f̃tb(ω, k) = ωã
(0)
b (ω, k). As before, this action will be non-local
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as we have integrated out gapless modes. Since this renormalized action is (minus) the
generating functional for the infrared quantum critical theory, we can relate the effective
gauge coupling g∥ to GIR, the retarded Green’s function of Ox in the critical state (with
appropriate normalisation), via

g∥(ω, k) = −ω2GIR(ω, k)−1. (3.50)

The effect of the interactions with the gauge field is to modify the dispersion relations
of the superfluid-like Goldstone mode to solutions of

0 = χρρ

χJJ
ω2 − k2 + χρρg∥(ω, k) = χρρ

(
χ−1

JJ −G−1
IR

)
ω2 − k2. (3.51)

From the first equality, we see that a superfluid Goldstone-like mode will survive when
the coupling g is sufficiently small at low energies ω ∼ k. The second equality allows us
to immediately deduce when this is the case. From equation (3.48), the Fourier space IR
Green’s function GIR(ω, k) has dimension ∆χ + 2(z − 1) and therefore can be written as
GIR(ω, k) = ω

∆χ+2(z−1)
z h(kz/ω) for a universal scaling function h. Assuming that h(0) is

finite and z > 1, then we see that a superfluid Goldstone-like mode survives at T = 0
provided ∆χ + 2(z − 1) < 0.6 So in every case where there is a long-lived superfluid-like
mode at small T , this mode survives — and is gapless — in the T = 0 state.

By repeating the arguments of section 3.4 we see that in the T = 0 state an anomalous
(d− 1)-form symmetry emerges in the infrared, and the gapless mode is a consequence of
this. As before, the coupling to the emergent electromagnetic field f — which in this case
represents the coupling to the infrared quantum critical degrees of freedom — explicitly
breaks this symmetry

d ⋆ K = −F̄ + f. (3.52)

The condition ∆χ + 2(z − 1) < 0 ensures that the coupling g is small at low energies and
so gives small, power law corrections to observables that vanish as ω → 0.

Nevertheless, as this coupling breaks a symmetry, for some observables these correc-
tions are important. For example, the zero temperature conductivity can be calculated by
choosing the gauge at = 0, putting ai on-shell, and then taking a variational derivative
of the resulting action with respect to Āx to obtain an expression for the current jx as a
function of Āx. The result is

σ(ω) = i

ω

jx

Āx
= χJJ

i

ω

(
1 + χJJh(0)−1ω−∆χ+2(z−1)

z + . . .

)
, (3.53)

which has a small dissipative part at low energies due to the weak explicit symmetry
breaking.

Similarly, this symmetry breaking causes non-uniform perturbations of the gapless
mode to attenuate slowly. From equation (3.51), the attenuation is given quantitatively by
GIR(ω, k) in the limit ω ∼ k → 0. When z > 1, the scaling form of the Green’s function in

6An exact expression for h(0) is derived in appendix A.2, where it is also shown that the conclusions
below continue to hold for the case z = 1.
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kz/ω ensures this information is captured by GIR(ω, 0) and so the renormalized IR action
in this limit is rotationally invariant

SIR + Sct = −1
2

∫
dωdk

f̃ti(−ω,−k)f̃ti(ω, k)
g(ω) , (3.54)

where g(ω) = −ω2GIR(ω, 0)−1 and the index i now runs over all x⃗ coordinates. For the
case z = 1, the renormalized action becomes Lorentz invariant

SIR + Sct = −1
2

∫
dωdk

f̃ti(−ω,−k)f̃ti(ω, k)− c2
IRf̃ij(−ω,−k)f̃ij(ω, k)

g(ω2 − c2
IRk

2)
, (3.55)

where g(ω2 − c2
IRk

2) = −ω2GIR(ω, k)−1. Using the results in appendix A.2 for GIR, the
leading real and imaginary terms in the dispersion relation are

ω(k) = ±vk − i
πL2−d

x χJJ

2Z0Γ
(

2−∆χ

2z

)2

(
L̃v

2zLt

)−∆χ+z−2
z

k1−∆χ+2(z−1)
z + . . . , (3.56)

for z ̸= 1, and

ω(k) = ±vk − i
πL2−d

x χJJ

2Z0Γ
(
1− ∆χ

2

)2

(
1− c2

IR

v2

)(
L̃v

2Lt

)1−∆χ

k1−∆χ + . . . , (3.57)

for z = 1. Note that the imaginary part is always negative due to the lower bound on v

proven in appendix A.1. These results should be contrasted with the collective modes in a
zero-temperature superfluid, in which self-interactions of the Goldstone mode give rise to a
∼ kd+2 attenuation. Non-zero temperature corrections to these results could be calculated
by replacing the universal scaling function by its thermal generalization h(T/ω, kz/ω).

The symmetry breaking terms vanish upon artificially removing the infrared quantum
critical degrees of freedom, for example by replacing the IR spacetime with a hard wall.
The IR spacetime acts like the ‘soft wall’ of holographic models of QCD, and in this context,
the possible emergence of a long-lived mode was pointed out in [116].

In summary, we have shown that there is an emergent infrared symmetry in the T = 0
state. Unlike at non-zero T — where the explicit symmetry breaking causes a crossover at
low frequencies ωτ ∼ 1 — the effects of the explicit symmetry breaking at T = 0 vanish
as ω, k → 0. We can further verify this by numerically calculating the dispersion relations
of collective modes of the holographic states in the low temperature regime τ−1 ≪ T ≪
ω, k ≪ µ, which should connect smoothly to those at T = 0. This is confirmed in figure 2,
which illustrates that these modes are becoming gapless and weakly attenuated as T → 0.
Further details regarding the numerical calculations can be found in appendix C.1.

3.6 Mixed boundary conditions

While it is often instructive to retain the Goldstone-like field explicitly in the effective
action, it can always be gauged away. Doing this corresponds to using radial gauge. We
will now show that in this gauge, integrating out the UV region of the spacetime generates
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Figure 2. Comparison of the dispersion relations obtained numerically (solid lines) to the analytic
T = 0 results (3.56) and (3.57) (dashed lines) for two examples of states with ∆χ + 2(z − 1) < 0.
Darker curves correspond to lower temperatures in the ranges T/µ = 3.0× 10−5 to 4.8× 10−4 (top
row, v = .83) and T/µ = 1.2 × 10−4 to 6.9 × 10−3 (bottom row, v = .96). As T is reduced, the
dispersion relations in the range T ≪ (ω, k) ≪ µ are increasingly well approximated by the analytic
T = 0 results, which only apply when (ω, k) ≪ µ.

boundary terms which are interpreted as double trace operators in the effective action of
the infrared theory of the quantum critical degrees of freedom.

At zero temperature (and after renormalising the actions as described above), the
effective action in radial gauge is

S = SIR + Sct +
1
2

∫
dd+1x

(
−χρρ

(
a

(0)
t − Āt

)2
+ χJJ

(
a

(0)
i − Āi

)2
)∣∣∣∣

R=0
. (3.58)

On-shell, the external sources Āµ are related to the solutions in the IR region of the
spacetime by

Āt = a
(0)
t − Ot

χρρ
, Āi = a

(0)
i − Oi

χJJ
, (3.59)

and so the effect of integrating out the UV region is to generate two relevant double-trace
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terms in the effective action [68]

S = SIR + Sct +
1
2

∫
dd+1x

(
−OtOt

χρρ
+ OiOi

χJJ

)∣∣∣∣∣
R=0

. (3.60)

These terms are both relevant indicating that the low energy physics is not captured simply
by SIR +Sct, but is sensitive to physics in the UV region of the spacetime. In this gauge, it
is these double trace terms that incorporate the effects of the Goldstone-like mode. Indeed
using (3.60) as (minus) the generating functional — with the appropriate mixed boundary
conditions on fields due to the double trace deformations [117–119] — correctly reproduces
the low energy correlators of jµ.

In other words, if we wish to regard the quantum critical degrees of freedom represented
by the IR spacetime as the only ones important at low energies then the sources and
operators have to be identified using the mixed boundary conditions above. For holographic
theories with higher-form symmetries in the UV, the importance of correctly identifying
the appropriate mixed boundary conditions (near the AdS boundary) was emphasized
in [8, 14, 16]. In the cases we are studying, the emergent higher-form symmetry in the
infrared also requires such boundary conditions at the boundary of the IR spacetime.

4 Dynamics of non-zero density states

In this section we will study the dynamics arising from the action (2.1) near equilibrium
states of the type described in section 2, rather than the simpler zero density case studied
in the previous section. A preliminary investigation of this was performed in [34, 35],
where it was shown that these states support a parametrically long-lived excitation in
cases where the 0-form charge density operator is irrelevant in the IR. We will extend the
results of [34, 35] and derive a complete theory of relaxed hydrodynamics for these states,
valid at non-zero wave numbers and in the presence of an external electromagnetic field.
We will then discuss how this relates to the hydrodynamics of a phase-relaxed superfluid,
before studying the fate of the long-lived mode at zero temperature.

4.1 Equilibrium states

For simplicity we will focus on a particular class of the equilibrium states described in
section 2. Specifically, we will consider the case d = 2 and where the asymptotic form of
the potentials is

V (Φ → 0) → 6 + Φ2 +O(Φ4), Z(Φ → 0) → 1 +O(Φ2). (4.1)

This corresponds to the bulk field Φ being dual to a conformal symmetry-breaking scalar
operator OΦ with UV scaling dimension ∆Φ = 2. The value of the UV scaling dimension
is not important for the IR physics and so this is a very mild restriction. Furthermore, it
is conceptually straightforward (but technically tedious) to extend the calculations below
to the most general case, or to arbitrary space dimension d > 2.
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The equations of motion that follow from the action (2.1) and the background ansatz
described in section 2 can be compactly expressed as

CZA′
t√

BD
= −ρ, d

dr
log C ′

√
BCD

= −1
2
CΦ′2

C ′ ,

C2(D/C)′√
BD

= −sT − ρAt,
d

dr

((CD)′√
BD

)
= 2

√
BDCV.

(4.2)

Throughout, we will use primes to denote derivatives with respect to r and dots to denote
derivatives with respect to Φ. For the case ∆Φ = 2, the asymptotically AdS solutions (2.3)
have the following near-boundary expansion in Fefferman-Graham coordinates

At(r → 0) = µ− ρr +O(r2), Φ(r → 0) = Jr +Or2 +O(r3),

B(r → 0) = 1
r2 +O(r2), D(r → 0) = 1

r2 − J2

8 − 2p
3 r +O(r2),

C(r → 0) = 1
r2 − J2

8 + (ε− JO)
6 r +O(r2), (4.3)

where J , O, ε, p, µ and ρ are constants. To give field theory interpretations to these
constants we must supplement the action (2.1) with the following boundary terms on the
r = ϵ surface [120, 121]

Sbdy =
∫
d3x

√
−γ

(
2K − 4−R[γ]− 1

2ϕ
2
)∣∣∣∣

r=ϵ
, (4.4)

where γ is the induced metric, R is the corresponding Ricci scalar, and K is the trace of
the extrinsic curvature. Following this, we have a well-defined holographic dictionary: J is
the source of the relevant operator OΦ with expectation value ⟨OΦ⟩ = O. µ is the chemical
potential of a U(1) charge operator and

⟨T tt⟩ = ε, ⟨T xx⟩ = ⟨T yy⟩ = p, ⟨jt⟩ = ρ, (4.5)

are the expectation values of the U(1) charge density jt and the diagonal components of the
energy-momentum tensor. The constants are not all independent but are required by the
equations of motion (4.2) to satisfy the equilibrium Ward identity for scale transformations

−ε+ 2p = JO. (4.6)

Furthermore, evaluating the third equation of motion in (4.2) at the boundary yields the
Smarr relation

ε+ p = sT + ρµ, (4.7)

where s and T are again the entropy density and temperature of the state. The equations
of motion (4.2) and identities (4.6) and (4.7) are used repeatedly to simplify expressions
in the following calculations. The equation of state p(T, µ) of the family of black hole
solutions cannot be determined by the asymptotic analysis we have done here, and instead
requires more explicit knowledge of the solutions of the equations of motion (4.3).
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4.2 Near-equilibrium dynamics

The black hole solutions we have just described are non-conformal, thermal, charged equi-
librium states of a theory with microscopic Lorentz invariance but, in general, no conformal
invariance. Therefore we expect that at low wavenumbers and frequencies their perturba-
tions to be governed by the theory of relativistic, non-conformal charged hydrodynamics.
The first element of our results is a general proof of the non-zero density, non-conformal,
linearized fluid/gravity correspondence to first order in the hydrodynamic expansion (this
is a generalization of the non-zero density conformal case proven in [122, 123] and the zero
density, non-conformal case proven in [124]).7 We also include the effects of one ostensibly
higher-order relaxation term, which we show in fact becomes parametrically large in the
low temperature limit. The result is a theory of relaxed hydrodynamics, analogous to that
obtained in section 3.1 for the zero density states.

4.2.1 Perturbation variables

To derive the relaxed hydrodynamic theory, we study linearized perturbations around the
equilibrium state. We label the field theory spatial directions x and y and use rotational
invariance to consider perturbations that depend on t, x and r without loss of generality.
With these conventions, we denote the metric perturbations δgMN as

δgtt ≡ −Dhtt, δgxx ≡ Chxx, δgyy ≡ Chyy, δgrr ≡ −2
√
B∂r

(
ζr√
B

)
,

δgxt ≡ Chxt, δgrt ≡ −∂tζr −D∂r

(
ζt

D

)
, δgxr ≡ −∂xζr − C∂r

(
ζx

C

)
,

δgyt ≡ Chyt, δgxy ≡ Chxy, δgyr ≡ −C∂r

(
ζy

C

)
.

(4.8)

The reparameterisation of the components δgrM in terms of the functions ζM is for later
convenience. The linearized perturbations of the matter fields are labelled

δAt ≡ at, δAi ≡ ai, δAr ≡ At∂r

(
ζt

D

)
− ∂rΛ, δΦ ≡ ϕ, (4.9)

where we have also reparameterised δAr in terms of a new function Λ for later convenience.
It will be convenient to work not directly with the perturbations as listed above, but

with the tilded fields defined as follows

hxx + hyy = h̃+ − 2C ′

BC
ζr −

2
C
∂xζx, htt = h̃tt +

2
D
∂tζt −

D′

BD
ζr,

hxx − hyy = h̃− − 2
C
∂xζx, hit = h̃it −

1
C

(∂tζi + ∂iζt) ,

hxy = h̃xy − 1
C
∂xζy, ϕ = ϕ̃− Φ′

B
ζr,

at = ãt +
At

D
∂tζt −

A′
t

B
ζr − ∂tΛ, ai = ãi +

At

D
∂iζt − ∂iΛ.

(4.10)

7This part of our results could also be obtained from the recent work [125] on non-conformal superfluid
hydrodynamics by taking the limit where there is no condensate.
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The field equations for these perturbations are given in appendix B.1. We will neglect
terms of O(∂2) in these equations, as these will produce only higher-order corrections to
the theory of relaxed hydrodynamics. This means we only have to deal with 14 of the field
equations. The tilded fields can be thought of as the metric perturbations in radial gauge,
while the ζM and Λ are gauge transformations (up to terms of O(∂2)).

Due to the gauge invariance of the linearized equations of motion, the 14 equations
involve only the 10 tilded variables. Once they are solved, the general solution for the lin-
earized perturbations is obtained by combining these solutions with any functions ζM and Λ
as shown in equation (4.10). In order to extract near-equilibrium properties of the field the-
ory from the solutions, it is helpful to work in Fefferman-Graham gauge near the boundary.
In order to achieve this, we restrict the pure gauge solutions to have the asymptotic form

ζt(r, t, x) = D(r)ξt(t, x) +O(r2), ζi(r, t, x) = C(r)ξi(t, x) +O(r2),
ζr(r, t, x) = O(r3), Λ(r, t, x) = λ(t, x) +O(r2),

(4.11)

as r → 0. The functions λ, ξt and ξi are large gauge transformations and are taken to
be O(∂−1) in the derivative expansion. With this restriction, the holographic dictionary
relating near-equilibrium properties of the field theory to solutions for the linearized
perturbations is given in appendix B.2. For simplicity, we will restrict ourselves to the
case where the perturbations of the field theory metric and perturbations of the source
for the scalar operator vanish.

4.2.2 Bulk hydrodynamic variables

The key step in deriving the relaxed hydrodynamic theory is solving the linearized equations
to O(∂). To make this manageable, it is helpful to introduce one final set of perturbation
variables as follows

E(r) = C

√
D

B

√D

C

d

dr

(
h̃+√
D/C

)
+Φ′ϕ̃

 , Pi(r) = −

√
D3

B

d

dr

(
h̃it

D/C

)
,

T−(r) = C

√
D

B
h̃′−, T×(r) = C

√
D

B
h̃′xy,

T+(r) = −2C

√
D

B

(
h̃′tt +

1
2 h̃

′
+ +Φ′ϕ̃

)
+ (sT + ρAt)h̃tt − 2ρãt,

Q(r) = − CZ√
BD

(
ã′t −

1
2A

′
t(h̃tt − h̃+) +

A′
tŻ

Z
ϕ̃

)
,

Ji(r) =

√
D

B
Z

(
ã′i +

A′
th̃it

(D/C)

)
.

(4.12)

One reason that these variables are useful is that they allow 9 of the equations of motion
to be written as radial conservation equations

d

dr
(E(r)−At(r)Q(r)) = 0, d

dr
(T±(r)) = 0, d

dr
(T×(r)) = 0,

d

dr
(Pi(r)−At(r)Ji(r)) = 0, d

dr
(Q(r)) = 0, d

dr
(Ji(r)) = 0,

(4.13)
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up to terms of O(∂2). Furthermore, to this order each of these fields has a clear field theory
interpretation. Using the holographic dictionary in appendix B.2

E(r)−At(r)Q(r)= ⟨δT tt⟩−µ⟨δjt⟩+sT∂xξx, Q(r)= ⟨δjt⟩+ρ∂xξx,

Pi(r)−At(r)Ji(r)= ⟨δT ti⟩−µ⟨δji⟩−sT∂tξi, Ji(r)= ⟨δji⟩−ρ∂tξi,

T−(r)= ⟨δT xx⟩−⟨δT yy⟩, T×(r)= ⟨δT xy⟩,
T+(r)= ⟨δT xx⟩+⟨δT yy⟩−2sT∂tξt−2ρ(δat+∂tλ) . (4.14)

These objects are the bulk variables that conceptually encode the perturbations of entropy
density, charge density, heat current, current density, and the components of the stress ten-
sor. Consistency of the solution will later require us to fix the large gauge transformations
ξµ and λ in terms of sources and expectation values of field theory operators.

In addition to the radial conservation equations, the equations of motion imply that
these fields also must obey 5 further equations which ensures the field theory obeys the
appropriate Ward identities. The first

0 = −C
′

C

(
−T+(r)

2 + 1
2(sT + ρAt)h̃tt − ρãt

)
− D′

2D

(
E(r)− 1

2(sT + ρAt)h̃+

)

+A′
tQ(r)− 1

2ρA
′
th̃+ − 2D

√
C

B

d

dr

(
C ′

√
BCD

)
d

dr

(√
B

Φ′ ϕ̃

)
,

(4.15)

implements the Ward identity for the trace of the energy-momentum tensor. To see this,
we can use the holographic dictionary to evaluate (4.15) near the boundary and obtain

⟨δT tt⟩ − ⟨δT xx⟩ − ⟨δT yy⟩+ J⟨δOϕ⟩ = 0, (4.16)

which is simply the linear perturbation of the trace Ward identity ⟨Tµ
µ⟩ = J⟨Oϕ⟩ when

perturbations of the field theory metric and scalar source vanish.
The remaining 4 equations are

∂tE + ∂iPi = 0,

∂t

(
Px + (sT + ρAt)h̃xt + ρ

D

C
ãx

)
+ D

C
∂x

(T+ + T−
2

)
= 0,

∂t

(
Py + (sT + ρAt)h̃yt + ρ

D

C
ãy

)
+ D

C
∂xT× = 0,

∂tQ+ ∂iJi = 0.

(4.17)

Ultimately we will see that these implement the Ward identities for the local conservation
of energy, momentum and 0-form charge. For now, we will focus on finding solutions to the
10 equations (4.13) and (4.15) which will yield the hydrodynamic constitutive relations.

4.2.3 Solutions for h̃− and h̃xy

In equations (4.13) and (4.15), the field h̃− decouples and obeys the equation

C

√
D

B
h̃′− = ⟨δT xx⟩ − ⟨δT yy⟩. (4.18)
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It is straightforward to integrate this to obtain the general solution

h̃− = 2∂xξx + (⟨δT xx⟩ − ⟨δT yy⟩)
∫ r

0

√
B(r̄)
D(r̄)

1
C(r̄)dr̄. (4.19)

This depends on two integration constants which we have labelled using the holographic
dictionary. Consistency will later require us to fix ξx in terms of the sources and expectation
values of field theory operators.

The solution (4.19) is valid up to corrections of O(∂2). In other words, the integration
constants ∂xξx and ⟨δT xx⟩ − ⟨δT yy⟩ present in the solution (4.19) are not necessarily con-
stants in the field theory spacetime coordinates, but are slowly varying functions of (t, x),
Specifically, in Fourier space they are linear functions of (ω, k).

The field h̃xy also decouples in equations (4.13) and (4.15) and has the solution

h̃xy = ∂xξy + ⟨δT xy⟩
∫ r

0

√
B(r̄)
D(r̄)

1
C(r̄)dr̄, (4.20)

where the integration constants ∂xξy and ⟨δT xy⟩ can be taken to be linear functions of ω
and k in Fourier space for the same reason as above.

4.2.4 Solution for h̃it and ãi

In equations (4.13) and (4.15), the fields h̃it and ãi are coupled to one another (but decou-
pled from all others) and obey the equations√

D3

B

d

dr

(
h̃it

D/C

)
+

√
D

B
ZAt

(
ã′i +

A′
t

(D/C) h̃it

)
= −⟨δT ti⟩+ µ⟨δji⟩+ sT∂tξi,√

D

B
Z

(
ã′i +

A′
t

(D/C) h̃it

)
= ⟨δji⟩ − ρ∂tξi.

(4.21)

Solving these and using the holographic dictionary to appropriately name the integration
constants gives

h̃it = ∂tξi +
D

C
∂iξt +

(µ−At)⟨δji⟩
sT + ρAt

+ ⟨δT ti⟩
ε+ p

(
D

C
− ε+ p

sT + ρAt

)
−
(
−⟨δT ti⟩+ ε+ p

ρ
⟨δji⟩

)
D

C

∫ r

0

C(r̄)
D(r̄)

d

dr̄

( 1
sT + ρAt(r̄)

)
dr̄,

ãi = δĀi + ∂i(λ−Atξt) + (µ−At)
⟨δT ti⟩
ε+ p

+
(
−⟨δT ti⟩+ ε+ p

ρ
⟨δji⟩

)(
At +

sT

ρ

)∫ r

0

C(r̄)
D(r̄)

d

dr̄

( 1
sT + ρAt(r̄)

)
dr̄.

(4.22)

Due to the same argument as around equation (4.19), the perturbed sources, expecta-
tion values and the derivatives of the large gauge transformations in this solution are not
strictly constants but slowly varying functions of the field theory spacetime coordinates
(specifically, linear functions of (ω, k) in Fourier space).
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4.2.5 Solution for h̃tt and h̃+, ãt and ϕ̃

We now turn to the solutions of (4.13) and (4.15) for the remaining fields h̃tt and h̃+, ãt

and ϕ̃. Although we cannot write down exact closed form solutions for these fields, their
existence and asymptotic properties will ultimately be enough to obtain the appropriate
theory of relaxed hydrodynamics.

As the perturbation equations are linear, it will be helpful to consider the solutions for
these fields as the sum of a ‘thermodynamic’ and a ‘dissipative’ solution i.e.

h̃tt(r) = h̃th
tt (r) + h̃dis

tt (r), E(r) = Eth(r) + Edis(r), (4.23)

and similarly for the other fields. The thermodynamic solution is analogous to the one
described in [126] and captures thermodynamic properties of the field theory such as static
susceptibilities of heat and charge. The dissipative solution captures the dissipative prop-
erties including the bulk viscosity.

Thermodynamic solution. We can infer the existence and properties of the thermody-
namic solution from a straightforward argument. For a given field theory metric and
scalar source, there will be a two-parameter family of black hole solutions that we can
characterise by the entropy density s and charge density ρ. So there will exist a family
of solutions characterised by C(r, s, ρ) (and similar for B, D, At and Φ) where there is a
smooth dependence on s and ρ.

This means that, given a black hole solution with a specific s and ρ, the linear pertur-
bation of this spacetime

δgxx = δC ≡
(
∂C

∂s

)
ρ,r
δs+

(
∂C

∂ρ

)
s,r

δρ, (4.24)

(and analogously for the other perturbations) will be a solution to the linearized gravita-
tional equations at O(∂0) for any arbitrary constants δs and δρ. Using the definitions of
the tilded variables (4.10), we can therefore write down the thermodynamic solution

h̃th
tt = δD

D
− D′

2D
√
B

∫ r

0

δB(r̄)√
B(r̄)

dr̄, h̃th
+ = 2δC

C
− C ′

C
√
B

∫ r

0

δB(r̄)√
B(r̄)

dr̄,

ãth
t = δAt −

A′
t

2
√
B

∫ r

0

δB(r̄)√
B(r̄)

dr̄, ϕ̃th = δΦ− Φ′

2
√
B

∫ r

0

δB(r̄)√
B(r̄)

dr̄.

(4.25)

By construction, the thermodynamic solution satisfies equations (4.13) and (4.15) for any
constants δs and δρ. Since the corrections to these equations appear at O(∂2), we can
promote δs and δρ to slowly varying functions of t and x (linear functions in Fourier space)
while still satisfying equations (4.13) and (4.15).

This two-parameter family of solutions is the thermodynamic solution, and the slowly
varying parameters δs and δρ will eventually become the hydrodynamic variables. We
define the slowly varying perturbation of the energy density in terms of these parameters as

δε ≡
(
∂ε

∂s

)
ρ
δs+

(
∂ε

∂ρ

)
s

δρ, (4.26)
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and similarly for δp, δT , δµ, δO etc. It is straightforward to verify using the holographic
dictionary that ⟨δjt⟩ = δρ and ⟨δT tt⟩ = δε for this solution.

Although we do not have closed form expressions for the equilibrium functions ap-
pearing in the thermodynamic solution (4.25), our knowledge of their near-boundary and
horizon properties will be sufficient for what follows. For now we will use this to derive three
useful identities that we will impose from now on. First, by evaluating the equation (4.15)
for the thermodynamic solution near the boundary we find

−δε+ 2δp = JδO, (4.27)

which is the perturbed version of the equilibrium Ward identity (4.6), where the quantities
appearing in it are now slowly varying functions of space and time. The other two useful
identities are found from the radial conservation laws (4.13) for Eth − AtQth and T th

+ .
Evaluating these quantities at the horizon and boundary and equating them gives

δε = Tδs+ µδρ, and δp = sδT + ρδµ, (4.28)

respectively. These are the first law of thermodynamics and the Gibbs-Duhem relation, gen-
eralised to the case where the perturbations are slowly varying functions of space and time.

Dissipative solution. The solution above is thermodynamic in nature and so does not
capture the dissipative effects of bulk viscosity in the trace of the stress tensor. To construct
the dissipative solution that captures this, it is helpful to consider the field

Qinc(r) ≡ ρ (E(r)−At(r)Q(r))− TsQ(r), (4.29)

which is radially conserved (up to terms of O(∂2)) under the equations of motion. Using
the expressions (4.14), this field captures the perturbation of the field theory’s incoherent
charge density [127]. The missing dissipative solution has Qinc = 0: this is because in
hydrodynamics perturbations of the incoherent charge density decouple from perturbations
of the trace of the stress tensor [35]. Under the condition Qinc = 0, equations (4.13)
and (4.15) can be combined to derive the equation (up to corrections of O(∂2))

d

dr

C
√
D

B

C2ϕ′2

C ′2 ψ′(r)

− d

dr

(
1√
BD

d

dr

(
C3(D/C)′

C ′

))
ψ(r) = 0, (4.30)

for the field
ψ ≡ 1

2 h̃+ − C ′

CΦ′ ϕ̃− E −AtQ
sT

. (4.31)

This equation is a gauge-invariant version of the bulk viscosity equation in [128], generalised
to charged black holes in AdS4.

We already know one solution to the equation (4.30). For the thermodynamic solution
described previously, Qinc = T (ρδs−sδρ). Thus if we set δρ = ρδs/s in the thermodynamic
solution, the fields will satisfy equations (4.13) and (4.15) with Qinc = 0. We label this
solution ψinc where

ψinc ≡
1
2 h̃

inc
+ − C ′

CΦ′ ϕ̃
inc − E inc −AtQinc

sT
, (4.32)
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where from equations (4.24) and (4.25)

h̃inc
+ = 2δCinc

C
− C ′

C
√
B

∫ r

0

δBinc(r̄)√
B(r̄)

dr̄, (4.33)

and

δCinc =
((

∂C

∂s

)
ρ
+ ρ

s

(
∂C

∂ρ

)
s

)
δs , δBinc =

((
∂B

∂s

)
ρ
+ ρ

s

(
∂B

∂ρ

)
s

)
δs . (4.34)

Given ψinc(r), we can use the Wronskian method to obtain an integral expression for
the other solution ψdis(r) to the equation (4.30)

ψdis(r) = δαψinc(r)
∫ r

0

1
ψinc(r̄)2

√
B(r̄)
D(r̄)

1
C(r̄)

C ′(r̄)2

C(r̄)2Φ′(r̄)2dr̄,

δα = −δs2s (⟨δT
xx⟩+ ⟨δT yy⟩ − 2δp) .

(4.35)

Due to linearity of the equation (4.30), δα is an arbitrary constant which we have relabelled
according to its field theory interpretation using the holographic dictionary in appendix B.2.
As before, as the corrections to equations (4.13) and (4.15) are O(∂2), we can take δα to
be a slowly varying function of t and x (a linear function in Fourier space).

Finally, given the solution ψdis(r) in (4.35), we can explicitly invert the equations of
motion (4.13) and (4.15) to obtain the following dissipative solution for the tilded variables

ãdis
t = δĀt − δµ+ ∂t (λ−Atξt) +

A′
tΨ

2
√
B

+ At

2

∫ r

0
ψdis(r̄)

d

dr̄

(
C(r̄)2ϕ′(r̄)2

C ′(r̄)2

)
dr̄

−
∫ r

0
ψdis(r̄)

d

dr̄

(
1√

B(r̄)D(r̄)
d

dr̄

(√
B(r̄)D(r̄)C(r̄)At(r̄)

C ′(r̄)

))
dr̄,

h̃dis
tt = −2∂tξt +

D′Ψ
2D

√
B

− C2ϕ′2

C ′2 ψdis +
∫ r

0
ψdis(r̄)

d

dr̄

(
C(r̄)2ϕ′(r̄)2

C ′(r̄)2

)
dr̄,

h̃dis
+ =2∂xξx + C ′Ψ

C
√
B
, ϕ̃dis = ϕ′Ψ

2
√
B

− Cϕ′

C ′ ψdis,

(4.36)

where
Ψ(r) =

∫ r

0

√
B(r̄)C(r̄)

2Φ′(r̄)2

C ′(r̄)2 ψdis(r̄)dr̄, (4.37)

and we have labelled all integration constants using the holographic dictionary.

4.2.6 Equations of motion

We have now constructed the required solution to the equations of motion (4.13) and (4.15).
In order to obtain the near-equilibrium properties of the field theory we need to impose
two conditions on this solution. First that it satisfies the remaining 4 equations of mo-
tion (4.17): this ensures that the field theory obeys the local conservation equations for
energy, momentum and 0-form charge. Second that it is ingoing at the horizon of the
black hole: this will fix the hydrodynamic constitutive relations of the field theory and the
relaxation equation for the incoherent current.
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Conservation equations. We deal first with the remaining equations of motion (4.17). The
form of these equations is highly suggestive that these correspond to the Ward identities
for conservation of energy, momentum and 0-form charge, and this is indeed the case.
Substituting in the general solution derived above, these equations yield four r-independent
equations that are simply the linear perturbations of the local conservation equations

∂ν⟨Tµν⟩ = F̄µν⟨jν⟩, ∂µ⟨jµ⟩ = 0. (4.38)

Constitutive relations. Finally, we impose ingoing boundary conditions on our solution
at the black hole horizon: specifically that the fundamental perturbations are regular at
r = r0 in the ingoing coordinate system (v, x, y, r) where dv = dt−

√
B
Ddr. To impose this,

it is convenient to define the field theory fluid velocity as

δui ≡ ⟨δT ti⟩
ε+ p

. (4.39)

To obtain the near-horizon expansions of the fundamental perturbations from the tilded
ones, we must first specify the near-horizon behaviour of the pure gauge solutions. These
are

ζr(r → r0) =
1

4
√
πT (r0 − r)

(
Ψ(r0)−

∫ r0

0

(
δB√
B

+ δr0√
4πT (r0 − r)3/2

)
dr

− 2δr0√
4πTr0

)
+ . . . ,

(4.40)

and ζµ,Λ ∼ (r0 − r)2 as r → r0.
Having done this, there are two different types of conditions that arise from imposing

regularity in ingoing coordinates. The first come from removing the divergent ∼ (r0 − r)−1

terms in the near-horizon expansions of δgrr, δgri and δAr (in ingoing coordinates). These
fix the large gauge transformations in terms of the sources and expectation values of field
theory operators as follows

∂tλ = δµ− δĀt + . . . , ∂tξt =
δT

T
+ . . . ,

sT∂tξi = (ε+ p) δui − µ⟨δji⟩+ . . . ,
(4.41)

where the . . . indicate terms proportional to δα which will ultimately be subleading in the
derivative expansion and so are omitted here for conciseness.

The second type of conditions impose relations between field theory sources and ex-
pectation values. In order to write these compactly, it is helpful to first define the three
quantities

η = s

4π , ζ = s

4π

(
s

(
∂Φ0
∂s

)
ρ
+ ρ

(
∂Φ0
∂ρ

)
s

)2

, σ = s2T 2Z(Φ0)
(ε+ p)2 , (4.42)

which will ultimately be the three first order transport coefficients in the hydrodynamic
description of these states. Φ0 is defined in equation (2.4). η is the expression for the shear
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viscosity [129], ζ is the expression for the bulk viscosity [130, 131] and σ is the expression
for the ‘incoherent’ conductivity [127, 132]. It is also helpful to define the three timescales

τη =
∫ r0

0

η
√
B

D

1
C

− 1
4πT (r0 − r)

 dr, (4.43)

τζ =
∫ r0

0

 s

4π

(
ψinc(r0)
ψinc(r)

C(r0)Φ′(r0)C ′(r)
C(r)Φ′(r)C ′(r0)

)2
√
B

D

1
C

− 1
4πT (r0 − r)

 dr, (4.44)

τσ =
∫ r0

0

(
(ε+ p)2σ

ρ2
C

D

d

dr

( 1
sT + ρAt

)
− 1

4πT (r0 − r)

)
dr, (4.45)

which will correspond respectively to the relaxation times of the difference and sum of the
diagonal components of the stress tensor, and of the incoherent current.

With these definitions, we can examine the near-horizon expansions of our solutions
δgxx − δgyy, δgxy, ai and ϕ, which in the (t, x, y, r) coordinate system are (up to overall
proportionality constants)

δgxx − δgyy → (⟨δT xx⟩ − ⟨δT yy⟩)

− log
(
1− r

r0

)
4πT + τη

+ 2η∂xξx + . . . , (4.46)

δgxy → ⟨δT xy⟩

− log
(
1− r

r0

)
4πT + τσ

+ η∂xξy + . . . , (4.47)

ai →
(
⟨δji⟩ − ρδui

)− log
(
1− r

r0

)
4πT + τσ

+ (ε+ p)σ
sT

(
δĀi + ∂iλ+ µδui

)
+ . . . , (4.48)

and

ϕ→ δα

δΦ0,inc

− log
(
1− r

r0

)
4πT + τζ

+ ηδΦ0 + . . . , (4.49)

where
δΦ0,inc =

((
∂Φ0
∂s

)
ρ
+ ρ

s

(
∂Φ0
∂ρ

)
s

)
δs. (4.50)

These solutions will be regular in ingoing coordinates provided that the constant and
logarithmic terms in each expansion are related (up to terms of O(∂2)) by

(τη∂t + 1) (⟨δT xx⟩ − ⟨δT yy⟩) = −2η∂xδu
x + . . . ,

(τη∂t + 1) ⟨δT xy⟩ = −η∂xδu
y + . . . ,

(τζ∂t + 1) (⟨δT xx⟩+ ⟨δT yy⟩ − 2δp) = −2ζ∂xδu
x + . . . ,

(τσ∂t + 1)
(
⟨δji⟩ − ρδui

)
= −σ

(
∂iδµ− µ

T
∂iδT + ∂tδĀi − ∂iδĀt

)
+ . . . .

(4.51)

Equations (4.38) and (4.51) are a closed set of hydrodynamic equations governing the
evolution of the field theory’s energy-momentum tensor and 0-form U(1) current in response
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to an external electromagnetic field. To compare with the theory of relativistic, non-
conformal hydrodynamics we should express the (4.51) as constitutive relations: derivative
expansions for the expectation values. To do this, we must move the τ∂t terms on the
left hand side to the right hand side, where they produce O(∂2) corrections. Ignoring
such higher-derivative corrections, (4.51) agree exactly with the constitutive relations of
first order relativistic, non-conformal hydrodynamics [133] to linear order in perturbations,
completing the proof of non-conformal fluid-gravity duality to this order.

4.3 Theory of relaxed hydrodynamics

The calculations in this section, until now, apply to general non-conformal equilibrium
solutions of the action (2.1). We are now going to specialise to the states described in
section 2 that at low temperatures flow to scaling geometries near the horizon. We will
focus on the cases for which the 0-form charge density operator is irrelevant in the infrared.
We will show that in these cases first order hydrodynamics can be enhanced to a theory of
relaxed hydrodynamics that additionally accounts for the slow relaxation of the incoherent
current, and describe the resulting properties of these states.

As reviewed in section 2, in these cases the IR spacetimes have dynamical critical expo-
nent z = 1 and can be characterised by θ < 0, which controls the violation of hyperscaling
in the state, and the dimension ∆A < 0 of the irrelevant coupling induced by the 0-form
charge density in the IR theory. At low temperatures, θ controls the low temperature
scaling of both thermodynamic observables [34, 35]

ρ ∼ T 0, s ∼ T 2−θ, χρρ ∼ T 0, χss ∼ T 1−θ, χsρ ∼ T 2−θ, (4.52)

where χ denote the static susceptibilities of the charge density ρ and entropy density s.
Using equation (4.42), θ also governs the low temperature behaviour of the shear and bulk
viscosities

η ∼ T 2−θ, ζ ∼ T 2−θ. (4.53)

Although the coupling ∆A is irrelevant, it is crucial for the low energy physics as it controls
the low temperature scaling of the two transport coefficients appearing in the constitutive
equation (4.51) for the 0-form current [34, 35]

σ ∼ T 2−θ+2∆A , τσ ∼ T 2∆A−1. (4.54)

The irrelevance of the IR operator induced by the charge density ensures that the
relaxation timescale Tτσ ∼ T 2∆A is parametrically large at small temperatures. As we did
for the zero density cases, we can therefore enhance our hydrodynamic theory to incorporate
this slow relaxation, by considering a generalised derivative expansion in which we take
∂ ∼ T 1−2∆A ≪ T . Since generic O(∂2) corrections to the constitutive relations (4.51)
(including the τη and τζ terms) are expected to be suppressed in this limit, the resulting
theory of relaxed hydrodynamics is comprised of the local conservation equations (4.38),
the constitutive relations ⟨δT xx⟩ = δp+. . . and ⟨δT yy⟩ = δp+. . ., and an equation governing
the slow relaxation of ⟨δji⟩ − ρδui over long timescales τσ ≫ T−1

(τσ∂t + 1)
(
⟨δji⟩ − ρδui

)
= −σ

(
∂iδµ− µ

T
∂iδT + ∂tδĀi − ∂iδĀt

)
+ . . . , (4.55)

where . . . denote subleading terms in the expansion.
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The theory of relaxed hydrodynamics supports two different sets of collective modes
that transport energy. To describe these, it is convenient to define

δρinc = s2Tδ

(
ρ

s

)
, δjµ

inc = (ε+ p) ⟨δjµ⟩ − ρ⟨δT tµ⟩, (4.56)

where the incoherent current density δjµ
inc is the part of the 0-form current that does not

drag momentum, and the incoherent charge density δρinc is the corresponding density [127].
From (4.39), δT ti = (ε+ p)δui, equation (4.55) shows that it is the incoherent current that
relaxes slowly in these states. We also define

χρincρinc = T 2
(
s2χρρ − 2sρχρs + ρ2χss

)
, χJincJinc = (ε+ p)2σ

τσ
, (4.57)

where χρincρinc is the susceptibility of the incoherent charge [34, 35] and χJincJinc is the
susceptibility of the incoherent current after taking the limit τσ∂t ≫ 1. From the low
temperature scalings given above, χρincρinc ∼ χJincJinc ∼ T 3−θ.

The first set of collective modes are the usual gapless sound waves of charged hydrody-
namics, which are insensitive to the slow relaxation of the incoherent current. They have
dispersion relations

ω(k) = ±vsk + . . . , v−2
s = χ−1

ρincρincT
2(ε+ p)

(
χssχρρ − χ2

ρs

)
, (4.58)

where . . . denotes terms that are subleading in the expansion of relaxed hydrodynamics.
From the low temperature scalings given above, vs ∼ T 0. In figure 3 we show that
for k ≪ T the expression (4.58) agrees with the real part of the dispersion relation
obtained numerically in two examples. In this figure we also compare the imaginary
part of the dispersion relation with hydrodynamics in the following way. For cases where
conformal symmetry is spontaneously broken (J = 0), the incoherent sector decouples
from energy and momentum fluctuations [127], and so the leading dissipative corrections
to the dispersion relation (4.58) are captured by the usual hydrodynamic expression [133]
as shown in the left panel of figure 3. On the other hand, when conformal symmetry is
explicitly broken (J ̸= 0, ⟨OΦ⟩ ̸= 0) there is a small deviation from the hydrodynamic
prediction (shown on the right panel of figure 3) that can be attributed to the long lifetime
τσ. It is straightforward to check that τη is not parametrically large in the types of states
we are studying, by checking whether the integral (4.43) is dominated by the infrared part
of spacetime, [35]. We have not explicitly evaluated τζ (the integral in (4.44) is somewhat
more involved that those in (4.43) and (4.45)), but our numerical results in figure 3 give
evidence that τζ is not parametrically large either, as a large τζ would imply additional
long-lived modes in the spectrum compared to those we observe.

In contrast to this, the second set of collective modes are highly sensitive to the slow
relaxation of the incoherent current: their dispersion relations are solutions to the quadratic
equation

ω2 + iωτ−1
σ − v2

inck
2 = 0, v2

inc =
χJincJinc

χρincρinc
, (4.59)
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Figure 3. Comparison between the dispersion relations obtained numerically (points) and the
result (4.58) (lines) for states with d = 2, z = 1, θ = −1, ∆A = −1. On the left, we present the
results for a state with J = 0 and T/µ = 0.016 and on the right, the results for a state with J = 1
and T/µ = 0.015. For k ≪ T , the real part is parametrically larger than the imaginary part and
agrees very well with the expression in (4.58) in both cases. Details of the numerical calculations
can be found in appendix C.2.

which has the same form as the equation (3.12) found in the zero density case. At very
low frequencies ω, k ≪ τ−1

σ ≪ T , the two modes are diffusion of the incoherent charge (as
in ordinary relativistic hydrodynamics) with dispersion relation

ω(k) = −iDk2 + . . . , D = v2
incτσ, (4.60)

as well as the slow relaxation of the incoherent current with dispersion relation ω(k) =
−iτ−1

σ + . . .. From the low temperature scalings given above, the diffusivity D ∼ T 2∆A−1.
This is parametrically large compared to expectations from IR dimensional analysis, due
to its dependence on the irrelevant coupling [34, 35]. At ω, k ∼ τ−1

σ there is a crossover.
Beyond this (for τ−1

σ ≪ ω, k ≪ T ) the incoherent current is approximately conserved and
so the modes propagate coherently with dispersion relations

ω(k) = ±vinck −
i

2τ
−1
σ + . . . . (4.61)

From the low temperature scalings given above, vinc ∼ T 0. In fact, in the low temperature
limit this speed is a universal quantity given by

v2
inc =

c2
IR

d− θ
, (4.62)

where cIR is the IR speed of light (2.8). This verifies the conjecture of [34], where the
necessity of this crossover was motivated by causality considerations. In figure 4 we show
that the dispersion relations of the collective modes (obtained numerically) agree very well
with the solutions to the equation (4.59) described above when k ≪ T .
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Figure 4. Comparison between the dispersion relations obtained numerically (points) and the
expression (4.59) (lines) for states with d = 2, z = 1, θ = −1, ∆A = −1. On the left, we present
results for a state with J = 0 and T/µ = 0.016 and on the right, a state with J = 1 and T/µ = 0.015.
Details of the numerical calculations can be found in appendix C.2.

The theory of relaxed hydrodynamics can also be used to determine the thermoelectric
conductivities for ω ≪ T . Each is composed of two parts [127]

σJJ(ω) = ρ2

(ε+ p)
i

ω
+ 1

(ε+ p)2σinc(ω), σJQJ(ω) =
ρsT

(ε+ p)
i

ω
− µ

(ε+ p)2σinc(ω),

σJQJQ
(ω) = s2T 2

(ε+ p)
i

ω
+ µ2

(ε+ p)2σinc(ω), (4.63)

where J and JQ here denote the electric and heat currents respectively. The divergent i/ω
contribution is due to the overlap of these currents with the (conserved) momentum, while
the finite contribution from σinc(ω) is due to processes that do not drag momentum. The
latter contribution is sensitive to the slow relaxation of the incoherent current and has the
Drude-like form

σinc(ω) =
σdc

inc
1− iωτσ

, σdc
inc = χJincJincτσ. (4.64)

We emphasize that this Drude-like form has nothing to do with translational invariance
and the associated conserved momentum: it arises due to the overlap of the transport
currents with the long-lived incoherent current. The incoherent conductivity can be isolated
in a single transport measurement by measuring the open circuit thermal conductivity
κ = σinc/(Tρ2).

Using the temperature scalings above, the incoherent dc conductivity scales as σdc
inc ∼

T 2−θ+2∆A at low temperatures. This scaling is a result of a competition between two effects:
the long lifetime τσ of the incoherent current tends to produce a divergent conductivity,
while the small χJincJinc tends to produce a vanishing one. Which effect wins depends on
the precise values of d−θ and ∆A for the state. The temperature scaling of the dc electrical

– 44 –



J
H
E
P
1
2
(
2
0
2
3
)
0
4
0

conductivity is the same as that of σdc
inc and so — unlike the zero density cases of section 3

— it is not possible to determine whether the state supports an anomalously long-lived
mode simply from knowledge of its dc conductivity.

4.4 Comparison with superfluid hydrodynamics

For the zero density states, we described in section 3.2 how the relaxed hydrodynamics is
that of a phase-relaxed superfluid with frozen temperature and velocity fluctuations. For
non-zero density states, fluctuations of the 0-form charge couple to those of temperature
and velocity. In this section we will show that the relaxed hydrodynamics of the non-zero
density states is different than that of a phase-relaxed superfluid (including temperature
and velocity fluctuations), primarily because of the different ways in which the emergent
long-lived mode couples to temperature fluctuations.

Consider first the limit τ−1
σ ≪ ω, k ≪ T , in which the relaxation term on the right

hand side of equation (4.55) can be neglected. In this limit, there are two sets of collective
modes reminiscent of the sound and second sound modes of a superfluid. However, an
analysis of the thermoelectric conductivities in this limit brings to light the key difference
from a superfluid. While the supercurrent in a superfluid transports charge but not heat,
it is apparent from the definition (4.56) that the long-lived incoherent current transports
both charge and heat. In fact, at low temperatures it is the transport of the incoherent
current that dominates the thermal conductivity in our states (4.63).

This observation is a consequence of the fact that the emergent long-lived mode couples
to temperature perturbations differently in our non-zero density states than it does in a
superfluid. This discrepancy can be seen clearly by formulating the hydrodynamic theory
in this limit in the context of hydrodynamics of a higher-form symmetry. The equation for
the incoherent current (4.55) becomes

d ⋆K = −F̄ , (4.65)

after defining the two-form K via

(⋆K)t = δµ− µ

T
δT, (⋆K)i = (ε+ p)χ−1

JincJinc
δji

inc. (4.66)

Equation (4.65) is an anomalous 2-form conservation law where the anomaly is a mixed
anomaly with the 0-form U(1) symmetry, as F̄ = dĀ is the field strength of the exter-
nal source for the 1-form current. This equation, in additional to the local conservation
laws (4.38) of 0-form charge, energy and momentum are the equations of motion of the
higher-form formulation of relativistic superfluid hydrodynamics, including the tempera-
ture and velocity fluctuations [17]. However, the constitutive relation (4.66) for (⋆K)t has
an additional δT term not present in the superfluid case. In the higher-form formulation
of the hydrodynamic equations, it is this extra term that is responsible for the fact that
the emergent long-lived mode transports heat in addition to charge.

The result that (⋆K)t = δµ for small perturbations around a state with no normal or
superfluid velocity (i.e. with zero density of the 2-form charge) follows as a limit of a more
general constraint: that the local version of the second law of thermodynamics is valid for
states with an arbitrary density of 2-form charge [17]. This suggests that the complete
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non-zero density holographic theories in fact do not possess an emergent 2-form symmetry,
but that the anomalous conservation equation (4.65) is an artifact of the particular states
and limit that we are studying. We will return to this in the next subsection.

Nevertheless, we can interpret the properties of these particular states in terms of the
anomalous conservation equation (4.65). In the hydrodynamic limit under consideration
the temperature is always non-zero and thus the relaxation time τσ is always finite. As
in the zero density cases, this finite relaxation time corresponds to an explicit violation
of the conservation law (4.65) which has important effects at low energies ω ≲ τ−1: the
crossover from the propagating modes (4.58) to diffusion (4.60) and the broadening of
the incoherent contribution to the thermoelectric conductivities (4.63) into a Drude-like
form (4.64). The dc component of the incoherent conductivity in equation (4.64) can be
expressed as σdc

inc = χ−1
KKτσ where χKK = (ε+p)2χ−1

JincJinc
is the static susceptibility of (⋆K)i.

Phrased in this way, the competition in σdc
inc between the diverging τσ and vanishing χ−1

KK
at low temperatures is an example of the phenomenon of critical drag described in [60, 61].

Although the relaxed hydrodynamics of our non-zero density states are in general
different from those of a superfluid, there is a closer connection for cases where the equation
of state is ε = 2p. Due to the trace Ward identity (4.6), states in which the scalar
operator OΦ breaks the UV conformal symmetry spontaneously (J = 0, ⟨OΦ⟩ ̸= 0) will
automatically have this equation of state. For these cases, the variables {δρinc, δj

µ
inc} and

{δp, δuµ} decouple [127] with the former obeying the equations

∂tδρinc + ∂iδj
i
inc = 0, ∂tδj

i
inc +

χJincJinc

χρincρinc
∂iδρinc = −δj

i
inc
τσ

+ χJincJincδF̄
inc
it , (4.67)

where δF̄ inc
µν = (ε+ p)−1δF̄µν is the field strength of the external source for the incoherent

current density, in the absence of a source for momentum density. These equations have
the same structure as the corresponding equations (3.16) in the zero density case and
so the dynamics of incoherent charge mirror those of charge in a superfluid with frozen
temperature and velocity fluctuations.

4.5 Zero temperature dynamics

Thus far we have studied the non-zero density states only in the hydrodynamic limit
ω, k ≪ T , where they exhibit a novel propagating mode (4.61) associated to an approximate
higher-form conservation equation. We will now go beyond the hydrodynamic regime and
explore the fate of this mode at T = 0. Unlike in the zero density case, we will show that
the propagating mode (4.61) exists only within the hydrodynamic regime.

We access the properties of the T = 0 collective modes using numerical computations
(see appendix C for more details). More precisely, we determine the collective modes
within the regime τ−1

σ ≪ T ≪ ω, k ≪ µ. In the limit T/µ → 0, we expect that the
modes in this regime connect smoothly onto the low energy modes of the T = 0 state.
Although the T/µ → 0 limit of the hydrodynamic dispersion relation (4.61) is a gapless
mode propagating with speed vinc, this result only strictly applies in a different limit:
τ−1

σ ≪ ω, k ≪ T ≪ µ. To determine whether the propagating mode survives at T = 0 we
therefore need to examine its fate as the hydrodynamic regime is exited at ω, k ∼ T .
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Figure 5. Comparison of the dispersion relations obtained numerically (dots) to the hydrodynamic
result (4.61) (lines) for two examples of non-zero density states with d = 2, z = 1, θ = −1, and ∆A =
−1. On the left, we present results for a state with J = 0 at T/µ = 0.016 and on the right, a state
with J = 1 at T/µ = 0.015. The deviation between the numerical results and the hydrodynamic
approximation when k ≳ T signals that the regime of validity of the hydrodynamic result does not
extend to T ≪ k ≪ µ. Details of the numerical calculations can be found in appendix C.2.

In figure 5 we show the dispersion relations across these two regimes, for two examples
of non-zero density states. In both cases there is a qualitative change in the properties of
the propagating collective mode at k ∼ T , signalling that the T = 0 state does not support
a gapless mode with speed vinc. These plots can be contrasted with the corresponding plots
for the zero density case (figure 2), where the propagating mode does survive in the T = 0
state.

Although we do not yet have an explicit description of the dynamics of the non-zero
density states in terms of Goldstone-like fields (analogous to the zero density case described
in sections 3.3 to 3.5), we can anticipate qualitatively what its properties will be. At
non-zero T there will be a Goldstone-like field (a bulk Wilson line-like object) interacting
with horizon degrees of freedom, and for energies τ−1

σ ≪ ω ≪ T this interaction will be
weak leading to the new long-lived propagating mode. However, at ω ∼ T the interaction
with the horizon degrees of freedom will become important and change the nature of the
mode. At T = 0, a description in terms of the Goldstone-like field interacting with the
infrared quantum critical degrees of freedom represented by the scaling spacetime (2.6)
near the horizon will be dominated by the latter degrees of freedom, with no trace of the
propagating mode from the Goldstone-like field remaining. For motivation for this, notice
that the Goldstone-like terms in the action at zero density (3.44) are proportional to
χρρ ∼ T 0 and χJJ ∼ T 0. At non-zero density we expect the analogous role to be played by
χρincρinc and χJincJinc . These both vanish as T → 0 and so the zero temperature dynamics
should be dominated by the infrared quantum critical degrees of freedom.

Based on this reasoning, we expect that the T = 0 response functions of non-zero
density states should exhibit branch points at ω = ±cIRk that are characteristic of the
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Figure 6. The formation of a branch cut as T → 0 is demonstrated by the motion of four
long-lived collective modes at fixed k/µ = 1 as a function of temperature from T/µ = 0.228 to
T/µ = 0.004 in a phase with z = 1, θ = −1, ∆A = −5/2, and J = 0. As shown on the left,
the modes coalesce as T → 0 at ω/µ = cIR(k/µ). On the right, we demonstrate that each mode
has a form ωi/µ = ±cIR(k/µ) + ±γR

i (T/µ)βR
i − iγI

i (T/µ)βI
i for some positive powers βR

i , β
I
i and

positive coefficients γR
i , γ

I
i which are functions of k/µ. For numerical reasons we consider only a

finite number of modes, but because the γR
i and γI

i are all distinct, our results suggest that were we
to include an infinite number of modes they would form branch cuts as T → 0 with branch points
at ω = ±cIRk. Details of the numerical calculations can be found in appendix C.2.

infrared quantum critical degrees of freedom (2.6) with z = 1 (for example, consider the
result (A.17) or the case of perturbations of the energy-momentum tensor in Schwarzschild-
AdS [134]). In figure 6 we show how the longest-lived collective modes evolve as the
temperature is lowered: they migrate towards the real axis and bunch up towards the
points ω = ±cIRk, as expected for the finite temperature resolution of a zero temperature
branch cut [70, 71, 135, 136]. We leave the detailed analytic construction of the Goldstone-
like theory and its coupling to the quantum critical degrees of freedom to future work.
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A Details of zero density calculations

A.1 Bound on propagating velocity

In this appendix, we show that the speed v of the propagating mode for the states in sec-
tion 3.1 never exceeds the speed of light. For cases with z = 1 we prove a lower bound on the
speed that ensures that the propagating mode at zero temperature in these states is stable.

In the low T limit where the relaxed hydrodynamic theory of section 3.2 applies, v2 =
χJJ/χρρ is T -independent. Using the expressions for these quantities given in section 3.1
gives

v2(T → 0) =
∫ r0

0
D
C

√
B
D

dr
Cd/2−1Z∫ r0

0

√
B
D

dr
Cd/2−1Z

+ . . . , (A.1)

where . . . denotes terms that vanish as T → 0.
To bound the speed, we examine D/C of the black hole solution. Using the Einstein

equation
d

dr

(
D

C

)
= −

√
BD(sT + ρAt)

C1+d/2 , (A.2)

following from the action (2.1), this can be expressed as

D(r)
C(r) = constant −

∫ r (sT + ρAt(r̄))
√
B(r̄)D(r̄)

C(r̄)1+d/2 dr̄. (A.3)

We assume that B, C, D are positive between the horizon and the boundary, as is sT+ρAt.
This last condition can be understood as follows. At low T the momentum susceptibility
is sT + ρAt(r = 0) → ρAt(r = 0) and so we require ρAt(r = 0) > 0 for stability. Since we
also must have At(r = r0) = 0 then provided At has no zeroes between the horizon and
the boundary, we will also have sT + ρAt(r) > 0.

We can now use positivity of the integral in (A.3) to bound D/C and therefore v2.
The most general bound is to fix the integration constant by using D/C → 1 as r → 0:

D(r)
C(r) = 1−

∫ r

0

(sT + ρAt(r̄))
√
B(r̄)D(r̄)

C(r̄)1+d/2 dr̄ ≤ 1, (A.4)

where the inequality follows because the integrand is positive. Substituting this into equa-
tion (A.1) yields the upper bound

v2(T → 0) ≤ 1. (A.5)
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For states that flow to IR fixed points with z = 1, we can also obtain a non-trivial
lower bound. At zero temperature, the metric (2.6) has D/C → c2

IR as r → ∞. Therefore,
from equation (A.3)

D(r)
C(r) = c2

IR +
∫ ∞

r

ρAt(r̄)
√
B(r̄)D(r̄)

C(r̄)1+d/2 dr̄ ≥ c2
IR, z = 1, (A.6)

where the integrand is positive between the horizon and boundary given the assumptions
above. Substituting this into the equation (A.1) yields a lower bound on the speed

c2
IR ≤ v2(T = 0), z = 1. (A.7)

This inequality ensures that imaginary term in the dispersion relation (3.57) is always
negative and therefore the corresponding mode is stable.

A.2 The IR Green’s function

In this section we will show how to compute the T = 0 IR Green’s function GIR(ω, k) used
in section 3.5, which controls the conductivity and the attenuation of the propagating mode
at zero temperature. Using the expression (3.47) for the IR operator Ox, we have that

GIR(ω, k) =
Z0L

d−2
x Lt

L̃
(∆χ + 2(z − 1)) a

(1)
x (ω, k)
a

(0)
x (ω, k)

∣∣∣∣∣
a

(0)
t =0

, (A.8)

where aµ are the coefficients in the expansion (3.37) of the ingoing solutions to the
equation of motion in the IR region.

Since the IR spacetime has a scaling symmetry, it is convenient to work with the
rescaled radial coordinate R̃, frequency ω̃ and wavenumber k̃ defined by

R̃ ≡ ω̃1/z
(
R

L

)
, ω̃ ≡ L̃ω

Lt
, k̃ ≡ L̃k

Lx
. (A.9)

As explained in the main text, when z > 1 it is GIR(ω, 0) that controls the leading term in
the attenuation of the T = 0 propagating mode. For the case k = 0, the field Ax has the
equation of motion

d

dR̃

(
R̃1−(∆χ+2(z−1))dAx

dR̃

)
+ R̃1−∆χAx = 0, (A.10)

whose ingoing solution is

Ax ∝ R̃
1
z

(∆χ+2(z−1))H∆χ+2(z−1)
2z

(
R̃z

z

)
, (A.11)

where H is the Hankel function of the first kind. By expanding this function as R̃→ 0, we
then use equation (A.8) to obtain the IR Green’s function

GIR(ω, k = 0) = Ld−2
x LtZ0

L̃
2πiz

(
ω̃

2z

)∆χ+2(z−1)
z 1 + i cot

(
π
2z (∆χ + 2(z − 1))

)
Γ
(

∆χ+2(z−1)
2z

)2 . (A.12)
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For the purposes of extracting the dispersion relation of the propagating mode from (3.51),
it is more convenient to work with the inverse of the IR Green’s function. Using Gamma
function identities, this may be written as

G−1
IR (ω, k = 0) = − iπ

Ld−2
x Z0

1
ω

(
ω̃

2z

)−∆χ+z−2
z 1− i cot

(
π
2z (∆χ + 2(z − 1))

)
Γ
(

2−∆χ

2z

)2 , (A.13)

which gives the dispersion relation (3.56) quoted in the main text. Similarly, the coefficient
h(0)−1 that appears in the correction to the zero temperature conductivity (3.53) can be
written

h(0)−1 = − iπ

Ld−2
x Z0

(
L̃

2zLt

)−∆χ+z−2
z 1− i cot

(
π
2z (∆χ + 2(z − 1))

)
Γ
(

2−∆χ

2z

)2 . (A.14)

To determine the dispersion relation of the mode when z = 1, we require the full IR
Green’s function GIR(ω, k) rather than just its k = 0 limit. In order to determine this it is
convenient to work in with the gauge-invariant bulk field E(R,ω, k) ≡ ωax + kat. Writing
the R→ 0 expansion of the ingoing solutions for this field as E → E (0)+E(1)(R/L)∆χ + . . .,
the IR Green’s function for z = 1 can then be expressed as

GIR(ω, k) =
Ld−2

x LtZ0∆χ

L̃

ω2

ω2 − c2
IRk

2
E(1)

E(0) . (A.15)

The field E has the equation of motion

d

dR̄

(
R̄1−∆χ

dE
dR̄

)
+ R̄1−∆χE = 0, (A.16)

where we have defined a new rescaled radial coordinate by R̄ ≡
√
ω̃2 − k̃2(R/L). The

ingoing solution to this equation is E ∝ H∆χ/2(R̄)R̄∆χ/2 where H is again the Hankel
function of the first kind. Expanding this near the boundary and then substituting into
the expression (A.15) gives the result

GIR(ω, k) =
Ld−2

x Z0L̃

Lt

(
ω̃2 − k̃2

)∆χ
2 −1

ω2
iπ
(
1 + i cot

(
π∆χ

2

))
2∆χ−1Γ

(
∆χ

2

)2 . (A.17)

Again, for the purposes of obtaining the dispersion relation of the propagating mode, it
is more convenient to work with the inverse of the IR Green’s function. Using Gamma
function identities this can be expressed as

G−1
IR (ω, k) = − i

ω2
Lt

L̃Z0L
d−2
x

(
ω̃2 − k̃2

4

)1−∆χ
2 2π

Γ
(
1− ∆χ

2

)2

(
1− i cot

(
π∆χ

2

))
. (A.18)

Substituting this into equation (3.51) and solving for the leading real and imaginary parts
of the dispersion relation at small wavenumbers yields the result (3.57) quoted in the main
text.

– 51 –



J
H
E
P
1
2
(
2
0
2
3
)
0
4
0

B Details of non-zero density calculations

B.1 Linear perturbation equations

There are 15 field equations for the tilded variables defined in equation (4.10) in the main
text. To obtain the theory of relaxed hydrodynamics, we will solve these equations in a
derivative expansion. To the order that we work, we can neglect terms of O(∂2) in the
equations of motion. To this order, it is tedious but straightforward to verify that not all
15 field equations are independent: the equation of motion arising from varying the scalar
field is automatically satisfied provided the other 14 equations are. We will therefore not
need to explicitly consider it. The remaining 14 equations can be split into two sets. Up
to terms of O(∂2), the first set are the 10 equations of motion

0= d

dr

C
√
D

B

√D

C

d

dr

(
h̃+√
D/C

)
+Φ′ϕ̃

+At

(
CZ√
BD

(
ã′t−

1
2A

′
t(h̃tt− h̃+)

)
+A′

tŻ

Z
ϕ̃

) ,
0= d

dr

C
√
D

B

(
h̃′tt+

1
2 h̃

′
++Φ′ϕ̃

)
− 1
2(sT +ρAt)h̃tt+ρãt

 ,
0= d

dr

√D3

B

d

dr

(
h̃it

D/C

)
+At

√
D

B
Z

(
ã′i+

A′
t

D/C
h̃it

) ,
0= d

dr

C
√
D

B
h̃′−

 ,
0= d

dr

C
√
D

B
h̃′xy

 , (B.1)

0= d

dr

[
CZ√
BD

(
ã′t−

1
2A

′
t(h̃tt− h̃+)

)
+A′

tŻ

Z
ϕ̃

]
,

0= d

dr

√D

B
Z

(
ã′i+

A′
t

(D/C) h̃it

) ,
0= C ′

C

(
h̃′tt+

1
2 h̃

′
++Φ′ϕ̃

)
+ D′

2D
(
h̃′++Φ′ϕ̃

)
+ ZA′

t

D

(
ã′t−

A′
t

2 h̃tt+
ŻA′

t

Z
ϕ̃

)

+2

√
D

C

d

dr

(
C ′

√
BCD

)
d

dr

(√
Bϕ̃

Φ′

)
,

where primes denote derivatives with respect to r and dots denote derivatives with respect
to Φ. These are all O(∂0) at leading order and in terms of the alternative gauge-invariant
perturbation variables (4.12) become the radial conservation equations (4.13) and the trace
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Ward identity (4.15). Up to terms of O(∂2), the second set are the 4 equations of motion

0 = ∂t

√D

C

d

dr

(
h̃+√
D/C

)
+Φ′ϕ̃

− ∂x

[
D

C

d

dr

(
h̃xt

D/C

)]
,

0 = ∂t

[
h̃′xt +

ZA′
t

C
ãx

]
+ D

C
∂x

 1√
D/C

d

dr

√D

C
h̃tt

+ 1
2 h̃

′
+ +Φ′ϕ̃− ZA′

t

D
ãt −

1
2 h̃

′
−

 ,
0 = ∂t

[
h̃′yt +

ZA′
t

C
ãy

]
− ∂x

[
D

C
h̃′xy

]
, (B.2)

0 = ∂t

[
ã′t +

A′
t

2
(
h̃+ − h̃tt

)
+ ŻA′

t

Z
ϕ̃

]
− ∂x

[
D

C
ã′x +A′

th̃xt

]
.

These are all O(∂) at leading order. In terms of the alternative variables (4.12) these
become the Ward identities (4.17) for the local conservation of energy, momentum and
0-form U(1) charge.

B.2 Holographic dictionary for linear perturbations

To obtain the near-equilibrium field theory properties captured by the perturbed black hole
solution constructed in section 4. we use the holographic dictionary described in [121]. For
our solution, perturbations of the field theory metric ηµν and of the scalar source J vanish,
while there is a non-zero external U(1) potential δĀµ. The perturbations in the expectation
values of the energy momentum tensor Tµν and U(1) current density jµ operators around
their equilibrium values (4.5) are related to the r → 0 expansions of the gravitational
solutions in Fefferman-Graham coordinates by

htt → −1
3
(
⟨δT tt⟩+ J⟨δOϕ⟩

)
r3 + . . . , hit → −1

3⟨δT
ti⟩r3 + . . . ,

hxx → 1
3 (⟨δT xx⟩ − J⟨δOϕ⟩) r3 + . . . , hyy → 1

3 (⟨δT yy⟩ − J⟨δOϕ⟩) r3 + . . . ,

hxy → 1
3⟨δT

xy⟩r3 + . . . , ϕ→ ⟨δOϕ⟩r2 + . . . ,

at → δĀt − ⟨δjt⟩r + . . . , ai → δĀi + ⟨δji⟩r + . . . ,

(B.3)

where we have neglected terms of O(∂2). All perturbations are functions of the spacetime
coordinates (t, x).

C Numerical calculations

In this appendix we give further details on how the numerical results in the main text were
calculated. The black hole spacetimes were obtained by solving the Einstein equations using
pseudospectral methods over a Chebyshev grid [137]. To obtain sufficiently accurate results
for the perturbations, it was often necessary to go beyond machine precision (which is
efficiently performed within Mathematica). Grid sizes varied, though a grid size of N = 200
points was typically sufficient for our desired accuracy (except for the low temperature
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results in figure 6, where a grid size of N = 700 points was used). We used the potentials

V (Φ) = 6 cosh
( Φ√

3

)
, Z(Φ) = cosh

(
aϕΦ√

3

)
, (C.1)

where aϕ is a constant. As Φ → 0, V (Φ → 0) → 6 + Φ2 + . . . implying that the scalar
field is dual to an operator with UV dimension ∆Φ = 2. If aϕ ≥ 5, the solution will flow
in the IR to a spacetime with z = 1, θ = −1, whereas for aϕ < 5, the solution flows to a
spacetime with z > 1, θ < −1.

We used a metric ansatz of the form

ds2 = 1
z2

−χ(z)2f(z)
(
1− z

z0

)
dt2 + dz2

f(z)
(
1− z

z0

) + χ(z)2(dx2 + dy2)

 , (C.2)

with z the radial coordinate chosen so that the UV boundary is at z = 0 and the horizon
at z = z0. The UV conditions imposed were

f(0) = 1, χ(0) = 1, Φ′(0) = J, At(0) = µ, (C.3)

while at the horizon we imposed regularity of the metric and Φ as well as At(1) = 0.
We then moved to a dimensionless radial coordinate z = z0y so that our grid was

defined over the range y ∈ [0, 1]. z0 still appears in the equations of motion and in the
formulae for the thermodynamic functions, for instance the temperature

T = χf

4πz0

∣∣∣∣
y=1

. (C.4)

This expression was used to move back and forth from the fixed (µ, z0) ensemble and
the fixed (µ, T ) ensemble. Thermodynamic derivatives, such as χρρ, χρs, and χss were
calculated by discretizing µ and z0 over Chebyshev grids and using the appropriate pseu-
dospectral derivative matrices.

C.1 Zero density cases

As explained in the main text, zero density refers to states having zero density of an
additional 0-form U(1) charge, although they have a non-zero density of the original 0-form
U(1) charge which supports the background and allows for an IR scaling region. The black
hole spacetimes were obtained as explained just above (see also [35, 48–50, 53, 102, 103]),
while the dynamics we are interested in is that of an additional probe Maxwell field in
these spacetimes. We took the gauge coupling of the additional Maxwell field (labelled Bµ

in this appendix) to be of the form

ZB(Φ) = cosh
(
bΦΦ√

3

)
, (C.5)

so that in the scaling region in the IR

ZB → Z0

(
R

L

)d−θ−z+2 θ
d
−∆χ

. (C.6)

The value of ∆χ was then tuned by changing the value of bΦ.
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The collective excitations of the 0-form U(1) density of this additional charge corre-
spond to quasinormal modes of the probe Maxwell field and can be efficiently found by
using gauge-invariant variables [115]. After Fourier transforming

Bµ = bµ(z)e−iωt+ikx, (C.7)

we can form the gauge-invariant field Z0 = kbt + ωbx. The quasinormal mode boundary
conditions appropriate for this field are that it vanishes at the UV boundary and is ingoing
at the black hole horizon. Using these boundary conditions, we solved for the frequencies of
the quasinormal modes as a generalised eigenvalue problem over the Chebyshev grid [137].
For figure 6 this method was too time intensive at the grid size necessary for accurate low
temperature results, so we instead promoted ω(k) to a function of the radial coordinate
and used relaxation methods to simultaneously solve for the quasinormal modes and their
frequencies.

C.2 Finite density cases

The background spacetimes at non-zero density were obtained exactly as for the zero
density case explained above. However, in these cases the gauge field fluctuations couple to
those of the other fields. Nevertheless, the numerical method for obtaining the quasinormal
mode spectrum corresponding to collective excitations of the 0-form U(1) charge density
was identical. After Fourier transforming (with frequency ω, and wavenumber k in the
x-direction), we define a set of gauge-invariant perturbations

Z1 = kat + ωax + kρhyy

√
DB

ZC ′ ,

Z2 = −k2D

C
htt + 2ωkhtx + ω2hxx +

(
k2D

′

C ′ − ω2
)
hyy,

Z3 = ϕ− CΦ′

C ′ hyy,

(C.8)

where a prime means a derivative with respect to the radial coordinate of the metric. The
equations of motion for these fields are a set of three coupled second order differential
equations. These are easily obtained but their explicit form is uninformative and very
lengthy and so we do not present them here. The appropriate quasinormal mode boundary
conditions are then Zi(0) = 0 and ingoing boundary conditions on Zi at the horizon.
Using these boundary conditions, we numerically solved for the quasinormal modes as a
generalised eigenvalue problem for the frequencies ω.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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