

Development and validation of on-line auto-GC for the analysis of trace level biogenic VOCs for a field measurement campaign

Fanny Bachelier, Damien Bazin, Benoit Grosselin, Véronique Daële

▶ To cite this version:

Fanny Bachelier, Damien Bazin, Benoit Grosselin, Véronique Daële. Development and validation of on-line auto-GC for the analysis of trace level biogenic VOCs for a field measurement campaign. Analytics 2022, Sep 2022, Nantes, France. hal-03862158

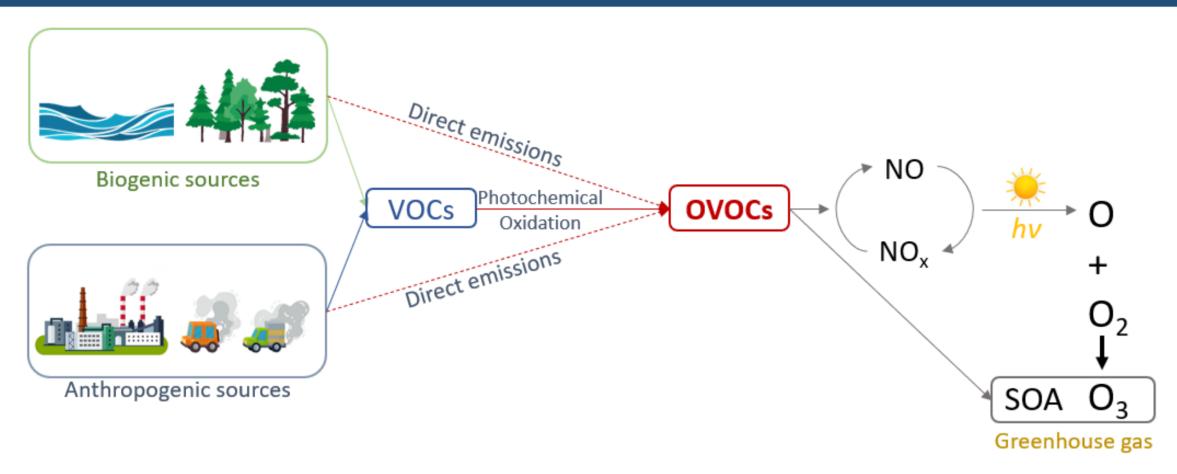
HAL Id: hal-03862158 https://hal.science/hal-03862158v1

Submitted on 20 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Development and validation of on-line auto-GC for the analysis of trace level biogenic VOCs for a field



¹ICARE - UPR 3021 - CNRS, 1C Av. de la Recherche Scientifique, CS 50060, F-45071, Orléans cedex 2, France ²Chromatotec, 15 rue d'Artiguelongue, 33240 Saint-Antoine, France

fanny.bachelier@cnrs-orleans.fr

Introduction

Context:

- Volatile Organic compounds (VOCs) play a major role on atmospheric pollution
- VOCs emitted in the atmosphere from natural or anthropological sources⁽¹⁾
- Biogenic VOCs (BVOCs) = hydrocarbons, isoprene, terpenes & oxygenated compounds $(OVOCs)^{(2)}$
- These molecules are found in ambient air from ppt to ppb levels that require sensitive analytical systems

Problem:

Usually laboratory instruments involving one off-sampling and analysis

Method validation

To validate the system, certified gas mixtures PAMS 58

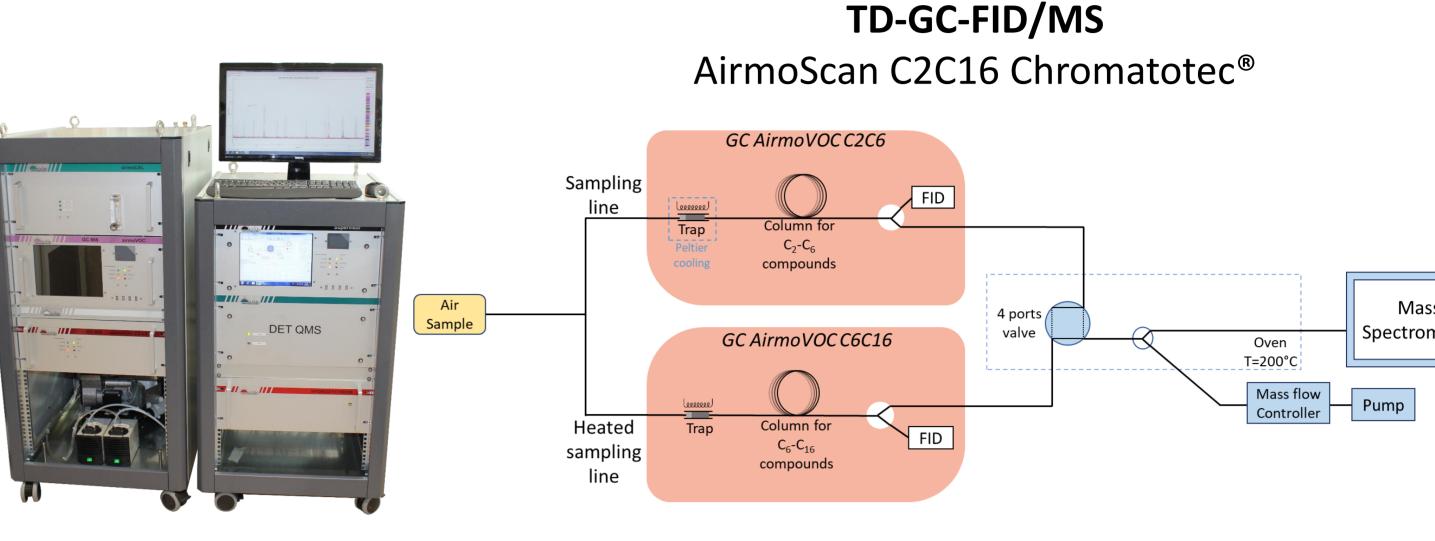
and TO15 (Takachiho, Japan) at 100 ppb(V) were used

Linearity, limit of detection, precision and accuracy

calculated according to the Chinese Norm for ambient

air measurements⁽³⁾ for 4 aromatic hydrocarbons,

4 OVOCs not quantified by FID → coelutions


 Need for continuous on-site monitoring systems and allowing automatic data reprocessing

Goal:

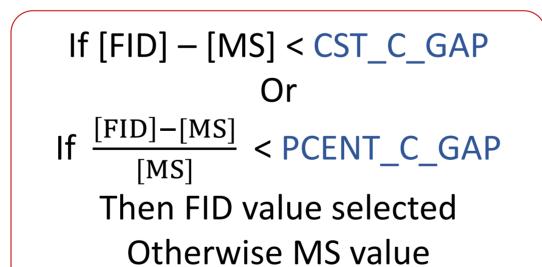
50000

suitability of continuous and automatic thermodesorption Gas chromatograph with Flame ionization Detector (FID) and Mass Spectrometer (MS) in parallel for BVOCs measurement in ambient air

Material & Method

GC AirmoVOC C2C6	GC AirmoVOC C6C16	Mass spectrometer
Carrier gas: H ₂	Carrier gas: H ₂	Single Quadrupole
Flow rate: 3 mL/min	Flow rate: 3 mL/min	EI: 70eV
Sampling flow: 12 mL/min	Sampling flow: 20 mL/min	
Column: Capillary PLOT	Column: Capillary MXT30CE	Transfer line: 200°C
column (25m x 0,53mm x	column (30m x 0,28mm x	Inlet: 250°C
10μm)	1μm)	
Trap: Carboxen &	Trap: Carbopack mixture	Detection: SCAN mode
Carbopack mixture (-10°C)		(0 – 300 amu)
Thermodesorption: 220°C	Thermodesorption: 380°C	SEM voltage = 1200V
Oven: 36 – 202°C	Oven: 36 – 202°C	
Detector: FID at 170°C	Detector: FID at 190°C	
Sampling time: 30 mi		

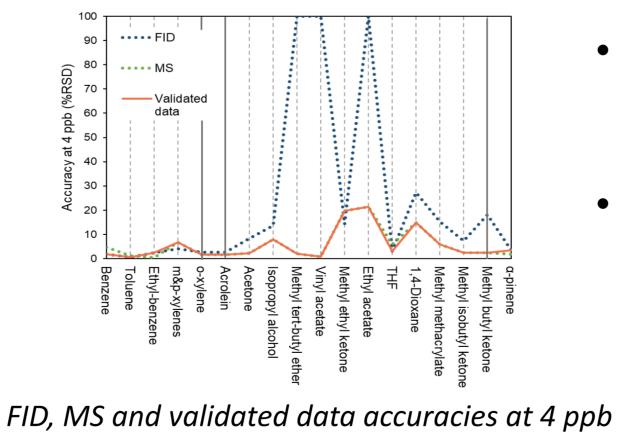
Results


Development of automatic reprocessing

Interest of dual detection FID and MS in continuous and on-site measurements:

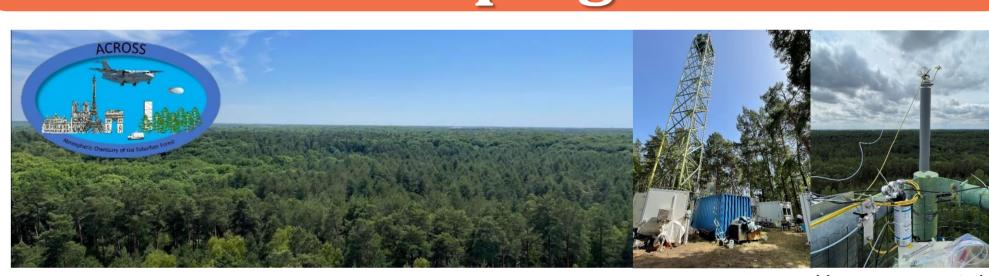
	FID	MS
	Good	Sensitive
	reliability	Selective
+	(Stable,	Allows
	linear,	identification
	sensitive)	(NIST database)
_	Non selective	Time drift

Twice as many results Need to simplify data reprocessing

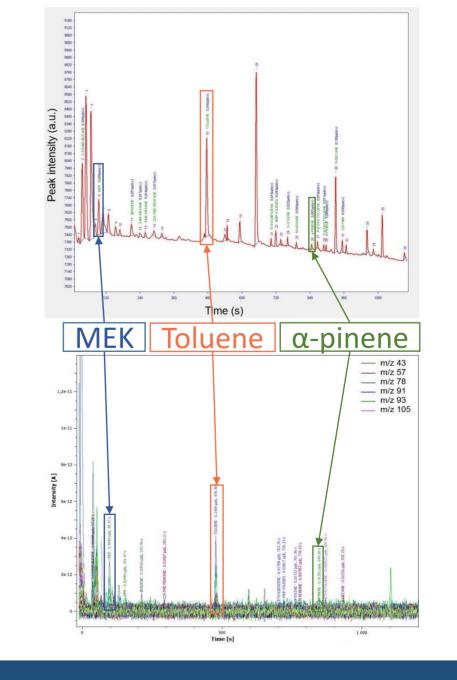

Algorithm and validation parameters implemented in data reprocessing software:

With CST GAP and PCENT C GAP =

Validation parameters optimized for each VOC


Algorithm efficiency evaluation

of aromatic hydrocarbons, OVOCs and terpene


- validated RSD% of ranged from 0,07% to 21.4%
- Implementation validation parameters leads to overall good accuracies

In field measurement campaign

https://across.cnrs.fr/

- ACROSS campaign: Atmospheric ChemistRy Of the Suburban ForeSt (15 June – 25 July)
- Location: 3 sites in Paris including Rambouillet Forest (80 km from Paris)
- Aim: Understand physico-chemical interactions of urban and biogenically air masses
- TD-GC-FID/MS objective: Measurement of Biogenic compounds above the trees

FID and MS chromatograms of 3 potential BVOCS identified and quantified in Rambouillet field

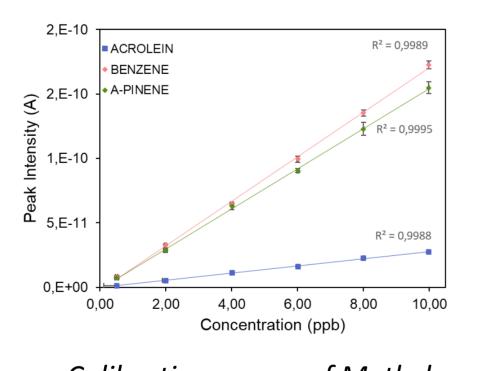
[Validated data] (ppb)	
0,944	
0,357	
0,007	

Limits of detection: 0.035 - 0.325 ppb**Precisions** at 4 ppb

Calibration curves of Methyl

Ethyl Ketone (MEK), Toluene

and α-pinene


• R^2 : 0,9829 – 0,9992

110VOCs and 1 terpene

FID detector

- (RSD%): 0,65% 5,79%
- Accuracies at 4 ppb (RSD%): 0,62% - 18,2%

MS detector

Calibration curves of Methyl Ethyl Ketone (MEK), Toluene and α -pinene

- R^2 : 0,9871 0,9995
- Limits detection: of 0,048 - 2,110 ppb
- **Precisions** at (RSD%): 0,66% - 10,6%
- **Accuracies** at (RSD%): 0,33% - 21,4%

Conclusion

- Performance studies of TD-GC-FID/MS were evaluated to quantify 16 VOCs: 4 aromatic hydrocarbons, 11 OVOCs and 1 terpene in ambient air
- Algorithm optimized to simplify data reprocessing and select accurate result between FID and MS
- 3 potential BVOCs identified and quantified with the system during the ACROSS campaign in Rambouillet site

Perspectives:

- Performance studies with an internal standard
- Data analysis and comparison with other instruments deployed during the Rambouillet campaign

Acknowledgements

Acknowledgements to the Mass Spectrometry French Society (SFSM) for providing me the opportunity to participate to the Analytics 2022 congress

This work was carried out as part of a thesis with a CIFRE #2020/1563 agreement from the National Association for Technical Research (ANRT)

References

- (1): Gu et al., (2019) China, Ecotoxicology and Environmental Safety 169, 797 806 (2): Dörter et al., (2020), Science of the total Environment 731, 139 – 201
- (3): HJ 1010-2018 (2019), Specifications and Test procedures for Ambient Air Quality Continuous Monitoring System with Gas Chromatography for Volatile Organic Compounds