Semi-supervised monitoring of gait for fall risk estimation using smartphones - Archive ouverte HAL Access content directly
Conference Papers Year : 2022

Semi-supervised monitoring of gait for fall risk estimation using smartphones

Abstract

In this study, we aim at using a smartphone to calculate relevant falling risk features from the norm of signals collected during a semi-supervised walkingtest. We test whether these features are able to differentiate elderly fallers from non-fallers. The objective is to check whether a smartphone and semi-supervised test can give insights on falling risk.
Fichier principal
Vignette du fichier
ris00002100.pdf (93.98 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-03862312 , version 1 (21-11-2022)

Identifiers

  • HAL Id : hal-03862312 , version 1

Cite

Nahime Al Abiad, E Houdry, C El Khoury, Valérie Renaudin, Thomas Robert. Semi-supervised monitoring of gait for fall risk estimation using smartphones. SB 2022, 47eme Congrès de la Société de Biomécanique, Oct 2022, Monastir, Tunisia. pp S4-S5. ⟨hal-03862312⟩
68 View
38 Download

Share

Gmail Facebook X LinkedIn More