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The phase transition to turbulence in spatially extended shear flows

Directed percolation(DP) has recently emerged as a possible solution to the century old puzzle surrounding the transition to turbulence. Multiple model studies reported DP exponents, however experimental evidence is limited since the largest possible observation times are orders of magnitude shorter than the flows' characteristic time scales. An exception is cylindrical Couette flow where the limit is not temporal but rather the realizable system size. We present experiments in a Couette setup of unprecedented azimuthal and axial aspect ratios. Approaching the critical point to within less than 0.1% we determine five critical exponents, all of which are in excellent agreement with the 2+1D DP-universality class. The complex dynamics encountered at the onset of turbulence can hence be fully rationalized within the framework of statistical mechanics.

With increasing velocity basic fluid flows undergo a sudden transition from ordered laminar motion to turbulence. Even for the geometrically simplest cases such as pipe, Couette and channel flow standard stability theory can neither explain the nature of the transition nor predict its occurrence. To make matters worse, transitional flows erratically switch between perfectly laminar and highly chaotic phases resulting in fluctuation levels that are substantially larger than those encountered in fully turbulent flows at much higher velocities. Despite this apparent complexity, statistical mechanics offers a surprisingly simple explanation for this phenomenon. Macroscopic features of the dynamics bear close resemblance to the universality class of directed percolation [1], the probably most basic phase transition outside of thermal equilibrium.

Directed percolation encompasses a large number of phenomena, including simple epidemic models, fluid flow through porous media and forest fires [1]. A common feature of all these problems is the competition between an active (e.g. infected) and an absorbing (e.g. susceptible) state governed by a control parameter. Assuming the perspective of turbulence and its eventual decay encountered for decreasing flow speeds, it becomes apparent that the resulting laminar flow qualifies as an absorbing state. Being stable to infinitesimal perturbations, laminar motion persists and the active state, turbulence, cannot arise spontaneously. Based on this analogy Pomeau [2] suggested that the propagation of laminar turbulent fronts may be determined by the critical exponents of directed percolation. This proposition was initially studied for simpler models [3][4][5][6] exhibiting spatio-temporal chaos, however it could not be confirmed for the onset of turbulence in actual fluid flows. In contrast to the ex-pected continuous transition, initial experiments as well as direct numerical simulations of Couette flow reported a discontinuous transition [7,8]. A modified analogy to directed percolation has emerged more recently and resulted from studies of the large scale localized patches that turbulence tends to organize in, close to the critical point. In pipe flow these so called 'puffs' have a finite lifetime and their decay is memoryless [9,10]. Prior to decay puffs can seed new puffs by nearest neighbor interactions, a process called puff splitting [11], which is equally memoryless [12]. These studies suggest that an individual percolation site is not a turbulent eddy but a macroscopic puff and hence a structure that is more than an order of magnitude larger than sites were previously expected to be. A further difference to the original DP analogy is that this transition does not account for the eventual emergence of fully turbulent flow, which only results from a distinct transition at higher Re [13,14]. Puffs consist of a short turbulent upstream part (5D in length) and an elongated quiescent leading edge (20D) across which the profile recovers from a plug to a more parabolic shape. This profile recovery sets the minimum puff spacing [15,16]. Consequently the analogous state to a fully occupied lattice in DP is a dense pattern of distinct puffs, not fully turbulent flow. The dynamics of the process are governed by the decay and splitting rates of puffs and in the proximity of the critical point on average a puff travels 10 7 diameters downstream before either event occurs [12]. While various numerical studies determined directed percolation exponents for models of varying complexity(including direct numerical simulations) [14,[17][18][19][20][21][22], measurements in actual fluid flows have to resolve both, the large spatial and temporal scales.

So far this has only been possible in an experimental setting where like in pipe flow the dynamics of turbulent sites is confined to a single spatial dimension [23]. The circular Couette geometry chosen in that study and the resulting periodic boundary conditions allowed to observe puff like turbulent structures for sufficiently large times (order of 10 6 advective units, note that at the critical point of Couette flow the decay and splitting times are about two decades smaller than those in pipes [24]). In this case indeed a continuous transition was reported with exponents closely matching those of directed percolation in 1+1 dimensions. The purpose of the present study is to establish if the DP analogy observed for flows extended in one dimension, carries over to planar flows where turbulence arranges in stripe patterns that proliferate in two dimensions. While for the Waleffe model the onset of sustained turbulent stripes has been shown to closely agree with the 2+1D DP universality class [20], experimental evidence is missing.

At odds with the large scales (see Fig. 1b for a comparison of the temporal and spatial scales) required for the investigation of the transition type described above, a recent experimental study of channel flow [25] reported a fundamentally different DP analogy. In that case the inlet was forced to be fully turbulent and the flow was investigated in a comparably small experimental domain (see vertical dimension of red square in Fig. 1b) and for short observation times (see horizontal extend of red square compared to the three orders of magnitude larger stripe splitting times [26], red dashed line). However in this case the eventual flow never settled to the large scale stripe patterns that have been reported in other studies of channel flow [27][28][29][30]. Moreover recent numerical and experimental studies of channel flow [28][29][30][31] could not confirm the phase transition point suggested by [25]. Instead in these more recent studies turbulent stripes were observed to persist to significantly lower Reynolds numbers, suggesting that in [25] flows may have not reached the eventual statistical steady state and that the observed dynamics were transient, which would also explain the difference in the structures observed. It is also noteworthy that [25] obtained nonzero turbulent fractions below what they suggested as a critical point. While the authors attributed the none vanishing turbulent fraction to finite size effects, a finite system size classically has the opposite effect and causes turbulent fractions to already reach zero (i.e. a discontinuity) slightly above critical, provided that observation times are sufficient.

In the present investigation of cylindrical Couette flow the periodic boundary conditions ensure that flow patterns can be investigated for arbitrarily long times. To ensure that the results are not affected by finite size effects [32,33], a very small gap size (2h) had to be chosen. In contrast to [23] our system is not only extended in the azimuthal direction but equally in the spanwise (or axial) direction and hence flow patterns are expected to be two dimensional and consist of stripes and not of puffs. Given that the minimum spacing between turbulent stripes in Couette flow is approximately 70 h, aspect ratios in excess of thousand h are required to accommodate flow patterns comprising sufficient stripe numbers (i.e. a sufficient number of sites). The experiment consists of a pair of concentric, high precision cylinders; an outer glass cylinder (with an inner diameter of 150 mm) and an inner (hollow) stainless steel cylinder (with an outer diameter of 149.52mm), resulting in a gap size of 2h = 240µm (Fig. 1). Given the azimuthal circumference C = 471.225mm and the cylinder length of H = 180mm the azimuthal (C/h) and axial (H/h) aspect ratios are 3927 and 1500 respectively. While the outer cylinder is held in place by air bearings (constraining it in the azimuthal and the axial direction), the inner one is held by a hollow shaft that allows to cir- culate temperature controlled fluid through the cylinder core and hence to temperature control the experiment (with a precision of 0.02K). The gap between the two cylinders is filled with ethanol (99%) and in addition a small amount (mass concentration C m ≈ 5 • 10 -4 ) of micron sized aluminum flakes (Eckart PCR1100) is added to the fluid to visualize the flow patterns. The latter were recorded using two line cameras (Basler spL 4096) (see also [23] and supplemental materials for the azimuthal reconstruction from a time series). The flow is driven by the rotation of the outer cylinder with angular velocities ranging from 1000 RPM to 1300 RPM. The gap uniformity during outer cylinder rotation (i.e. relative variation around the mean value) has been measured to be better than ±6µm and the eccentricity between the inner and the outer cylinder is less than 5µm, as described in detail in the supplemental materials. The control parameter, the Reynolds number (Re = Ω o R o h / 2ν, where Ω o is the angular velocity, R o the radius of the outer cylinder and ν the fluid's kinematic viscosity) could be controlled to better than ∆Re = ±0.5.
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Unless perturbed the flow remains laminar up to

Reynolds numbers exceeding 400 confirming the concentricity and overall high accuracy of the set up. It is noted that in early prototypes of the experiment, misalignments of the cylinders had been found to trigger turbulence at significantly lower Re. In order to determine the critical point, where turbulence first becomes sustained, the laminar flow must be perturbed initially. In our case this was achieved by a sudden increase to a higher Reynolds num- ber Re ≈ 520) followed by a quench to the lower target Reynolds number. Here the flow would settle to a state of spatio-temporal intermittency which was then left to stabilize for 10 7 advective time units (see also Fig. S5) to approach its statistical steady state. Subsequently image time series were recorded for at minimum 10 7 (closer to critical for up to 4•10 7 ) advective time units (see Fig. 1b). In accordance with the above suggested DP analogy and as confirmed experimentally for pipe flow [34], the temporal transients (blue data set in Fig. S5) are hence substantially larger than the splitting and decay times of single stripes (blue dashed line in Fig. S5). Towards the higher end of the investigated Reynolds number interval the measurement volume is densely packed with turbulent stripes (see Fig. 2c, Re = 349) and the stripe spacing of the order of λ ≈ 70h is the smallest spacing stripes can assume [16,35]. In the DP context λ therefore corresponds to the size of a single site and is the natural length scale of the problem (see also Fig. S4 and the discussion in the SM). With decreasing Reynolds number the density of stripes and hence the turbulent fraction TF, which is the order parameter, decrease (Figures 2c to a). As shown in Fig. 3a TF decreases continuously as the critical point is approached (TF is shown as a function of the reduced Reynolds number ǫ = (Re -Re c )/Re c ).

ξ θ ⊥ ∼ ǫ -ν θ ⊥ with ν θ ⊥ = 0.79; panel (c): ξ z ⊥ ∼ ǫ -ν z ⊥ with ν z ⊥ = 0.
More precisely TF is found to scale with a power law, i.e. T F ∼ ǫ β . The best fit (red dashed line in Fig. 3a) results in a value of Re c = 330.0 ± 0.5, β = 0.59 ± 0.03. This experimentally obtained value of β is in excellent agreement with the corresponding critical exponent of the directed percolation universality class in two spatial dimensions (2+1D DP), which is β DP = 0.583, (shown by the black line in Fig. 3a). In addition to the power law scaling of TF, directed percolation is characterized by distinct scaling relations for the correlation length and correlation time in the vicinity of the critical point. Hence the corresponding two correlation exponents establish if the transition falls into this universality class. To test this we next investigated the sizes of the laminar gaps along the azimuthal direction N (l θ ) in the vicinity of the critical point. As shown in Fig. 3b the gap size distribution also follows a power law and the flow is hence scale invariant [24]. Finally in Fig. 3c we plot the duration of the laminar gaps in time N (t) and again a power law is obtained. The corresponding critical exponents for the spatial and temporal gap distributions (best fits are given by the red dashed lines) are found to be µ θ ⊥ = 1.22 ± 0.02 and µ = 1.58 ± 0.03, while the values for directed percolation (black lines in the respective figure panels) are µ DP ⊥ = 1.204 and µ DP = 1.549 and hence the values are in close agreement.

While these three exponents provide sufficient evidence that the transition to turbulence belongs to the 2+1D DP universality class, additional exponents can be obtained in separate experiments and hence allow an independent confirmation. By considering the laminar gap size distributions at various distances from the critical point the corresponding characteristic length scale has been determined as a function of the control parameter (see Fig. 4 and supplemental materials). This procedure has been carried out separately for the gap spacings in the azimuthal and axial directions and for the gap durations (temporal gaps). In DP the corresponding correlation length and time diverge with characteristic power laws (black lines in Fig. 4) as the critical point is approached. The experimental data for Couette flow (blue symbols in Fig. 4) are in close agreement with the DP prediction. The fitted power laws (red lines) diverge at Re c = 330.0 (the critical point determined from the measurements in Fig. 3a).

The transition to turbulence has been under scientific scrutiny for over a century and although directed percolation has been suggested as a possible solution to the problem three decades ago, direct evidence has only recently been obtained for simplified geometries. The canonical cases, pipe, Couette and channel flow appeared out of reach due to the enormous temporal and spatial scales that dominate the transition process. Resolving these scales in pipe and channel flows where turbulent structures move at the mean flow speed, would require experiments of lengths easily exceeding 10 3 km. Couette flow on the other hand, can be realized in a circular geometry with periodic boundary conditions and hence appears a more feasible target. Nevertheless the required aspect ratios pose a formidable hurdle. In the present case the fluid had to be confined to a 240 micron thin sheet with the overall physical dimensions closely matching those of a page of A4 paper ( 10pt). The velocity difference across the thin fluid film on the other hand had to be increased beyond 10 meters per second to trigger turbulence. The difficulty in measuring critical exponents is not specific to turbulence but more broadly applies to nonequilibrium systems. Although directed percolation is believed to be relevant to numerous problems in diverse areas of the natural sciences [1], experimental verification of this universality class [36] has been a longstanding problem [37]. The transition to turbulence offers the first example that is of broad practical relevance.
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 1 FIG.1. Schematic of experimental apparatus (top); typical test section sizes and time scales covered in previous studies when compared to the present experiment (bottom). Note that the observation time is defined as the maximum time over which the evolution of a flow pattern can be investigated in a co moving frame. It hence does not necessarily coincide with (and often is far shorter than) the recording time.
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 2 FIG. 2. Turbulent stripes in the axial-azimuthal cross section. Flow visualizations for Re = 331 (a), Re = 333 (b), and Re = 349 (c). Turbulent phase is marked by red contours. The laminar regions (black) expand as the Reynolds number is decreased and stripes become sparse.
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 3 FIG. 3. Order parameter and critical exponents. (a) power-law dependence of turbulent fraction TF (blue squares) on the distance from the critical Reynolds number ǫ = (Re -Rec)/Rec shown in log-log (linear scale in inset). The distributions of the azimuthal (streamwise) sizes of the laminar gaps N (l θ ) and the laminar time intervals N (τ ) close to the critical point (Re = 331) are illustrated by blue curves in panel (b) and (c), respectively. In each panel the red dashed lines illustrate the best fit (panel (a): T F ∼ ǫ β with β = 0.59; panel (b): N (l θ ) ∼ l -µ ⊥ with µ ⊥ = 1.22±0.02; panel (c): N (τ ) ∼ τ -µ with µ = 1.58±0.03) and black solid lines correspond to theoretical prediction for (2+1)DP universality class (β DP = 0.58, µ DP ⊥ = 1.21, µ DP = 1.55).
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 4 FIG. 4. Correlation exponents at the phase transition. Dependence of correlation time (panel (a): ξ )) and correlation lengths (panel (b): ξ θ ⊥ ; panel (c): ξ z ⊥ ) on control parameter ǫ. In each panel the red dashed line corresponds to the best fit (panel (a): ξ ∼ ǫ -ν with ν = 1.28; panel (b):ξ θ ⊥ ∼ ǫ -ν θ ⊥ with ν θ ⊥ = 0.79; panel (c): ξ z ⊥ ∼ ǫ -ν z ⊥ with ν z ⊥ = 0.70) and black solid lines correspond to the theoretical predictions for the (2+1)DP universality class (ν = 1.296, ν DP

  FIG. 4. Correlation exponents at the phase transition. Dependence of correlation time (panel (a): ξ )) and correlation lengths (panel (b): ξ θ ⊥ ; panel (c): ξ z ⊥ ) on control parameter ǫ. In each panel the red dashed line corresponds to the best fit (panel (a): ξ ∼ ǫ -ν with ν = 1.28; panel (b):ξ θ ⊥ ∼ ǫ -ν θ ⊥ with ν θ ⊥ = 0.79; panel (c): ξ z ⊥ ∼ ǫ -ν z ⊥ with ν z ⊥ = 0.70) and black solid lines correspond to the theoretical predictions for the (2+1)DP universality class (ν = 1.296, ν DP ⊥ = 0.729).
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