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We report on the presence of the boundary zonal flow in rotating Rayleigh-Bénard
convection evidenced by two-dimensional particle image velocimetry. Experiments
were conducted in a cylindrical cell of aspect ratio between its diameter (D) and
height (H) of Γ = D/H = 1. As the working fluid we used various mixtures
of water and glycerol, leading to Prandtl numbers in the range 6.6 . Pr . 75.
The horizontal velocity components were measured at a horizontal cross-section
at half height. The Rayleigh numbers were in the range 108 6 Ra 6 3 × 109.
The effect of rotation is quantified by the Ekman number which was between
1.5 × 10−5 6 Ek 6 1.2 × 10−3 in our experiment. With our results we show the
first direct measurements of the boundary zonal flow - BZF that develops near the
sidewall and was recently discovered in numerical simulations as well as in sparse
and localized temperature measurements. We analyse the thickness δ0 of the BZF
as well as its maximal velocity as function of Pr , Ra, and Ek , and compare these
results with previous DNS results.

1. Introduction

Rotating thermal convection is a widespread natural phenomenon that also plays
a crucial role in various industrial applications. For example, the development
of Rossby waves in oceans (Chelton & Schlax 1996) or the flow structures of
the atmosphere on Jupiter (Heimpel et al. 2005; Reuter et al. 2007) are caused
by Coriolis forces acting on fluid motion which itself is driven by temperature
differences between the poles, the equatorial regions and the planets interior
(Zhang & Schubert 1996). In particular, highly turbulent flows involving many
different length scales, such as for example inside the sun, are far from being
understood and cannot be resolved sufficiently well by state of the art numerical
simulations. Thus, we mostly rely on simple scaling models which hopefully also
hold for large scale systems.

For decades, Rayleigh-Bénard convection (RBC) has been widely used as an
idealized model system to investigate convection and its underlying physical
phenomena. In this system a fluid is confined between two horizontal plates of
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distance H apart from each other, with the lower one at a temperature difference
∆ warmer then the upper one. The underlying equations depend only on two
dimensionless control parameters, namely

Ra =
gα∆H3

νκ
, the Rayleigh number (1.1)

and

Pr =
ν

κ
, the Prandtl number . (1.2)

Here, g denotes the gravitational acceleration, α the isobaric expansion coefficient,
ν the kinematic viscosity, and κ the thermal diffusivity. For a laterally extended
system, convection sets in above a critical Rayleigh number of Rac ≈ 1708 in the
form of steady laminar convection rolls, which become unsteady with increasing
Ra, and the flow becomes eventually turbulent for very large Ra.

For turbulent convection, one is usually interested in the vertical heat transport
which is expressed by the non-dimensional Nusselt number

Nu =
qH

λ∆
. (1.3)

Here, q is the time averaged heat flux from the bottom to the top plate and λ the
heat conduction coefficient. Experiments and simulations have been conducted
and theoretical models have been proposed to find the correct exponents b and c
in the power law relations Nu ∝ RabPr c (see e.g., Malkus (1954); Grossmann &
Lohse (2000a, 2002); Ahlers et al. (2009); Zhong & Ahlers (2010); He et al.
(2012)). Due to rotational symmetry, most experiments and many numerical
investigations have been conducted in upright cylinders, and hence the aspect
ratio Γ = D/H between its diameter D = 2R and height H is a parameter
quantifying the geometrical constraints. The height H is a good length scale
in RBC only for sufficiently large Γ because only then is Nu independent of
Γ (Ahlers et al. 2021; Zwirner et al. 2021). Nevertheless, most experiments
are conducted in cylinders of Γ close to one in order to maximize H and in
this way Ra. In such cases, the turbulent flow organizes itself in a large-scale
circulation (LSC), which, depending on the aspect ratio, spans the entire domain
(Krishnamurti & Howard (1981); Sano et al. (1989); Ciliberto et al. (1996)) so
that warm fluid rises along one side and cold fluid sinks on the opposite side.

Rotation is usually assumed to be around the vertical axis with rotation rate Ω.
This leads to additional dimensionless control parameters. When the buoyancy
should be compared to the Coriolis forces, one usually considers the Rossby
number :

Ro =

√
gα∆/H

2Ω
.

If one is rather interested in the ratio between viscous and Coriolis forces, the
Ekman number(Ek) is more appropriate. Both are related:

Ek =
ν

H2Ω
= 2Ro

√
Pr

Ra
.

We note that the definition of Ek sometimes differs by a factor of two in the
literature. The influence of rotation on the flow field and the heat transport
is non-trivial because multiple different mechanisms become important, hence
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making it complicated to deduct simple scaling laws of the form Nu ∝ EkaRabPr c.
Finding such scaling laws, however, is vital for understanding rotating turbulent
convection in particular in geo- and astrophysical systems with Ra and Ek being
out of reach for lab experiments or numerical simulations.

When rotation is applied to a fully turbulent RBC flow, multiple different
regimes have been observed as function of the rotation rates. For low rotation
rates, i.e. small 1/Ro, Coriolis forces barely affects the flow, the LSC still exists
and transports the majority of the heat. This regime is referred to as rotation
unaffected regime.

With increasing rotation rate, the LSC breaks down and is replaced by vortices
that start to form from rising (sinking) warm (cold) plumes emerging from the
bottom (top) boundary layer. Within these vortices, Ekman pumping occurs,
where warm (cold) fluid is efficiently pumped across the thermal boundary layer,
leading to an enhancement in the global heat transport for fluids of Pr > 1,
which sets in with a rather sharp transition at 1/Roc (see e.g., (Rossby 1969;
Zhong et al. 1993; Julien et al. 1996; Liu & Ecke 1997; Kunnen et al. 2006;
Weiss & Ahlers 2011a)). This enhancement is absent for Pr < 1 (Rossby 1969;
Zhong et al. 2009; Horn & Shishkina 2015; Weiss et al. 2016; Wedi et al. 2021).
The regime is often called the rotation-affected regime (see e.g., Kunnen (2020)).
We note that the global heat transport within this regime exhibits under certain
conditions rather sharp changes (see e.g., Wei et al. (2015)), suggesting that there
the interplay of multiple different mechanisms lead to various sub-regimes with
different functional relations between Nu, Ro, and Ra.

With increasing 1/Ro, the vortices extend and eventually form vertical columns
spanning the entire cell (Stellmach et al. 2014; Plumley et al. 2016). In this
so called rotation dominated regime the global heat transport decreases with
increasing rotation rates due to the Taylor-Proudman (Taylor 1921; Proudman
1916) theorem, which states that vertical gradients and therefore also the vertical
velocity are suppressed by Coriolis forces. Hence, for sufficiently fast rotation,
convection is suppressed entirely. Then, buoyancy is too weak to overcome the
damping Coriolis forces and Ra needs to be raised above a threshold value Rac for
convection to occur. For a laterally infinite system, this critical Rayleigh number
is Rac ≈ 3(π2/2)2/3Ek−4/3 (Chandrasekhar 1961), independent of Pr .

However, in laterally confined cylinders, convection occurs close to the sidewall
already for smaller Ra, namely above Raw ≈ π2(6

√
3)1/2Ek−1. The flow then

takes the form of azimuthal wall modes (see e.g., Rossby (1969); Buell & Catton
(1983); Zhong et al. (1991); Ecke et al. (1992); Zhong et al. (1993); Herrmann &
Busse (1993); Kuo & Cross (1993); Goldstein et al. (1993); Zhang & Liao (2009);
Favier & Knobloch (2020)). While the influence of these wall modes on the heat
transport and the flow field is significant close to Raw, it was expected that the
sidewall influence is negligible for larger Ra, when the flow is turbulent. Then,
the relevant horizontal length scales are small and the sidewall was thought to
only effect the flow in its direct vicinity via a thin viscous boundary layer. This
assumption has shown to be false with the recent discovery of the boundary zonal
flow (BZF), a new flow state that occurs in rotating RBC (Zhang et al. 2020;
de Wit et al. 2020). The BZF occurs close to the lateral sidewall and plays an
important role for the global heat transport in confined systems (see sec. 2).
Although sparse pointwise temperature measurements (Wedi et al. 2021) agree
with simulations (Zhang et al. 2020; de Wit et al. 2020; Shishkina 2020), the BZF
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has so far not been directly observed experimentally. The goal of this paper is
to close this gap. Thanks to PIV measurements of the azimuthal velocity along
an horizontal cross-section at mid-height, the thickness and maximum velocity of
the BZF could be measured and analysed.

The paper is organized as follow: in the next section we will explain some
properties of the BZF in more detail and we will also reinterpret previous
experimental measurements in light of this newly found flow structure. Then,
in sec. 3 we explain the experimental set-up, followed by a section about the
measurement results (sec. 4). The paper finishes with a conclusion (sec. 5).

2. The boundary zonal flow - BZF

The BZF is observed as a region close to the sidewall, with a positive time
averaged azimuthal velocity 〈uφ〉 (cyclonic motion), and a central region of
negative azimuthal velocity (anticyclonic motion). In the same region, there is
also a strong vertical flow that transports warm fluid from the bottom to the
top and cold fluid towards the bottom. The warm (up) and cold (down) regions
are periodic in azimuthal direction with a wavenumber of k=1 for aspect ratios
Γ = 1/5 (de Wit et al. 2020) and Γ = 1/2 (Zhang et al. 2020), whereas k = 2Γ
was observed for Γ = 1 and Γ = 2 cylinders (Shishkina 2020; Zhang et al.
2021a). This periodic temperature structure drifts in retrograde direction and
can be detected by temperature probes inside the sidewall (Wedi et al. 2021).
Although similar, whether the BZF is a remnant of the wall modes above onset
is still unclear. A recent study by Favier & Knobloch (2020) suggests the BZFs
origin in a nonlinear evolution of the wall modes with increasing Ra.

Even though the BZF has just recently been discovered in numerical simu-
lations, some of its features can be seen in older measurements. We show in
fig. 1 data from Weiss & Ahlers (2011b) and Zhong & Ahlers (2010), taken in
rotating cylinders of Γ = 0.5 (fig. 1a and c) and Γ = 1 (fig. 1b and d) filled with
water (Pr=4.38) as the working fluid. For a better orientation, we mark with
vertical black lines the critical inverse Rossby number (1/Roc) for the onset of
heat transport enhancement due to rotation at a constant Ra. One can roughly
state that 1/Roc is the rotation rate at which rotation starts to influence the flow
and the heat transport, but where buoyancy is still significantly stronger than
Coriolis forces, i.e., the rotation affected regime.

Figure 1(a and b) show the energies in the first four azimuthal Fourier modes
of the temperature signal in the sidewall at midheight, calculated based on
temperature measurements of 8 thermistors. The first mode represents a state
where warm fluid rises along one side and cold fluid sinks at the opposite side.
The 2nd mode represents a state with two zones where warm fluid rises (on
opposite sides), separated by two zones where cold fluid sinks towards the bottom
plate. Let us first have look at fig. 1(b), which shows data from measurements
in Γ = 1 cylinders. When first published, the plot has been interpreted that for
small rotation rates (1/Ro < 1/Roc), the LSC consists of a single convection
role with warm upflow along one side and cold downflow along the other. As a
result, the first Fourier-mode is significantly stronger than the others. However,
at around 1/Roc the energy in the first Fourier mode decreases drastically with
increasing rotation rates which is interpreted as the disappearance of the LSC.
This decrease of E1/Etot is accompanied with an increase in particular of the
2nd harmonics. While not clear at the time, we now believe that this increase of
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Figure 1: (a) and (b) show the relative energy in the first four Fourier modes of
the azimuthal temperature signal at midheight of the cell. (c) and (d) show the
relative azimuthal drift of the temperature structure at midheight normalised
by the rotation rate of the convection cell. The solid blue line in (c) and (d)

mark power laws ∝ (1/Ro)−5/3 as suggested by Zhang et al. (2021b). The insets
in (c) and (d) show only a sub-section of the same data (large 1/Ro), but

multiplied by (-1) and on a log-log plot. (a) and (c) are data from experiments
with cylindrical Γ = 0.5 containers (Ra = 1.8× 1010, Pr=4.38). (b) and (d) are

data from experiments with cylindrical Γ = 1 containers (Ra = 2.25× 109,
Pr=4.38). The vertical solid lines mark the onset of heat transport enhancement
at 1/Roc = 0.8 (a and c) and 1/Roc = 0.4 (b and d). Plots adapted from fig. 4
and fig. 13 of (Weiss & Ahlers 2011b), and fig. 19 of (Zhong & Ahlers 2010).

the 2nd harmonics shows the occurrence of the BZF which in Γ = 1 cylinders
consists of two warm upflow regions separated by two regions where cold fluid
sinks near the sidewall.

Similarly, we interpret the data in fig. 1(a). The LSC starts to disappear at
around 1/Roc, however the energy of the 1st Fourier mode is still large even
beyond 1/Roc since now the BZF appears which for Γ = 0.5 has a wave number
k = 1. Note that in both cases (Γ = 1/2 and Γ = 1) the Fourier-energy in
the BZF mode decreases with increasing rotation rate. This does not mean that
the BZF disappears but rather that the temperature difference between warm
and cold areas decreases, which to some extend is caused by the finite heat
conductivity of the sidewall and a subsequent heat loss. Note, that in these
experiments temperatures were measured inside the sidewall with probes not
in direct contact with the fluid.

Figure 1(c) shows the azimuthal drift rate of the LSC (for small 1/Ro) or
the BZF (for larger 1/Ro) normalised by the rotation rate of the convection
cylinder as function of 1/Ro. For Γ = 0.5 (fig. 1c) the change of direction from
positive (prograde) to negative (retrograde as observed for the BZF) above 1/Roc
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is visible. For Γ = 1 (fig. 1d) the drift rate is always negative but nevertheless
shows a similar monotonic behaviour than for Γ = 0.5, in particular beyond
1/Roc. For sufficiently large 1/Ro, the drift rate increases asymptotically to zero.
The solid blue line in fig. 1(c and d) is a power law ∝ (1/Ro)5/3 as suggested by
Zhang et al. (2021b). We see that data for Γ = 0.4 (fig. 1c) only start to follow
this power law only at the largest 1/Ro, while for Γ = 1 (fig. 1d), data follow
this power law rather well for 1/Ro > 0.6 or so.

We also remind the reader that in temperature measurements at small Pr ,
i.e., where no heat transport enhancement is observed, the onset of the BFZ can
be determined from the temperature distribution close to the sidewall, which
changes from a unimodal (no BZF) to a bimodal distribution (BZF exists) close
to 1/Ro=1, i.e., just when Coriolis forces start to influence the turbulent flow
(Zhang et al. 2020; Wedi et al. 2021).

The above observations are evidences that the BZF starts to form (at least for
moderate and larger Pr) already above 1/Roc in the rotation affected regime.
However, at which rotation rates the BZF is fully developed such that its proper-
ties (width, strength, drift rate) follow strict power laws in Ek , Ra, and Pr over
large parameter ranges is unclear. Looking at fig. 1(c and d) one can note that a
maximal negative drift is reached at around ≈ 2/Roc (1.5/Roc for Γ = 1) above
which the (negative) drift rate decreases monotonically with 1/Ro, suggesting
that only then the BZF is fully developed.

Whether scaling relations of characteristic BZF properties, such as its width
or the maximal azimuthal velocity, and the dimensionless control parameters are
affected by changes in the bulk flow morphologies (turbulence, plumes, columns,
cells) is unclear at this point. In this context, we also want to point out that even
at moderate rotation rates, in the rotation affected regime, multiple different
smaller regimes exists, which were observed in heat flux measurements at large
Ra (Wei et al. 2015; Weiss et al. 2016), and which are to date unexplained. One
might speculate that these regimes occur from an interplay of heat transport
enhancement due to Ekman pumping, heat transport reduction due to the sup-
pression of vertical velocity (Taylor-Proudman) and additional pumping of heat
within the BZF. Understanding the BZF hence also helps to better understand
the seemingly sharp changes in the slope of ∂Nu/∂Ro for small rotation rates.
In this context, it is also an important question to quantify how much of the
heat transport enhancement is due to the Ekman pumping within vortices in the
radial bulk and how much stems from the BZF.

Some features of the BZF, such as the positive azimuthal velocity close to the
sidewall have been observed before (Kunnen et al. 2011) and were attributed
to Stewartson layers in which fluid is pumped from the Ekman layers at the
bottom and the top towards the midheight of the cell. This explanation is however
incompatible with the observation of the BZF, in particular since Stewartson
layers form when fluid is pumped from the vertical boundaries towards the
vertical cell center. This is in contrast to the long vertical structures observed
for the BZF, in which fluid is pumped from the bottom to the top and vice versa.
Furthermore, the Stewartson mechanism assumes a flow towards the sidewalls
that is independent of the azimuthal orientation and is not in accordance with the
azimuthally periodic, vertical flow structures of the BZF. In addition, simulations
at rather small Ek suggest that the thickness of the BZF (δ0) varies with Ek

and Ra as δ0 ∼ Ek2/3 (Zhang et al. 2020), which is not compatible with the
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Figure 2: (a): Schematic of the experimental setup. In orange the copper
bottom plate, in blue the sapphire top plate. (b): Investigated parameter space
in a Ra-Ek plot. Different colors of the symbols show different Pr (see legend).
Closed symbols mark the measurements taken at Ra = const (datasets R1, R2,
R3) while open ones mark measurements at Ek = const (datasets E1, E2, E3).
Black solid line marks the onset of bulk convection according to Chandrasekhar
(1961). The solid red and blue lines mark Ra below which Coriolis forces affect
the flow for the two smallest Pr . These lines are calculated based on 1/Roc for
onset of heat transport enhancement reported by Weiss et al. (2016). Dashed

lines mark Ra below which Coriolis forces become dominant over buoyancy and
are estimated from the 1/Romax where heat transport is maximal (Weiss et al.

(2016)).

known Stewartson layer scalings δs ∼ Ek1/3 and ∼ Ek1/4 (Stewartson (1957,
1966); Kunnen et al. (2011)), which form due to Ekman pumping. While in
measurements presented in this paper, taken in the rotation affected (buoyancy

dominated) regime, we find a lower exponent for the thickness close to δ0 ∼ Ek1/2,
this is still significantly larger than what is expected for Stewartson layers.

3. Setup

Our experimental set-up (fig. 2a) consists of a cylindrical cell with height equal
the diameter of 196 mm resulting in an aspect ratio of Γ = 1. The cell is cut
out of a block of acrylic glass and is thus transparent from all sides. A 15 mm
thick copper plate with heat conductivity of 394 Wm−1K−1 serves as the bottom
plate. It is heated via an electrical wire that is embedded in grooves at its
bottom. Neighbouring grooves are 6 mm apart to enable a uniform heating.
Two thermistors are installed into the plate approximately 3 mm below the
fluid interface. As a top plate of the convection cell, we use a 5 mm thick high
conductive sapphire plate, which is cooled by a temperature controlled water
bath. The water temperature is measured with a single thermistor and kept at a
desired temperature to within ±0.02 K via a computer controlled feedback loop.

The cooling water bath on top of the top plate consists of PVC sides and has
itself a transparent top cover of acrylic glass. This transparent setup allows optical
access from the top for particle image velocimetry (PIV). For this, a Dantec
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RayPower 2000 laser with cylindrical lens optics is attached inside the rotating
structure of the setup as shown in fig. 2(a). To measure a horizontal cross section
of the cell the light sheet is redirected using a mirror from the side and in this way
illuminates a horizontal cross section of the cell at midheight (z = H/2). A high
speed camera (Phantom VEO4K 590-L) is mounted inside the rotating frame
above the cell. For illumination, the fluid is seeded with silver coated hollow glass
spheres with a diameter of 10µm. Two-dimensional velocity fields were calculated
from the cross-correlation of two consecutive camera snapshots, taken 20 ms apart
in most cases, whereas this values was adapted depending on the free-fall time τff .
Images were taken until the RAM of the camera (72 GByte) was filled, which in all
cases ensured a minimum recording time of 100 τff (typically about 10 min). The
PIV algorithm was performed with ParaPIV within MATLAB (Wang (2018)).
The resulting velocity field had a resolution of 240 x 240 velocity points.

The entire setup was mounted on a rotating table with a frame built on top
of it and driven by a Nanotec PD4-C stepper motor. All necessary electrical
connections from the lab into the rotating frame were achieved via sliprings
at the top and bottom of the rotating frame. At the top, water feed throughs
were installed to supply water to the cooling water bath. The stainless steel feed
throughs were connected with bolts to the rotating frame on one side and to a
non-rotating aluminum framework on the other in such a way that it kept the
rotating axis fixed in space in order to avoid any precession of the setup.

As working fluid we used mixtures of deionized water with glycerol. For most
experiments, we kept the temperature constant at Tm = (Tbot+Ttop)/2 = 22.5◦C,
i.e., close to room temperature, in order to minimize heat flux to or from the sides.
Different Pr were achieved by using different mass concentrations of glycerol in
water, which however also changes the accessible Ra and Ek ranges for a given Pr .
In this paper, we mostly focus on the three cases Pr = 6.55 (pure water), Pr =
12.0 (20% glycerol) and Pr ≈ 75 (60% Glycerol). By changing the temperature
difference ∆ and the rotation rate Ω, we control Ra and Ek . Figure 2(b) and
table 1 show an overview of the performed experiments. For each Pr we performed
measurement at fixed Ek and various Ra (E1, E2, E3) as well as measurements
with one fixed Ra and varying Ek (R1, R2, R3), respectively. Due to experimental
constrains, different combination of Ek and Ra were chosen for different Pr . For
two experimental runs P1 and P2, we explored the Pr dependency of the BZF,
and there we also changed Tm to easily adjust Pr .

In all measurements, we are far away from the onset of convection (Ra � Rac)
as shown in fig. 2(b). Hence, the observed structures close to the walls are results
of strongly nonlinear interactions, in contrast to the linear wall modes close to
1/Row. We also note that most of our measurements are not conducted in the
geostrophic regime. Although, it is not clear at which Ek the geostrophic regime
starts, we can compare our data with heat flux measurements presented in Weiss
et al. (2016). There, the onset of heat transport enhancement at was found to
scale like 1/Roc1 ≈ 0.75Pr−0.41 and it presents a critical rotation rate above
which Coriolis forces have a significant influence on the flow. These functions
are shown as solid lines in fig. 2(b). We see that all our measurements are in
this regime. However, we also show as dashed lines the rotation rates 1/Romax ≈
21.4Pr1.37Ra−0.18, at which the heat transport was maximal (Weiss et al. 2016).
Only for larger rotation rates did the Coriolis cause a clear suppression of the
heat flux. We therefore believe that the geostrophic regime must be on the left
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Data set Tm (oC) Pr Ra Ek

R1 22.5 6.55 9.8× 108 1.6× 10−5 − 3.2× 10−4

R2 22.5 12.0 6.5× 108 2.6× 10−5 − 6.2× 10−4

R3 22.5 75 4.0× 108 1.0× 10−4 − 1.2× 10−3

E1 22.5 6.55 1.8× 108 − 1.8× 109 2.5× 10−5

E2 22.5 12.0 3.2× 108 − 2.4× 109 5.0× 10−5

E3 22.5 75 1.0× 108 − 1.1× 109 2.0× 10−4

P1 20.0-30.0 5.4 - 83.3 5.8× 108 1.0× 10−4

P2 20.0-30.0 9.8 - 83.3 5.9× 108 5.1× 10−5 − 1.5× 10−4

Table 1: Overview of the conducted experiments.

of the dashed line. We see that our data are in the rotation affected regime but
not in the rotation dominated regime.

4. Results

4.1. Radial velocity profile

The horizontal velocity in cartesian coordinates (u, v) is first transformed into
polar coordinates ur = u cos (φ) + v sin (φ) and uφ = −u sin (φ) + v cos (φ). Here,
r is the radial distance from the cell center and φ the polar angle. We show in
fig. 3(a-d) time averaged azimuthal velocity fields 〈uφ(r, φ)〉t for different Ek .

One can see how the structure of the flow changes qualitatively. In the non-
rotating case (Ek = ∞), the flow field does not show a clear difference between
the radial center and the regions close to the sidewall. Instead, the distribution
of the red (〈uφ〉t > 0) and blue (〈uφ〉t < 0) is orderless. In fact one would
expect in this case that due to the turbulent motion, the time averaged azimuthal
velocity to be very small. This is however not the case, since there is a rather
persistent large scale motion, i.e., the LSC, which is steady over the time duration
of our measurement. Under rotation (fig. 3b-d), the characteristic features of the
BZF become clearly visible, namely a red ring (〈uφ〉t > 0) surrounding a blue
(〈uφ〉t < 0) central region. It can be observed that with increasing rotation rates
the width of the red cyclonic zone decreases as well as the strength of the flow.

For a more quantitative analysis, we average the velocity in azimuthal direction.
For this, we sum over all velocity vectors at radial distances between r and r+dr
away from the center and divide this sum by the number of voxels in this range
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Ek = 1.0× 10−4 (d). (e): Red bullets show the azimuthal average of (c) in
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Blue solid line is a fit of a polynomial of 10th order. The dashed vertical line
marks the BZF thickness δ0, at which 〈uφ〉 crosses 0, the arrow points to the
maximum velocity umax

φ within the BZF. The inset shows results from DNS of
the azimuthal velocity normalised by the free-fall velocity 〈uφ〉/uff for

Ra = 108, 1/Ro = 10,Pr = 0.8.

(Nr)

〈uφ〉(r) =
1

Nr

r+dr∑
r

〈uφ〉t.

As an example, we show in fig. 3(e), 〈uφ〉 calculated from the field in fig. 3(c).
The red points show the calculated velocities. The blue line is a polynomial fit
of degree 10 to these points that allows quantitative analysis. We also show for
comparison in the inset of fig. 3(e) results from simulations at very similar Ra and
Ro but smaller Pr = 0.8 (Zhang et al. 2021a). At first glance, our radial profile
of 〈uφ〉 looks qualitatively very similar to the results from DNS. But on a closer
look, quantitative differences become visible. The most obvious is the width of the
BZF, i.e., the distance δ0 from the wall, where 〈uφ〉 switches sign, is much smaller
in the DNS than in our case. This discrepancy is most likely due to the difference
in Ek (1.8× 10−5 compared to 1.5× 10−4 for our measurement). While DNS was
conducted within the rotation dominated, our measurements were acquired in
the rotation affected regime. Although also Pr is different between DNS and our
simulation by a factor of 10, from Zhang et al. (2021a) we expect no, or only a
very small Pr -dependency of δ0 in the investigated Pr -range.

In the following, we will analyse some features of the radial profile as function of
the dimensionless control parameters. One of these features is the radial position
r0, where 〈uφ〉 switches sign, i.e. where the BZF and the bulk flow separate. To
be in agreement with previous publications Zhang et al. (2020, 2021a), we define
the width of the BZF as δ0 = (R− r0)/R.

Figure 4 shows various time and azimuthally averaged velocity profiles for
different control parameters. To compare with DNS, the velocity profiles are
normalized by the free-fall velocity uff =

√
αgH∆. In fig. 4(a and c), Ra was

kept constant and Ek was changed. The azimuthal velocity amplitude inside the
BZF decreases with increasing rotation rate (decreasing Ek). This decrease with
decreasing Ek , is by no means obvious. On one hand, we know that increasing
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are Pr = 6.55, (c and d) Pr = 75. Green dashed lines are guides to the eye and
connect the velocity maxima inside the BZF measuring δumax

φ
(see also fig. 7).

rotation suppresses fluid motion and hence a reduced velocity is aspected. While,
this is certainly true for sufficiently fast rotation rates, for moderate rotation rates
and Pr discussed here, the heat flux (Nu) is enhanced, which suggest at least a
faster flow in z-direction. Note, also that the rate with which potential energy is
converted into kinetic energy and finally dissipated into heat is proportional to
Nu i.e., εu = ν3

H4 (Nu − 1)RaPr−2. Therefore, the total kinetic energy in the fluid
is expected to increase with increasing rotation rates first.

That fact that we neverthless see a decrease here for all rotation rates, might be
because the additional kinetic energy is mostly contributing to vertical velocity.
An addition the width of the BZF becomes smaller and hence not only viscous
drag would lead to a further reduction of the maximal azimuthal velocity inside
the BZF.

In fig. 4(b and d), Ek is kept constant and plots are shown for different Ra.
The maximal velocities increase with increasing Ra which can be explained
with the inhanced thermal driving. However, we want to remind the reader
that here, we show the azimuthal velocity normalised by the free-fall velocity
uff =

√
gα∆H = Ra1/2(νκ)1/2/H. In fact the Reynolds number Re = UH/ν and

hence also the typical velocity scale U in non-rotating RBC scales as Re ∼ Raζ

with ζ experimentally determined to be in the range ζ ≈ 0.42 . . . 0.5, (see e.g.,
Sun & Xia (2005); Brown et al. (2007)), which would lead to U/uff ∝ Ra−0.08...0,
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with 1/Ro < 1/Roc. Closed symbols mark data with 1/Ro > 1/Roc (see text for
further information). The error bars were estimated from the scatter of the data

points around the fitted polynomial close to δ0. (a) shows δ0 as a function of
1/Ro on a log-log plot. The dashed lines are power law fits to the solid symbols
(1/Ro > 1/Roc). (b) shows the same data plotted against Ek . The black line is

a power law ∝ Ek2/3 as suggested by Zhang et al. (2021a). The purple line is

power law with ∝ Ek1/2.

i.e., a decrease with increasing Ra. Hence, the azimuthal velocity in the BZF
increases significantly faster with Ra then for non-rotating RBC.

In the following we will analyse these profiles quantitatively. Most importantly,
we look at the width δ0, as well as the maximal velocity umaxφ and its location
δmax as function of the control parameters Ek , Ra, and Pr .

4.2. BZF width δ0
We begin by calculating the zero-crossing and hence the thickness δ0 as function
of the rotation rate. These results are presented in fig. 5. In fig. 5(a), we show δ0 as
a function of 1/Ro for three different Ra. Note, that here we have chosen to plot
1/Ro on the x-axis, because as was shown in previous studies, different features
of the heat transport seem to depend predominantly on 1/Ro and depend only
weakly on Ra, such as the onset of heat transport enhancement in large Pr -fluids
(Weiss et al. 2016) or the decrease of Nu in small Pr -fluids (Wedi et al. 2021).

We see in fig. 5(a) that δ0 decreases with increasing 1/Ro for all three data sets.
We have seen in fig. 2(b) that our data are in the rotation affected but not in the
rotation dominated regime, and that we are particularly far from the geostrophic
regime for Pr=75. Also considering the trend of the green data points, we decide
to set a somehow arbitrary threshold for the rotation rate which is 1/Rot = 1 for
Pr=6.55 and Pr= 12.0 and 1/Rot = 3 for Pr=75. We will in the following mark
data points at small and larger 1/Ro > 1/Rot with open and closed symbols,
respectively, and will use only the closed symbols for scaling analysis. While this
decision is somehow arbitrary, we will see below that solid symbols often follow
certain scaling relations of which the open symbols diverge from. Now, we fit
power laws of the form δ0 ∼ (1/Ro)−α to the data for which 1/Ro > 1/Rot (solid
symbols in fig. 5).

The resulting power laws are shown as dashed lines in fig. 5(a) and have
exponents α6.55 = 0.52 ± 0.03, α12 = 0.30 ± 0.02, α75 = 0.07 ± 0.03 with the
subscript being Pr . These three different power laws on the first glance suggest



13

that the exponent α is itself dependent on Ra and/or Pr and that no simple
scaling law of the form

δ0 = AEkαRaβPrγ = 2αA · RoαRaβ−α/2Prγ+α/2, (4.1)

can be found, even though such simple scalings have been suggested recently
based on numerical simulations (Zhang et al. 2021a), namely (for Pr > 1):

δ0 ∝ Γ 0Pr0Ra1/4Ek2/3. (4.2)

For comparison with data from simulations, we plot in fig. 5(b) the same
measured data but now as function of their respective Ek . Now the data for very
different Ra and Pr overlap surprisingly well, for a given Ek . The black solid line
in fig. 5(b) is ∝ Ek2/3 as found in simulations by Zhang et al. (2021a), but is

ignoring the Ra-dependency. We also show by a purple line a scaling ∝ Ek1/2 for
comparison. Here, our data seem to agree better with the purple line (∝ Ek1/2), in
particular for larger Ek . However, we also note that the data scatter significantly
and have rather large error bars, in particular for small Ek , where the influence of
buoyancy is small. Deviations from either power law mostly occur for larger Ek ,
where also the buoyancy becomes more important. A firm conclusion on which
exponent represents the data better cannot be drawn from these data.

Clearly, there is either a simple power law relation as in eq. 4.1, or something
more complicated as fig. 5(a) suggests. In case of a simple power law relation
(as in eq. 4.1), we can at least state from fig. 5(b) that δ0 might predominantly
depend on Ek , but is otherwise at most very weakly dependent on Ra and Pr ,
at least in the range of our investigation.

Observations from DNS (eq. 4.2) indeed suggest an independence on Pr , but

also found a Ra-dependency δ0 ∝ Ra1/4. Let’s have a closer look what our data
have to say. Figure 6(a) shows δ0 as function of Ra for three different Pr and
different but constant Ek . While the data with Pr = 75 (largest Ek) suggest a
scaling of the BZF width δ0 ∼ Raβ with β = −0.19± 0.01. For smaller Pr (and
also smaller Ek) δ0 seem to be unaffected by Ra, i.e., β ≈ 0. As before, the error
bars are estimates from the scatter of the velocity data points around the fitted
polynomial close to δ0. Again here, it seems that the exponent β is a function of
Pr . Note in particular that for Pr=75, δ0 decreases with increasing Ra which is
in disagreement with the results of direct numerical simulations.

In fig. 6(b and c) we show δ0 as function of Pr for constant Ra. Experimentally,
Pr was varied by changing either Tm or by changing the concentration of Glycerol
in the aqueous working fluid. While it is trivial to set the system to the desired Ra
by changing ∆ accordingly, the rotation rate Ω needed to be adjusted to either
keep Ek or Ro constant. We did both.

Let’s first have a look at fig. 6(b) where 1/Ro = 5. As can be seen, the data
are rather noisy and do not increase strictly monotonically with Pr . There is
however, a clear trend that δ0 increases with increasing Pr as suggested by the
previous measurements. Fitting a power law of the form δ0 ∼ Prγ1 to the data
yields γ1 = 0.2± 0.05.

We show in fig. 6(c) values of δ0 that were acquired at constant Ra, constant
Ek and varying Pr . The data scatter significantly and no clear trend is obvious.
Here, δ0 looks rather constant for small Pr and seems to increase for larger Pr .
While the red squares in fig. 6(b) and the blue bullets in fig. 6(c) show different
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squares) and E3 (Pr=75.0, Ek=2× 10−4, greeen diamond). The error bars were
estimated from the scatter of the data points around the fitted polynomial close

to δ0. The green dashed line is a power law with exponent γ = −0.19± 0.01.
The red and blue horizontal lines are constants with δ0 = 0.18 and 0.12. (b): δ0
as function Pr for Ra = 6× 108 and 1/Ro = 5 (data set P2). The red dashed

line is a power law fit with ∼ Pr0.20±0.05. (c): δ0 as function of Pr for
Ra = 6× 108 and Ek = 10−4 (data set P1). The red, orange and green lines are
functions A1Pr

γ with the values listed in table 2. The dashed blue line marks a
power law ∝ Pr0.1

data sets, the data are related via eq. 4.1. In particular we see from eq. 4.1 that
γ1 = γ + α/2.

We assume for a moment that δ0 can be represented by power laws as in
eq. 4.1, but that the exponents α, β, and γ are different for the three different
Pr -ranges, as observed in fig. 5(a) and fig. 6(a). We list in table 2 the fitted
parameters from fig. 5(a) as well as fig. 6(a and b). With this we can calculate
the expected power laws A1Prγ , with A1 = AEkαRaβ, for all three Pr ranges,
which we show in fig. 6(c) as solid lines. Due to the different exponents α for
different Pr , we also get different exponents γ, which would explain the somehow
non-monotonic behavior of the data points in fig. 6(c). Indeed the lines represent
somehow these non-monotonic behaviour of the data point. Of course assuming a
power law with a varying exponent means that there is no real power law in the
investigated range. However, this approach shows that the two different data sets
are consistent with each other. We note that one could have also fitted a power
law through the blue points in fig. 6(c), resulting in a single exponent ∝ Pr0.1±0.03

(blue dashed line) over the entire range. One could then represent the data in
fig. 6(b) with different power laws for different Pr -ranges. In any case, we have
learned from fig. 6(c) that (i) the Pr -dependency is rather small when Ek , is
kept constant and (ii) that the Ra, Pr , and Ek , dependencies of δ0 can not be
written by simple power laws in the parameter range that we are investigating
here (rotation affected regime).

So far we have analysed δ0, the width of the BZF as it can easily be measured
in the time averaged two-dimensional velocity field shown in fig. 3(a-d). However,
the strength of the flow, represented by the maximal averaged azimuthal velocity
umax

φ , is another quantity characteristic for the BZF, which can help reveal the
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Table 2: Coefficient and power law exponent estimates from eq. 4.1. α were
estimated based on the data in fig. 5(a). A and β are estimats from fig. 6(a) and

γ was estimated from fig. 6(b).

Pr A α β β − α/2 γ + α/2 A1 γ

6.55 34.0 0.522 0 -0.261 0.20 0.278 -0.061

12.0 2.93 0.292 0 -0.146 0.20 0.199 0.054

75.0 15.23 0.092 -0.19 -0.236 0.20 0.140 0.154

mechanisms leading to this zonal flow. Therefore, we show in fig. 7(a and b),
the compensated time averaged maximal velocity u∗

max = umax

φ RaPr0.8 and its
location measured as distance from the sidewall δmax (fig. 7c and d). These data
are plotted against RaEk on the x-axis , as it represents the Rayleigh number
compared to its critical value for the onset of wall modes (Raw ∝ Ek−1). We
show in fig. 7(a and c) data that were acquired at constant Ek for a given Pr and
varying Ra, whereas fig. 7(b and d) show data with constant Ra and different
Ek .

Let’s first have a look at the compensated maximal averaged azimuthal velocity
u∗

max
shown in fig. 7(a). The compensated data collapse onto a single power law for

all three Pr with each having a different Ek . The black solid line marks u∗
max

=

4.7(EkRa)3/2 (or equivalentely umax

φ = 4.7Ek3/2Ra1/2Pr−0.8), which represents
the data fairly well. We show the same function as a black line also in fig. 7(b),
but now compare it with measurements that were acquired at constant Ra but
varying Ek . We see that data for small values of (EkRa) follow this law, but
data for large values (EkRa) diverge from the straight line. For a better visual
separation, data with 1/Ro > 1/Rot were plotted with solid symbols, whereas
data for which 1/Ro < 1/Rot were plotted with open symbols. As mentioned
previously, we assumed 1/Rot = 1 for the two smaller Pr and 1/Rot = 3 for
Pr=75. Since data for varying Ra follow the mentioned power law for nearly two
decades, we are confident this power law also holds for smaller Ek , at least as long
buoyancy plays a significant role. Whether this scaling holds even in the rotation
dominated regime, however remains unclear.

Figure 7(c and d) show the distance from the wall to the maximal velocity δmax,

normalised by
√

Ek and plotted against EkRa. Measurements are the same as for
fig. 7(a and b), which means constant Ek for (c) and constant Ra for (d). We see

that the data collapse fairly well on a constant δmax/
√

Ek ≈ 10 or so. The inset
in fig. 7(c) shows that data do not collapse on the top of each other without this
normalisation. However, the green data points (Pr=75) seem to decrease slightly
for larger EkRa, which might hint to the fact that buoyancy becomes too strong
compared to Coriolis forces.

In fig. 7(d) the same quantity is plotted but from data where Ra was constant
(for a given Pr) and Ek was varied. We again plot with solid symbols data with
1/Ro > 1/Rot and use open symbols for data with 1/Ro < 1/Rot. Clearly, the
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Figure 7: (a and b): Compensated maximal averaged azimuthal velocity
umax
φ RaPr0.8 as a function of EkRa. The left plot (a) shows data acquired at

constant Ek (data set E1, E2, E3). The right plot (b) shows data acquired at
constant Ra (data set R1, R2, R3). The solid black lines in (a) and (b) mark

the same power law ∝ (EkRa)3/2. (c and d) show the distance between the
sidewall and the location of the azimuthal velocity maximum δumax

φ
. Again left

plot (c) shows data sets E1, E2, E3 with constant Ek and the right plot (d)
shows data sets R1, R2, R3 taken at constant Ra. Open symbols in (b) and (d)
mark data with 1/Ro < 1/Rot (see text). The inset in (c) shows the same data

but plotted without the normalisation Ek−1/2. One sees that the data do not
collapse on top of each other. The blue arrow in (c) marks the estimated

location of the maximal heat transport for data set E1.

overlap of data with different Pr is rather good only for sufficiently large 1/Ro
(solid symbols) and less good for the open symbols.

Data plotted as δmax/
√

Ek (see fig. 7(c) and (d)) collapse onto a single flat line,

suggesting that δmax ∝ Ek1/2 and is otherwise independent of Ra and Pr . We
have already seen above (fig. 5) that a similar scaling might also be visible in the
data for δ0, the thickness of the BZF. In fact, in fig. 5(b) we have plotted already

a purple line, marking a power law δ0 ∝ Ek1/2. Now, for a better comparison, we
plot in fig. 8(a) both δmax/

√
Ek and δ0/

√
Ek as open and solid symbols inside

the same graph. Clearly, the scatter of the data for δ0 is much larger, but both
follow straight lines over more than a decade in EkRa. However, in both cases
the green data (Pr=75) for the largest RaEk clearly decrease.

Figure 8(b) shows the ratio δ0/δmax as a function of EkRa. For this we have
used all available data and show data with constant Ek as open symbols and data
with constant Ra as solid symbols. The color marks Pr . It becomes evident that
the ratio is δ0/δmax ≈ 2.6 is a constant and therefore both δ0 and δmax should
exhibit the same scaling relations with the control parameters. However, we note
that due to the rather large scattering of the data, small differences in the scaling
exponents cannot be ruled out.
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5. Conclusion

In this paper we have presented measurements of the horizontal velocity at
midheight in a rotating Rayleigh-Bénard cell of aspect ratio Γ = 1 for various
Ra, Ek , and Pr using planar PIV. In these measurements we could observe the
boundary zonal flow (BZF) for the first time in an experiment, as a ring with
positive average azimuthal velocity 〈uφ〉 > 0 (cyclonic motion) surrounding a
central region with 〈uφ〉 < 0 (anticyclonic motion) as reported in Zhang et al.
(2020, 2021a).

We studied the thickness of this zone (δ0) as function of Ek , Ra, and Pr .
Interpretation of the measured data is a somehow difficult task, because on one
hand the available parameter ranges cover not more than a decade, but also
because we cover mainly small rotation rates, where the system is in the rotation
affected regime, where buoyancy is small compared to Coriolis forces. Hence it
is unclear, whether simple scaling laws are even expected in this regime and
whether they will hold also in the rotation dominated (geostrophic) regime. For
example, for sufficiently large rotation rates (i.e., 1/Ro > 1/Rot), δ0 seems to
follow ∝ 1/Roα, with α(Pr) being a function of Pr . While such a relation is
possible (see e.g., Grossmann & Lohse (2000b, 2001)), finding the correct function
α(Pr) is a difficult task for which many more data points over a much larger range
need to be acquired to get reliable results.

Furthermore, we know that the rotation affected as well as the rotation domi-
nated regime consist of smaller sub-regimes with transitions between them, as has
been observed in measurements of the vertical heat flux (see e.g., Zhong & Ahlers
(2010); Wei et al. (2015)) and the flow configuration in the bulk (e.g., Stellmach
et al. (2014); Plumley et al. (2016)). In which way these regimes affect properties
of the BZF is currently unclear. While it is somehow expected that transitions in
the bulk from one regime to another also change how the BZF properties depend
on Ra, Ek , and Pr , it is also possible that the BZF is decoupled from the dynamics
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in the bulk for sufficiently large rotation rates. As a result, scaling relations of its
properties could hold both, in the rotation affected and in the rotation dominated
regimes (geostrophic regime). In this context we want to remind the reader that
data for Pr=6.55 (data sets E1 and R1) do not only cover parameter ranges,
where a heat transport enhancement has been observed, but they also cover
ranges where a heat transport reduction is expected (see Zhong & Ahlers (2010);
Weiss et al. (2016)). In fact, the location of maximal heat transport enhancement
for data set E1 is marked with a blue arrow in fig. 7(c). The trends of both umaxφ

and δmax do not show significant differences at the left (Nu reduction) and the
right (Nu enhancement) of this arrow.

Under the assumption of a simple power law relationship of the form δ0 ∝
EkαRaβPrγ , our data suggest β ≈ 0 or close by. In fact only for the largest
Pr=75, do we find a slight decrease of δ0 with increasing Ra, which might be due
to insufficient rotation rates. This exponent is in contrast to β = 1/4, as found in
numerical simulations by Zhang et al. (2021a). The exponent γ is around zero,
or at least very small, which is in agreement with the scaling found in DNS, at
least in the same Pr -range (Zhang et al. 2021a). Regarding the Ek scaling, our
data suggest α ≈ 1/2, again in contrast to DNS (Zhang et al. 2021a), where
α = 2/3 was suggested. A possible explanation for the difference in DNS and
our experiment are the different parameter ranges. In fact, (Zhang et al. 2021a)
report results for Pr > 1 only for cylinders of aspect ratio Γ = 1/2. However,
probably more importantly, for the data sets of comparable Pr is that Ek in
DNS is at least an order of magnitude smaller, and therefore, Coriolis forces are
much stronger compared to buoyancy in the simulation. It is indeed possible that
the scaling relations we find change for faster rotation and converge towards the
findings in DNS.

In this respect we note that in DNS, different scaling relations were found
for δ0 and δmax, i.e., the distance from the sidewall at which the averaged
azimuthal velocity is maximal. Here we find that both scale similarly ∝ Ek1/2.
The maximal azimuthal velocity itself is found in our measurements to scale as
umaxφ ∝ Ek3/2Ra1/2Pr−0.8. It is interesting that both δmax and δ0 are independent
of Ra but umaxφ is not, suggesting that different mechanisms play a role here. In
particular the width is not just a result of a self-adjusting wall shear stress or so.
Note in this respect that in this system EkRa represents the amount of thermal
driving, compared to the minimal buoyancy that is necessary to initiate wall
modes. On the other hand the δmax and δ0 are self-adjusting purely by Coriolis
forces. To investigate this problem further more measurements and simulations
are necessary that indeed cover the entire range from the onset of wall-modes up
to the buoyancy dominated regime.
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