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Abstract
In the recent years, the development of new algorithms for multiobjective optimization
has considerably grown. A large number of performance indicators has been introduced
to measure the quality of Pareto fronts approximations produced by these algorithms.
In this work, we propose a review of a total of 57 performance indicators partitioned
into four groups according to their properties: cardinality, convergence, distribution and
spread. Applications of these indicators are presented as well.
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1. Introduction

Since the eighties, a large number of methods has been developed to treat multiob-
jective optimization problems (e.g [1, 2, 3, 4, 5]). Given that conflicting objectives are
provided, the set of solutions, the Pareto front, is described as the set of best trade-off
points in the objective space. Knowledge of the Pareto front enables the decision maker
to visualize the consequences of his/her choices in terms of performance for a criterion
at the expense of one or other criteria, and to make appropriate decisions.

Formally, a feasible vector x is said to (Pareto)-dominate another feasible vector x′ if
x is at least as good as x′ for all the objectives, and strictly better than x′ for at least one
objective. The decision vectors in the feasible set that are not dominated by any other
feasible vector are called Pareto optimal. The set of non-dominated points in the feasible
is the set of Pareto solutions, whose images (by the objective functions) constitute the
Pareto front.

In single-objective minimization, the quality of a given solution is trivial to quantify:
the smaller the objective function value, the better. However, evaluating the quality
of an approximation of a Pareto set is non trivial. The question is important for the
comparison of algorithms, the definition of stopping criteria, or even the design of better
methods. According to [6], a Pareto front approximation should satisfy the following:
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• The distance between the Pareto front and its approximation should be minimized.

• A good (according to some metric) distribution of the points of the approximated
front is desirable.

• The extent of the approximated front should be maximized, i.e., for each objective,
a wide range of values should be covered by the non-dominated points.

To answer this question, many metrics called performance indicators [7, 8] have been
introduced. Performance indicators can be considered as mappings that assign scores to
Pareto front approximations.

Surveys of performance indicators already exist. In [2, chapter 7], the authors list
some performance indicators to measure the quality of a Pareto front approximation.
In [7], an exhaustive survey is conducted on a vast number of performance indicators
which are grouped according to their properties. Mathematical frameworks to evaluate
performance indicators are proposed in [9, 10] and additional metrics and algorithms
are listed in [11]. In [12], the authors review some performance indicators and analyze
their drawbacks. In [13], an empirical study focuses on the correlations between different
indicators with their computation time on concave and convex Pareto fronts. Finally, the
usage of indicators proposed by the multiobjective evolutionary optimization community
prior to 2013 is analyzed in [14].

Table 1 provides a panorama of existing indicators, classifies them based on their
properties, and indicates the section in which they are discussed. The use of performance
metrics targets three cases: comparison of algorithms, suggestion of stopping criteria for
multiobjective optimization and identification of promising performance indicators to
evaluate and improve the distribution of the points for a given solution.

This work is organized as follows. Section 2 introduces the notations and definitions
related to multiobjective optimization and quality indicators. Section 3 is the core of
this work, and is devoted to classification of the indicators according to their specific
properties. Finally, Section 4 presents some applications.

Category Performance indicators Sect. [12] [2] [9] [10] [7] [11] [13] [14]

Cardinality 3.1 C-metric/Two sets Coverage [15] 3.1.5 3 3 3 3 3 3
Error ratio [16] 3.1.4 3 3 3 3 3
Generational non dominated vector generation [17] 3.1.3 3 3 3 3
Generational non dominated vector generation ratio [17] 3.1.3 3 3 3
Mutual domination rate [18] 3.1.6 3
Nondominated vector additional [17] 3.1.3 3 3 3
Overall nondominated vector generation [16] 3.1.1 3 3 3 3 3 3 3
Overall nondominated vector generation ratio [16] 3.1.2 3 3 3 3 3 3
Ratio of non-dominated points by the reference set [19] 3.1.5 3 3
Ratio of the reference points [19] 3.1.4 3 3

Convergence 3.2 Averaged Hausdorff distance [20] 3.2.6 3
Degree of Approximation [21] 3.2.10
DR-metric [19] 3.2.1 3 3 3 3
ε-family [10] 3.2.9 3 3 3
Generational distance [16] 3.2.1 3 3 3 3 3 3 3
γ-metric [22] 3.2.1 3 3 3 3 3
Inverted generational distance [23] 3.2.5 3 3 3
Maximum Pareto front error [16] 3.2.4 3 3 3 3 3 3

M?1 -metric [6] 3.2.1 3 3 3 3 3

Modified inverted generational distance [24] 3.2.7
Progression metric [16] 3.2.8 3
Seven points average distance [25] 3.2.3 3 3
Standard deviation from the Generational distance [16] 3.2.2 3

Distribution Cluster [26] 3.3.17 3 3 3 3 3
and spread 3.3 ∆-index [22] 3.3.2 3 3 3 3

∆′-index [22] 3.3.2 3 3 3

∆? spread metric [27] 3.3.2 3 3 3
Distribution metric [28] 3.3.12
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Category Performance indicators Sect. [12] [2] [9] [10] [7] [11] [13] [14]

Diversity comparison indicator [29] 3.3.17
Diversity indicator [30] 3.3.15
Entropy metric [31] 3.3.17 3 3 3 3
Evenness [32] 3.3.7 3
Extension [33] 3.3.14 3
Γ-metric [34] 3.3.3 3
Hole Relative Size [2] 3.3.4 3 3 3
Laumanns metric [35] 3.3.16 3
Modified Diversity indicator [36] 3.3.17
M?2 -metric [6] 3.3.5 3 3 3 3 3

M?3 -metric [6] 3.3.5 3 3 3 3 3 3 3

Number of distinct choices [26] 3.3.17 3 3 3 3
Outer diameter [8] 3.3.11 3
Overall Pareto Spread [26] 3.3.10 3 3 3 3 3
Sigma diversity metric [37] 3.3.17 3
Spacing [25] 3.3.1 3 3 3 3 3 3 3
U-measure [38] 3.3.9 3
Uniform assessment metric [39] 3.3.13
Uniform distribution [40] 3.3.5 3 3
Uniformity [41] 3.3.6 3
Uniformity [33] 3.3.8 3

Convergence and Cone-based hypervolume [42] 3.4.4
distribution 3.4 Dominance move [43] 3.4.3

D-metric/Difference coverage of two sets [44] 3.4.4 3 3 3 3 3
Hyperarea difference [26] 3.4.4 3 3 3 3
Hypervolume indicator (or S-metric) [6] 3.4.4 3 3 3 3 3 3 3 3
G-metric [45] 3.4.2
Logarithmic hypervolume indicator [46] 3.4.4
R-metric [19] 3.4.1 3 3 3 3 3

Table 1: A summary of performance indicators

2. Notations and definitions

To apprehend quality indicators, the first part of this section describes the main
concepts related to multiobjective optimization. The second part focuses on the theory
of Pareto set approximations and quality indicators.

2.1. Multiobjective optimization and Pareto dominance
We consider the following continuous multiobjective optimization problem:

min
x∈Ω

F (x) = [f1(x) f2(x) . . . fm(x)]>

where Ω ⊂ Rn is called the feasible set, and fi : Rn → R are m objective functions for
i = 1, 2, . . . ,m, with m ≥ 2. The image of the feasible set F = {F (x) ∈ Rm : x ∈ Ω} is
called the objective space.

The following cone order relation is adopted [47]: given two vectors z and z′ in the
objective space F , we have

z ≤ z′ ⇐⇒ z′ − z ∈ Rm+ ⇐⇒ zi ≤ z′i, for all i = 1, 2, . . . ,m.

In a similar way, we define the strict order relation < in the objective space. We can now
present the concept of dominance.

Definition 1 (Dominance relations). Given two decision vectors x and x′ in Ω, we write:

• x � x′ (x weakly dominates x′) if and only if F (x) ≤ F (x′).
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• x ≺ x′ (x dominates x′) if and only if x � x′ and at least one component of F (x)
is strictly less than the corresponding one of F (x′).

• x ≺≺ x′ (x strictly dominates x′) if and only if F (v) < F (v′).

• x ‖ x′ (x and x′ are incomparable) if neither x weakly dominates x′ nor x′ weakly
dominates x.

With these relations, we now precise the concept of solution in the multiobjective
optimization framework.

Definition 2 (Pareto optimality and Pareto solutions). The vector x ∈ Ω is a Pareto-
optimal solution if there is no other vector in Ω that dominates it. The set of Pareto-
optimal solutions is called the Pareto set, denoted XP , and the image of the Pareto set
is called the Pareto front, denoted ∂F .

In single-objective optimization, the set of optimal solutions is often composed of a
singleton. In the multiobjective case, the Pareto front usually contains many elements
(an infinity in continuous optimization and an exponential number in discrete optimiza-
tion [47]). For a problem with m objectives, ∂F is of dimension m − 1 or less. For
example, with two objectives, ∂F is a curve, for three objectives, ∂F is a surface, and so
on. Also, it is interesting to define some bounds on this set.

Definition 3 (Ideal and nadir points). The ideal point F I [2] is defined as the vector
whose components are the solutions of each single-objective problem min

x∈Ω
fi(x), i =

1, 2, . . . ,m. The nadir point FN is defined as the vector whose components are the
solutions of the single-objective problems max

x∈XP
fi(x), i = 1, 2, . . . ,m.

For computation reasons, the nadir point is often approximated by F̃N for which the
coordinates are defined the following way: let x?i be the solution of the single-objective
problem min

x∈Ω
fi(x) for i = 1, 2, . . . ,m. The ith coordinate of F̃N is given by:

F̃Ni = max
k=1,2,...,m

fi(x?k).

For a biobjective optimization problem, FN equals F̃N . It is not always the case when
m ≥ 3.

An illustration is given in Figure 1 where the Pareto front is piecewise continuous.
To simplify the notation, continuous Pareto and piecewise continuous Pareto fronts will
be respectively designed as continuous and discontinuous Pareto fronts.
Remark. In a multiobjective optimization problem, objectives are not necessarily con-
tradictory, and the set of Pareto solutions may be a singleton. In this study, we assume
that this is not the case.

2.2. Approximation sets and performance indicators
Generally, whether in the context of continuous or discrete optimization, it is not

possible to find or enumerate all elements of the Pareto front. Hence to solve a mul-
tiobjective problem, one must look for the best discrete representation of the Pareto
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Figure 1: Objective space, ideal point and nadir point (inspired by [47])

front. Evaluating the quality of a Pareto front approximation is not trivial. It itself
involves several factors such as the closeness to the Pareto front and the coverage in the
objective space. Measures should capture these factors. To compare multiobjective op-
timization algorithms, the choice of a good performance indicator is crucial [9]. Hansen
and Jaszkiewicz [19] are the first to introduce a mathematical framework to evaluate the
performance of metrics according to the comparison of methods. In their work, they
define what can be considered as a good measure to evaluate the quality of Pareto front.
This work has been extended in [8, 9, 10]. We next define the notion of an approximation.

Definition 4 (Pareto set approximation). A set of vectors A in the decision space is
called a Pareto set approximation if no element of this set is dominated any other. The
image of such a set in the objective space is called a Pareto front approximation. The
set of all Pareto set approximations is denoted Ψ.

Remark. We use the terms Pareto set approximation and Pareto front approximation in
the remaining of the paper.

Zitzler et al. [10] propose an extension of the relation order for decision vectors to
Pareto set approximations. They are summarized in Table 2, and Figures 2 and 3 illus-
trate these concepts.

Measures are defined on approximation sets. They are designed as quality indicators
or performance indicators [10].

Definition 5 (Quality indicator). A quality (unary) indicator is a function I : Ψ → R
which assigns a real number to an Pareto set approximation.

A performance indicator may consider several Pareto set approximations. The most
common ones are mappings that take only one or two Pareto set approximations as
arguments. They are known respectively as unary and binary performance indicators.
With such a quality indicator, one can define a relation order between different Pareto
set approximations. The indicators that are interesting are the ones that capture the
Pareto dominance.
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Relation Decision vectors x and x′ Approximation sets A and B
Strictly dominates x ≺≺ x′ x is better than x′ in all objectives A ≺≺ B Every x′ ∈ B is strictly dominated by

at least one x ∈ A
Dominates x ≺ x′ x is not worse than x′ in all objectives

and better in at least one objective
A ≺ B Every x′ ∈ B is dominated by at least

one x ∈ A
Weakly dominates x � x′ x is not worse than x′ in all objectives A 4 B Every x′ ∈ B is weakly dominated by

at least one x ∈ A
Is better A C B Every x′ ∈ B is weakly dominated by

at least one x ∈ A and A 6= B
Is incomparable x ‖ x′ Neither x weakly dominates x′ nor x′

weakly dominates x
A ‖ B Neither A weakly dominates B nor A

weakly dominates B

Table 2: Comparison relations between approximation sets [10]. Notice that A ≺≺ B =⇒
A ≺ B =⇒ A C B =⇒ A � B

f1

f2

1

1
F (x4)
•

F (x1)
•

F (x2)
•

F (x3)
•

Figure 2: Example of the dominance relation for objective vectors for a biobjective
problem (inspired by [10]): x4 ≺≺ x2, x4 ≺ x2, x4 � x2, x1 ≺ x2, x3 ≺ x2, x4 � x1,
x4 ≺ x1, x4 � x3, x4 � x1, x1 � x1, x2 � x2, x3 � x3, x4 � x4 and x1 ‖ x3

f1

f2

1

1

◦

◦

◦

◦

◦

×

×

×

×

×

�

�

�

�

◦ A

× B

� C

Figure 3: Example of the dominance relation for Pareto set approximations in the objec-
tive space for a biobjective problem (inspired by [10]): C ≺ A, B ≺ A, B ≺≺ A, B ≺ C,
B � C, C � A, B � A, A � A, B � B, C � C, C C A, B C A and B C C
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Definition 6 (Monotonicity). A quality indicator I : Ψ→ R is monotonic if and only
if

For all A,B ∈ Ψ, A � B =⇒ I(A) ≥ I(B).

Similarly, a quality indicator I : Ψ→ R is strictly monotonic if and only if

For all A,B ∈ Ψ, A ≺ B =⇒ I (A) > I(B).

Once the notion of performance indicator is defined, the definition of comparison
method can be introduced.

Definition 7 (Comparison method). Let A,B ∈ Ψ be two Pareto set approximations,
I = (I1, I2, . . . , Ik) a combination of quality indicators and E : Rk×Rk → {true, false}
a Boolean function taking two vectors of size k as arguments. If all Ii for i = 1, 2, . . . , k
are unary, the comparison method CI,E(A,B) is defined as a Boolean function by the
following formula:

CI,E(A,B) = E (I(A), I(B))

where for all Y ∈ Ψ, I(Y ) = (I1(Y ), I2(Y ), . . . , Ik(Y )).
If every Ii for i = 1, 2, . . . , k is binary, the comparison method CI,E(A,B) is defined

as a Boolean function by

CI, E(A,B) = E (I(A,B), I(B,A))

where for all Y, Y ′ ∈ Ψ, I(Y, Y ′) = (I1(Y, Y ′), I2(Y, Y ′), . . . , Ik(Y, Y ′)).

If I is composed of a single indicator I0, we adopt the notation CI0,E (A,B) instead
of CI,E(A,B).

Informally, a comparison method is a true/false answer to: Is a Pareto front approx-
imation better than another one according to the combination of quality indicators I ?
A simple comparison method is the following: given an unary performance indicator I
and two approximation sets A,B ∈ Ψ,

if the proposition (CI,E(A, B) = (I(A) > I(B))) is true, then A is said to be
better than B according to the indicator I.

To compare several Pareto set approximations, one can be interested in defining compari-
son methods that capture the Pareto dominance, i.e given two Pareto set approximations
A,B ∈ Ψ,

(CI,E(A,B) is true) =⇒ A weakly dominates/strictly dominates/is better
than B.

More precisely, good comparison methods should capture the C-relation between two
Pareto set approximations, as “it represents the most general and weakest form of supe-
riority” [10]. The following definition summarizes these points:

Definition 8 (Compatibility and completeness). Let R be an arbitrary binary relation
on Pareto set approximations (typically, R ∈ {≺,≺≺,�,C}). The comparison method
CI,E is denoted as R-compatible if for all A,B Pareto set approximations, we have:
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CI,E(A,B)⇒ ARB or CI,E(A,B)⇒ BRA.

The comparison method is denoted as R-complete if for all A,B Pareto set approxi-
mations,

ARB ⇒ CI,E(A,B) or BRA⇒ CI,E(A, B).

For any Pareto set approximations A,B ∈ Ψ, there are no combination I of unary
quality indicators such that A C B ⇔ CI,E(A, B) [10].

The mathematical properties of the performance indicators mentioned in this survey
are summarized in Tables 3, 4 and 5 in the appendices.
Remark. The remaining of the paper uses the notations from [7]. A discrete representa-
tion of the Pareto set is denoted by P , called the Pareto optimal solution set. The Pareto
set approximation (or optimal solution set or practical Pareto front [2]) returned by an
algorithm will be denoted by S and the Pareto set approximation at iteration k will be
denoted by S(k). In many cases, the Pareto set is unknown. The user needs to specify a
set of points in the objective space, called a reference set and denoted by R. Note that
a Pareto set (approximated or not) contains only feasible points, i.e. each element of an
Pareto set approximation belongs to Ω. It implies that if algorithm that does not find
any feasible points then S(k) is empty. For the following definitions to apply, we impose
that the iteration counter k is set to 0 at the iteration where a first feasible point has
been found.

3. A classification of performance indicators

We classify performance indicators into the four following groups [13, 7, 14]:

• Cardinality indicators 3.1: Quantify the number of non-dominated points generated
by an algorithm.

• Convergence indicators 3.2: Quantify how close a set of non-dominated points is
from the Pareto front in the objective space.

• Distribution and spread indicators 3.3: Can be classified into two sub-groups. The
first one measures how well distributed the points are on the Pareto front approxi-
mation; the second focuses on the extent of the Pareto front approximation, i.e. if
it contains the extreme points of the Pareto front.

• Convergence and distribution indicators 3.4: Capture both the properties of con-
vergence and distribution.

3.1. Cardinality indicators
These metrics focus on the number of non-dominated points generated by a given

algorithm. Some of them require the knowledge of the Pareto front.
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3.1.1. Overall Non-dominated vector generation (ONV G) [16]
ONV G is the cardinality of the Pareto front approximation generated by the algo-

rithm:
For all S ∈ Ψ, ONV G(S) = |S|.

Nonetheless, this is not a pertinent measure. For example, consider a Pareto set approxi-
mation A composed of one million non-dominated points and a Pareto set approximation
B with only one point, such as this point dominates all the other points of A. A outper-
forms B on this metric but B is clearly better than A [9].

3.1.2. Overall Non-dominated vector generation ratio (ONV GR) [16]
ONV GR is given by the following formula:

ONV GR(S, P ) = |S|
|P |

where |P | is the cardinality of a Pareto optimal solution set and |S| the number of points
of the approximation Pareto set. Notice that this indicator is just ONV G divided by a
scalar. Consequently, it suffers from the same drawbacks as the previous indicator.

3.1.3. Generational indicators (GNV G, GNV GR and NV A) [16]
GNV G(S, k) (generational non-dominated vector generation) is the cardinality of

the number of non-dominated points |S(k)| generated at iteration k for a given iterative
algorithm. GNV GR(S, P, k) (generational non-dominated vector generation ratio) is
the ratio of non-dominated points |S(k)| generated at iteration k over the cardinality of
P where P is a set of points from the Pareto set. NV A(S, k) (non-dominated vector
addition) represents the variation of non-dominated points generated between successive
iterations. It is given by:

NV A (S, k) = |S(k)| − |S(k − 1)| for k > 0.

These metrics can be used to follow the evolution of the generation of non-dominated
points along iterations of a given algorithm. It seems difficult to use them as a stopping
criterion as the number of non-dominated points can evolve drastically between two
iterations.

3.1.4. Error ratio (ER) [16]
This measure is given by the following formula:

E(S) = 1
|S|

∑
a∈S

ea

where:
ea =

{
0 if F (a) belongs to the Pareto front.
1 otherwise.

A set of non-dominated points far from the Pareto front will have an error ratio close
to 1. Authors of [16] do not mention the presence of rounding errors in their indicator.
A suggestion should be to consider an external accuracy parameter ε, quantifying the
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belonging of an element of the Pareto set approximation to the Pareto front with ε near
to correct rounding errors.

This indicator requires the analytical expression of the Pareto front. Consequently,
an user can only use it on analytical benchmark tests. Moreover, this indicator depends
mostly on the cardinality of the Pareto set approximation, which can misguide interpre-
tations. [9] illustrates this drawback with the following example. Let consider two Pareto
front approximations. The first one has 100 elements, one in the Pareto front and the
others close to it. Its error ratio is equal to 0.99. The second one has only two elements,
one in the Pareto front, the other far from it. Its ratio is equal to 0.5. It is obvious that
the first Pareto front approximation is better, even if its error ratio is bad. However, it
is straightforward to compute.

Similarly to the error ratio measure, [19] defines the C1R metric (called also ratio of
the reference points). Given a reference set R (chosen by the user) in the objective space,
it is the ratio of the number of points found in R over the cardinality of the Pareto set
approximation.

3.1.5. C-metric or coverage of two sets (C) [44]
Let A and B be two Pareto set approximations. The C-metric maps the ordered pair

(A, B) to the interval [0; 1] and is defined by:

C(A,B) = |{b ∈ B, there exists a ∈ A such that a � b}|
|B|

.

If C(A,B) = 1, all the elements of B are dominated by (or equal to) the elements
of A. If C(A,B) = 0, all the elements in B strictly dominate the elements of the set A.
Both orderings have to be computed, as C(A,B) is not always equal to 1−C(A,B). This
metric captures the proportion of points in an Pareto set approximation A dominated
by the Pareto set approximation B.

Knowles et al. [9] point out the limits of this metric. If C(A,B) 6= 1 and if C(B,A) 6=
1, the two sets are incomparable. If the distribution of the sets or the cardinality is not
the same, it gives some unreliable results. Moreover, it does not give an indicator of ‘how
much’ a Pareto set approximation strictly dominates another.

Similarly to the C-metric, given a reference set R, the C2R metric (Ratio of non-
dominated points by the reference set) introduced in [19] is given by:

C2R(S,R) = |{x ∈ S; there does not exist r ∈ R such that x � r}|
|S|

.

This indicator has the same drawbacks as the C-metric.

3.1.6. Mutual domination rate (MDR) [18]
The authors of [18] use this quality indicator in combination with a Kalman filter

to monitor the progress of evolutionary algorithms along iterations and thus providing
a stopping criterion. Given two Pareto set approximations A and B, let introduce the
function ∆ (A, B) that returns the set of elements of A that are dominated by at least
one element of B. It is given by:

MDR(S, k) = |∆ (S(k − 1), S(k))|
|S(k − 1)| − |∆ (S(k), S(k − 1))|

|S(k)|
10



where S(k) is the Pareto set approximation generated at iteration k. It captures how
many non-dominated points at iteration k − 1 are dominated by non-dominated points
generated at iteration k and reciprocally. If MDR(S, k) = 1, the set of non-dominated
points at iteration k totally dominates its predecessor at iteration k−1. IfMDR(S, k) =
0, no significant progress has been observed. MDR(S, k) = −1 is the worst case, as it
results in a total loss of domination at the current iteration.

Cardinality indicators have a main drawback. They fail to quantify how well-distributed
the Pareto front approximation is, or to quantify how it converges during the course of
an algorithm.

3.2. Convergence indicators
These measures require the knowledge of the Pareto Front to be evaluated. They

evaluate the distance between a Pareto front and its approximation.

3.2.1. Generational distance (GD) [16]
This indicator is given by the following formula:

GD(S, P ) = 1
|S|

(∑
s∈S

min
r∈P
‖ F (s)− F (r) ‖p

)1
p

where |S| is the number of points in an Pareto set approximation and P a discrete rep-
resentation of the Pareto front. Generally, p = 2. In this case, it is equivalent to the
M?

1 -measure defined in [6]. When p = 1, it is equivalent to the γ-metric defined in [22].

Similarly to GD, given a reference set R, Dist1R [48] is given by:

Dist1R(S,R) = 1
|R|

|R|∑
i=1

min
x∈S
{c(ri, x)}

where c(ri, x) = max
j=1,2,...,m

{0, wj (fj(x)− fj(ri))} with wj a relative weight assigned to
objective j.

GD is straightforward to compute but very sensitive to the number of points found
by a given algorithm. In fact, if the algorithm identifies a single point in the Pareto
front, the generational distance will equal 0. An algorithm can then miss an entire
portion of the Pareto front without being penalized by this indicator. This measure
favors algorithms returning a few non-dominated points close to the Pareto front versus
those giving a more distributed representation of the Pareto front. As suggested by
Colette and Siarry [2], it could be used as a stopping criteria. A slight variation of the
generational distance GD (S(k), S(k + 1)) between two successive iterations, as long as
the algorithm is running, could mean a convergence towards the Pareto front. It can be
applied on continuous and discontinuous Pareto front approximations.
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3.2.2. Standard deviation from the generational distance (STDGD) [16]
It measures the deformation of the Pareto set approximation according to a Pareto

optimal solution set. It is given by the following formula:

STDGD(S, P ) = 1
|S|
∑
s∈S

(
min
r∈P
‖ F (s)− F (r) ‖ −GD(S, P )

)2
.

The same critics than the generational distance apply.

3.2.3. Seven points average distance (SPAD) [25]
As it is not practical to obtain the Pareto front, an alternative is to use a reference

set R in the objective space. The SPAD indicator defined for biobjective optimization
problems uses a reference set composed of seven points:

R =
{(

i

3 max
x∈Ω

f1(x), j3 max
x∈Ω

f2(x)
)

0≤i,j≤3

}
.

SPAD is then given by:

SPAD(S,R) = 1
7

7∑
k=1

min
s∈S
‖ F (s)− F (rk) ‖

where rk ∈ R.
This indicator raises same critics as above. Notice that the computation cost to solve

the single-objective problems maxx∈Ω fi(x) for i = 1, 2 is not negligible. Also, the points
in the reference set can fail to capture the whole form of the Pareto front. Its limitation
to two objectives is also an inconvenient. Nonetheless, it does not require the knowledge
of Pareto front.

3.2.4. Maximum Pareto front error (MPFE) [16]
This indicator defined in [16] is another measure that evaluates the distance between

a discrete representation of the Pareto front and the Pareto set approximation obtained
by a given algorithm. It is expressed with the following formula (generally, p = 2):

MPFE(S, P ) = max
j∈P

(
min
i∈S

m∑
h=1
|fh(j)− fh(i)|p

) 1
p

.

It corresponds to the largest minimal distance between elements of the Pareto front ap-
proximation and their closest neighbors belonging to the Pareto front. It is not relevant,
as pointed out in [9]. Let consider two Pareto fronts approximations. The first possesses
only one element in the Pareto front P . The second has ten elements: nine of them
belong to the Pareto front and one is some distance away from it. As MPFE considers
only largest minimal distances, it favors the first Pareto front approximation. But the
second is clearly better.

On the contrary, it is straightforward and cheap to compute. It can be used on
continuous and discontinuous problems.
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3.2.5. Inverted generational distance (IGD) [23]
IGD has a quite similar form than GD. It is given by

IGD(S, P ) = 1
|P |

 |P |∑
i=1

dpi

 1
p

where di = min
x∈S
||F (x)− F (i)|| and generally, p = 2.

Pros and cons are the same as for the GD indicator.

3.2.6. Averaged Hausdorff distance (∆p) [20]
In [20], the authors combine IGD and GD into a new indicator, called the averaged

Hausdorff distance ∆p defined by

∆p(S, P ) = max {GDp(S, P ), IGDp(S, P )}

where GDp and IGDp are slightly modified versions of the GD and IGD indicators
defined as

GDp(S, P ) =
(

1
|S|
∑
s∈S

dist (s, P )p
) 1
p

and IGDp (S, P ) =

 1
|P |

|P |∑
i=1

dist (i, S)p
 1

p

.

It is straightforward to compute and to understand. On the contrary, it requires the
knowledge of the Pareto front. Authors of [20] introduce this new metric to correct the
defaults of the GD and IGD indicators. It can be used to compare continuous and
discontinuous approximations of Pareto fronts.

3.2.7. Modified inverted generational distance (IGD+) [24]
Although the GD and IGD indicators are commonly used due to their low compu-

tation cost [14], one of their major drawbacks is that they are non monotone [24]. The
∆p indicator has the same problem.

Also, the authors of [24] propose a slightly different version of the IGD indicator
named IGD+ computable in O(m |S| × |P |) where P is a fixed Pareto optimal solution
set. It is weakly Pareto compliant, i.e. :

IGD+(A,P ) ≤ IGD+(B,P ) for A and B two Pareto set approximations.

Let d+(z, a) =
m∑
i=1

(max(0, ai − zi))2 be the modified distance calculation for mini-

mization problems. The IGD+ indicator is defined by

IGD+(S, P ) = 1
|P |

∑
z∈P

min
s∈S

d+ (F (z), F (s)) .

As opposed to the IGD indicator, only points dominated by z ∈ P are taken into
account. A reference set R can also be used instead of P : authors of [49] analyzes
the choice of such reference points. This indicator can be used with discontinuous and
continuous Pareto fronts.
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3.2.8. Progress metric (Pg) [16]
This indicator introduced in [50] measures the progression of the Pareto front ap-

proximation given by an algorithm towards the Pareto front in function of the number
of iterations. It is defined by:

Pg = ln

√
f bestj (0)
f bestj (k)

where f bestj (k) is the best value of objective function j at iteration k. Author of [16]
modifies this metric to take into account whole Pareto sets approximations:

RPg(S, P, k) = ln

√
GD(S(0), P )
GD(S(k), P )

where GD(S(k), P ) is the generational distance of the Pareto set approximation S(k) at
iteration k.

Pg is not always defined, for example when values of fjmax(0) or fjmax(k) are negative
or null. As GD is still positive, RPg is well defined, but it requires the knowledge of the
Pareto front.

Pg, when it exists, provides an estimation of the speed of convergence of the associ-
ated algorithm. RPg captures only the variations of the generational distance along the
number of iterations. The drawbacks of the generational distance do not apply in this
case. Finally, a bad measure of progression does not necessarily mean that an algorithm
performs poorly. Some methods less deeply explore the objective space, but reach the
Pareto front after a more important number of iterations.

3.2.9. ε-indicator (Iε) [10]
A decision vector x1 is ε-dominating, for ε > 0, a decision vector x2 if:

For all i = 1, 2, . . . ,m, fi(x1) ≤ ε fi(x2).

The ε-indicator for two Pareto set approximations A and B is defined as

Iε(A,B) = inf
ε>0

{
x2 ∈ B : ∃x1 ∈ A such that x1 is ε-dominating x2}

It can be calculated the following way:

Iε(A,B) = max
x2∈B

min
x1∈A

max
1≤i≤m

fi(x1)
fi(x2) .

Given a reference set P , the unary metric can be defined as Iε(S) = Iε(P, S).
Similarly, Zitzler [10] defines an ε-additive indicator based on the following ε-domination.

It is said that a decision vector x1 is ε-dominating a decision vector x2 for ε > 0 if for all
i = 1, 2, . . . ,m, fi(x1) ≤ ε+ fi(x2). This indicator is then calculated by:

Iε(A,B) = max
x2∈B

min
x1∈A

max
1≤i≤m

fi(x1)− fi(x2).
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The main problem with the ε-indicator is that it considers only one objective, that
can lead to an information loss. Consider F (x1) = (0, 1, 1) and F (x2) = (1, 0, 0) in a
tri-objective maximization problem, the additive ε-indicator is the same for both:

Iε
(
{x1}, {x2}

)
= Iε

(
{x2}, {x1}

)
.

But x1 as a decision vector is more interesting than x2 (the three criteria are considered
equivalent) in the objective space. On the contrary, it is straightforward to compute. It
can be used for continuous and discontinuous approximations of Pareto fronts.

3.2.10. Degree of approximation (DOA) [21]
This indicator is proved to be ≺-complete (see Definition 8). It aims to compare

algorithms when the Pareto fronts are known.
Given y a point belonging to P , the set Dy, S in the objective space is defined as the

subset of points belonging to the Pareto set approximation S dominated by the point
y. If Dy,S is not empty, the Euclidean distance between each point s ∈ Dy,S and y is
computed with

df(y, s) =

√√√√ m∑
j=1

(fj(s)− fj(y))2
.

Then the minimum Euclidean distance between y ∈ P and s ∈ Dy,S is computed with

d(y, S) =

 min
s∈Dy,S

df(y, s) if |Dy,S | > 0

∞ if |Dy,S | = 0.

Similarly, r(y, S) is defined for y ∈ P by considering the set of points that do not belong
to Dy,S as:

r(y, S) =

 min
x∈S\Dy,S

rf(y, x) if |S\Dy,S | > 0

∞ if |S\Dy,S | = 0

where rf(y, x) =

√√√√ m∑
j=1

max {0, fj (x)− fj(y)}2.

The DOA indicator is finally given by

DOA(S, P ) = 1
|P |

∑
y∈P

min {d(y, S), r(y, S)} .

The value of DOA does not depend on the number of points of P , i.e. if |P | � |S| [21].
In fact, this indicator partitions S into subsets in which each element is dominated by a
point y ∈ P . Its computation cost is quite low (in O(m |S| × |P |)). It can be used for
discontinuous and continuous approximations of Pareto fronts.

3.3. Distribution and spread indicators
According to [34], “the spread metrics try to measure the extents of the spread

achieved in a computed Pareto front approximation”. They are not really useful to
evaluate the convergence of an algorithm, or at comparing algorithms, but
rather the distribution of the points along Pareto front approximations. They only make
sense when the Pareto set is composed of several solutions.
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3.3.1. Spacing (SP ) [25]
This indicator is computed with

SP (S) =

√√√√ 1
|S| − 1

|S|∑
i=1

(
d̄− di

)2
where di = min(si,sj)∈S, si 6=sj ‖ F (si)−F (sj) ‖1 is the l1 distance between a point si ∈ S
and the closest point of the Pareto front approximation produced by the same algorithm,
and d̄ the mean of the di.

This method cannot account for holes in the Pareto front approximation as it takes
into account the distance between a point and its closest neighbor. The major issue with
this metric is it gives some limited information when points given by the algorithm are
clearly separated, but spread into multiple groups. On the contrary, it is straightforward
to compute.

3.3.2. Delta indexes (∆′, ∆ and ∆?) [22, 27]
Deb [22] introduces the ∆′ index for biobjective problems

∆′(S) =
|S|−1∑
i=1

∣∣di − d̄∣∣
|S| − 1

where di is the Euclidean distance between consecutive elements of the Pareto front ap-
proximation S, and d̄ the mean of the di. As this indicator considers Euclidean distances
between consecutive points, it can be misleading if the Pareto front approximation is
piecewise continuous. The ∆′ index does not generalize to more than 2 objectives, as it
uses lexicographic order in the biobjective objective space to compute the di. In addition,
it does not consider the extent of the Pareto front approximation, i.e. distances between
extreme points of the Pareto front.

The ∆ index is an indicator derived from the ∆′ index to take into account the extent
of the Pareto front approximation for biobjective problems:

∆(S, P ) =
df + dl +

∑|S|−1
i=1

∣∣di − d∣∣
df + dl + (|S| − 1) d

where df and dl are the Euclidean distances between the extreme solutions of the Pareto
front P (i.e. solutions for one objective of the objective function) and the boundary
solutions of the Pareto front approximation. The other notations remain the same as
before. This metric requires the resolution of each single-objective optimization problem.
This indicator is extended to Pareto fronts with more than two objectives by [27] to the
generalized ∆?-index:

∆?(S, P ) =

m∑
j=1

d(ej , S) +
|S|∑
i=1

∣∣di − d∣∣
m∑
j=1

d(ek, S) + |S| d
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where d(ej , S) = min
x∈S
||F (ej)− F (x)|| with ej ∈ P the solution to the j-th single-objective

problem and di = min(si,sj)∈S, si 6=sj ‖ F (si) − F (sj) ‖ the minimal Euclidean distance
between two points of the Pareto front approximation. d is the mean of the di. As it
considers consider the shortest distances between elements of the Pareto front approxi-
mation, the ∆? index suffers from the same drawbacks as the spacing metric. Moreover,
it requires the knowledge of the extreme solutions of the Pareto front.

3.3.3. Two measures proposed by [34] (Γ and ∆)
Let assume that an algorithm computed a Pareto front approximation with N points,

indexed by 1, 2, . . . , N to which two extreme points indexed by 0 and N + 1 are added
(for example, s0 = s1 and sN+1 = sN ). For each objective j for j = 1, 2, . . . ,m, elements
si for i = 0, 1, . . . , N + 1 of the Pareto set approximation S are sorted such that for all
j = 1, 2, . . . ,m,

fj(s0) ≤ fj(s1) ≤ fj(s2) ≤ . . . ≤ fj(sN+1).

Custódio et al. [34] introduces the following metric Γ > 0 defined by:

Γ(S) = max
j∈{1,2,...,m}

max
i∈{0,1,...,N}

δi,j

where δi,j = fj(si+1) − fj(si). When considering a biobjective problem (m = 2), the
metric reduces to consider the maximum distance in the infinity norm between two
consecutive points in the Pareto front approximation as it is shown in Figure 4.

f1

f2

•

◦
◦

◦

◦
◦

◦
•

δN,2

δN−1,2

δ0,2

δ0,1 δN−1,1 δN,1

◦Computed points

•Computed extreme points

Figure 4: Illustration of the Γ metric for a biobjective problem (inspired by [34])

To take into account the extent of the Pareto front approximation, the authors of [34]
define the following indicator by
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∆(S) = max
j∈1,2,...,m

{
δ0,j + δN,j +

∑N−1
i=1

∣∣δi,j − δj∣∣
δ0,j + δN,j + (N − 1)δj

}
where δj , for j = 1, 2, . . . ,m, is the mean of the distances δi,j for i = 1, 2 . . . , N − 1.

The Γ and ∆ indicators do not use the closest distance between two points in the
objective space. Consequently, they do not have the same drawbacks as the spacing
metric. However, the δi,j distance captures holes in the Pareto front if this one is piece-
wise discontinuous. These two metrics are more adapted to continuous Pareto front
approximations.
Remark. The authors of [34] suggest two ways to compute extreme points. For bench-
mark tests, the Pareto front is known and extreme points correspond to the ones of the
Pareto front. Otherwise, the Γ and ∆ indicators use the extreme points of the Pareto
front approximation S.

3.3.4. Hole relative size (HRS) [2]
This indicator identifies the largest hole in a Pareto front approximation S. It is given

by
HRS(S) = (1/d̄) max

i=1,2,...,|S|
di

where di = min(si,sj)∈S, si 6=sj ‖ F (si)− F (sj) ‖1 is the l1 distance between point si ∈ S
and its closest neighbor, and d̄ the mean of the di.

As theHRS indicator uses the minimum l1 distance between two closest points, it has
the same drawbacks as the spacing metric. It does not provide relevant information, as
it does not even capture holes in the Pareto front approximation. For example, consider
the following set of four non-dominated points S = {A(5, 1), B(4, 2), C(5, 1), D(6, 1)}
in the biobjective space. The largest gap in this Pareto front approximation in the l1
norm is d(B,C) = 6; but maxi=1,2,...,|S| di = 1 and HRS(S) = 1.

3.3.5. Zitzler metrics M?
2 and M?

3 [2, 6]
The M?

2 metric returns a value in the interval [0; |S|] where S is the Pareto set
approximation. It reflects the number of subsets of the Pareto set approximation S of a
certain size (σ). Its expression is given by

M?
2 (S, σ) = 1

|S| − 1
∑
x∈S
|{y ∈ S, ||F (x)− F (y)|| > σ}|.

If M?
2 (S) = |S|, it means that for each objective vector, no other objective vector within

the distance σ can be found. It is straightforward to compute but it can be difficult to
interpret.

The authors of [40] introduce the Uniform distribution indicator, based too on the
search of niches of size σ, given by

UD(S, σ) = 1
1 +Dnc(S, σ)
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where Dnc(S, σ) is the standard deviation of the number of niches around all the points
of the Pareto front approximation S defined as

Dnc(S, σ) =

√√√√√√ 1
|S| − 1

 |S|∑
i=1

nc(si, σ)− 1
|S|

|S|∑
j=1

nc(sj , σ)

2


with nc(s, σ) = |t ∈ S, ‖ F (s)− F (t) ‖< σ| − 1.
Finally, the M?

3 metric defined by Zitzler [6], considers the extent of the front:

M?
3 (S) =

√√√√ m∑
i=1

max
{
‖ F (u)− F (v) ‖, u, v ∈ S

}
.

The M?
3 metric only takes into account the extremal points of the computed Pareto

front approximation. Consequently, it is sufficient for two different algorithms to have
the same extremal points to be considered as equivalent according to this metric. It can
be used on continuous and discontinuous approximations of Pareto fronts as it only gives
information on the extent of the Pareto front.

3.3.6. Uniformity (δ) [41]
This is the minimal distance between two points of the Pareto front approximation.

This measure is straightforward to compute and easy to understand. However, it does
not really provide pertinent information on the repartition of the points along the Pareto
front approximation.

3.3.7. Evenness (ξ) [32]
Given a point F (s), s ∈ S, in the Pareto front approximation, and considering the

closest neighbor at a distance dls and the largest sphere of diameter dus such that F (s)
and another point lie on the surface, we consider the set D = {dus , dls : s ∈ S}. ξ is then
defined as

ξ(S) = σD

D̂

where σD is the standard deviation of D and D̂ its mean. The closest ξ is to 0, the better
the uniformity is.

It can be considered as a coefficient of variation. It is straightforward to compute.
In the case of continuous Pareto front, it cannot account for holes in the Pareto front
approximation, as it considers only closest distances between two points in the objective
space.

Reference [51] also defines the evenness as

E(S) =
max
s∈S

min
t∈S,s 6=t

‖ F (s)− F (t) ‖

min
s∈S

min
t∈S,s 6=t

‖ F (s)− F (t) ‖ .

The lower the value, the better the distribution with a lower bound E(S) = 1.
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3.3.8. Binary uniformity (SPl) [33]
Contrary to others indicators, this indicator aims to compare the uniformity of two

Pareto set approximations. This indicator is inspired by the wavelet theory.
Let A and B two Pareto set approximations. The algorithm is decomposed in several

steps:
Let l = 1.

1. Firstly, for each set of non-dominated points, compute the distance between each
point i of the set and its closest neighbor (for A and B respectively dAi and dBi ) in
the objective space.

2. Compute the mean of the dAi and dBi , i.e. dAl = 1
|A|

|A|∑
i=1

dAi and dBl = 1
|B|

|B|∑
i=1

dBi

3. For each set, compute the following spacing measures:

SPAl =

√√√√√ |A|∑
i=1

(
1− ψ(dAi , dAl )

)2

|A| − 1 and SPBl =

√√√√√ |B|∑
i=1

(
1− ψ(dBi , dBl )

)2

|B| − 1

with ψ(a, b) =
{
a
b if a > b
b
a else

4. If SPAl < SPBl , then A has better uniformity than B and reciprocally. If SPAl =
SPBl and l ≥ min (|A| − 1, |B| − 1) then A has the same uniformity as B. Else if
SPAl = SPBl and l < min (|A| − 1, |B| − 1), then increment l by 1, and recompute
the previous steps by removing the smallest distance dAi and dBi until the end.

The value of the binary uniformity indicator is difficult to interpret but can be com-
puted easily. It does not take into account the extreme points of the Pareto front.

3.3.9. U-measure (U) [38]
The U-measure is given by

U(S) = 1
S

∑
i∈S

d′i
dideal

− 1

where d′i is the distance from point i to its closest neighbor (the algorithm to find this
closest neighbor is more precisely described in [38]) in the objective space translated
from a distance of the extreme points of the Pareto front to their nearest neighbor and
dideal = 1

|S|
∑
i∈S

d′i.

d′i
dideal

− 1 can be interpreted as the percentage deviation from the ideal distance if it
is multiplied by 100%. The U-measure is then the mean of this ratio along all points i
of the Pareto front approximation. A small U can be interpreted as a better uniformity.

It attempts to quantify the uniformity of found points along the Pareto front approx-
imation.

The same problems as for the previous metrics can be raised. Especially, the formula
works only if there are several points. Moreover, this metric can take time to compute
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when computing the minimal distances. As for the spacing metric, this last one does not
account for holes in the Pareto front approximation as it takes only into account closest
neighbors. It is then more pertinent on continuous Pareto front approximations.

3.3.10. Overall Pareto spread (OS) [26]
This indicator only captures the extent of the front covered by the Pareto front

approximation. The larger the better it is. It is given by

OS(S) =
m∏
i=1

∣∣∣∣max
x∈S

fi(x)−min
x∈S

fi(x)
∣∣∣∣

|fi(PB)− fi(PG)|

where PB is the nadir point (or an approximation) and PG the ideal point (or an ap-
proximation).

This is an indicator for which the values are among the values 0 and 1. It needs
the calculus of nadir and ideal points (so 2 m single-objective problems to preliminary
solve). It does not take into account the distribution of points along the Pareto front
approximation.

3.3.11. Outer diameter (IOD) [8]
Analogously to the overall Pareto spread metric, the outer diameter indicator returns

the maximum distance along all objective dimensions pondered by weights w ∈ Rm+
chosen by the user. It is given by:

IOD(S) = max
1≤i≤m

wi

(
max
x∈S

fi(x)−min
x∈S

fi(x)
)
.

The weights can be used to impose an order on criteria importance relatively to the
modeling of a specific problem but it is not mandatory. Although this indicator is cheap to
compute, it only takes into account the extend of the Pareto front approximation. By the
way, it can result in an information loss of the extend of the Pareto front approximation,
as it focuses only on the largest distance along a single dimension.

3.3.12. Distribution metric (DM) [28]
This indicator introduced by [28] aims to correct several defaults of the spacing mea-

sure [25] and add some information about the extent of the Pareto front. As it is men-
tioned, the “spacing metric does not adopt normalized distance, which may result in a
bias conclusion, especially when the orders of magnitudes of the objectives differ consid-
erably”. Moreover, it cannot account for holes in the Pareto front, as it considers only
closest neighbors. An example pointing out the defaults of the spacing metric is given in
Figure 5.

The DM indicator is given by

DM(S) = 1
|S|

m∑
i=1

(
σi
µi

)(
|fi(PG)− fi(PB)|

Ri

)
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Figure 5: An example showing the weaknesses of the spacing metric (inspired by [28]):
the spacing metric ignores the gap drawn in dashed lines

with σi = 1
|S| − 2

|S|−1∑
e=1

(
die − di

)2
, µi = 1

|S| − 1

|S|−1∑
e=1

die and Ri = max
s∈S

fi(s)−min fi(s)

where |S| is the number of non-dominated points, fi(PG) and fi(PB) are the function
values of design ideal and nadir points, respectively. die is the distance of the eth interval
between two adjacent solutions corresponding to the ith objective, σi and µi are the
standard deviation and mean of the distances relative to the ith objective, and σi

µi
is the

coefficient of variance relative to the ith objective.
A smaller DM indicates better distributed solutions. It takes into account the extent

and repartition of the points along the Pareto front approximation. However, it requires
the nadir and ideal points, which may be computationally expensive. As it accounts for
holes, this indicator is more relevant for continuous Pareto front approximations.

3.3.13. Uniform assessment metric (ID) [39]
Let S be a Pareto front approximation such that |S| > 2. The computation of this

indicator is decomposed into several steps:

1. A minimum spanning tree TG covering all the elements of S based on the euclidean
distance in the objective space is built.

2. Each element s ∈ S has at least one neighbor in the spanning set, i.e a vertex
adjacent to s. Let NTG(s) be the set of adjacent vertices to s in the spanning tree
TG.
For each v ∈ NTG(s), we define a “neighborhood” [39]

Nv(s) = {y ∈ S, ‖ F (y)− F (s) ‖≤‖ F (v)− F (s) ‖}

which corresponds to the subset of S contained in the closed ball of radius ‖ F (v)−
F (s) ‖ and centered in s. Notice that {s, v} ∈ Nv(s). The neighborhoods that
contain only two elements, i.e. s and v are not considered.

3. For all s ∈ S and v ∈ NTG(s), a distribution relation is defined by

ψ(s, v) =


0 if |Nv(s)| = 2,∏
y∈Nv(s), y 6=s

‖ F (s)− F (y) ‖
‖ F (s)− F (v) ‖ otherwise.
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4. There are 2|S| − 2 neighborhoods. Among them, Nr corresponds to the number of
neighborhoods that only contain two elements. The uniform assessment metric is
then defined by

ID(S) = 1
2|S| −Nr − 2

∑
s∈S

∑
v∈NTG (s)

ψ(s, v)

which corresponds to the mean of the distribution relation for neighborhoods con-
taining more than two elements.

This indicator does not require external parameters. Due to the definition of the neigh-
borhood, it takes into account holes in the Pareto front. Indeed, contrary to the spacing
metric, it does not consider only closest distances between objective vectors. The indi-
cator is comprised between 0 and 1. The closest to 1, the better.

3.3.14. Extension measure (EX) [33]
This indicator aims to measure the extent of the Pareto front approximation. It is

given by

EX(S) = 1
m

√√√√ m∑
i=1

d(f?i , S)2

where d(f?i , S) is the minimal distance (norm) between the solution to the ith single-
objective problem and the set of non-dominated points obtained by a given algorithm in
the objective space.

This indicator requires the resolution of m single-objective optimization problems. It
penalizes well-distributed Pareto front approximations neglecting the extreme values. It
is straightforward to compute.

3.3.15. Diversity indicator based on reference vectors (DIR) [30]
Let V = {λ1, λ2, . . . , λM} be a set of uniformly generated reference vectors in Rm.

For each element of an approximation set s ∈ S, the closeness between s and the reference
vector λi, for i = 1, 2, . . . ,M , is given by

angle(λi, F (s)) = arccos (λi)T (F (s)− F I)
‖ λi ‖‖ F (s)− F I ‖ .

If a reference vector λi is the closest to an element s of S relatively to the closeness
metric, it is said that s “covers the reference vector λi” [30]. The coverage vector c of
size |S| represents for each s ∈ S the number of reference vectors that s covers. DIR is
the normalized standard deviation of the coverage vector c, defined as

DIR =

√√√√ 1
|S|

|S|∑
i=1

(ci − c̄)2 ÷
(
M

|S|
√
|S| − 1

)
where c̄ is the mean of the (ci)i=1,2,...,|S|. The lower this indicator is, the better. It is
intuitive to understand and cheap to compute (in O (m×M × |S|) [30]). It captures
both the distribution and the spreading. Nonetheless, it requires the knowledge of the
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ideal point. The number of reference vectors to choose (at least greater than |S| to be
more pertinent) equally plays an important role. It can be biased when the Pareto front
is piecewise continuous.

3.3.16. Laumanns metric (IL) [52, 35]
Given a vector y in the objective space F , let D(y) = {y′ ∈ F , y ≺ y′} be the set of

vectors dominated by y in the objective space. Given a Pareto front approximation S,
D(S) is designed as the dominated space by the set S and is defined as

D(S) =
⋃
y∈S

D(y).

Let y?i be the ith outer point of the Pareto front approximation S defined by

(y?i)1≤j≤m =
{

max {yj : y ∈ S} if i 6= j,

min {yi : y ∈ S} otherwise.

We introduce the hypercube H(S) =
{
y ∈ Rm : y = F I +

m∑
i=1

ai(y?i − F I), ai ∈ [0, 1]
}

where F I is the ideal point. The Laumanns metric is defined as the ratio of the Lebesgue
measure of the intersection of D and H, with the Lebesgue measure of H:

IL(S) = λ(D(S) ∩H(S))
λ(H(S))

where λ(A) is the Lebesgue measure of the bounded set A. The metric returns a value
between 0 and 1. The higher the better. An illustration is given in Figure 6.

f1

f2

1

1

•
y?1

•

•

• y?2

H(S) ∩ D(S)

Figure 6: The intersection of H(S) and D(S) for a biobjective minimization problem

This indicator is biased in favor of convex and extended fronts. Moreover, its com-
putation complexity in O(|S|

m
2 log |S|) [53] explodes when the objective space dimension

increases: in fact, it is similar to the hypervolume indicator when the reference point is
chosen such as F̃N .

3.3.17. Other distribution indicators
Some other metrics are mentioned in this subsection. They require external parame-

ters chosen by the user that can be crucial to their performance. The reader can consult
the provided references.
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1. Entropy measure [31]: For each point of S, an influential function (a Gaussian
function centered in F (s) for s ∈ S) is defined, which enables the creation of a
density function considered as the sum of influential functions for each element
s ∈ S. Peaks and valleys in the objective space are considered as places where
information can be measured. A “good” Pareto front approximation should have
an uniform density function in the objective space. The objective space bounded
by the nadir and ideal points is firstly normalized, then divided into boxes, whose
the number is decided by the user. Based on this discretization of the objective
space, the measure is computed using the values of the density function for each
center of each box and the Shannon formula of entropy [54].

2. Cluster CLµ and Number of Distinct Choices NDCµ [26]: Given two respective
good (ideal point) and bad (nadir point) points PG and PB , the objective (prelimi-
nary normalized) is divided into hyperboxes of size µ (∈ (0; 1]). NDCµ is defined as
the number of hyperboxes containing elements of the Pareto front approximation.
CLµ is then defined as CLµ(S) = |S|

NDCµ
.

3. Sigma diversity metrics σ and σ [37]: The objective space is divided into zones
delimited by uniformly distributed reference lines starting from the origin whose
the number equals |S|. The metric value is the ratio of the number of lines that
are sufficiently close to the reference lines according to the Euclidean norm with a
threshold d chosen by the user, with the total number of reference lines.

4. Diversity comparison indicator DCI [29]: It is a k-ary spread indicator. The zone
of interest in the objective space delimited by lower and upper bounds is divided
into a number of hyperboxes. For each Pareto front approximation, a contribution
coefficient is computed relatively to the hyperboxes where non-dominated points
are found. For each Pareto front approximation, DCI returns the mean of contri-
bution coefficients relatively to all hyperboxes of interest. A variant is the M −DI
indicator [36] (Modified Diversity Indicator) which considers a distributed reference
set in the objective space instead of the set of non-dominated points from the union
of the k Pareto front approximations.

A drawback of these metrics is the choice of external parameters (d threshold, µ size,
number of hyperboxes) that can wrongly favor Pareto front approximations over others.
σ and CLµ can be considered as cardinal indicators too and therefore suffer from the
same drawbacks as the above cardinal indicators.

3.4. Convergence and distribution indicators
These indicators are of two types: some enable to compare several approximated sets

in term of distribution and Pareto dominance. The others give a value that capture
distribution, spreading and convergence at the same time.

3.4.1. R1 and R2 indicators [19]
Let A and B be two Pareto set approximations, U a set of utility functions u : Rm →

R mapping each point in the objective space into a measure of utility, and p a probability
distribution on the set U . For each u ∈ U , let associate u?(A) = maxs∈A u (F (s)) and
u?(B) = maxs∈B u (F (s)). The two indicators measure to which extent A is better than
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B over the set of utility functions U . The R1 indicator is given by

R1(A,B,U, p) =
∫
u∈U

C(A,B, u)p(u)du

where

C(A,B, u) =


1 if u?(A) > u?(B),
1/2 if u?(A) = u?(B),
0 if u?(A) < u?(B).

The R2 indicator defined as

R2(A,B,U, p) = E (u?(A))− E (u?(B)) =
∫
u∈U

(u?(A)− u?(B)) p(u)du.

is the expected difference in the utility of an approximation Pareto front A with another
one B. In practice, these two indicators use a discrete and finite set U of utility functions
associated with an uniform distribution over U [8]. The two indicators can then be
rewritten as

R1(A,B) = 1
|U |

∑
u∈U

C(A,B, u) and R2(A,B,U) = 1
|U |

∑
u∈U

u? (A)− u?(B).

If R2(A,B,U) > 0, then A is considered as better than B. Else if R2(A,B,U) ≥ 0, A is
considered as not worse than B.

The authors of [19] recommend to use the utility set U∞ = (uλ)λ∈Λ of weighted
Tchebycheff utility functions, with

uλ(s) = − max
j=1,2,...,m

(
λj

∣∣∣(F (s))j − rj
∣∣∣)

for s ∈ A where r is a reference vector chosen so that any objective vector of a feasible
space does not dominate r (or as an approximation of the ideal point [55, 56, 8]) and
λ ∈ Λ a weight vector such that for all λ ∈ Λ and j = 1, 2, . . . ,m,

λj ≥ 0 and
m∑
j=1

λj = 1.

Zitzler [8] suggests using the set of augmented weighted Tchebycheff utility functions
defined by

uλ(s) = −

 max
j=1,2,...,m

λj

∣∣∣(F (s))j − rj
∣∣∣+ ρ

m∑
j=1
|(F (s))j − rj |


where ρ is a sufficiently small positive real number.

As given in [55], for m = 2 objectives, Λ can be chosen such that:

1. Λ =
{

(0, 1) ,
(

1
k−1 , 1− 1

k−1

)
,
(

2
k−1 , 1− 2

k−1

)
, . . . , (1, 0)

}
is a set of k weights

uniformly distributed in the space [0; 1]2.
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2. Λ =
{(

1
1+tanϕ ,

tanϕ
1+tanϕ

)
, ϕ ∈ Φk

}
where Φk =

{
0, π

2(k−1) ,
2π

2(k−1) , . . . ,
π
2

}
is a set

of weights uniformly distributed over the trigonometric circle.
The IR2 indicator [55] is an unary indicator derived from R2 defined as (in the case

of weighted Tchebycheff utility functions)

IR2(A,Λ) = 1
|Λ|

∑
λ∈Λ

min
s∈A

{
max

j=1,2,...,m

(
λj

∣∣∣(F (s))j − rj
∣∣∣)}.

The higher this index, the better.
As J. Knowles [9] remarks, “the application of R2 depends up on the assumption that it

is meaningful to add the values of different utility functions from the set U . This simply
means that each utility function in U must be appropriately scaled with respect to the
others and its relative importance. By the way, R-metrics are only weakly monotonic, i.e.
I(A) ≥ I(B) in A weakly dominates B”. They do not require important computations
as the number of objectives increase. The reference point has to be chosen carefully.
Studies concerning the properties of the R2 indicator can be found in [55, 56, 57].

3.4.2. G-metric [45]
This measure enables to compare k Pareto set approximations based on two criteria:

their repartition of points in the space and the level of domination in the objective space.
It is compatible with the weak dominance as defined below. Basically, its computation
decomposes into several steps: given k Pareto set approximations (A1, A2, . . . , Ak):

1. Scale the values of the vectors in the k sets, i.e take the union
k⋃
i=1

Ai, then normalize

according to the extreme values of the objective vectors of this set.
2. Group the Pareto set approximations according to their degree of dominance. In

level L1 will be put all Pareto set approximations that strictly dominate all the
others and are incomparable; we remove them then from the considered Pareto
set approximations; then in L2, will be put the Pareto set approximations that
dominate all the other sets, and so on.

3. For each level of dominance Lq for q = 1, 2, . . . , Q, where Q is the number of levels,
dominated points belonging in the set

⋃
A∈Lq

A are removed. Each non-dominated

point in each set of the same level possesses a zone of influence. It is a ball of
radius U centered in this last one. The radius U considers distances between
neighbors points [38] for the k Pareto front approximations. For each Pareto set
approximation belonging to the same level of dominance, a mesure of dispersion
is computed. This last one takes into account the zone of influence that union of
non-dominated elements of the set cover. The smaller the value, the closer the
points are.

4. The G-metric associated to an Pareto set approximation is the summation of the
dispersion measure of this set and the largest dispersion measure of Pareto approx-
imated sets of lower dominance degree for each level. The bigger, the better.

The computation cost is quite important (in O(k3 ×maxi=1,2,...,k |Ai|2) [45]) but the
cost can be decreased when one considers a small number of Pareto set approximations.
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Note that this indicator highly depends on the computation of the radius U when defining
zones of influence. This metric can be used for continuous and discontinuous Pareto
fronts, especially to compare two Pareto set approximations, in terms of dominance and
distribution into the objective space.

3.4.3. Dominance move (DoM) [43]
This measure introduced by [43] was conceived to rectify the main default of the

ε-indicator.

Definition 9. [43] Let A be a set of points a1, a2, . . . , ah and B be a set of points
b1, b2, . . . , bl. The dominance move of A to B (denoted as DoM(A,B) is the minimum
total distance of moving points of A such that any point in B is weakly dominated [10]
by at least one point in P . That is, we move (a1, a2, . . . , ah) to positions (a′1, a′2, . . . , a′h)
thus constituting A′ such that:

1. A′ weakly dominates B.
2. The total of the moves from a1, a2, . . . , ah to a′1, a′2, . . . , a′h is minimized.

Formally, the dominance move indicator is defined as

DoM(A,B) = min
A′�B

h∑
i=1

d(ai, a′i)

where d(ai, a′i) =‖ ai − a′i ‖1 is the Manhattan distance between ai and a′i.
DoM(A,B) ≥ 0 and if A � B, DoM(A,B) = 0. Authors of [43] give an algorithm to

compute this measure for biobjective problems. This relation can be used to compare sets
between them. To the best of our knowledge, an algorithm for more than two objectives
has not been proposed yet.

The notion of dominance move is also used in the construction of the performance
comparison indicator PCI [58]. The PCI indicator evaluates the quality of multiple
approximation sets by constructing a reference set thanks to them. Points in this refer-
ence set are divided into clusters (using a threshold σ). The PCI indicator measures the
minimum move distance (according to the l2 norm) of an approximation set to weakly
dominate all points in a cluster.

3.4.4. Hyperarea/hypervolume metrics (HV ) [44]
Named also S-metric, the hypervolume indicator is described as the volume of the

space in the objective space dominated by the Pareto front approximation S and delimited
from above by a reference point r ∈ Rm such that for all z ∈ S, z ≺ r. The hypervolume
indicator is given by

HV (S, r) = λm(
⋃
z∈S

[z; r])

where λm is the m-dimensional Lebesgue measure. An illustration is given in Figure 7
for the biobjective case (m = 2).

If the Pareto front is known, the Hyperarea ratio is given by

HR(S, P, r) = HV (S, r)
HV (P, r) .
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Figure 7: Illustration of the hypervolume indicator for a biobjective problem

The lower the ratio is (converges toward 1), the better the approximation is.
The hypervolume indicator is the only known unary indicator to be strictly mono-

tonic [8], i.e. if an Pareto set approximation A strictly dominates another Pareto front
approximation B, HV (A, r) > HV (B, r). The two main defaults are a complexity cost
in O(|S|

m
2 log |S|) [53] and the choice of the reference point as illustrated in Figure 8.
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Figure 8: The relative value of the hypervolume metric depends on the chosen reference
point r or r′. On the top, two non-dominated A and B sets are shown, with HV (A, r) >
HV (B, r). On the bottom, HV (B, r′) > HV (A, r′)

If the origin is far from the Pareto front, the precision of the measure can decrease [7].
Recently, a practical guide was proposed to specify the reference point [59]. Besides, this
measure privileges the convex parts of the Pareto front approximation over its concave
parts. Other theoretical results can be found in [60, 61]. Due to its properties, it is widely
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used in the evolutionary community in the search of potential interesting new points or
to compare algorithms.

Similarly, [44] introduces the Difference D of two sets S1 and S2. D(S1, S2) enables
to measure the size of the area dominated by S1 not by S2.

The Hyperarea Difference was suggested by [26] to compensate the lack of information
about the theoretical Pareto front. Given a good point Pg and a bad point Pb, we can
approximate the size of the area dominated by the Pareto front (or circumvent the
objective space by a rectangle). The Hyperarea Difference is just the normalization of
the dominated space by the approximation Pareto front over the given rectangle.

More recently, a pondered hyper-volume by weights was introduced by [62] to give a
preference of an objective according to another. More volume indicators can be found
in [26]. Some other authors [63] (for biobjective optimization problems) suggest to com-
pute the hyper-volume defined by a reference point and the projection of the points
belonging to the Pareto front approximation on the line delimited by the two extreme
points. This measure enables to better estimate the distribution of the points along the
Pareto front (in fact, it can be shown that for a linear Pareto front, an uniform distribu-
tion of points maximizes the hyper-volume indicator: see [64, 65] for more details about
the properties of the hyper-volume indicator). A logarithmic version of the hypervolume
indicator called the logarithmic hypervolume indicator [46] is defined by

logHV (S, r) = λm

(⋃
z∈S

[log z; log r]
)

with the same notations as previously. Notice that this indicator can only be used with
positive vectors in Rm. Finally, we can mention a generalization of the hyper-volume indi-
cator called the cone-based hyper-volume indicator that was introduced recently by [42].

4. Some usages of performance indicators

This section focuses on three applications of performance indicators: comparison of
algorithms for multiobjective optimization, definition of stopping criteria, and the use of
relevant distribution and spread indicators for assessing the diversity characterization of
a Pareto front approximation.

4.1. Comparison of algorithms
The first use of performance indicators is to evaluate the performance of an algorithms

on a multiobjective problem. In single-objective optimization, the most used graphical
tools to compare algorithms include performance profiles [66] and data profiles [67] (see
also [68] for a detailed survey on the tools to compare single-optimization algorithms).
More specifically, let S be a set of solvers and P the set of benchmarking problems. Let
tp,s > 0 be a performance measure of solver s ∈ S on problem p ∈ P: the lower, the
better. Performance and data profiles combine performance measures of solvers tp,s to
enable a general graphic representation of the performance of each solver relatively to
each other on the set of benchmarking problems P.

To the best of our knowledge, Custódio and al [34] are the first to use data and per-
formance profiles for multiobjective optimization. For each problem p ∈ P, they build an
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Pareto set approximation Fp =
⋃
s∈S

Fp,s composed of the union of all Pareto set approx-

imations Fp,s generated by each solver s ∈ S for the problem p. All dominated points
are then removed. Pareto approximation sets and relative Pareto front approximation
are then compared using cardinality and γ and ∆ metrics proposed by [34].

One of the critics we can make with this approach is the use of distribution and
cardinality indicators that do not capture order relations between two different
sets. The choice of (weakly) monotonic indicators or (≺-complete / ≺-compatible)
C-complete / C-compatible comparisons methods is more appropriated in this context
([19, 9, 10, 8]). Among them, dominance move, G-metric, binary ε-indicator and volume-
space metrics have properties corresponding to these criteria. Mathematical proofs can
be found in [64, 55, 56, 9, 43, 45, 10]) and are synthesized in Appendices. An example
of data profile using the hypervolume indicator can be found in [69, 70]. The use of
performance indicators such as GD or IGD as it is done in [71, 72] is not a pertinent
choice due to their inability to capture dominance relation. Instead, we suggest to use
their weakly monotonic counterpart IGD+ or DOA, that can be cheaper to compute
than for example the hypervolume indicator when the number of objectives is high.

4.2. Stopping criteria of multiobjective algorithms
To generate a Pareto front approximation, two approaches are currently considered.

The first category, named as scalarization methods, consists in aggregating the objective
functions and to solve a series of single-objective problems. Surveys about scalarization
algorithms can be found for example in [73]. The second class, designed as a posteri-
ori articulations of preferences [34] methods, aims at obtaining the whole Pareto front
without combining any objective function in a single-objective framework. Evolution-
ary algorithms, Bayesian optimization methods [74] or deterministic algorithms such as
DMS [34] belong to this category.

For scalarization methods, under some assumptions, solutions to single-objective
problems can be proved to belong to the Pareto front or a local one. So, defining stopping
criteria results in choosing the number of single-objective problems to solve via the choice
of parameters and a single-objective stopping criterion for each of them. Stopping at a
predetermined number of function evaluations is often used in the context of blackbox
optimization [75]. The use of performance indicators also is not relevant.

A contrario, a posteriori methods consider a set of points in the objective space (a
population) that is brought to head for the Pareto front along iterations. Basically, a
number of maximum evaluations is still given as a stopping criterion but it remains crucial
to give an estimation to how far from a (local) Pareto front the approximation set is. For
multi-objective Bayesian optimization [74], the goal is to find at next iteration the point
that maximizes the hyperarea difference between old non-dominated set of points and the
new one. The performance indicator is directly embedded into the algorithm and could
be used as a stopping criterion. For evolutionary algorithms, surveys on stopping criteria
for multiobjective optimization can be found in [18, 76]. The approach is to measure the
progression of the current population combining performance indicators (hypervolume,
MDR, etc.) and statistic tools (Kalman filter [18], χ2-variance test [77], etc.) These last
ones enable to detect a stationary state reached by the evolving population.

We believe that the use of monotonic performance indicators or binary ones that
capture the dominance property seems to be the most efficient one in the years to come
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to follow the behavior of population-based algorithms along iterations.

4.3. Distribution and spread
The choice of spread and distribution metrics has only a sense when one wants to

measure the repartition of points in the objective space, no matter how close from the
Pareto front the approximated set is. Spread and distribution metrics can put forward
global properties (for example statistics on the repartition of the points or extent of
the front) or local properties such as the largest distance between closest non-dominated
points that can be used to conduct search such as Γ indicator. Typically, the construction
of a distribution or spread indicator requires two steps. The first consists in defining a
distance between two points in the objective space. Many distribution metrics in the
literature use minimum Euclidean or Manhattan distance between points such as the SP
metric, the ∆ index, HRS, and so on. The DM and Γ-metric indicators use a “sorting
distance”; ID a “neighborhood distance” based on a spanning tree, and so on. Once this
is done, many of the existing distribution indicators are built by using statistic tools on
this distance: mean (∆ index, U measure, DM for example), mean square (SP , Dnc),
and so on.

To use a distribution or spread indicator, it should satisfy the following properties:

1. The support of scaled functions, which enables to compare all objectives in an
equivalent way (DM,OS, IOD,∆,Γ).

2. For piecewise continuous or discontinuous Pareto front approximations, a good dis-
tribution indicator should not be based on the distance between closest neighbors,
as it can hide some holes [28]. Some indicators possess this property such as DM ,
Γ, ∆ or evenness indicators.

3. Distribution and spread performance indicators should not be based on external
parameters, such as Zitzler metric M?

2 , UD, or entropy measure.
4. An easy interpretation: a value returned by an indicator has to be ‘intuitive’ to

understand. For example, the binary uniformity is extremely difficult to interpret
and should not be used. This remark applies for all types of performance indicators.

One could directly include spread control parameters in the design of new algorithms.
The Normal Boundary Intersection method [78] controls the spread of a Pareto front
approximation. This method is also used in the context of blackbox optimization [79].

5. Discussion

In this work, we give a review of performance indicators for the quality of Pareto front
approximations in multiobjective optimization, as well as some usages of these indicators.

The most important application of performance indicators is to allow comparison
and analysis of results of different algorithms. In this optic, among all these indica-
tors, the hypervolume metric and its binary counterpart, the hyperarea difference can
be considered until now as the most relevant. The hypervolume indicator possesses good
mathematical properties, it can capture dominance properties and distribution and does
not require the knowledge of the Pareto front. Empirical studies [13, 7] have confirmed
its efficiency compared to other performance indicators. That is why it has been deeply
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used in the evolutionary community [14]. However, it has some limitations: the expo-
nential cost as the number of objectives increases and the choice of the reference point.
To compare algorithms, it can be replaced with other indicators capturing lower domi-
nance relation such as dominance move, G-metric, binary ε-indicator, modified inverted
generated distance or degree of approximation whose computation cost is less important.

Future research can focus on the discovery of new performance indicators that cor-
rect some drawbacks of the hypervolume indicator but keeps its good properties, and
the integration of performance indicators directly into algorithms for multiobjective op-
timization.
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Appendix A A summary of performance indicators

Table 3 draws a summary of all indicators described in Section 3. Most of complexity
cost indications for computing metrics are drawn from [13]. P corresponds to the Pareto
optimal solution set and S is a Pareto set approximation returned by a given algorithm.
The symbol “7” indicates that the performance indicator does not satisfy the monotony
property. The “-” symbol corresponds to binary indicators, for which monotonicity has
no meaning.

Category Performance indicators Sect. Symbol Parameters Comparison sets Computational
complexity

Monotone

Cardinality C-metric/Two sets
Coverage [15]

3.1.5 C None Binary indicator O(m |S1| × |S2|) -

3.1 Error ratio [16] 3.1.4 ER None Pareto front P Low 7
Generational non dominated
vector generation [17]

3.1.3 GNVG None Pareto front P Low 7

Generational non dominated
vector generation ratio [17]

3.1.3 GNVGR None Pareto front P Low 7

Mutual domination rate [18] 3.1.3 MDR None None Low 7
Nondominated vector
additional [17]

3.1.3 NVA None None Low 7

Overall nondominated
vector generation [16]

3.1.1 ONVG None None Low 7

Overall nondominated
vector generation ratio [16]

3.1.2 ONVGR None Pareto front P Low 7

Ratio of non-dominated
points by the reference
set [19]

3.1.5 C2R None Reference set R O(m |S| × |R|) 7

Ratio of the reference
points [19]

3.1.4 C1R None Reference set R O(m |S| × |R|) 7

Convergence Averaged Hausdorff
distance [20]

3.2.6 ∆q None Pareto front P O(m |S| × |P |) 7

3.2 Degree of
Approximation [21]

3.2.10DOA None Pareto front P O(m |S| × |P |) Not strictly

DR-metric [19] 3.2.1 - None Reference set R O(m |S| × |R|) Not strictly
ε-family [10] 3.2.9 Iε None Pareto front P O(m |S| × |P |) Not strictly
Generational distance [16] 3.2.1 GD None Pareto front P O(m |S| × |P |) 7
γ-metric [22] 3.2.1 γ None Pareto front P O(m |S| × |P |) 7
Inverted generational
distance [23]

3.2.5 IGD None Pareto front P O(m |S| × |P |) 7

Maximum Pareto front
error [16]

3.2.4 MPFE None Pareto front P O(m |S| × |P |) 7

Modified inverted
generational distance [24]

3.2.7 IGD+ None Pareto front P O(m |S| × |P |) Not strictly

M?1 -metric [6] 3.2.1 M?1 None Pareto front P O(m |S| × |P |) 7

Progression metric [16] 3.2.8 - None None O(m |S|) 7
Seven points average
distance [25]

3.2.3 SPAD None Reference set R O(m |S|) 7

Standard deviation from the
Generational distance [16]

3.2.2 STDGD None Pareto front P O(m |S| × |P |) 7

Distribution Cluster [26] 3.3.17CLµ A parameter µ None High 7

and spread ∆-index [22] 3.3.2 ∆ None Pareto front P O(m |S|2 +
m |S| × |P |)

7

3.3 ∆′-index [22] 3.3.2 ∆′ None None O(m |S|2) 7

∆? spread metric [27] 3.3.2 ∆? None Pareto front P O(m |S|2 +
m |S| × |P |)

7

Distribution metric [28] 3.3.12DM None None O(m |S|2) 7

Diversity comparison
indicator [29]

3.3.17DCI A parameter
div

k-ary indicator
comparing
S1, S2, . . . , Sk
non-dominated
sets

O
(
m(k|Smax|)2

)
7

Diversity indicator [30] 3.3.15DIR Number of
weights vectors
M

None O(mM|S|) 7

Entropy metric [31] 3.3.17 - A parameter
grids

None High 7

Evenness [32] 3.3.7 ξ None None O(m |S|2) 7
Extension [33] 3.3.14EX None Pareto front P O(m |S| × |P |) 7

Γ-metric [34] 3.3.3 Γ None None O(m |S|2) 7

Hole Relative Size [2] 3.3.4 HRS None None O(m |S|2) 7

Laumanns metric [35] 3.3.16 - None None O(|S|
m
2 log |S|) 7

Modified Diversity
indicator [36]

3.3.17M −DI A parameter δ Reference set R O(m|R| × |S|2)

M?2 -metric [6] 3.3.5 M?2 Niche radius σ None O(m |S|2) 7

M?3 -metric [6] 3.3.5 M?3 None None O(m |S|2) 7

Number of distinct
choices [26]

3.3.17NDCµ A parameter µ None High 7
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Category Performance indicators Sect. Symbol Parameters Comparison sets Computational
complexity

Monotone

Outer diameter [8] 3.3.11 IOD None None O(m |S|) 7
Overall Pareto Spread [26] 3.3.10OS None Good Point PG

and Bad Point PB
O(m |S|) 7

Sigma diversity metric [37] 3.3.17σ A parameter
lines

None High 7

Spacing [25] 3.3.1 SP None None O(m |S|2) 7

U-measure [38] 3.3.9 U None None O(m |S|2) 7

Uniform assessment
metric [39]

3.3.13 ID None None O
(
m|S|2

)
7

Uniform distribution [40] 3.3.5 UD Niche radius σ None O(m |S|2) 7

Uniformity [41] 3.3.6 δ None None O(m |S|2) 7
Uniformity [33] 3.3.8 - None Binary Quadratic 7

Convergence
and

Cone-based
hypervolume [42]

3.4.4 - Angle γ Reference set R O(|S|
m
2 log |S|) Strictly

distribution Dominance move [43] 3.4.3 DoM None Binary indicator O(|S| log |S|) -

3.4 D-metric/Difference
coverage of two sets [44]

3.4.4 - None Reference set R
Binary indicator

O(|S|
m
2 log |S|) -

Hyperarea difference [26] 3.4.4 HD None Reference set R O(|S|
m
2 log |S|) Strictly

Hypervolume indicator (or
S-metric) [6]

3.4.4 HV None Reference set R O(|S|
m
2 log |S|) Strictly

G-metric [45] 3.4.2 - None k-ary indicator
comparing
S1, S2, . . . , Sk
non-dominated
sets

O(k3 |Smax|2) Not strictly

Logarithmic hypervolume
indicator [46]

3.4.4 logHV None Reference set R O(|S|
m
2 log |S|) Strictly

R-metric [19] 3.4.1 R A set Λ of
weights vectors

Reference set R O(m |S| × |R| ×
|Λ|)

Not strictly

Table 3: A summary of performance indicators.

Appendix B Compatibility and completeness

Table 4 and 5 summarize compatibility and completeness properties. Only the
strongest relationships are kept. Some of them are drawn from [10]. All spread and
distribution indicators are not compatible with approximation sets relations.

Category Performance indicators Sect. Symbol Boolean function Compatible Complete

Cardinality Error ratio [16] 3.1.4 ER ER(A) < ER(B) 7 7
3.1 Generational non dominated

vector generation [17]
3.1.3 GNVG - - -

Generational non dominated
vector generation ratio [17]

3.1.3 GNVGR - - -

Mutual domination rate [18] 3.1.6 MDR - - -
Nondominated vector
additional [17]

3.1.3 NVA - - -

Overall nondominated vector
generation [16]

3.1.1 ONVG ONVG(A) > ONVG(B) 7 7

Overall nondominated vector
generation ratio [16]

3.1.2 ONVGRONVGR(A, P ) > ONVGR(B, P ) 7 7

Ratio of non-dominated points
by the reference set [19]

3.1.5 C2R C2R (A, R) > C2R(B, R) 7 7

Ratio of the reference points [19] 3.1.4 C1R C1R(A,R) > C1R(B, R) 7 7

Convergence Averaged Hausdorff distance [20] 3.2.6 ∆q ∆q(A, P ) < ∆q(B, P ) 7 7

3.2 Degree of Approximation [21] 3.2.10DOA DOA(A, P ) < DOA(B, P ) Not better than ≺
DR-metric [19] 3.2.1 - DR(A,R) < DR(B,R) Not better than ≺≺
Generational distance [16] 3.2.1 GD GD(A, P ) < GD(B, P ) 7 7
γ-metric [22] 3.2.1 γ γ(A, P ) < γ(B, P ) 7 7
Inverted generational
distance [23]

3.2.5 IGD IGD(A, P ) < IGD(B, P ) 7 7

Maximum Pareto front error [16] 3.2.4 MPFE MPFE(A, P ) < MPFE(B, P ) 7 7

Modified inverted generational
distance [24]

3.2.7 IGD+ IGD+(A, P ) < IGD+(B, P ) Not better than �

M?1 -metric [6] 3.2.1 M?1 M?1 (A, P ) < M?1 (B, P ) 7 7

Progression metric [16] 3.2.8 - - - -
Seven points average
distance [25]

3.2.3 SPAD SPAD(A, P ) < SPAD(B, P ) 7 7

38



Category Performance indicators Sect. Symbol Boolean function Compatible Complete

Standard deviation from the
Generational distance [16]

3.2.2 STDGD - - -

Distribution Cluster [26] CLµ - - -
and spread ∆-index [22] 3.3.2 ∆ ∆(A) < ∆(B) 7 7

3.3 ∆′-index [22] 3.3.2 ∆′ ∆′(A) < ∆′(B) 7 7

∆? spread metric [27] 3.3.2 ∆? ∆?(A) < ∆?(B) 7 7
Distribution metric [28] 3.3.12DM DM(A) < DM(B) 7 7
Diversity indicator [30] 3.3.15DIR DIR(A) < DIR(B) 7 7
Entropy metric [31] 3.3.17 - - - -
Evenness [32] 3.3.7 ξ ξ(A) < ξ(B) 7 7
Extension [33] 3.3.14EX EX(A) < EX(B) 7 7
Γ-metric [34] 3.3.3 Γ Γ(A) < Γ(B) 7 7
Hole Relative Size [2] 3.3.4 HRS HRS(A) < HRS(B) 7 7
Laumanns metric [35] 3.3.16 - IL(A) > IL(B) 7 7
Modified Diversity indicator [36] 3.3.17M −DI M −DI(A,R) > M −DI(B,R) 7 7

M?2 -metric [6] 3.3.5 M?2 M?2 (A, σ) > M?2 (B, σ) 7 7

M?3 -metric [6] 3.3.5 M?3 M?3 (A) > M?3 (B) 7 7

Number of distinct choices [26] 3.3.17NDCµ NDCµ(A) > NDCµ(B) 7 7

Outer diameter [8] 3.3.11 IOD IOD(A) > IOD(B) 7 7
Overall Pareto Spread [26] 3.3.10OS OS(A) > OS(B) 7 7
Sigma diversity metric [37] 3.3.17σ σ(A) > σ(B) 7 7
Spacing [25] 3.3.1 SP SP (A) < SP (B) 7 7
U-measure [38] 3.3.9 U U(A) < U(B) 7 7
Uniform assessment metric [39] 3.3.13 ID ID(A) > ID(B) 7 7
Uniform distribution [40] 3.3.5 UD UD(A, σ) < UD(B, σ) 7 7
Uniformity [41] 3.3.6 δ δ(A) < δ(B) 7 7

Convergence Cone-based hypervolume [42] 3.4.4 - χ(A) > χ(B) Not better than C
and Hyperarea difference [26] 3.4.4 HD HD(A) < HD(B) Not better than C
distribution
3.4

Hypervolume indicator (or
S-metric) [6]

3.4.4 HV HV (A, r) > HV (B, r) Not better than C

Logarithmic hypervolume
indicator [46]

3.4.4 logHV logHV (A, r) > logHV (B, r) Not better than C

Table 4: Compatibility and completeness of unary performance indicators.

Category Performance
indicators

Sect. Symbol Relation

C � = ‖

Cardinality
3.1

C-metric/Two sets
Coverage [15]

3.1.5 C
C(A,B) = 1
C(B,A) < 1 C(A,B) = 1 C(A,B) = 1

C(B,A) = 1
C(A,B) > 1
C(B,A) > 1

Convergence
3.2

Additive
ε-indicator [10]

3.2.9 Iε
Iε(A,B) ≤ 0
Iε(B,A) > 0 Iε(A,B) ≤ 0 Iε(A,B) = 0

Iε(B,A) = 0
Iε(A,B) > 0
Iε(B,A) > 0

Distribution
and spread

Diversity
comparison
indicator [29]

3.3.17DCI 7 7 7 7

3.3 Uniformity [33] 3.3.8 - 7 7 7 7

Convergence
and

Dominance
move [43]

3.4.3 DoM
DoM(A,B) = 0
DoM(B,A) > 0

DoM(A,B) = 0
DoM(B,A) ≥ 0

DoM(A,B) = 0
DoM(B,A) = 0

DoM(A,B) > 0
DoM(A,B) > 0

distribution
3.4

D-metric/Dif-
ference coverage of
two sets [44]

3.4.4 - D(A,B) > 0
D(B,A) = 0

D(A,B) ≥ 0
D(B,A) = 0

D(A,B) = 0
D(B,A) = 0

D(A,B) > 0
D(B,A) > 0

G-metric [45] 3.4.2 - - - - -
R-metric [19] 3.4.1 R - - - -

Table 5: Compatibility and completeness of binary indicators (inspired by [10]): a -
means there is no comparison method which is complete and compatible for the given
relation, a 7 that the indicator is not even monotone.
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