Particle Orientation in a shear flow for power law and viscoelastic Fluids

P. Laure, J. Férec, L. Silva

MINES ParisTech, PSL Research University, CEMEF, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis cedex (France)

Objective

Influence on the particle shape and fluid behavior on the validity of Jeffery’s equation

\[\dot{p} = W \cdot p + \zeta (D \cdot p - (D \cdot p)p) \]

\[\zeta = \frac{\beta^2 - 1}{\beta^2 + 1} \] Shape factor

\[\beta = \frac{D}{L} \] Aspect ratio

Prolate and oblate ellipsoids; cylinders

Direct numerical simulations

- Fictitious domain method:
 - particle defined by a level set
 - Lagrange multiplier for rigidity condition
 - Velocity imposed on upper and lower walls
 - Finite element solution Navier-Stokes + extra-stress

\(\Rightarrow \) velocity and pressure on the whole domain

- Particle position update:
 - Velocity of center of mass: \(u(X_i) \)
 - Rotation vector: \(\vec{\omega} = \frac{1}{2} \nabla \times u(X_i) \)

\[\frac{dX_i}{dt} = u(X_i) + \frac{dp}{dt} = \vec{\omega} \times p \]

Power Law fluid

\[\eta = K \dot{\gamma}^{n-1} \]

Jeffery’s orbit: \(n = 0.1 \)

\[\sigma_f = -p I + 2\eta_f (u + \tau) \]

\[\tau = \frac{\beta^2 (\beta^2 + 1)}{\beta^2 - 1} \rightarrow \beta_{equivalent} \]

- prolate
 \(T_{kneut} < T_{Pow} \rightarrow \beta_{equivalent} \uparrow \)
- oblate
 \(T_{kneut} > T_{Pow} \rightarrow \beta_{equivalent} \downarrow \)

\(\beta_{equivalent} = \text{Cte?} \)

\[|(p)| = \sqrt{\frac{\omega_x^2 + \omega_y^2 + (\omega_z + \frac{5}{6})^2}{\frac{1}{3} (p_x p_y)^2 + (p_y p_z)^2 + (1 - p_z^2 - p_y^2)^2}} \]

\[\beta = \frac{3}{\alpha} \quad \beta = \frac{1}{3} (-\) \]

\[n = 0.1 \]

Oldroyd-B fluid

\[\sigma_f = -p I + 2\eta_f (u + \tau) \]

\(\lambda \) relaxation time from 0.1 to 5

\(\rightarrow \) Main axis // vorticity axis

\[\frac{d}{dt} u \cdot \nabla s - (\nabla u \cdot s + s \cdot \nabla u') + \frac{1}{(3s-1)} (3s-1) = 0 \]

Rotation around vorticity axis \(e_r \) or \(e_z \)