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Abstract
Spin-state energetics of exchange-coupled copper complexes pose a persistent challenge for applied quantum chemistry. Here, 
we provide a comprehensive comparison of all available theoretical approaches to the problem of exchange coupling in two 
antiferromagnetically coupled bis-μ-hydroxo Cu(II) dimers. The evaluated methods include multireference methods based 
on the density matrix renormalization group (DMRG), multireference methods that incorporate dynamic electron correla-
tion either perturbatively, such as the N-electron valence state perturbation theory, or variationally, such as the difference-
dedicated configuration interaction. In addition, we contrast the multireference results with those obtained using broken-
symmetry approaches that utilize either density functional theory or, as demonstrated here for the first time in such systems, 
a local implementation of coupled cluster theory. The results show that the spin-state energetics of these copper dimers are 
dominated by dynamic electron correlation and represent an impossible challenge for multireference methods that rely on 
brute-force expansion of the active space to recover correlation energy. Therefore, DMRG-based methods even at the limit 
of their applicability cannot describe quantitatively the antiferromagnetic exchange coupling in these dimers, in contrast to 
dinuclear complexes of earlier transition metal ions. The convergence of the broken-symmetry coupled cluster approach is 
studied and shown to be a limiting factor for the practical application of the method. The advantages and disadvantages of 
all approaches are discussed, and recommendations are made for future developments.

Keywords Exchange coupling · Copper · Multireference methods · Broken symmetry · Coupled cluster

1 Introduction

Local spins in inorganic and bioinorganic systems with mul-
tiple open-shell transition metals couple to a multitude of 
total spin states whose energy is a function of the total spin 
S. This phenomenon is called magnetic exchange coupling 

and is usually described by the Heisenberg–Dirac–van Vleck 
Hamiltonian [1–4]

ĤHDvV is an effective Hamiltonian that acts only on a ficti-
tious set of spin states without any reference to the spatial 
wavefunction. Instead, the coupling of each pair of spins ŜI 
and ŜJ is associated with a coupling parameter JIJ . Negative 
values for JIJ correspond to antiferromagnetic coupling, i.e., 
the lowest total spin state is energetically favored. In con-
trast, positive values describe a situation in which the highest 
total spin state is energetically favored, hence ferromagnetic 
coupling. While magnetic exchange coupling has notable 
effects on spectroscopic and chemical properties of polynu-
clear transition metal compounds, the accurate prediction 
of coupling constants by electronic structure calculations 
remains a great challenge for quantum chemistry.

The problem of magnetic coupling in polynuclear 
transition metal clusters is intimately related to the 
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multideterminantal character of the involved electronic states 
and the concomitant static electron correlation. For example, 
a binuclear copper(II) system with local spins of S = 1∕2 
is characterized by two total spin states arising from the 
same ground-state electron configuration, and only one of 
them can be represented by a single determinant. Therefore, 
a straightforward approach to the theoretical description of 
this phenomenon must properly account for this aspect of 
the electronic structure, as provided by multireference (MR) 
methods.

The most commonly used methods of this family of elec-
tronic structure methods are the complete active space self-
consistent field (CASSCF) and the complete active space 
configuration interaction (CASCI). A key feature of both 
methods is the division of the molecular orbital space into 
a set of internal orbitals that are always doubly occupied, a 
set of virtual orbitals that are always empty and the set of 
active orbitals that can have any occupation between 0 and 2. 
More precisely, the CASCI and CASSCF wavefunctions are 
linear combinations of all possible active space configura-
tion state functions, thus solving the full configuration inter-
action (FCI) problem in this subset of orbitals. Although 
CASCI and CASSCF provide the required flexibility to yield 
a qualitatively correct wavefunction (given the active space 
is chosen to be adequately large), a quantitatively correct 
description of magnetic coupling can only be achieved when 
dynamic electron correlation is taken into account [5–7]. 
Well-established approaches to accomplish this crucial task 
are based on perturbation theory, configuration interaction 
or coupled cluster theory [8–11].

A common concern for all multireference methods is their 
high computational cost, arising from the underlying CAS-
SCF calculation and the treatment of dynamic electron corre-
lation. As the active space size increases, both aspects of an 
MR calculation quickly become unfeasible. Although mod-
ern implementations allow for CASSCF calculations with 
up to ca. 18 active electrons and orbitals (up to 22 electrons 
and orbitals have even been reached with massively parallel 
implementations), the treatment of dynamic electron correla-
tion causes even more severe restrictions on the active space 
size. Therefore, a number of previous studies of magnetic 
couplings relied on a minimal active space that comprises 
only the partially occupied metal d-orbitals [5, 12–14]. 
Since this active space does not capture all of the essential 
physics of magnetic exchange coupling, sophisticated and 
computationally demanding approaches to dynamic electron 
correlation such as the difference-dedicated CI (DDCI) are 
needed to obtain qualitatively and quantitatively accurate 
results [15, 16]. Consequently, this approach is limited to 
small systems with few unpaired electrons.

In recent years, a different strategy to compute mag-
netic exchange couplings based on large active spaces has 
been explored. This conceptual shift was triggered by the 

development of techniques that allow for large active spaces 
in CASSCF-type calculations on the order of 20–50 orbit-
als at considerably reduced computational cost. Among 
these techniques, the density matrix renormalization group 
(DMRG) is the most prominent [17–19]. Relying on a so-
called matrix-product state wavefunction, the DMRG opti-
mizes only a polynomial number of parameters to solve 
a problem whose complexity grows exponentially with 
increasing system size. A number of pilot studies of Fe, 
Cr and Mn clusters showcased the feasibility of DMRG 
calculations for the prediction of magnetic exchange cou-
pling constants [20–23]. However, previous work by some 
of us revealed that for an oxo-bridged mixed-valence Mn 
dimer truly quantitative accuracy can only be reached when 
dynamic electron correlation is treated on top of a relatively 
large active space that comprises all Mn d-orbitals and all 
occupied valence orbitals of the oxo-bridges [6].

On the opposite end of computational complexity, a 
widely employed approach to the description of magnetic 
exchange coupling involves the broken-symmetry (BS) 
approach, particularly in combination with unrestricted 
density functional theory (DFT) as introduced by Noodle-
man [24, 25]. Instead of a multideterminantal wavefunction, 
the BS approach relies on a single determinant to indirectly 
deduce the energy of the antiferromagnetically coupled state. 
For example, in the aforementioned Cu(II) dimer one Cu 
center would be associated with positive spin density, while 
the other Cu center would feature negative spin density. As 
a consequence, the BS determinant does not feature the cor-
rect spin symmetry. Nevertheless, projection schemes allow 
for an estimation of magnetic exchange coupling constants 
based on the energies of the high-spin determinant and the 
BS determinant as well as the corresponding expectation 
values for the total spin 

⟨
S2
⟩
 . Compared to the multide-

terminantal approaches discussed above, BS-DFT yields 
magnetic exchange coupling constants at the cost of two 
self-consistent field (SCF) calculations, thus making it fea-
sible even for large systems with more than 100 atoms. Yet 
the BS-DFT approach is problematic because the proper-
ties of spin states other than the highest-spin state cannot 
be obtained directly, and because in practice the usage of 
different functionals and spin projection schemes leads to 
different exchange coupling values in an often unsystematic 
way. The dependence of BS-DFT results on the employed 
functional originates from the different treatment of dynamic 
electron correlation which, owing to the unknown form of 
the exact Hohenberg–Kohn functional, cannot be systemati-
cally improved [26]. Recently, it was suggested that instead 
one may employ the same broken-symmetry approach but 
using the well-established coupled cluster theory for the 
treatment of dynamic electron correlation [27]. This is a 
potentially powerful approach that remains to be explored. 
In the present work, we assess the performance of all four 
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existing approaches to the exchange coupling problem, using 
the two archetypical antiferromagnetically coupled bis-μ-
hydroxo-bridged copper dimers 1 and 2 depicted in Fig. 1.

2  Computational details

This work reports on the results of several sets of electronic 
structure calculations: geometry optimizations on the DFT 
level of theory and single point energy evaluations using 
DFT, DMRG-CI, [28] DMRG-SCF, [29, 30] strongly con-
tracted DMRG-NEVPT2, [31–33] DDCI, [15, 16] and bro-
ken-symmetry coupled cluster theory  [27]. The reported 
DMRG and DMRG-NEVPT2 calculations were conducted 
with the MOLBLOCK program, while all other calculations 
were performed with the ORCA program package [6, 34, 
35].

To facilitate comparisons between theory and experi-
ment, we optimized the X-ray structure of complexes 1 (ID: 
HTMCUP) and 2 (ID: CUXJEK) while constraining the 
positions of all heavy atoms to their experimentally derived 
coordinates [36, 37]. Thus, only the positions of hydrogen 
atoms were relaxed since these are not reliably determined 
from X-ray diffraction experiments. Geometry optimizations 
were conducted using the TPSS functional with the def2-
TZVP basis set and taking advantage of the RI approxima-
tion with the appropriate auxiliary Coulomb fitting basis 
sets [38–42]. Subsequent DFT single point calculations were 
carried out with the same basis set and a large variety of 
functionals (see below). Increased integration grids and tight 
SCF convergence criteria were used throughout. It should 
be noted that the usage of Grimme’s dispersion correction 
with Becke–Johnson damping (D3BJ) during the geometry 
optimization did not result in a significant change of the 
obtained results (see Supporting Information).

The reported high-spin and broken-symmetry coupled 
cluster (CC) calculations incorporated single and double 
excitations (CCSD). Owing to the size of 1 and 2, the solu-
tion of the canonical CCSD equations is intractable. To 
reduce the associated computational cost, the correspond-
ing equations were solved in their local pair-natural orbital 
(LPNO-CCSD) form [43–46]. All reported coupled cluster 

calculations relied on unrestricted Kohn–Sham reference 
determinants that were generated with the B3LYP func-
tional. [47, 48] If not stated otherwise, the def2-TZVP basis 
set was used in CC calculations.

DDCI calculations incorporated excitations with up to 
three degrees of freedom (DDCI3) employed the def2-SVP 
basis set as the maximum applicable basis for the present 
systems  [15, 16, 39]. Selection thresholds have an important 
effect on the predicted spin-state energetics, and these will 
be discussed in the appropriate section where the results are 
presented.

DMRG-SCF, DMRG-CI and DMRG-NEVPT2 calcula-
tions were performed using the MOLBLOCK in-house code 
[6, 34]. In the current context, MOLBLOCK employs the 
BLOCK DMRG code developed by Chan and co-workers 
as approximate Full-CI solver [17, 28, 49]. Accordingly, all 
reported DMRG-NEVPT2 calculations use the implemen-
tation reported in reference [32]. In the following, active 
spaces are labeled (n,m) to denote n electrons in m orbit-
als. Starting orbitals for CASSCF calculations with small 
active spaces ((2,2) and (14,8)) were obtained from DFT 
calculations using the B3LYP functional [47, 48]. During 
these DFT calculations, the RIJCOSX approximation with 
the def2/J auxiliary basis was applied [50–52]. Multirefer-
ence calculations with larger active space are based on the 
CASSCF(14,8) orbitals as described in detail below. Wave-
function calculations used the RI approximation where 
applicable with the def2-TZVP/C auxiliary basis set (def2-
SVP/C for DDCI calculations) [53]. The state-averaged 
approach was followed for orbital optimization in CASSCF 
and DMRG-SCF calculations.

3  Results and discussion

3.1  A. Description of the Cu dimers

The structures of 1 and 2 display the same coordination core 
 [Cu2(μ-OH)2(L)2]2+ with two Cu(II) bridging two hydroxo 
ligands (Fig. 1 and Figure S1). Complex 1 features a square 
planar geometry with each copper center coordinating two 
nitrogen atoms of the N,N,N’,N’-tetramethylethylenedi-
amine ligand  [36]. Complex 2 exhibits a square pyramidal 
geometry with the metal being now coordinated to three 
nitrogen atoms of the N,N’,N’’-trimethyl-1,4,7-triazacyclo-
nonane ligand [37]. The Cu–O-Cu angles are 101.6° and 
100.1° for complexes 1 and 2, respectively (see Table S1 
for detailed structural parameters). Coordination distances 
around the Cu(II) centers are in the expected range: For 
complex 1, Cu–O distances are 1.931 Å and 1.897 Å, and 
Cu–N distances are 1.996 Å and 2.033 Å, while for complex 
2 Cu–O distances are 1.938 Å and 1.935 Å, and equatorial 
Cu–N distances are 2.084 Å and 2.060 Å, with an elongated 

Fig. 1  The two dinuclear  CuII complexes studied in the present work
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apical Cu–N distance of 2.238 Å. The experimentally fit-
ted exchange coupling constants J for both complexes are 
antiferromagnetic, J(1) =   − 180  cm−1 and J(2) =   − 45  cm−1.

3.2  B. Broken‑symmetry density functional theory

The accuracy of BS-DFT for the calculation of J has notably 
increased with the use of modern hybrid functionals, and 
nowadays, its applicability expands to diverse and complex 
systems. However, many examples show that the optimal 
functional is not transferable from system to system. For 
example, it was observed that B3LYP [47, 48] can give 
satisfactory results for copper [54–57] and cobalt [58, 59] 
complexes, but is not the best functional for chromium [60], 
manganese [61] and iron [62] dimers. In these latter cases, 
TPSS0 [63, 64], TPSSh [65] and M06 [66], respectively, are 
the best performing functionals to describe the experimental 
results. There have also been intense debates [67–69] regard-
ing the correct way of calculating the exchange coupling 
constant from the high-spin and BS energies, since three dif-
ferent schemes can be employed within the BS-DFT frame-
work (eqs. (2)–(5)).[70] These formalisms were described 
in works from Noodleman's (Eqs. (2) and (5)) [24], Ruiz's 
(Eq. (3)) [71] and Yamaguchi's (Eq. (4)) [72] groups:

where EHS and EBS are the high-spin and broken-symmetry 
energies, respectively, Sab is the orbital overlap, Smax  is the 
total spin of the high-spin state, and 

⟨
S2
⟩
HS

 and 
⟨
S2
⟩
BS

 are 
the spin expectation values for the high-spin and broken-
symmetry states, respectively.

Noodleman's method (eq. (2)), also referred to as the 
spin-projected approach, computes the exchange coupling 
constant J in the weak limit of overlap of the magnetic orbit-
als [26]. Alternatively, Ruiz and co-workers developed the 
non-projected approach (eq. (3)) assuming a strong coupling 
limit, arguing that the broken-symmetry energy is a good 
approximation of the low-spin state of the system [67, 71]. 
Yamaguchi proposed a more general spin-projected approach 
(eq. (4)) that adapts and covers all situations, from weak-to-
strong coupling [72]. Similarly to the latter, Noodleman also 
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proposed a formulation based on the overlap of the magnetic 
orbitals accounting for all coupling regimes (Eq. 5).

Discrepancies have been observed in the use of the equa-
tions to calculate J values without a clear justification of 
the choice. Regarding dinuclear copper and heterobimetallic 
copper complexes, Santiago et al. [73] favored computation 
of exchange coupling constants using eq. (2). On the con-
trary, Luo et al. [74] and Ruiz et al. [75, 76] described dinu-
clear copper systems with eq. (3). Finally, Luo et al. [57], 
Reis et al.[77] and Comba [55] used eq. (4) in their studies. 
Moreover, Simões et al. [78] observed a better quantitative 
agreement between theoretical and experimental results 
when using eqs. (2) and (4), while eq. (3) highly under-
estimated the values of the calculated exchange coupling 
constants. Systematic inferences are not possible because 
different spin projection approaches and different choices of 
functional can have effects of similar magnitude and interact 
in ways that can be unpredictable.

To assess the performance of BS-DFT for predicting the 
exchange coupling constant J of the selected copper com-
plexes 1 and 2, we present a series of calculations using 
the generalized-gradient-approximation (GGA) functionals 
BLYP, [47, 79] PBE, [80, 81] and BP86 [82], the meta-
GGA TPSS, [38] hybrid GGA B3LYP, [47, 48] B1LYP, [48] 
PBE0 [83] and B3PW91 [48, 80] and meta-hybrid GGA 
functionals TPSSh [65] and TPSS0 [63, 64]. Tables 1 and 2 
display the computed J1, J2, J3 and J4 for complex 1 and 2, 
respectively, along with the absolute percentage deviation 
(APD) calculated with respect to the experimental results. 
Using any of Eqs. (2–5), we predict negative J values for the 
two complexes, in line with the experimentally established 
antiferromagnetic coupling between the two Cu(II) centers, 
leading to a spin singlet (S = 0) ground state.

Prior to a detailed discussion of the numerical perfor-
mance of the various tested functionals in the current con-
text, it is instructive to examine the nature of antiferromag-
netic coupling between the metal centers. To this end, the 
corresponding orbitals presented in Fig. 2 (here, the TPSSh 
orbitals are shown as representative case) were constructed 
according to established procedures and their shape ana-
lyzed. For both complexes, the magnetic orbitals are the 3 
dx2−y2 Cu orbitals in σ* combination with ligand p orbitals. 
Exchange is mediated mostly by overlap over the bridging 
hydroxyl groups (2px and 2py orbitals of the bridging O 
atoms). According to the detailed results listed in Tables 1 
and 2, each individual functional provides greater overlap 
integrals for complex 1 than for complex 2, in line with the 
stronger antiferromagnetic coupling describing complex 1 
compared to complex 2. The magnitude of the overlap inte-
gral is correlated with the nature of the functional, specifi-
cally with the percentage of exact exchange. This in turn is 
correlated with the energetic separation between the BS and 



Theoretical Chemistry Accounts (2021) 140:139 

1 3

Page 5 of 15 139

Table 1  BS-DFT results for complex 1. DFT-calculated spatial over-
lap (Sab) of corresponding orbitals in the broken-symmetry state, 
exchange coupling constants (J,  cm−1) and absolute percentage devia-

tion (APD) for the 4 different spin projection formalisms. The experi-
mental J value is  − 180  cm−1

Functionals % of HF 
exchange

Sab J1 J2 J3 J4 APD J1 APD J2 APD J3 APD J4

TPSSh 10 0.219  − 336  − 168  − 321  − 336 87 7 78 87
B3LYP 20 0.164  − 221  − 111  − 215  − 221 23 38 19 23
B3PW91 20 0.163  − 220  − 110  − 214  − 220 22 39 19 22
B1LYP 25 0.136  − 167  − 84  − 164  − 167 7 53 9 7
PBE0 25 0.134  − 166  − 83  − 163  − 166 8 54 9 8
TPSS0 25 0.124  − 150  − 75  − 148  − 150 17 58 18 17

Functionals % of HF 
exchange

Sab J1 J2 J3 J4 APD J1 APD J2 APD J3 APD J4

BLYP 0 0.441  − 740  − 370  − 619  − 740 311 106 244 311
PBE 0 0.436  − 725  − 363  − 609  − 725 303 102 238 303
BP86 0 0.433  − 723  − 361  − 608  − 723 302 101 238 302
TPSS 0 0.371  − 627  − 314  − 551  − 627 248 74 206 248
TPSSh 10 0.219  − 336  − 168  − 321  − 336 87 7 78 87
B3LYP 20 0.164  − 221  − 111  − 215  − 221 23 38 19 23
B3PW91 20 0.163  − 220  − 110  − 214  − 220 22 39 19 22
B1LYP 25 0.136  − 167  − 84  − 164  − 167 7 53 9 7
PBE0 25 0.134  − 166  − 83  − 163  − 166 8 54 9 8
TPSS0 25 0.124  − 150  − 75  − 148  − 150 17 58 18 17

Table 2  BS-DFT results for complex 2. DFT-calculated spatial over-
lap (Sab) of corresponding orbitals in the broken-symmetry state, 
exchange coupling constants (J,  cm−1) and absolute percentage devia-

tion (APD) for the 4 different spin projection formalisms. The experi-
mental J value is  − 45  cm−1

Functionals % of HF 
exchange

Sab J1 J2 J3 J4 APD J1 APD J2 APD J3 APD J4

TPSSh 10 0.148  − 93  − 47  − 91  − 93 107 4 102 107
B3LYP 20 0.111  − 39  − 19  − 38  − 39 13 58 16 13
B3PW91 20 0.109  − 36  − 18  − 36  − 36 20 60 20 20
B1LYP 25 0.091  − 18  − 9  − 18  − 18 67 80 60 60
PBE0 25 0.089  − 16  − 8  − 16  − 16 64 82 64 64
TPSS0 25 0.082  − 15  − 7  − 15  − 15 67 84 67 67

Functionals % of HF 
exchange

Sab J1 J2 J3 J4 APD J1 APD J2 APD J3 APD J4

BLYP 0 0.301  − 261  − 131  − 240  − 261 480 191 433 480
PBE 0 0.294  − 247  − 123  − 227  − 247 449 173 404 448
BP86 0 0.293  − 246  − 123  − 227  − 246 447 173 404 448
TPSS 0 0.252  − 219  − 110  − 206  − 219 387 144 358 387
TPSSh 10 0.148  − 93  − 47  − 91  − 93 107 4 102 107
B3LYP 20 0.111  − 39  − 19  − 38  − 39 13 58 16 13
B3PW91 20 0.109  − 36  − 18  − 36  − 36 20 60 20 20
B1LYP 25 0.091  − 18  − 9  − 18  − 18 67 80 60 60
PBE0 25 0.089  − 16  − 8  − 16  − 16 64 82 64 64
TPSS0 25 0.082  − 15  − 7  − 15  − 15 67 84 67 67
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high-spin states, which affects the derived exchange cou-
pling constant.

As expected from past experience [84], our calculations 
follow the trend that hybrid functionals are more accurate 
in predicting J values than GGA or meta-GGA functionals, 
which largely overestimate the magnitude of the coupling. 
It is noted that the choice of equation for the J is crucial 
in determining the final value. Although B1LYP and PBE0 
perform well for complex 1 when considering J1 and J3, 
the results using these functionals appear disappointing for 
complex 2. A combination that appears to work well for both 
complexes is the TPSSh functional with the J2 formalism. 
This is associated with the lowest APD overall (see also 
Figure S2 for a graphical representation of all APDs). These 
results highlight the strong dependence of the BS-DFT 
approach on both, the functional and the formalism used to 
calculate the exchange couplings. Therefore, DFT can pro-
vide acceptable agreement with experiment at an empirical 
level, i.e., as long as an adequate screening of functionals 
is performed on the studied systems. Clearly, however, the 
wide range of results that can be obtained means that the 
predictive ability of the approach is limited, at least for the 
present systems, and that it is hard to identify or quantify 
the role of error cancellation. To overcome the fundamental 
weakness of the BS-DFT approach, more advanced elec-
tronic structure methods need to be employed and the appli-
cability of such methods will be considered in the following.

3.3  C. CASSCF‑ and DMRG‑based approaches

In contrast to Kohn–Sham DFT, ab initio multireference 
methods do not rely on any parameters or procedures of 
semi-empirical nature but constitute a systematically 
improvable approach to the calculation of coupling constants 
through direct calculation of spin-state energies. Besides the 
basis set size, the size of the N-electron Hilbert space in 
which the wavefunction is expanded is the only factor that 
determines the accuracy of a given calculation. As discussed 
above, one way to approach the required numerical accuracy 
for the present problem is to utilize the DMRG to cover 
static correlation effects within a large set of active orbitals, 
while all remaining dynamic electron correlation effects are 
treated by means of second-order perturbation theory, i.e., 
NEVPT2 [6, 22, 23]. Importantly, this strategy allows one 
to analyze the nature of antiferromagnetic coupling through 
a gradual extension of the active orbital space in various 
ways. By permuting combinations of groups of chemically 
equivalent (or similar) orbitals within reasonable perimeters, 
the most important pathway for the observed magnetic inter-
action can be identified [6, 7, 60]. Alternatively, one may 
analyze the entanglement within the active space to gain 
information about the coupling pathway  [85, 86]. It should 
be noted at this point that in many cases where the experi-
mental exchange coupling constant is unknown, it quickly 
becomes impractical to increase the active space size or the 
level of theory used to describe dynamic electron correla-
tion until convergence of the computed exchange couplings 
is achieved.

Fig. 2  Corresponding orbitals 
and spatial overlap integrals 
Sab from TPSSh calculations 
describing the broken-symmetry 
states of complex 1 (top) and 
complex 2 (bottom)
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In the present work, we have defined 7 groups of orbitals 
labeled A through G, shown in Figs. 3 and 4 to compose dif-
ferent active spaces employed in a series of multireference 
calculations. Group A consists of 4 MOs that are dominated 
by in-plane N-2p contributions, thus contributing to the 
Cu–N bonding, while group B comprises 6 MOs of mostly 
O-2p character. The MOs in Group C are essentially linear 
combinations of the “doubly occupied” Cu 3d orbitals (xy, 
xz, yz and z2), whereas group D includes linear combina-
tions of the formally “singly occupied” Cu 3 dx2−y2 orbitals. 
Finally, groups E, F and G (Fig. 4) correspond to “second-
shell” counterparts of groups B, C and D in the sense that 
they have mostly Cu 4d and O 3p character.

As pointed out previously, optimizing the orbitals accord-
ing to the variational principle is imperative to obtain accu-
rate results. However, some orbitals that are expected to play 

a prominent role in facilitating magnetic couplings feature 
occupation numbers close to 0 or 2 rendering the orbital 
optimization procedure with these orbitals in the active 
space difficult if not impossible. Therefore, we have omitted 
orbitals from the active space during orbital optimization if 
they were found to be close to doubly occupied or unoccu-
pied after a considerable number of optimization cycles. In 
particular, orbital groups E, F and G could not be fully opti-
mized regardless of the active space composition. Instead 
they were localized by means of the Pipek–Mezey localiza-
tion scheme in the spirit of the “split localization” approach 
previously used in large-scale multireference calculations 
[28]. In the discussion below, we will refer to the combina-
tion of orbital optimization and virtual orbital localization as 
DMRG-SCF/CI approach. To avoid numerical biases toward 
any spin state, all orbital optimizations were conducted in 

Fig. 3  Definition of orbital groups for complex 1, used in the construction of different active spaces for multireference calculations. Groups A to 
D correspond to sets of ligand-based and copper-based occupied orbitals
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a state-averaged fashion with respect to the first singlet and 
triplet state [6].

Tables 3 and 4 present the calculated magnetic coupling 
constants J for various active spaces using the bare CASSCF 
or DMRG-SCF/CI methods and their respective NEVPT2 
implementations. The composition of the corresponding 
active spaces in terms of orbital groups A through G is given 
in the respective second column. In general, the exchange 
coupling constants evaluated based on the NEVPT2 relative 
spin-state energies are more negative than the ones obtained 

from CASSCF or DMRG-SCF/CI energies. This reflects the 
critical role of dynamic electron correlation for the descrip-
tion of superexchange which leads to antiferromagnetic cou-
pling in 1 and 2. In the following, the results are discussed 
in view of the contribution from different orbital sets to the 
predicted exchange coupling constants.

As expected, the coupling constants obtained with 
a minimal active space that includes only the two singly 
occupied orbitals exhibit considerable deviations from the 
experimental value. For 1, the CASSCF(2,2) energies result 
in J(1) =   − 4.1  cm−1. While this value correctly indicates 
antiferromagnetic coupling in the electronic ground state, 
it is too small by a factor of about 44. Inclusion of dynamic 
effects by means of NEVPT2 leads to a significant numerical 
improvement (J(1) =   − 23.2  cm−1) but is by far not sufficient 
to remedy the fundamental shortcomings of the underlying 
CASSCF(2,2) model. In case of complex 2, the minimal 
active space even leads to a qualitatively wrong picture: 
Both, CASSCF and NEVPT2, predict a triplet ground state 
with small positive exchange coupling constants of 7.6  cm−1 
and 6.5  cm−1, respectively.

Fig. 4  Definition of orbital groups for complex 1, used in the construction of different active spaces for multireference calculations. Groups E to 
G correspond to sets of unoccupied orbitals with Cu 4d and O 3p character

Table 3  Exchange coupling constants J  (cm−1) from CASSCF and 
CASSCF-NEVPT2 calculations for complexes 1 and 2 

Active Space Orbital 
Composi-
tion

J(1) J(2)

CASSCF NEVPT2 CASSCF NEVPT2

(2,2) D  − 4.1  − 23.2 7.55 6.50
(14,8) B, D  − 8.0  − 42.4 4.55 0.25
(18,10) C, D  − 4.3  − 26.2 7.60  − 1.20
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Inclusion of the remaining Cu-3d orbitals (group C) in the 
active space has only a marginal effect on the relative CAS-
SCF spin-state energies resulting in a shift below 1.0  cm−1 
of the corresponding exchange coupling constants. For 
NEVPT2, slightly larger effects are observed, shifting the 
exchange constants by   − 3.0  cm−1 and   − 7.7  cm− 1, respec-
tively. As a result, J(2) has a negative value, correctly cor-
responding to antiferromagnetic coupling. A similar shift of 
relative spin-state energies is observed when orbital group 
C is added to groups B, D, E and F, thereby enlarging the 
active space from (14,18) to (30,26). In the latter case, the 
NEVPT2 derived exchange coupling constants for 1 and 2 
change by   − 2.2  cm−1 and 3.7  cm−1, respectively. In our 
view, these results emphasize the separation of the “doubly 
occupied” Cu 3d orbitals from the frontier orbitals and their 
concomitant subordinate role in the present context.

According to Anderson’s model, superexchange is medi-
ated by the bridging ligands between two metal-centered 
spins [87–89]. Therefore, the inclusion of ligand centered 
orbital group B in the active space is anticipated to consider-
ably affect the calculated relative spin-state energies. In fact, 
addition of group B (O-2p orbitals) to the minimal active 
space results in a considerable lowering of all calculated 
exchange coupling constants. While the CASSCF derived 
exchange coupling of 1 undergoes only a slight change to 
a value of J(1) =   − 8.0  cm−1, the corresponding NEVPT2 
derived value is significantly lowered to J(1) =   − 42.4  cm−1. 
This finding is in line with the results of a previous work by 
some of us on a bis-μ-oxo-bridged Mn dimer [6]. To our sur-
prise, however, the predicted exchange coupling constants 
for 2 remain largely unaffected by inclusion of orbital group 
B to the active space. Interestingly, addition of orbital group 
G that incorporates O-3p dominated molecular orbitals 
results in a minor increase of the calculated exchange cou-
pling constants. For example, upon an active space enlarge-
ment from (14,18) with groups B, D, E and F to (14,24) 

with groups B, D, E, F and G the NEVPT2 derived J(1) 
increases by 5.4  cm−1 to a value of   − 32.8  cm−1. Similarly, 
J(2) increases by 2.5  cm−1 to a value of   − 1.3  cm−1.

In many instances, it has been found that radial corre-
lation in the form of the so-called double-shell effect has 
a non-negligible impact on the energetics of late first-row 
transition metal complexes. Particularly when second-order 
perturbation theory is used to describe dynamic electron 
correlation on top of a CASSCF-Ansatz, the inclusion of a 
second set of transition metal d-orbitals to the active space 
has been found to be an important factor on the way to 
achieving accurate predictions. When orbital groups E and 
F that contain molecular orbitals with mostly Cu 4d char-
acter are appended to the (14,8) active space with orbital 
groups B and D, only minor changes between   − 3.8  cm−1 
and + 3.8  cm−1 are observed for the calculated exchange 
coupling constants. Further addition of the “doubly occu-
pied” Cu-3d orbitals (group C) does not lead to significant 
changes. Thus, it appears that the double-shell effect plays 
only a subordinate role for antiferromagnetic coupling in 1 
and 2.

The leading configuration of both, the singlet and tri-
plet state of 1 and 2, features singly occupied orbitals of 
mostly Cu 3 dx2−y2 character. Accordingly, the spin density 
is located along the Cu–O and the Cu–N bond axes. In view 
of this, spin distribution orbital group A consisting of Cu–N 
σ-bonding orbitals has been investigated for its role in medi-
ating antiferromagnetic coupling in 1 and 2. Notably, the 
active space consisting of orbital groups A, B and D yields 
the lowest J(1) value of   − 47.9  cm−1 on the NEVPT2 level. 
In case of 2, a value of J(2) =  − -3.5  cm−1 is close to the low-
est value of   − 3.9  cm−1 that is obtained with a (26,16) active 
space consisting of orbital groups A, C, D and E.

The foregoing discussion allows us to identify orbital 
groups A, B and D as somewhat important for the media-
tion of antiferromagnetic coupling in 1 and 2, while orbital 

Table 4  Exchange coupling 
constants J  (cm−1) from 
DMRG-SCF/CI and DMRG-
NEVPT2 calculations for 
complexes 1 and 2 

Active space Orbital composition J(1) J(2)

DMRG-SCF/CI DMRG- NEVPT2 DMRG-SCF/CI DMRG- 
NEVPT2

(14,18) B, D, E, F  − 8.8  − 38.2 5.3  − 3.8
(14,24) B, D, E, F, G  − 7.5  − 2.8 6.3  − 1.3
(22,12) A, B, D  − 8.1  − 47.9 4.5  − 0.3
(22,14) A, B, D, E  − 8.8  − 43.4 5.3  − 1.1
(22,20) A, B, D, E, G  − 7.5  − 36.8 6.4 0.9
(26,14) A, C, D  − 4.3  − 37.9 7.6  − 3.5
(26,16) A, C, D, E  − 4.5  − 29.8 7.5  − 3.9
(30,26) B, C, D, E, F  − 16.7 40.4 2.0  − 0.1
(30,32) B, C, D, E, F, G  − 23.3 – 5.1 –
(38,30) A, B, C, D, E, F  − 20.7 – − 2.4 –
(38,36) A, B, C, D, E, F, G  − 30.9 – 4.9 –
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groups C, E, F and G contribute less strongly to the observed 
phenomenon. However, none of the presented exchange cou-
pling constants in Table 4 is numerically close to the experi-
mentally determined values of   − 180  cm−1 and   − 45  cm−1. 
Even with the largest affordable (30, 26) active space, the 
NEVPT2 results (  − 40.4  cm−1 and   − 0.1  cm−1) differ sig-
nificantly from these values. For larger active spaces, only 
DMRG-SCF/CI calculations are feasible. Although for 1 a 
considerable negative shift of J for the (30, 32), (38, 30) and 
(38, 36) active spaces is observed, their relative size amounts 
to only 12–17% of the experimental value. These percent-
ages are notably below the ~ 50% that have been observed 
for the previously studied bis-μ-oxo-bridged Mn dimer for 
which numerically accurate results could be obtained on the 
DMRG-SCF + NEVPT2 level of theory.

We thus conclude that the observed antiferromagnetic 
coupling in 1 and 2 is the result of the cumulative effect of 
a large number of configurations involving many orbitals 
that are not necessarily located around the bridging  [Cu2O2] 
motif. In other words, dynamic electron correlation effects 
largely outweigh static correlation effects in the present 
cases. Finally, it should be noted that an enlargement of the 
active space does not necessarily induce a lowering of the 
calculated exchange coupling constants. In multiple cases, 
the addition of orbital groups results in a positive shift of the 
predicted values. This demonstrates the subtle connection 
between the contributions from different orbital sets in the 
present cases.

3.4  D. Difference‑dedicated configuration 
interaction

The previous section documented that even at the current 
limits of computational feasibility, a brute-force approach 
that relies on active space expansion converges too slowly 
to be of practical utility for the copper dimers under study. 
An alternative strategy that has been employed success-
fully for systems like the present complexes is based on 
the difference-dedicated configuration interaction method. 
In this case, only the minimal active space of magnetic 
orbitals is used as reference model space, i.e., CAS(2,2) 
for Cu(II) dimers, and the correlation energy is recovered 
variationally by taking progressively into account different 
classes of excitation. When one-hole and one-particle exci-
tations are considered, the method is denoted as DDCI1, 
equivalent to CAS plus single excitations from inactive 
to active (1 h), active to virtual (1p) and inactive to vir-
tual (1 h-1p) orbitals. DDCI2 additionally accounts for 2 h 
and 2p excitations. Finally, DDCI3 incorporates 2 h-1p 
and 1 h-2p excitations. It is at this level that quantitative 
predictions for magnetic coupling are expected, although 
the lower DDCI2 level has occasionally been deemed 
satisfactory.

The results from DDCI calculations on the two com-
plexes considered in the present study are presented in 
Table 5. Here, we also demonstrate the dependence of 
the results on the parameter Tsel, which sets the threshold 
for inclusion of excited configuration state functions in 
the variational procedure based on the strength of their 
interaction with the 0th-order approximations to the tar-
get states. The two major conclusions are that DDCI2 is 
inadequate and that DDCI3 is necessary to obtain reliable 
results. In addition, the Tsel value needs to be considerably 
tightened in order to avoid erratic behavior (e.g., notice the 
positive J value for complex 2 with DDCI3 at the default 
Tsel setting used in ORCA). Provided these conditions are 
met, which can happen only at great computational cost, 
DDCI3 provides values for the exchange coupling con-
stants that are indeed the best approximations to the exper-
imental values compared to all other methods reported 
in the present work. This is in line with past studies of 
exchange-coupled Cu(II) systems  [90, 91]. The superior-
ity of DDCI3 compared to the DMRG-NEVPT2 approach 
even when the latter is based on a very large active space 
presumably suggests that excitations important for captur-
ing a significant amount of dynamic electron correlation 
in these Cu(II) complexes may be of higher order than 
captured by NEVPT2. On the other hand, it should be kept 
in mind that DDCI at this level is hardly applicable, if at 
all, to higher-nuclearity complexes or to dimers with sev-
eral unpaired electrons, and therefore, it cannot be viewed 
as a generally applicable approach in the same sense that 
DMRG-based methods are.

3.5  E. Broken‑symmetry coupled cluster theory

In the previous sections, we showed that DFT is a com-
putationally accessible approach yet unreliable as a predic-
tive tool, and that DMRG-based CI and NEVPT2 fall short 
even with relatively large active spaces. Given that DDCI3 
is not a generally applicable method, it is important to ask 
whether one can find an alternative approach that combines 
the simplicity of broken-symmetry DFT but brings in the 
possibility to include dynamic correlation at the level of a 
reliable wave function theory. This is in principle possible 

Table 5  Exchange coupling constants (in  cm−1) for complexes 1 and 
2 derived from MR-DDCI(2,2) calculations, comparing the effect of 
the excitation level and the Tsel parameter

Tsel DDCI2 DDCI3

J(1) J(2) J(1) J(2)

1.00 ×  10–6 6.9 80.8  − 132.6 74.9
1.00 ×  10− 7  − 44.3 15.2  − 181.6  − 41.8
1.00 ×  10–8  − 34.5 5.0  − 176.3  − 38.3
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with broken-symmetry coupled cluster theory (BS-CC), 
which is only starting to be explored as a practical tool for 
the study of exchange-coupled systems.

Schurkus et al. have previously shown that the broken-
symmetry approach in conjunction with the coupled clus-
ter method produces useful results for bridged transition 
metal dimers [27]. This approach relied on using the high-
est spin and the broken-symmetry state to calculate J via 
the Yamaguchi approach (eq. (4)). However, the canonical 
coupled cluster procedure is expensive for realistically sized 
molecular systems. Several methods have been developed 
that can approximate the canonical solution within a reason-
able accuracy at a reduced computational cost. One such 
approximation is based on the concept of local pair-natural 
orbitals (LPNOs) [45, 46]. Here, we employ and investi-
gate, for the first time, the LPNO implementation of CCSD 
as a tool for the study of exchange coupling in a broken-
symmetry approach.

The reasons that approximate methods like the LPNO 
are efficient include the localization of internal orbitals, due 
to which the number of electron pairs to be correlated is 
reduced, and the use of PNOs that span the virtual space and 
“compress” it. The accuracy of the LPNO results depends on 
two user-controlled cutoff parameters: TCutPNO and TCutPair. 
TCutPNO is the occupation number at which PNO expansion 
of a given pair is terminated. Thus, it controls the number of 
PNOs per pair of localized internal orbitals to be kept. It has 
a default value of 3.37 ×  10–7. TCutPair is the parameter that 
controls which electron pairs to include based on their esti-
mated pair-correlation energy. The pairs with the estimated 
pair-correlation energy lower than TCutPair are excluded. It 
has a default value of  10–4 Eh. The pair-correlation energy of 
weakly correlated pairs is calculated by either semi-canon-
ical or full iterative MP2. Collectively, the above settings 
are associated with the keywords NormalPNO and Tight-
PNO, respectively. Both of these keywords are truncation 
thresholds and have their respective default values of the 
cutoff parameters as described in the work of Liakos et al. 
[92] Nevertheless, the values of these cutoff parameters can 
still be changed depending on the type of problem being 
studied. Unless otherwise indicated, the present calcula-
tions were performed with the TightPNO keyword as default 
starting point and with additional modifications of specific 
parameters.

In this section, we present the calculation of J with all 
of the three equations (eqs. (2) – (4)) mentioned in section 
B. In these calculations, EHS and EBS are the high-spin and 
broken-symmetry energies from the CCSD calculations, 
respectively. Smax is the total spin of the high-spin state, and ⟨
S2
⟩
HS

 and 
⟨
S2
⟩
BS

 are the spin expectation values for the 
high-spin and broken-symmetry HF states, respectively.

As an initial evaluation of the approach, we first report 
in Table  6 results of calculations done on one of the 

molecules studied by Schurkus et al. that is comparable 
to molecule 1 and 2 in its molecular structure but is of 
smaller size (see Fig. 5). Compound 3 is tested for the 
behavior of J by changing the cutoff parameters TCutPNO 
and TCutPair. The purpose is to find out the limit of these 
thresholds at which the results of the LPNO-CCSD con-
verge to the canonical CCSD result. The experimentally 
calculated J for 3 is   − 19  cm−1. Schurkus et al. calculated 
J with the canonical CCSD and CCSD(T) methods using 
the cc-pVDZ basis set, where they employed the Yamagu-
chi formulation and found the results to be equal to 4  cm−1 
and   − 12  cm−1, respectively. The result of our canonical 

Table 6  Effect of cutoff parameters TCutPNO and TCutPair on BS-CC 
computed exchange coupling constants  (cm−1) for compound 3 

TCutPNO TCutPair J1 J2 J3

3.37 ×  10–7 (Nor-
malPNO)

1.00 ×  10–4  − 1104.5  − 552.3  − 1103.7

1.00 ×  10–7 1.00 ×  10–5  − 612.4  − 306.2  − 611.9
Series 1
1.00 ×  10–8 1.00 ×  10–5  − 508.5  − 254.2  − 508.1
1.00 ×  10–8 1.00 ×  10–6  − 206.0  − 103.0  − 205.9
1.00 ×  10–8 1.00 ×  10–7  − 149.8  − 74.9  − 149.7
1.00 ×  10–8 1.00 ×  10–8  − 149.8  − 74.9  − 149.7
Series 2
1.00 ×  10–9 1.00 ×  10–5  − 534.4  − 267.2  − 534.1
1.00 ×  10–9 1.00 ×  10–6  − 183.1  − 91.5  − 182.9
1.00 ×  10–9 1.00 ×  10–7  − 123.8  − 61.9  − 123.7
1.00 ×  10–9 1.00 ×  10–8  − 123.6  − 61.8  − 123.5
Series 3
1.00 ×  10–10 1.00 ×  10–5  − 520.8  − 260.4  − 520.4
1.00 ×  10–10 1.00 ×  10–6  − 159.2  − 79.6  − 159.1
1.00 ×  10–10 1.00 ×  10–7  − 29.1  − 14.6  − 29.1
1.00 ×  10–10 1.00 ×  10–8  − 29.0  − 14.5  − 28.9
Series 4
1.00 ×  10–11 1.00 ×  10–5  − 530.0  − 265.0  − 529.6
1.00 ×  10–11 1.00 ×  10–6 86.7 43.4 86.6
1.00 ×  10–11 1.00 ×  10–7  − 29.9  − 14.9  − 29.8
1.00 ×  10–11 1.00 ×  10–8  − 29.7  − 14.8  − 29.7
Canonical CCSD 21.0 10.5 21.0
Experimental  − 19

Fig. 5  Compound 3 for which Schurkus et al. calculated the exchange 
coupling constant with broken-symmetry CCSD and CCSD(T) 
approaches  [10].
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CCSD calculation using the same formulation but with the 
def2-TZVP basis set was 20  cm−1.

In the following discussion, all values for J were obtained 
using the Yamaguchi formulation since it is the generalized 
formula to calculate the magnetic exchange coupling con-
stant. A first set of calculations was done invoking the Nor-
malPNO and TightPNO keywords and keeping the default 
values of the cutoff parameters associated with those key-
words. The J3 obtained with NormalPNO cutoff parameter 
values was   − 1103.7   cm−1 which considerably deviates 
from the experimental value. Upon using the TightPNO 
cutoff parameter values, a significant shift in the value of 
J3 is observed, but it still falls very far from the canonical 
value. We find that the default set of parameters associated 
with both NormalPNO and TightPNO are entirely unrealistic 
for attaining the accuracy required to describe the magnetic 
exchange coupling constant.

These initial calculations are followed by a systematic 
series of calculations, where TCutPNO is held constant at val-
ues between 1.0 ×  10–8 (series 1 in Table 6) and 1.0 ×  10–11 
(series 4), while TCutPair is varied to inspect its effect on the 
predicted J. In series 1, as the TCutPair is tightened, the calcu-
lated J3 value converges to   − 149.7  cm−1. A similar pattern 
is observed in series 2 as well where the J3 value converges 
to   − 123.5  cm−1. The final results for both these series point 
to the fact that with the cutoff parameter values selected for 
these series, J3 does not ultimately converge to the canonical 
or the experimental value. For series 3 and 4, J3 converges 
to   − 28.9  cm−1 and   − 29.7  cm−1, respectively. These results 
suggest that by tightening the cutoff parameters, it is pos-
sible to converge J reasonably close to the canonical values, 
although the latter are not exactly reproduced. Of course, 
the computational cost increases considerably when cutoff 
parameters are tightened. In case of 1 and 2, this increase 
turns out to be problematic.

Table 7 contains the results of a similar set of broken-
symmetry LPNO-CCSD calculations for compound 1. In 
this case, however, no canonical CCSD calculation could 
be performed owing to its enormous computational cost. 
Generally, similar trends are observed as above. Vastly 
erroneous results are observed for calculations that use the 
default NormalPNO or TightPNO truncation thresholds, 
but results are shifted considerably toward the experimental 
value after tightening of these thresholds. Yet, only a subset 
of the above presented calculations was tractable for 1 as 
the computational cost increases notably with tighter thresh-
olds. Therefore, even the most accurate broken-symmetry 
LPNO-CCSD calculations reported here yield exchange 
coupling constants that are too small by a factor of ≈ 2. 
Similar results were obtained when B3LYP high-spin and 
broken-symmetry reference functions are utilized (see Sup-
porting Information).

We conclude that for realistically sized molecules, bro-
ken-symmetry LPNO-CCSD has the theoretical possibility 
of approximating the canonical results, but the cost becomes 
astronomical as the thresholds are tightened. In addition, the 
currently available implementation does not include triples 
corrections, which inherently limits the accuracy of results. 
The approach remains promising, and it is suggested that 
it should be further explored in future work. However, in 
its current form it cannot be recommended as an approach 
of practical utility for systems such as those studied in the 
present work.

4  Conclusions

In this work, all available approaches to the calculation of 
exchange coupling constants are tested for a pair of antifer-
romagnetically coupled bis-μ-hydroxo Cu(II) dimers. The 
well-established broken-symmetry DFT Ansatz yields mod-
erately accurate results low computational cost when the 
TPSSh functional is used together with Bencini’s formula 
to extract the exchange coupling constant from the “raw” 
DFT energies. However, this combination does not perform 
universally well for all first-row transition metal systems. 
Instead, on account of the strong dependence of the obtained 
results on the functional form and the chosen formalism to 
evaluate exchange coupling constants, any DFT approach 
will have to be carefully benchmarked on a number of arche-
typical systems before it can be used in a predictive way.

In contrast to previous studies of early transition metal 
complexes, DMRG-based multireference calculations 
failed to provide accurate results for compounds 1 and 2 
even when large active spaces were used and/or dynamic 
electron correlation was taken into account by second-
order perturbation theory. Hence, the observed antiferro-
magnetism appears to be dominated by dynamic electron 
correlation effects that require an accurate description 

Table 7  Effect of cutoff parameters TCutPNO and TCutPair on BS-CC 
computed exchange coupling constants  (cm−1) for complex 1 

TCutPNO TCutPair J1 J2 J3

3.37 ×  10–7 
(Nor-
malPNO)

1.00 ×  10–4  − 2759.5  − 1379.7  − 2757.3

1.00 ×  10–7 1.00 ×  10–5  − 1378.3  − 689.1  − 1377.2
Series 1
1.00 ×  10–8 1.00 ×  10–5  − 1147.6  − 573.8  − 1146.6
1.00 ×  10–8 1.00 ×  10–6  − 1006.7  − 503.3  − 1005.9
1.00 ×  10–8 1.00 ×  10–7  − 604.1  − 302.0  − 603.6
Series 2
1.00 ×  10–9 1.00 ×  10–5  − 1086.1  − 543.1  − 1085.3
1.00 ×  10–9 1.00 ×  10–6  − 911.2  − 455.6  − 910.5
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beyond second-order perturbation theory of excited con-
figurations that are not covered by the large active spaces 
described in this work. Our DDCI calculations on top of a 
minimal active space confirm this assumption as they yield 
exchange coupling constants close to the experimentally 
determined values provided that tight selection thresholds 
are employed and excitations with 3 degrees of freedom 
are taken into account (DDCI3). Unfortunately, however, 
this computational approach is not practical for larger sys-
tems and/or systems with many unpaired electrons due to 
the intrinsically high computational costs.

In principle, the BS-LPNO-CCSD tested in this 
work allows for a high-level treatment of dynamic elec-
tron correlation while also accounting for static elec-
tron correlation effects. However, test calculations on 
 [Cu2Cl6]4− revealed that only when extremely tight thresh-
olds for pair selection and pair-natural orbital selection in 
the PNO framework are invoked, accurate results for the 
exchange coupling constants can be expected. As a result, 
the associated computational cost renders this approach 
unfeasible even for the moderately sized compounds 1 and 
2.

This work demonstrates that none of the tested set of 
theoretical methods provides a fully satisfying approach to 
the description of exchange coupling in systems with two 
or more Cu(II) ions. Yet, it highlights the elevated relative 
importance of dynamic electron correlation effects in this 
kind of systems as compared to previously studied early 
transition metal systems. Therefore, methodological devel-
opments aiming at efficient formulations of approximate 
MR-CI (or even MR-CC) will likely be more useful in 
the current context rather than those aiming at combina-
tions of large active spaces and second-order perturbation 
theory.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00214- 021- 02830-0.
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