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oblem setting

Risk adverse optimization aims to solve the following problem :

min E[f(z,¢)] (1)

IERT?
with :
o f:R" x S8 — S2 a noisy blackbox,

e =: 82 — R a risk measure to handle the uncertainties £ € Sy.
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Problem setting

Risk adverse optimization aims to solve the following problem :

min E[f(z,¢)] (1)

zERM
with :
o f:R" x S8 — S2 a noisy blackbox,
e =: 82 — R a risk measure to handle the uncertainties £ € Sy.

For instance :
o with S1 = Q, S2 = LY(Q, F,P) and Z[-] = E¢[] where (Q, F,P) defined
a probability space, problem (1) is a problem of expectation
minimization, said "risk-free".
e with S =U C R™, S; =C(U) and E[-] = maxecy[], problem (1) is a
robust optimization problem, said "worst-case".
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Expectation minimization : the Robust-MADS algorithm

Expectation minimization
The Robust-MADS algorithm [1] solves the following problem :

min f(z)

where
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Expectation minimization : the Robust-MADS algorithm

Expectation minimization
The Robust-MADS algorithm [1] solves the following problem :

min f(z)

where
2
P u—2x
flo) = [ e (100 a
R" g
Note that if £ is a Gaussian random vector, then :

1

W o f(z+&)exp <—%> ¢
- 721 = (u) exp (_7Hu _;;HQ) du
V2mo? Jrn 4
f(x)
V2ro?

Convergence : z* is the limit of the mesh local optima which becomes
infinitely thin.

Eelf(z+&)] =
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se optimization : the ROBOBOA algorithm

Worst-case optimization

The ROBOBOA algorithm [2] solves the following problem :

s e/
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se optimization : the ROBOBOA algorithm

Worst-case optimization

The ROBOBOA algorithm [2] solves the following problem :

s e/

The idea is to use the inexact method of outer approximation, that means
solve successively the problems :

max f(%,u) et min Jhax, fz,w)
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optimization : the ROBOBOA

Worst-case optimization

The ROBOBOA algorithm [2] solves the following problem :

s e/

The idea is to use the inexact method of outer approximation, that means
solve successively the problems :

max f(Z,u) e min ma T, u
mae (3, ) e min max f(x,u)
Two issues in this approach :
o Use a derivative free algorithm — Trust region method.

o the size of the set &/ — Manifold sampling.
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Worst-case optimization : the ROBOBOA algorithm

Convergence

Under the following conditions :
o f and Vf are locally Lipschitz continuous.
o U is a compact set.

o Since A, z* € R™ and U*, there exist Ky > 0 and kg > 0 independent
from A, z® and U* such that Vu? € U*

(" +5,07) —mb (2" + )] < rpA? Vs € B(0,A)
V" +s,u) — Vmb(a" +5) <wsA Vs € B(0,A).

Then the accumulation point z* generated by the ROBOBOA algorithm is
such that :

0€0 (maxf(x u))
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Risk-adverse optimization : the ROSA algorithm

Adaptive ris

Let f be an intergable function, the quantile of level a at = is defined by :

tr(a) =inf{t : P(f(z,€) <t)>1-a}
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Risk-adverse optimization : the ROSA algorithm

Adaptive risk

Let f be an intergable function, the quantile of level a at = is defined by :

tr(a) =inf{t : P(f(z,€) <t)>1-a}

Then, CVaRa(f(x,£)) is :
CVaRa(f(x,€)) = Be[f(2,6)|f(2,€) > t3(a)]
= inf Ee[f(2,6) + (t = f(2,€))+ + (7" = 1)(f(2,€) = 1)+].
The ROSA algorithm [3] solves the following problem :
min Ee[f(z,€) + (t = f(2,8)1 + (0" = )(f(z,€) = )]

(z,t)EX XR

ha(z,t,€)
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adverse optimization : the ROSA algorithm

Algorithm process

The algorithm is based on Gaussian smoothing [4] and stochastic
approximation. Basically, the update is the following

k k k k 4k pky ok
T i =T —a h‘l(x 7t 75 )E:c
where the step sizesa” is a sequence of positive scalar such that

Zak =00 et Z(ak)2 < oo.
3 k

The sequence of iterates z* is going to track the asymptotic behavior of the
following ordinary differential equation :

#(u) = =VoEe(ha(z(u), t(u), £))

which converges to the set :

Hy = {x: ViE¢(ha(z(u), t(u),§) = 0}
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adverse optimization : the ROSA algorithm

Convergence

Let X CR"™ be a compact set and (2, F,P) a probabilistic space. Under the
assumptions that :

o the uncertain vectors &, et &, are independent.

o The marginal distribution of each variable of £, are known.
o The function f(z,-) is bounded for all z € X.

o The function f(z,-) is F-measurable for all x € R™.

Then, the limit of the iterates z* when k — oo are stationary points of
E¢(ha(z,t, &), with probability one.
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Numerical results

The numerical results are conducted on 20 test problems from the
literature. The key settings are :

o Each problem test is a combination of a noisy objective function and of
an uncertinty set.

o The uncertainty set & ompact in order to compare the three
algorithms.

o The size of the problems is from 2 to 100 for the dimension along to z
and from 2 to 198 for the dimension along to &.

@ The results are presented under data profiles where the convergence
test is for an accuracy of 7 > 0 and an « € (0,1] is :

tro (@) = txe () = (1= 7)(t0 (@) — ts ()
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Figure — Results for test problem such that n < 10 for 7 = 0.1 (above) and
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