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Background – Time-domain Brillouin scattering (TDBS) technique is an opto-acousto-optic pump-
probe technique [1] that uses ultrashort laser pulses to generate coherent acoustic pulses (CAPs) of 
picoseconds duration in a solid sample and follow their propagation in order to image inhomogeneities 
of acoustic, optical and/or photo-elastic parameters of materials transparent to the probe light 
wavelength [2]. This technique presents an axial resolution deeply sub-optical (to nm-scale), controlled 
by the CAPs width, and a lateral one down to the optical diffraction limit, controlled by lateral focusing 
of used laser beams. Detection of propagating CAPs is possible because they scatter time-delayed probe 
laser pulses heterodyned by the probe-pulse reflections from stationary sample surfaces, giving rise to 
an oscillating component in a transient reflectivity signal: the so-called Brillouin oscillation (BO).  

The instantaneous frequency of the BOs is proportional to the product of local optical refractive index 
(n) and sound velocity along the beam path (v). Hence, in polycrystalline transparent samples made of 
anisotropic materials where n and v change from grain to grain, the Brillouin frequency changes with 
the probe delay give access to the depth arrangement of grains. Two-dimensional lateral scanning of 
the sample hence allows the TDBS technique to provide 3D-imaging of sample texture. In anisotropic 
grains, up to three bulk acoustical modes, one longitudinal and two shear, might be monitored. The 
time-frequency analyzes of frequency contents of the TDBS signals provide then access to shapes, 
relative coordinates of all grains (if resolved), as well as crystallographic orientation of the identified 
grains with respect to a common coordinate system [3].  

The non-contact feature of the TDBS technique further permits to examine samples located in devices 
used to reproduce extreme conditions such as diamond anvil cells (DACs) for ultrahigh pressure. We 
report here on the 3D imaging of water ice under high-pressure non-hydrostatic load by TDBS. The 3D 
characterization of individual grains of two coexisting high-pressure water ice phases is reported, as 
well as imaging of a monocrystal fracture induced by non-hydrostatic compression allowing to follow 
the polycristallization process occurring upon load increase in a DAC. 

Methods – The TDBS experimental set-up (Fig. 1(a)) was based on asynchronous optical sampling, 
where accumulating time delay between green pump (515 nm, 198 fs duration) and green probe (535 
nm, 130 fs duration) laser pulses is due to difference in the repetition rates of these lasers, allowing fast 
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data acquisition. It was hence possible to obtain 3D images of the Brillouin frequency distribution (of 
any detected acoustical modes) in a 100×100×10 μm3 volume with a lateral resolution of 2.5 μm limited 
by the overlap of pump and probe laser beams. The data collection rate depended on the chosen pump 
and probe laser powers and the number of averages needed to reach acceptable signal-to-noise ratio. 

As depicted in Fig. 1(b), the generation of CAPs propagating in the transparent water ice compressed 
in the DAC occurred thanks to an absorbing metal layer serving as an optoacoustic transducer (OAT). 
Pressure inside the DAC was measured using fluorescence spectra of (embedded) ruby grains which 
R1-line position is calibrated vs. pressure. The optical path for pressure monitoring was included in the 
set-up (Fig. 1(a)) to allow measurement without removing the DAC from the sample stage, hence 
facilitating the comparison of 3D images at different pressures and visualizing evolution of crystallite 
shapes with compression. 

 
Fig. 1. (a) Experimental set-up and (b) TDBS experiment scheme, where the pump absorbed in OAT launched a CAP in the 

polycrystalline water ice where it scatters the probe. (c) 3D visualization of polycrystalline water ice microstructure. 

Results summary and conclusive remarks – The used TDBS set-up provided a comprehensive, 
reliable high-resolution in-situ 3D visualization of microstructure of a transparent polycrystalline 
sample of water ice compressed in a DAC to 2.15 GPa where two phases, ice VI and ice VII, coexist 
(Fig. 1(c)). We observed, for the first time at high pressures in a DAC, TDBS signals containing 
contribution of quasi-shear CAPs, fruitfully used for grains characterization. Grain boundaries were 
also localized by identifying specific TDBS signals, caused by CAPs simultaneously propagating in 
two adjacent grains. Last but not least, the monocrystal fracture induced by non-hydrostatic loading was 
followed in 3D, further extending the horizons of investigation of solids and their evolution at 
(changing) extreme conditions. 
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