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Abstract
China has realized a 56-fold increase in installed wind capacity, from 5.9 GW in 2007 to 328 GW in
2021. In addition to increasing installed capacity, plans to substantially increase wind energy
production for climate change mitigation also depend on future wind speeds, which strongly
influences the efficiencies of installed turbines within individual wind farms. A reversal in globally
decreasing wind speeds over several decades has been reported previously. However, subsequent
studies using other data sources reported only a slight increase or no reversal in China. These
uncertainties regarding China’s wind energy production hamper estimates of wind energy
production potential. Here, our analysis of quality-controlled wind speed measurements from
in-situ stations shows that the wind speed decline in China reversed significantly since 2012
(P < 0.001), but with substantial spatio-temporal variability. We further estimated the capacity
factor (CF) growth and the wind power gain solely associated with the changes in wind speed
ranges from 31.6 to 56.5 TWh yr−1 based on the 2019 installed capacity. This estimate explains
22.0%–39.3% of the rapid increase in wind generation CF in China during 2012–2019. The result
implies that the site selection of wind farms should consider both current wind situation and
future wind speed trends. Further studies are needed to understand the driving factor of wind
speed recovery in support of the wind energy industry.

1. Introduction

China is currently the largest CO2 emitter in the
world [1], and has an ambitious plan for emissions to
peak by 2030 and achieve carbon neutrality by 2060

[2]. A potentially efficient pathway for curbing CO2

emissions is to replace fossil fuels with electric power
and decrease the carbon intensity of electricity pro-
duction through renewable energy, e.g. wind power
[3]. The cumulative installed wind power capacity in
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China has grown exponentially from 5.9 GW in 2007
to 328 GW in 2021 [1, 4, 5]. With over one-third of
the world’s wind power capacity, China is the world
leader in wind power generation [6, 7]. Looking into
the future, China’s total installed capacity is anticip-
ated to reach 800 GW by 2030 and 3000 GW by 2060
with an additional∼70 GW installed annually [2].

The efficiency of wind turbines for generating
electricity is described as the ratio of the gener-
ated power to the rated power, known as the capa-
city factor (CF) [8, 9]. While the rated power is
solely dependent on the number and type of tur-
bines that are installed, the generated power addition-
ally depends on wind farm management (e.g. con-
trol of wake effects, maintenance and repair), and
wind speed changes [6, 10, 11]. The theoretical max-
imum wind power is proportional to the cube of
wind speed [10]. The amount of those power that
can be converted into electricity for any given tur-
bine is further limited by the wind turbine power
curve, which can be improved through technology
innovation including optimization of blade aerody-
namic structure and blade materials [11]. Once tur-
bines have been installed, the power curves are fixed,
and the key factor driving power generation is wind
speed change [9–11]. Yet, wind speed’s impact on
the CF for installed wind turbines in China remains
unknown, largely owing to (a) debate on how average
wind speed has been changing during the past decade
whenmost wind turbines were installed [12–16]; and
(b) difficulty in translating the in-situ wind records
(10 m above ground, daily and discontinuous) into
wind power production (i.e. CF) [17–19].

As for wind speed over China, most studies
[20–23] report a long-term decreasing trend during
1960–2010, which is consistent with the terrestrial
stilling that has been reported globally [12–14]. How-
ever, there is no consensus on how wind speed in
China has changed since 2010, which marks the
beginning of the period when most (more than
85%) wind turbines were installed. Some studies
have reported a continuation of the stilling [21–25];
others show a reversal [9, 15]. These differences
relate partially to the analysis of in-situ records
from different subsets of meteorological stations and
the application of different quality control criteria
[9, 16, 20–23, 25] and lead to the influence of wind
speed on wind energy production unknown. For the
subsets, recently theHadISD andGSODdatasets have
been found to record calm winds inaccurately, par-
ticularly for Asian stations including China, produ-
cing erroneously highwind speed in recent years [26].
Therefore, the results of Zeng et al [9] are likely biased
for Asia. It is therefore urgent and necessary to use
both China’s official dataset and the updated global
datasets to determine more accurate wind speeds in
China. For the quality control method, Yang et al [12]
and Tian et al [14] also used China’s official dataset.

Their quality control method necessitated the exclu-
sion of about half of the stations that changed loca-
tions over time, potentially biasing the observed wind
speed trends, especially for the past decade. Herein,
our research aims to clarify the wind speed trend in
China using all the four datasets from previous stud-
ies and a viable quality control method that preserves
more data records without compromising accuracy.
Furthermore, we convert the wind speed change to
wind energy CF change to quantify the effect of wind
speed change on wind energy production.

2. Method

2.1. Wind speed datasets
We used the China Surface Climatic Data Daily Data
Set (CSD) (Version 3.0), from the China Meteorolo-
gical Data Service Center (CMDC; http://data.cma.
cn/en/?r=data/; last accessed March 2020). The CSD
contains daily mean (average of four observations at
2:00, 8:00, 14:00 and 20:00 now and, three observa-
tions at 8:00, 14:00 and 20:00 before installing the
automatic recording) data from 699 national-level
reference climate stations and basic climate stations in
China (not including stations in Hong Kong, Macao
and Taiwan) from 1951 until three months before
the download time (2020.03) (table S1). Data from
1951 to 2010 were checked for quality both manually
and automatically [27]. To get a complete and reli-
able time series, we only used data from stations for
which more than 15 daily observations were available
for each month during 1990–2019 [9]. The 15 d cri-
terion is a safety threshold with a sensitivity test, in
whichwe tried 10, 15, 20 and 25 d as thresholds. Bene-
fiting from the integrity of the data, the difference is
limited as supplementary figure 1 shows. The distri-
bution of the stations covers all of China’s provinces
but has a denser coverage in the South East compared
with other regions (inset in figure 1). We also applied
this quality controlmethod to the other three datasets
(see more in supplementary text).

For seasonal analysis, we defined spring asMarch,
April and May, and winter as the following Decem-
ber, January and February, with summer and autumn
accordingly defined. For regional analysis, we divided
China into six regions based on the partitionedmodel
used in the 2019 Wind Power Industry Report [28],
shown in figure 2(a).

2.2. Piecewise regressionmodel
We used the piecewise regressionModel 1 mentioned
by Toms & Lesperance (2003) to determine turning
points and generate the trend lines for the wind speed
time series [29].Model input variables are wind speed
time series and the earliest and latest plausible dates
for the turning point. We set the turning point to
be at least 2 years away from the start and end of
the analysis period (1990–2019) to ensure there were
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Figure 1. Changes in average terrestrial surface wind speeds for 1990–2019 in China. (a) Each of the 300 grey lines represents a
linear fit of a time series formed by a randomly selected subset (40%) of the data. (b) Three other datasets all show a consistent
national annual average wind speed recovery in the 2010s. The GSOD (dark blue) and HadISD (light blue) time series correspond
to the blue axis on the right.

sufficient data for robust testing. The output from the
model is the timing of the turning point, the trends
before and after the turning point, the R2 for the
piecewise regression, the P value for the timing of the
turning point, the first and the second partial fit and
the complete model fit. The calculation of the P value
is based on the t-test null hypothesis: the trend differ-
ence before and after the tested point is 0.

2.3. CF calculation
We refer to three types CFs: (a) real CF (CFreal, orange
line shown in figure 3) is based on the data statistics;
(b) calculated raw CF (CFraw, left axis in figure 4) is
our raw calculation from wind speed; (c) calibrated
CF (CFcali, right axis in figure 4) is CFraw calibrated
by CFreal as shown in equation (4).

Both CFreal and CFraw are calculated from the fol-
lowing equation:

CF=
Preal
Prated

. (1)

For national CFreal, the rated power (Prated) is
the national installed wind capacity (unit: GW) and
the real power (Preal) is the annual net wind power
generation (unit: GWh) in China taken from the
U.S. Energy Information Administration (www.eia.
gov/opendata/) divided by 8760 h (hours in a year).
The provincial CFreals come from the annual wind
power grid-connected operation statistics reported by
National Energy Administration of China (www.nea.
gov.cn/).

National and provincial CFraws were calculated
from monthly average wind speeds as follows: (a) we
convertedmonthlywind speeds data into hourly data;
(b) we used a power curve to convert wind speed to
output power, allowing the calculation of the CF; (c)
we use Thiessen Polygon to calculate the national and
provincial average CFraws. For the first step, we used
33 stations with hourly observations in the corrected
HadISD dataset as reference stations (the distribu-
tion of the reference stations is shown in figure S2a).
The hourly wind speed distribution for a givenmonth

was assumed to follow the Weibull distribution asso-
ciated with the nearest reference station (figure S3,
equation (2)) [30, 31]:

f(x;λ,k) =


k

λ

( x

λ

)k−1
e−(x/λ)k , x⩾ 0

0, x< 0
(2)

where λ and k are the parameters that determine
the distribution using the function called ‘wblfit’ in
MATLAB. A detailed description of this method is
provided by Sweerts et al [32].

For the second step, we used an exponential wind
profile power law relationship [14] to convert the
observed wind speeds (u at height zs = 10 m) to wind
speeds at the hub height of the wind turbines (utb at
hub height ztb = 85 m):

utb = u

(
ztb
zs

)α

(3)

where α is estimated using equation (3) with the
hourly 10 m and 100 m wind speed in the ERA5
reanalysis: we determined the α for each location as
the 2017–2019 average and the result is shown in sup-
plementary figure 4. We then use the power curve
(figure S5) to convert wind speed to output power.We
chose the power curve from the Goldwindmodel GW
121/2500, with 2.5MW rated power, 85m hub height
and 121 m rotor diameter. The cut-in and cut-out
wind speeds for this turbine are 3m s−1 and 22m s−1

respectively (figure S5) [33]. The GW 121/2500 tur-
bine is selected as Goldwind has the largest wind
power market share in China and this turbine is one
of themost commonly installed [34].With the energy
production, we can calculate the CFraws according to
equation (1).

For the third step, we calculate the areas of the
polygons in the Thiessen Polygon map (figure S6)
determined for the stations in CSD dataset. The cal-
culated national and provincial CFraws are reported as
the area weighted average values for these polygons.

3
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Figure 2. Spatiotemporal analysis of wind speed trends. (a) Regional wind speed trends and installed capacity. The text insets
indicate the timing of the detected turning point, R2 for the fitted model, and the significance of the turning point timing.
(b) Wind speed trends in different northern hemisphere seasons.

The calculated CFraws are lower than CFreals

because we use weighted area rather than actual wind

farm distribution. In reality, wind farms are only
located in areas with good wind resources, and the
type of wind turbine was always carefully selected

to match local weather conditions. Using CFraw will
underestimate the contribution of the average wind
speed change to the CFreal change. Therefore, when
calculating the gain driven by wind speed recovery,
we first converted CFraw into real magnitude. The

multiplier (β= 1.78) was defined as the ratio of CFreal
(0.225) and CFraw (0.126) in 2019 (our turbine data
was based on the technology in 2019). This way, the
effect of technology improvement is controlled to be
the same. The CFcali was calculated as

CFcali = β ·CFraw (4)

whereβ is only suitable for a national value of 2.5MW
turbine and should not be used for provincial values
nor for other turbines.

4
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Figure 3. The wind power CF for China during 2005–2019 depends on the cube of the wind speed. The blue line (left y-axis) is
the cube of wind speed and the orange line (right y-axis) is CFreal. The separation in 2012 reflects the detected turning point in
wind speed. The inset figure shows the significant relationship between the capacity factor and the cube of the wind speed.

Figure 4. Estimation of the change in the capacity factor driven by wind speed. The black line is the national mean CFraw (left
axis) and CFcali (right axis). Blue and red dashed lines are the linear fits of CFraw/CFcali before and after wind speed change point
in 2012 (yellow line) accordingly.

3. Results

3.1. The recovery of wind speed in China since 2012
Our results show that after several decades of
decreasing trend, the wind speed in China has
significantly increased since 2012 (P < 0.001,
figure 1(a)). The R2 of the piecewise regression
model is 0.75 with a wind speed decreasing trend
of −0.060 m s−1 decade−1 during 1990–2012
(P < 0.001, inset of figure 1(a)). Following the

reversal, the increase in wind speed has a four-
fold higher magnitude during the rest of the dec-
ade (0.223 m s−1 decade−1; P < 0.001, inset of
figure 1(a)). Specifically, 59% of the stations show
increasing trends and 41% of them are significant
(P < 0.05; figure S7). To ensure that the turning
point is not caused by strong variations in wind speed
at individual stations, we also performed piecewise
linear regression on 300 data subsets, each containing
268 stations (40% of the total) that were selected
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Table 1.Wind power production range (Table_FootNote a) considering different wind speed levels and different capacities (TWh yr−1)
based on the 2019 technology level.

Average wind speed
Capacity

Average CF 210.1 GW (2019) 800 GW (2030) 3000 GW (2060)

2.20 m s−1 (2019) 0.1260–0.2249 231.8–413.8 883.0–1576.1 3311.3–5910.3
2.71 m s−1 (historical highest) 0.1713–0.3058 315.2–562.6 1200.5–2142.7 4501.8–8035.2
2.04 m s−1 (historical lowest) 0.1088–0.1942 200.2–357.3 762.5–1360.9 2859.3–5103.5
a The first and second values are (or base on) CFraw and CFcali accordingly.

randomly from the whole dataset (grey lines in
figure 1(a)). All the subsamples show significant turn-
ing points withP<0.001; andR2 exceeds 0.55 for 96%
of the linear regression models. The 95% confidence
interval for the turning point location is also 2012 for
the subsamples.

To test the robustness of the reversal of wind speed
trend in China, we repeated our analysis using other
station-based and quality-controlled datasets, includ-
ing the Global Surface Summary of the Day from the
U.S. National Oceanic and Atmospheric Administra-
tion (GSOD), theHadley Integrated SurfaceDatabase
from the U.K. Met Office Hadley Centre (HadISD),
and a private dataset from the Geographic Data
Sharing Infrastructure of Peking University (GDSI).
All the datasets show a rapid increase in the 2010s
(figure 1(b)), which again is the period when installed
wind capacity in China became prominent [1, 4, 5].

3.2. Spatiotemporal variability of the wind speed
recovery
The wind speed recovery varies significantly for dif-
ferent regions of the country (figure 2(a)). The recov-
ery started in the South West in 2000, increasing
twice in 2003 and 2014. Later it gradually spread
among regions, first to the North in 2008, then to
the North West in 2013, the North East in 2014,
the Central South in 2014, and finally to the East in
2015. The time series of wind speed trends in the
North East, Central South and the North, have sim-
ilar upward changes following distinct turning points
centering around 2010 (the trends change by more
than 0.3 m s−1 decade−1, R2 > 0.45, P < 0.001). The
wind speed in the East decreased continuously until
2015 without a significant turning point (P= 0.101).
The wind speed in the North West fluctuates greatly
and the piecewise regression model has the lowest R2

of 0.32.
As for seasonal variability, the most signi-

ficant reversal occurred in autumn (R2 = 0.64,
P < 0.001). Autumn wind speeds decreased in 1990–
2011 (−0.071 m s−1 decade−1) then increased sub-
stantially in 2011–2019 (0.260 m s−1 decade−1).
Winter wind speeds did not decrease much during
1990–2012 (−0.013 m s−1 decade−1) but increased
rapidly after 2012 (0.333 m s−1 decade−1). The
spatiotemporal variability in the wind speed recovery
(figure 2 and S8) indicates that a reliable estimation

of wind power gain requires fine-scale analysis both
spatially and temporally (e.g. by hourly and for smal-
ler area).

3.3. Relationship between capacity factor increase
and wind speed recovery
We found that the overall CF in China (CFreal)
is highly correlated with the cube of wind speed
(R = 0.86, P < 0.001; figure 3), demonstrating the
non-negligible role of wind speed in the interannual
variability of CF for wind generation. Especially, dur-
ing 2012–2019, the cube of wind speed in China
increased significantly by 26% (R2 = 0.86, P < 0.001),
and the CF increased by 56% (R2 = 0.83, P = 0.002),
indicating that the recent recovery of wind speed is
likely improving the efficiency of installed wind tur-
bines. For installed wind turbines with fixed rated
power, increasing wind speeds generate more wind
power, increasing the CF.

3.4. Estimation of capacity factor increase boosted
by wind speed recovery
To estimate the wind power gain and the CF growth
solely driven by the increase in average wind speed,
we calculated the CFraw with all other variables con-
trolled (e.g. turbine technology improvement, wind
farm expansion; see detail in Methods). We found
that CFraw increased by 17% (from 0.1088 in 2012 to
0.1260 in 2019), accounting for 22.0% of the CFreal
increase (from 0.1468 in 2012 to 0.2249 in 2019).
After calibration, CFcali increase equals 39.3% of the
CFreal increase. The corresponding increase in electri-
city generation is 31.65–56.49 TWh yr−1 (the lower
and upper boundary are based on CFraw and CFcali
accordingly; the following is the same) based on the
total installed capacity in 2019 (210.05 GW, table 1).
Both the upper and lower quartile in figure 4, corres-
ponding to the provinces with abundant and limited
wind resources respectively, experienced a slightly
decreasing trend followed by a recovery. However,
this assessment is not robust because the time series
are short. At the province level, although the records
are available only since 2013, we found that the trend
of our calculatedCF is consistent with values reported
in most provinces (figures 5, 6 and S9). Considering
that our calculation only uses thewind speed data and
a single turbine type, the consistency provided addi-
tional convincing evidence that wind speed is a key
factor attributing to the change in CF. Furthermore,
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Figure 6. Provincial average CFraw trends and turning points. (a) Average provincial CFraws for 1990–2019. (b) Turning points of
provincial CFraws. (c) CFraw trends before the turning points. (d) CFraw trends after the turning points. Grey area (e.g. Taiwan)
means no data.

we also tried other wind turbine types (table S2) and
found that the trend changes were robust regardless
of which turbine model was selected (figure 7).

With increasing installed capacity, the gain of
wind power brought by the recovery of wind speed
is potentially large. We set three scenarios to quantify
the wind energy production potential. In the first
scenario, which holds wind speed at the current level
(2.20 m s−1 in 2019), the wind energy production
will be 3311.3–5910.3 TWh yr−1 in 2060, equal to
40%–71% of the electricity consumption of China in
2021 (8312.8 TWh yr−1 [35]). The second scenario
considered that wind speed might be influenced by
decadal periodicity in ocean-atmosphere circulation
[36] and potentially return to its historically highest
level in 1969 (2.71 m s−1, figure S10). For this hypo-
thetical scenario, the wind power production would
be 4501.8–8035.2 TWh yr−1 in 2060, equaling the
production of 40–72 Three Gorges dams (111.8 TWh
in 2019 [35]). The third scenario considered wind

speed would decrease as IPCC predicted [37]. We
took the historically lowest level (2.04 m s−1) in 2012
as the potential wind speed. In this case, the 3000 GW
capacity will only generate total electricity of 2859.3–
5103.5 TWh yr−1 (figure 7, table 1).

4. Discussion

All four data series mentioned above show upward
trends in the 2010s (figure 1(b)). However, the turn-
ing points visible in the CSD and GDSI datasets from
CMDC occur around 2010, which is about one dec-
ade later than those seen in the GSOD and HadISD
datasets (around 2000). This dissimilarity may stem
from differences in the number and distribution of
stations (table S1, figure S1). However, we also found
that some stations with the same station ID in the
HadISD and CSD datasets have time series abruptly
become dissimilar following a long-term consistency.
This discrepancy may be caused by: (a) stations being

8
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Figure 7. Comparison of CFraws for different turbines. Dots in the grey area shows the CFraws of the historical highest wind speed
in 1969. The right y-axis (purple color) is CFcali only applies to 2.5 MW turbine (purple color).

merged in HadISD [38] and (b) station relocation
which has been processed with a spatial consistency
check and corrected by CSD [27], but not by HadISD.
Through the comparison of some overlapping sta-
tions in HadISD and CSD, the CSD data tend to have
fewer such abrupt changes (figure S11).

The reason for the wind recovery remains unclear,
leading to uncertainty about the future wind speed
trend and wind power potential [37]. The driver of
long-term wind speed decrease in China has two
facets: (a) reduction of driving force associated with
the change of large-scale atmospheric circulation
[9, 25, 39] and (b) increase in resistance associated
with land use/land cover change [13, 21, 40, 41].
Considering that the land change trend is unlikely to
reverse suddenly in 2012, the increasing wind speed
is potentially a result of changed atmospheric cir-
culation change [9]. Ongoing research is exploring
these relationships and the associated physical pro-
cesses. For example, the West Pacific Index (WPI)
shows a more positive pattern during the period of
wind speed decreases and a more negative pattern

when wind speed recovers [42]. Negative phases of
WPI mean more Western North Pacific tropical cyc-
lones move into southern China and bring wind [43].
The increasing negative phases of Southern Oscilla-
tion Index (SOI) during 1975–2000 means colder sea
water, smaller land-ocean air pressure gradient and
weaker winter winds in China [16, 44]. While the
recovery of SOI positive phases since 2000 is followed
by the reversal of wind speed. However, the relation-
ship between the East Asian winter monsoon and
SOI is unstable [45]. By now, no model fully repro-
duces the wind speed historical trends [37]. Addi-
tional studies in this field are needed considering the
rapid growth in installed wind power globally.

Our analyses are based on a singular 2.5 MW
wind turbine model. To address the uncertainty, we
also calculated the CFs of turbines with rated capa-
cities of 1.5 MW, 3.2 MW and 7.6 MW. The result
shows that the 3.2 MW and 2.5 MW wind turbine
models have much higher CFs than the 1.5 MW and
7.6 MW models for all the three wind speed scen-
arios (figure 7). Considering that 3.2 MW turbines
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can produce more electricity than 2.5 MW turbines
for the same CF, this model is arguably an ideal choice
for the observed/predicted wind trends instead of lar-
ger capacity of a 7.6MW turbine. Choosing appropri-
ately sized turbines based on wind situation can help
narrow the CF gap between China and the United
States [8, 9, 46].

5. Conclusion

Our analysis shows that following decades of decreas-
ing wind speeds, wind speeds have recovered in most
places in China in the 2010s. This reversal in wind
speed trend has significant implications for wind
power production. We used an innovative method
to calculate the wind speed-driven CF change and
found that this recovery has increased the CF for
wind generation in China by 17%, explaining almost
22.0%–39.3% of the reported increases in the CF over
2012–2019. This change in wind speed allows wind
farms to bemore efficient sources of electricity gener-
ation, and therefore, supports the role of wind energy
development to help replace fossil fuels in the future.
However, the underlying cause of wind speed change
remains unclear, lending uncertainty to the predic-
tion of future wind speeds. To explore this uncer-
tainty, we used three possible scenarios related to
wind speed changes (reduction, increase and stay).
But further research is still required to make a more
informed conclusion. An improved understanding of
the drivers of changes in wind speed can provide a
basis for improved regulation of wind farms siting,
turbine selection and management.
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