

Risk-adverse optimization by Conditional Value-at-Risk and stochastic approximation

Charles Audet, Jean Bigeon, Romain Couderc & Michael Kokkolaras

18/05/2022

Contents

- Problem setting
- Expectation minimization = ne Robust-MADS algorithm
- 3 Worst-case optimization : the ROBOBOA algorithm
- \blacksquare Risk-adverse optimization : the ROSA algorithm
- Numerical results

Risk adverse optimization aims to solve the following problem :

$$\min_{x \in \mathbb{R}^n} \ \Xi \left[f(x, \xi) \right] \tag{1}$$

with:

- $f: \mathbb{R}^n \times \mathcal{S}_1 \to \mathcal{S}_2$ a noisy blackbox,
- $\Xi: \mathcal{S}_2 \to \mathbb{R}$ a risk measure to handle the uncertainties $\xi \in \mathcal{S}_1$.

For instance:

- with $S_1 = \Omega$, $S_2 = \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\Xi[\cdot] = \mathbb{E}_{\xi}[\cdot]$ where $(\Omega, \mathcal{F}, \mathbb{P})$ defined a probability space, problem (1) is a problem of expectation minimization, said "risk-free".
- with $S_1 = \mathcal{U} \subset \mathbb{R}^m$, $S_2 = \mathcal{C}(\mathcal{U})$ and $\Xi[\cdot] = \max_{\xi \in \mathcal{U}} [\cdot]$, problem (1) is a robust optimization problem, said "worst-case".

Risk adverse optimization aims to solve the following problem:

$$\min_{x \in \mathbb{R}^n} \ \Xi \left[f(x, \xi) \right] \tag{1}$$

with:

- $f: \mathbb{R}^n \times \mathcal{S}_1 \to \mathcal{S}_2$ a noisy blackbox,
- $\Xi: \mathcal{S}_2 \to \mathbb{R}$ a risk measure to handle the uncertainties $\xi \in \mathcal{S}_1$.

For instance:

- with $S_1 = \Omega$, $S_2 = \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\Xi[\cdot] = \mathbb{E}_{\xi}[\cdot]$ where $(\Omega, \mathcal{F}, \mathbb{P})$ defined a probability space, problem (1) is a problem of expectation minimization, said "risk-free".
- with $S_1 = \mathcal{U} \subset \mathbb{R}^m$, $S_2 = \mathcal{C}(\mathcal{U})$ and $\Xi[\cdot] = \max_{\xi \in \mathcal{U}} [\cdot]$, problem (1) is a robust optimization problem, said "worst-case".

Expectation minimization

The Robust-MADS algorithm [1] solves the following problem :

$$\min_{x \in \mathbb{R}^n} \tilde{f}(x)$$

where

$$\tilde{f}(x) = \int_{\mathbb{R}^n} f(u) \exp\left(-\frac{||u - x||^2}{\sigma^2}\right) du$$

Note that if ξ is a Gaussian random vector, then:

$$\mathbb{E}_{\xi}[f(x+\xi)] = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}^n} f(x+\xi) \exp\left(-\frac{||\xi||^2}{\sigma^2}\right) d\xi$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}^n} f(u) \exp\left(-\frac{||u-x||^2}{\sigma^2}\right) du$$
$$= \frac{\tilde{f}(x)}{\sqrt{2\pi\sigma^2}}$$

Convergence : x^* is the limit of the mesh local optima which becomes infinitely thin.

Expectation minimization

The Robust-MADS algorithm [1] solves the following problem :

$$\min_{x \in \mathbb{R}^n} \tilde{f}(x)$$

where

$$\tilde{f}(x) = \int_{\mathbb{R}^n} f(u) \exp\left(-\frac{||u - x||^2}{\sigma^2}\right) du$$

Note that if ξ is a Gaussian random vector, then :

$$\mathbb{E}_{\xi}[f(x+\xi)] = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}^n} f(x+\xi) \exp\left(-\frac{||\xi||^2}{\sigma^2}\right) d\xi$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}^n} f(u) \exp\left(-\frac{||u-x||^2}{\sigma^2}\right) du$$
$$= \frac{\tilde{f}(x)}{\sqrt{2\pi\sigma^2}}$$

Convergence : x^* is the limit of the mesh local optima which becomes infinitely thin.

Worst-case optimization

The ROBOBOA algorithm [2] solves the following problem:

$$\min_{x \in \mathbb{R}^n} \max_{u \in \mathcal{U}} f(x, u)$$

The idea is to use the inexact method of outer approximation, that means solve successively the problems:

$$\max_{u \in \mathcal{U}} f(\hat{x}, u) \text{ et } \min_{x \in \mathbb{R}^n} \max_{u \in \hat{\mathcal{U}} \subseteq \mathcal{U}} f(x, u)$$

Two issues in this approach:

- Use a derivative free algorithm \rightarrow Trust region method.
- the size of the set $\hat{\mathcal{U}} \to \text{Manifold sampling}$.

Worst-case optimization

The ROBOBOA algorithm [2] solves the following problem:

$$\min_{x \in \mathbb{R}^n} \max_{u \in \mathcal{U}} f(x, u)$$

The idea is to use the inexact method of outer approximation, that means solve successively the problems :

$$\max_{u \in \mathcal{U}} f(\hat{x}, u) \text{ et } \min_{x \in \mathbb{R}^n} \max_{u \in \hat{\mathcal{U}} \subseteq \mathcal{U}} f(x, u)$$

Two issues in this approach:

- Use a derivative free algorithm \rightarrow Trust region method.
- the size of the set $\hat{\mathcal{U}} \to \text{Manifold sampling}$.

Worst-case optimization

The ROBOBOA algorithm [2] solves the following problem:

$$\min_{x \in \mathbb{R}^n} \max_{u \in \mathcal{U}} f(x, u)$$

The idea is to use the inexact method of outer approximation, that means solve successively the problems :

$$\max_{u \in \mathcal{U}} f(\hat{x}, u) \ \underset{x \in \mathbb{R}^n}{\text{et}} \ \max_{u \in \hat{\mathcal{U}} \subseteq \mathcal{U}} f(x, u)$$

Two issues in this approach:

- Use a derivative free algorithm \rightarrow Trust region method.
- ullet the size of the set $\hat{\mathcal{U}} \to \text{Manifold sampling}$.

Convergence

Under the following conditions:

- f and ∇f are locally Lipschitz continuous.
- \bullet \mathcal{U} is a compact set.
- Since Δ , $x^k \in \mathbb{R}^n$ and \mathcal{U}^k , there exist $\kappa_f > 0$ and $\kappa_g > 0$ independent from Δ , x^k and \mathcal{U}^k such that $\forall u^j \in \mathcal{U}^k$

$$|f(x^k + s, u^j) - m_j^k(x^k + s)| \le \kappa_f \Delta^2 \quad \forall s \in \mathcal{B}(0, \Delta)$$

$$|\nabla f(x^k + s, u^j) - \nabla m_j^k(x^k + s)| \le \kappa_f \Delta \quad \forall s \in \mathcal{B}(0, \Delta).$$

Then the accumulation point x^* generated by the ROBOBOA algorithm is such that :

$$0 \in \partial \left(\max_{u \in \mathcal{U}} f(x^*, u) \right).$$

Adaptive risk

Let f be an intergable function, the quantile of level α at x is defined by :

$$t_x^*(\alpha) = \inf\{t : \mathbb{P}(f(x,\xi) \le t) \ge 1 - \alpha\}$$

Then, $CVaR_{\alpha}(f(x,\xi))$ is:

$$CVaR_{\alpha}(f(x,\xi)) = \mathbb{E}_{\xi}[f(x,\xi)|f(x,\xi) \ge t_{x}^{*}(\alpha)]$$

= $\inf_{t \in \mathbb{R}} \mathbb{E}_{\xi}[f(x,\xi) + (t - f(x,\xi))_{+} + (\alpha^{-1} - 1)(f(x,\xi) - t)_{+}]$

The ROSA algorithm [3] solves the following problem:

$$\min_{(x,t)\in\mathcal{X}\times\mathbb{R}} \mathbb{E}_{\xi} \left[\underbrace{f(x,\xi) + (t - f(x,\xi))_{+} + (\alpha^{-1} - 1)(f(x,\xi) - t)_{+}}_{h_{\alpha}(x,t,\xi)} \right]$$

Adaptive risk

Let f be an intergable function, the quantile of level α at x is defined by :

$$t_x^*(\alpha) = \inf\{t : \mathbb{P}(f(x,\xi) \le t) \ge 1 - \alpha\}$$

Then, $CVaR_{\alpha}(f(x,\xi))$ is:

$$CVaR_{\alpha}(f(x,\xi)) = \mathbb{E}_{\xi}[f(x,\xi)|f(x,\xi) \ge t_x^*(\alpha)]$$

= $\inf_{t \in \mathbb{R}} \mathbb{E}_{\xi}[f(x,\xi) + (t - f(x,\xi))_+ + (\alpha^{-1} - 1)(f(x,\xi) - t)_+].$

The ROSA algorithm [3] solves the following problem:

$$\min_{(x,t)\in\mathcal{X}\times\mathbb{R}} \mathbb{E}_{\xi} \left[\underbrace{f(x,\xi) + (t - f(x,\xi))_{+} + (\alpha^{-1} - 1)(f(x,\xi) - t)_{+}}_{h_{\alpha}(x,t,\xi)} \right]$$

Algorithm process

The algorithm is based on Gaussian smoothing [4] and stochastic approximation. Basically, the update is the following

$$x^{k+1} = x^k - a^k h_\alpha(\mathbf{x}^k, t^k, \xi^k) \xi_x^k$$

where the step $sizesa^k$ is a sequence of positive scalar such that

$$\sum_{k} a^{k} = \infty \text{ et } \sum_{k} (a^{k})^{2} < \infty.$$

The sequence of iterates x^k is going to track the asymptotic behavior of the following ordinary differential equation:

$$\dot{x}(u) = -\nabla_x \mathbb{E}_{\xi}(h_{\alpha}(x(u), t(u), \xi))$$

which converges to the set:

$$H_x = \{x : \nabla_x \mathbb{E}_{\xi}(h_{\alpha}(x(u), t(u), \xi)) = 0\}$$

Convergence

Let $\mathcal{X} \subseteq \mathbb{R}^n$ be a compact set and $(\Omega, \mathcal{F}, \mathbb{P})$ a probabilistic space. Under the assumptions that :

- the uncertain vectors ξ_x et ξ_p are independent.
- The marginal distribution of each variable of ξ_x are known.
- The function $f(x,\cdot)$ is bounded for all $x \in \mathcal{X}$.
- The function $f(x,\cdot)$ is \mathcal{F} -measurable for all $x \in \mathbb{R}^n$.

Then, the limit of the iterates x^k when $k \to \infty$ are stationary points of $\mathbf{E}_{\xi}(h_{\alpha}(x,t,\xi))$, with probability one.

The numerical results are conducted on 20 test problems from the literature. The key settings are :

- Each problem test is a combination of a noisy objective function and of an uncertinty set.
- The uncertainty set a support in order to compare the three algorithms.
- The size of the problems is from 2 to 100 for the dimension along to x and from 2 to 198 for the dimension along to ξ .
- The results are presented under data profiles where the convergence test is for an accuracy of $\tau > 0$ and an $\alpha \in (0,1]$ is :

$$t_{\mathbf{x}^0}^*(\alpha) - t_{\mathbf{x}^e}^*(\alpha) \ge (1 - \tau)(t_{\mathbf{x}^0}^*(\alpha) - t_{\mathbf{x}^*}^*(\alpha))$$

Figure – Results for test problem such that $n \le 10$ for $\tau = 0.1$ (above) and $\tau = 0.01$ (below)

Figure – Results for problem tests such that n>10 for $\tau=0.1$ (above) and $\tau=0.01$ (below)

- C. Audet, A. Ihaddadene, S. Le Digabel, and C. Tribes. Robust optimization of noisy blackbox problems using the Mesh Adaptive Direct Search algorithm. *Optimization Letters*, 12(4):675–689, 2018.
- [2] M. Menickelly and S. M. Wild. Derivative-free robust optimization by outer approximations. *Mathematical Programming*, 179(1):157–193, 2020.
- [3] C. Audet, J. Bigeon, R. Couderc, and M. Kokkolaras. Risk-adverse optimization by conditional value-at-risk and stochastic approximation. Technical report, Groupe d'études et de recherche en analyse des décisions, GERAD, Montréal QC H3T 2A7, Canada, February 2022.
- [4] S Bhatnagar, H Prasad, and L Prashanth. Stochastic approximation algorithms. In *Stochastic Recursive Algorithms for Optimization*, pages 17–28. Springer, 2013.