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Abstract

In this paper, we introduce an event-triggered control method that
relies on contraction analysis for Linear Time-Varying systems (LTV)
and then extend it to a certain class of nonlinear systems. Contraction
analysis considers stability with respect to a nominal trajectory rather
than an equilibrium point. If two neighboring trajectories of a system
are located in a contraction region, they will tend to each other and to
a nominal trajectory. In the event-triggered control algorithm that we
introduce, we suggest to update the control law whenever the system
trajectory is about to leave the contraction region. We show that
such a scheduling of the control law guarantees system stability, and
we show that a minimum inter-event time exists between consecutive
updates of the control law. We also show how to place the system
trajectory in a contraction region and demonstrate that the classical
controllability assumption on LTV systems is enough to ensure the
existence of the required transformation to perform that.

1 Introduction

In most nowadays industrial applications, the information is collected from
or sent to the plant via a network. Data travels through the network from the
CPU to the plant, carrying the control signal, and from the sensors that mea-
sure plant output back to the CPU. In classical control theory, data transfer
is carried out at a fixed rate. The transmission frequency is established by
the Shannon–Nyquist theorem, and is generally set to a high value so as to
remain close to the continuous shape of physical signals. If the CPU is in
charge of a large number of plants, as is often the case, transmitting a large
quantity of data at a very high rate can saturate the communications chan-
nels and induce packet losses with fatal consequences on the controlled plants.
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Event-triggered control offers the possibility to reduce the communica-
tions between the CPU and the plant by sending a new value of the control
law only if necessary. The procedure consists in first establishing a per-
formance condition that the system has to respect, and the data collected
by the sensors is used to compare the response of the system to the de-
sired performance. If the response of the system falls within the range of
acceptable performance, the control law is kept constant. If, on the con-
trary, the response of the systems violates the performance conditions, the
CPU updates the control law and sends it to the plant. Several classes
of systems have been addressed in the literature for both the continuous
and discrete-time cases. For instance, in the continuous-time context, in
[1, 4, 6, 12, 15, 16, 17, 19, 21, 22] the cases of linear and nonlinear systems are
tackled and different approaches are proposed to design static and dynamic
event-triggered mechanisms, while in [23, 24, 26] the case of switched systems
is studied. Recently, in [13, 14] the case of linear time varying systems was
considered, where the authors design event-triggered condition based on the
theory of positive systems. On the other hand, in the discrete-time context,
the case of linear systems is tackled in [2, 3] by using reachability analysis,
while in [5] a discrete-time dynamic event-triggered policy is proposed for
uncertain neural networks subject to time delays and disturbances. In [20] a
novel error-to-actuator based event-triggered framework is proposed, where
the tracking performance of the system can be preserved while reducing the
number of signal transmissions.

The difficulty of event-triggered control resides in finding the appropriate
performance measures, also called event-triggering conditions. By schedul-
ing the control law according to these conditions, the system has to remain
stable, while the communications between the controller and the plant have
to be significantly reduced to see the benefits of this form of control. The
task is even more complicated if the plant dynamics is nonlinear, in which
case it is hard to find a set of performance measures that can be generalized
to all systems as the structures of these systems can be disparate from one
plant to another. Most of the methods found in the literature construct the
event-triggering conditions on either the error between the current state and
the state at the instant of the last event [19], or based on a Lyapunov func-
tion of the system [17, 21, 25], or both [16].

Both types of methods, however, present disadvantages. Methods based
on the error produce a large number of events, as the error has to be kept
small enough. Lyapunov methods help counter this problem but are difficult
to generalize to nonlinear systems, for which, unlike for linear systems, no
generic structure exists for Lyapunov functions. Therefore, these algorithms
are hard to generalize to deal with nonlinear situations, and are challenging
to parameterize.
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In this work, instead of using the classical Lyapunov theory, we propose
to apply a contraction analysis approach [8, 9, 10]. More precisely, unlike
the classical methods where Lyapunov theory is applied to design event-
triggering conditions and to analyze the system stability, in the framework
of contraction theory, Lyapunov functions are used to characterize the con-
traction region of the system in new coordinates of the state vector. Under
the controllability assumption, we first, consider the stabilization of linear
time varying systems. A feature of contraction theory allows to transform
a closed loop Linear Time Varying (LTV) system into a contractive Linear
Time Invariant (LTI) system, for which quadratic Lyapunov functions can
be built to characterize its contraction region. The event-triggered stabil-
ity condition is defined on this form, and then is translated to the original
variables. We can then extend the proposed approach to control a certain
class of affine nonlinear systems, through a local in time linearization. The
main novelties of the proposed approach can be summed up in the following
points:

• We design a novel method based on contraction analysis to derive event-
triggering conditions for LTV systems, and which can be extended to a
certain class of nonlinear systems. Contraction analysis offers a way to
transform an LTV system into an LTI system. Therefore, we provide
a detailed approach to design the event-triggered control with optimal
parameters.

• We demonstrate the design of two types of event-triggering strategies
that can be adapted to several types of systems, or to several stages of
the control process to achieve better performance.

• We provide a detailed proof of the stability of both strategies. We also
build on previous work to demonstrate the existence of a minimum
inter-event time, avoiding thus the Zeno phenomenon.

It is worth pointing out that, in a certain way, the proposed method can
be considered as an extension of the method introduced in [25] to the class of
LTV systems, where the event-triggering conditions are activated to preserve
the contraction property of the system in the new state coordinate and so
to preserve its stability. On the other hand, the methods in [4, 15, 17, 19]
deal with a larger class of dynamic systems but they assume the existence of
Lyapunov functions for the systems. This assumption is not always easy to
satisfy even for LTV systems. Thus, the advantage of the proposed method
consists in providing a systematic approach to co-design the control law and
its event-triggering condition that ensure the stability of the considered class
of systems.

In Section 2 we recall how to design state feedback gains that ensure the
contraction property in the context of linear time varying systems. Section
3 is devoted to the definition of the proposed event-triggering condition. We
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show that it leads to a stable and Zeno phenomenon free event-controlled
system. The specific case of two-dimensional systems is addressed in Sec-
tion 4, where we give the explicit form of all the matrices involved in the
control design step and two case studies are considered. In each case the
continuous and event-triggered situations are compared. We extend the pro-
posed approach to nonlinear systems and illustrate with a two-dimensional
example.

2 Controlling Linear Time Varying systems

via Contraction Analysis

We consider the stabilization of a LTV system

ẋ(t) = A(t)x(t) +B(t)u(t), t > 0 (1)

x(0) = x0 ∈ Rn,

with a state feedback control law defined by

u(t) = K(t)x(t). (2)

We suppose that x(t) ∈ Rn and u(t) ∈ R for all t > 0. Hence A(t) ∈ Rn×n,
B(t) ∈ Rn×1, and K(t) ∈ R1×n.

Notation. We denote by λM and ΛM the smallest and greatest (real) eigen-
values of a symmetric definite positive matrix M .

2.1 Towards a Linear Time Invariant system

If we apply to system (1)-(2) a time-dependent change of coordinate z(t) =
Θ(t)x(t), we can compute the time evolution of z(t):

ż(t) = Θ̇(t)x(t) + Θ(t)ẋ(t)

= Θ̇(t)x(t) + Θ(t)
(
A(t)x(t) +B(t)K(t)x(t)

)
=
(
Θ̇(t) + Θ(t)(A(t) +B(t)K(t))

)
Θ−1(t)z(t).

We want to choose Θ(t) and K(t) such that this system governing the time
evolution of z(t) is time-invariant and stable. More precisely, we would like
to simply have

ż(t) = Fz(t), (3)

where F is a constant Frobenius companion matrix:

F =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

−f1 −f2 −f3 . . . −fn

 .
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This means that Θ(t) should be solution to

FΘ(t) = Θ̇(t) + Θ(t)
(
A(t) +B(t)K(t)

)
. (4)

There are potentially many solutions to Equation (4) and we make below
specific choices.

2.2 Constructing the change of variable

The choice of a Frobenius matrix for F implies that, denoting θj the jth row
in Θ and f = (f1, . . . , fn), we can simply write (4) as

θ̇j(t) + θj(t)(A(t) +B(t)K(t)) = θj+1(t), j = 1, . . . , n− 1,

θ̇n(t) + θn(t)(A(t) +B(t)K(t)) = −fΘ(t).

We moreover want the change of variable Θ(t) not to depend on the control.
To this aim we prescribe

Θ(t)B(t) =


0
...
0

d(t)

 ≡ D(t)

and we therefore have to solve

θ̇j(t) + θj(t)A(t) = θj+1(t), j = 1, . . . , n− 1, (5)

θ̇n(t) + θn(t)A(t) + d(t)K(t) = −fΘ(t). (6)

Then (5) allows to construct by induction all the rows given θ1, and (6)
yields the feedback gain matrix K(t):

K(t) = −fΘ(t) + θ̇n(t) + θn(t)A(t)

d(t)
. (7)

Now we want to find convenient θ1(t) and d(t), and find a condition under
which we can ensure that d(t) ̸= 0. To accomplish this, we multiply equations
(5) and (6) by B(t) and define the Lie derivatives

LjB(t) = A(t)Lj−1B(t)− d

dt

(
Lj−1B(t)

)
.

This yields respectively

θ1(t)L
jB(t) = 0, j = 0, . . . , n− 2,

θ1(t)L
n−1B(t) = d(t).
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The details can be found in Appendix A. The LjB(t) are column vectors,
and we gather then in a matrix B(t) ∈ Rn×n and the previous conditions are
cast as

B(t)T θ1(t)T = D(t). (8)

If detB(t) ̸= 0, this system admits a unique solution θ1(t). Else we
should choose θT1 (t) ∈ Ker(B(t)T ). It is worth pointing out that, in any case,
D(t) and detB(t) vanish simultaneously. A way to ensure this is to choose
d(t) = detB(t). The condition to be able to define the feedback gain matrix
K(t) with this procedure is that detB(t) ̸= 0. This is exactly the classical
condition for the controllability of a LTV system [18].

Besides the computation of Ln−1B(t), and therefore θ1(t), involves deriva-
tives of B up to order n− 1 and A up to order n− 2. Then we reconstruct
the remaining lines in Θ(t) using equation (5) n − 1 times. Hence, in the
general case, Θ(t) can involve derivatives of B up to order 2n− 2 and A up
to order 2n− 3.

Condition 1.

(a) To be able to define the state feedback gain by the analysis above, we
need that detB(t) ̸= 0 for all times t.

(b) For Θ to be continuous with respect to time, we need B to be C2n−2(R+)
and A to be C2n−3(R+).

2.3 Continuous stability issues

Lemma 1. If F is Hurwitz, system (3) is asymptotically stable.

This result is classical in the case of linear systems. We can be more
precise, namely for any symmetric positive definite matrix Q, there exists a
unique symmetric positive definite matrix P , such that F TP + PF = −Q
and a Lyapunov function V (z) = zTPz such that

d

dt
(zT (t)Pz(t)) = −zT (t)Qz(t).

From the eigenvalues of P and Q, we can deduce that

d

dt
(zT (t)Pz(t)) ≤ −λQ

ΛP

zT (t)Pz(t). (9)

We will denote ζ = λQ/ΛP in the sequel. We can transpose (9) into the
original domain defining N(t) = Θ(t)TPΘ(t), and the N(t)-norm defined by
∥x∥2N(t) = xTN(t)x:

d

dt
∥x(t)∥2N(t) ≤ −ζ∥x(t)∥2N(t). (10)
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Remark 1. Although ζ is a constant coefficient, we cannot immediately
deduce global asymptotic stability from Equation (10) because the norm is
changing over time.

Theorem 1. Under Conditions 1 (a) and (b) and if e−ζt/λN(t) → 0 as t →
+∞, the solution to (1) is asymptotically stable.

Proof. If detΘ(t) ̸= 0, then N(t) is a symmetric definite positive matrix. We
can estimate the N(t)-norm from below by

∥x∥2N(t) ≥ λN(t)x
Tx.

Under Condition 1 (a) and (b) on a time interval [0, T ] on which detΘ(t) ̸= 0,
λN(t) is a continuous function and its minimum over the interval is νT > 0.
This together with the inequality (10) leads to the estimate

νTx
Tx ≤ λN(t)x

Tx ≤ ∥x(t)∥2N(t) ≤ ∥x(0)∥2N(0)e
−ζt. (11)

If e−ζt/λN(t) → 0 as t → +∞, we can conclude that the system is asymptot-
ically stable. This is in particular true, if we can bound λN(t) from below on
[0,+∞): λN(t) ≥ νmin > 0.

3 Event-triggered Control

3.1 Definition of triggering conditions

In event-triggered control, the control is updated only when an event occurs.
Between two events the control is kept constant. Let τk, k ∈ N, be the
sequence of successive event times. Equation (1) is replaced by

ẋ(t) = A(t)x(t) +B(t)uk, τk ≤ t < τk+1 (12)

with a piecewise constant state feedback control law uk = K(τk)x(τk).
We consider two event-triggering strategies for which the triggering times

are defined by induction.

3.1.1 Triggering condition based on (10)

Although estimate (10) is not a sharp one, since the control is an approximate
control, we cannot expect to have d

dt
∥x(t)∥2N(t) ≤ −ζ∥x(t)∥2N(t). We therefore

choose a parameter 0 ≤ α < ζ and the condition

d

dt
∥x(t)∥2N(t) ≤ −α∥x(t)∥2N(t) (13)

is less restricting. Capturing times when the condition (13) is violated yield
the triggering times.
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Strategy 1 (Decreasing norm). The control law is updated at times τk such
that

τk+1 = inf

{
t > τk such that

d

dt
∥x(t)∥2N(t) ≥ −α∥x(t)∥2N(t)

}
. (14)

We notice that the choice of α = 0 in Strategy 1 only amounts at imposing
that ∥x(t)∥N(t) is decreasing.

This triggering condition involves a time derivative which is not available
in practical applications. In subsection 3.3, we propose an equivalent expres-
sion to evaluate this event-triggered condition with no need to compute the
time derivative of the norm of the state vector.

3.1.2 Triggering condition based on (11)

Another strategy is the one used in [25]. It is based on estimate (11) and we
choose to update the control when this estimate is violated.

Strategy 2 (Exponential decay). The control law is updated at times τk
such that

τk+1 = inf
{
t > τk such that ∥x(t)∥2N(t) ≥ ∥x(0)∥2N(0)e

−ζt
}
. (15)

Since they only differ in the triggering condition, both strategies share
the same block diagram representation given in Figure 1.

System

Controller

Event-triggering
condition

uk

x(t)
tk

Figure 1: Block diagram of the proposed event-based control.

The structure of the underlying algorithm is therefore also the same. We
provide it here for Strategy 2. Strategy 1 would only consist in replacing the
if condition by d

dt
∥x(t)∥2N(t) ≥ −α∥x(t)∥2N(t).

These event based strategies have been studied in [17] and [25]. Moreover
they are not in competition and can be combined. Indeed in [25] it is shown
that it is better to start with Strategy 2 and then adopt Strategy 1 with
α = 0 once ∥x∥N(t) is below some threshold.
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Algorithm 1 Event-based sampling (Strategy 2)

Require: A, B, x0, K(t), N(t), ζ, T
uk = K(t0)x0

while t < T do
x(t) = Sensor(ẋ(t) = Ax(t) +Buk)
if ∥x(t)∥2N(t) ≥ ∥x(0)∥2N(0)e

−ζt then

uk = K(t)x(t)
end if

end while

Remark 2. Notice that Strategy 2 is a dynamic event-triggered mechanism
that can be implemented in the following way:

ν̇(t) = −ζν(t) with ν(0) = ∥x(0)∥N(0)

where ν(t) = ∥x(0)∥N(0)e
−ζt.

An event-triggering strategy is relevant if it leads to a stable controlled
system, and if a minimum inter-event time is guaranteed, ensuring that there
is no Zeno phenomenon. We discuss these two issues in the following para-
graphs.

3.2 Stability

Theorem 2. Under Strategies 1 or 2 and for the state feedback gain defined
by (7), system (12) is asymptotically stable.

Proof. The proof needs no specific knowledge on the system itself apart from
the fact that it is possible to construct a feedback matrix K(t) and definite
positive matrices N(t) for all times.

• t = τk
When the control is updated, the time derivative of the state vector is
exactly

ẋ(t) =
(
A(t) +B(t)K(t)

)
x(t)

and the computations of Section 2 allow to state that

d

dt
∥x(t)∥2N(t) ≤ −ζ∥x(t)∥2N(t) < −α∥x(t)∥2N(t).

• t ∈ (τk, τk+1) for Strategy 1
Since no event is triggered between times τk and τk+1, this means that
the condition for event-triggering is never fulfilled and

d

dt
∥x(t)∥2N(t) < −α∥x(t)∥2N(t), ∀t ∈ (τk, τk+1).
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For α ≥ 0 this means that the quantity ∥x(t)∥N(t) is decreasing. More
precisely for all t ∈ (τk, τk+1)

∥x(t)∥2N(t) ≤ ∥x(τk)∥2N(τk)
e−α(t−τk).

• t ∈ (τk, τk+1) for Strategy 2
Since no event is triggered between times τk and τk+1, this means that
the condition for event-triggering is never fulfilled and

∥x(t)∥2N(t) ≤ ∥x(0)∥2N(0)e
−ζt.

Under the same conditions as for Theorem 1, ∥x(t)∥ tends to zero as
times goes to infinity.

3.3 Minimum inter-event time

To prove that there exists a minimum inter-event time, we can refer to ex-
isting literature. Indeed for both our strategies the triggering condition, and
therefore the triggering times only depend on the quantity ∥x(t)∥2N(t) which

is constructed to be equal to z(t)TPz(t).
Therefore the triggering conditions for Strategies 1 and 2 can be expressed

entirely in terms of the z(t) variable as

τk+1 = inf

{
t > τk such that

d

dt
z(t)TPz(t)) ≥ −αz(t)TPz(t)

}
,

and

τk+1 = inf
{
t > τk such that z(t)TPz(t) ≥ z(0)TPz(0)e−ζt

}
,

where ż(t) = Fz(t). The construction of the triggering times is therefore the
same as for the very classical case of a LTI system, and has been already
studied in [17] and [25] respectively.

For practical applications, it is impossible to compare with an extremely
low threshold. So, similarly to [25], we fix a time Tlim after which the trig-
gering condition is simply

τk+1 = inf
{
t > τk such that z(t)TPz(t) ≥ δ

}
,

the time Tlim being defined as the first time for which z(t)TPz(t) = δ for a
predefined δ. This is called Strategy 3 in the proof.

According to the literature on the LTI case, we can state the following
theorem, for which we give a proof in Appendix C.

Theorem 3. Suppose Strategies 1 or 2 until time Tlim and then a constant
threshold is used, then for the state feedback gain defined by (7), system (12)
has no Zeno phenomenon.
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Remark 3. It is worth pointing out that, in practice it is recommended
to add constant positive value to the decreasing threshold of Strategy 2 to
avoid possible events related to effect of the system noise and disturbance.
To avoid the effect of disturbances in the numerical evaluation of the time
derivative in Strategy 1, it is possible to replace it by its value, namely

d((z(t)TPz(t))

dt
=− z(t)TQz(t)

+ 2z(t)TPB(t)T
(
K(tk)Θ

−1(tk)z(tk)−K(t)Θ−1(t)z(t)
)
,

which only involves the state and not its derivative.

4 Examples in the two-dimensional case

4.1 Computation of the feedback matrix

The derivation of the state feedback matrix in the two-dimensional case is
detailed in Appendix B.1. Under the assumption d ̸= 0, we obtain for θ1
a vector which does not dependent on A and is orthogonal to B, namely
θ1 =

(
−b2 b1

)
. In the next example, we will always consider that the

control is simply added to the second equation, which corresponds to B(t) ≡(
0 1

)T
. In this very specific case detB(t) = −a12(t), which yields a simple

characterization of the ability to construct a change of variable for all t and
a feedback matrix K(t).

We will also use for F the matrix

F =

(
0 1
−6 −5

)
which eigenvalues are −2 and −3. The optimum value for ζ = λQ/ΛP is
obtained when Q is proportional to the identity matrix I. In this case, for
Q = qI, the solution to the Lyapunov equation F TP + PF = −Q is given
by

P =
q

2f1f2

(
f1(f1 + 1) + f 2

2 f2
f2 f1 + 1

)
.

Here we choose Q = 3I and

P =
1

10

(
67 5
5 7

)
.

Since det(P ) = 4.44, we will simply have detN(t) = 4.44 det2Θ(t). We also
compute ζ ≃ 0.89.

For each example, we can compare numerical simulations of the contin-
uous control and event-triggered controls. For continuous control, a suffi-
ciently fine time-step is considered to mimic continuity. Since the equations
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we consider are not very stiff, we use a simple explicit Euler scheme for the
computations.

In event-triggered control, there are many ways to parametrize the al-
gorithm. The choice of the time-step would be important for applications.
It is the frequency at which we consider updating the control. Since we
want a few updates, having a relatively large time-step is an option, but this
means missing the exact event times at this scale also. Since we use an Euler
scheme, the control is computed using the previous state, and the system can
violate the constraints for the duration of a time-step, which can be harmful
to the operation of the system, but can also be an advantage as we will see
in examples. The two event-triggering strategies are compared, and in the
first strategy three different values of α are used, namely α = 0, α = ζ/2,
and α = ζ.

Remark 4. The matrix F we have chosen here has the particularity to
have real negative eigenvalues. So an alternate construction of the Lyapunov
function could have been to set V (z) = zTCTCz, where C is a change-of-basis
matrix. This is detailed in Appendix B.2. In our example it yields better
results since the decreasing rate ζ is bigger. But since it is not possible to
extend this to more general matrices, we have chosen the general approach
of the Lyapunov equation in this paper.

4.2 Numerical implementation

To discretize the equations we use a simple Euler scheme. More elaborate,
and in particular implicit methods would be a bit tricky to extend to the
event-based context, since we would have to predict future events. Besides
addressing stiff problems is not the purpose of the present paper.

Given a time step δt, we compute the state and control at times ti = iδt.
In the continuous control case we compute

xi+1 = xi + δt(A(ti) +B(ti)K(ti))xi.

In the event-based case, the event triggering condition is computed at time
ti, for Strategy 1

∥xi∥2N(ti)
− ∥xi−1∥2N(ti−1)

δt
≥ −α∥xi∥2N(ti)

,

and for Strategy 2
∥xi∥2N(ti)

≥ ∥x0∥2N(0)e
−ζti .

If a new event is triggered, the control is updated as ū = K(ti)xi and xi+1 is
computed as

xi+1 = xi + δt (A(ti)xi +B(ti)ū) .

There are two parameters that can be tuned to perform the numerical
simulations: the α if Strategy 1 is chosen which is in the range [0, ζ], and the
time step δt.
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4.3 A first example — polynomial matrix

As a first example, we study{
ẋ1(t) = tx1(t) + x2(t),

ẋ2(t) = t2x2(t) + u(t),

where the associated matrix A(t) is polynomial in the time variable and for
which d(t) = −1 ̸= 0 for all time, and we can derive

Θ(t) =

(
−1 0
−t −1

)
, K(t) = −

(
7 + 5t+ t2 5 + t+ t2

)
.

The norm matrix in the original domain is

N(t) =
1

10

(
67 + 10t+ 7t2 5 + 7t

5 + 7t 7

)
.

On Figure 2, we compare a continuous control and event-triggered control
for α = ζ on this test-case for a fine time-step δt = 10−4. For each type of
control we plot the time evolution of x1 and x2 (top left) and observe that
both strategies do indeed succeed in stabilizing the trajectory. We also plot
the control u (top right), the usual Euclidian norm of x (bottom left) and its
N(t)-norm (bottom right).

The goal in implementing an event-triggered control is to have less up-
dates of the control. Is it really the case? To discuss this, we plot on Figure
3 the number of updates with respect to the time step for the two event-
triggering strategies and various values of α. We observe that for Strategy
1 the number of updates stabilize to some limit value as δt becomes small,
which is the theoretical number of updates needed (on the considered time
interval [0, 10]) for the continuous equation. This means that for these val-
ues of the time-step the numerical discretization has more or less no impact
on the control updates. Strategy 2 based on the exponential decay leads to
much larger values of the number of updates.
For large time steps, we see that the event-triggered method yields a low
number of updates which is very close for all values of α except when α is
too close to ζ. This is explained by the fact that event are not captured
precisely enough for large time steps.

Now we may want to know whether the updates occur regularly over time.
Figure 4 gathers two representations of the control updates: the times of the
updates are given as gray spikes, and the cumulative value of the number
of updates is drawn in blue, which makes it easier to show the density of
updates when the spike pack is dense. In this first test case the updates do
occur regularly over time since there is no plateau in the cumulative values
of the updates displayed on Figure 4. However, when the time-step becomes
small, the number of updates is more than linear (quadratic on this example),
which may alter the performances of the algorithm.
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Figure 2: Polynomial matrix case: Comparison of continuous (top) and
event-triggered (α = ζ, bottom) controls for x0 = (1 .5)T and for δt = 10−4.

4.4 A degenerate example — rotating matrix case

Let us now consider{
ẋ1(t) = cos t x1(t) + sin t x2(t),

ẋ2(t) = − sin t x1(t) + cos t x2(t) + u(t),

Here A(t) is a rotation matrix, which certainly will involve regular updates
of the control, and the case is degenerate since d(t) = − sin t which vanishes
for t = kπ, k ∈ N. However we can compute

Θ(t) =

(
−1 0

− cos t − sin t

)
.

and for t ̸= kπ,

K(t) =

(
−f1 + f2 cos t− sin t+ cos2 t− sin2 t

sin t
−f2 sin t+ cos t+ 2 cos t sin t

sin t

)
,
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Figure 3: Polynomial matrix case: Number of updates with respect to the
time-step, total value (left), percentage of the discretization times (right).
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Figure 4: Polynomial matrix case: Times (gray) and cumulative values of the
number (blue) of updates for large (δt = 10−1, left) and small (δt = 10−4,
right) time-steps.

N(t) =

(
67 + 10 cos t+ 7 cos2 t (5 + 7 cos t) sin t

(5 + 7 cos t) sin t 7 sin2 t

)
and detN(t) = 4.44 sin2 t which is not bounded from below, even on finite-
length time intervals. This example therefore does not fulfill the conditions
for the construction of the contraction method, since we violate Condition
1(a). We can however perform some numerical simulations, taking a time-
step which avoids carefully times t = kπ (and a special treatment of t = 0).
If the time step is relatively fine, the method leads to very large values on
the controls as well as strong deviations in the trajectory, as displayed on
Figure 5 for δt = 10−4. Of course this behavior is not wanted, all the more
as this would lead to a saturation of actuators in a practical implementation.

The goal of event-triggered control being to sample less often, what does
happen if a relatively large time step is taken? This is illustrated on Figure
6 for δt = 10−2. The deviation of the system is smaller (∥x∥ ≃ 60 vs. ≃ 1000
for δt = 10−4) and the control still takes large values near the two first
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Figure 5: Rotating matrix case: Comparison of continuous (top) and event-
triggered controls for α = ζ (bottom) and δt = 10−4.

singularities, but they are much smaller than for a smaller time step.
The event-triggering strategies can also be compared for this example

and lead to a different conclusion from the previous example as can be seen
on Figure 7. Indeed the number of updates does not seem to converge to
a finite value as δt goes to zero. It seems on this specific example to be of
order δt−1/2 for all admissible values of ζ.

If we compare on Figure 8 the update times for Strategy 1 and α = ζ and
for small and large values of the time step, we first see that for a large time
step, the updates occur relatively regularly in time. This can be explained
by the fact that the matrix A(t) is a rotation matrix, and the change of
variable Θ(t) to a fixed basis has to be updated regularly. When the time
step is smaller, besides these regular updates, there are successive updates
in the vicinity of the degeneracies, which degrades the performances of the
event-triggered approach in terms of reduction of the number of updates.
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Figure 6: Rotating matrix case: Event-triggered controls for α = ζ and and
a large time-step δt = 10−2.
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Figure 7: Rotating matrix case: Number of updates with respect to the
time-step.

5 Extension to nonlinear systems

We now consider the stabilization of control affine nonlinear systems

ẋ(t) = F (t,x(t)) +B(t)u(t), t > 0 (16)

x(0) = x0 ∈ Rn,

with a state feedback control law u(t) = K(t,x(t))x(t), and where F : R×Rn

is supposed to be differentiable with respect to its second variable. Locally
in time, the system can be linearized as

ẏ(t) = ∇xF (t,x(t))y(t) +B(t)u(t),

and denoting A(t) ≡ ∇xF (t,x(t)) ∈ Mn,n(R), this casts the system at time
t in the same form as (1). From matrices A(t) and B(t), we can derive the
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Figure 8: Rotating matrix case: Times (gray) and cumulative values of the
number (blue) of updates for large (δt = 10−1, left) and small (δt = 10−4,
right) time-steps.

feedback matrix as in Section 2, and the construction of matrices Θ(t) and
K(t) follow the same scheme.

5.1 Second order scalar equations

A particular case of this is the case of second order equations of the type

ẍ(t) = g(x(t), ẋ(t)) + u.

Writing this as a first order system for the variables (x1, x2) = (x, ẋ), we have

ẋ1(t) = x2,

ẋ2(t) = g(x1(t), x2(t)) + u.

This system falls in the B ≡
(
0 1

)T
-case which is developed in Appendix

B.1, and we have a11 = 0, a12 = 1, a21 = ∂x1g(x1(t), x2(t)), and a22 =
∂x2g(x1(t), x2(t)). Then we simply have Θ(t) = −I for all time, and detB =
−1. This makes the application of the contraction method to such systems
not very interesting. Note that we have

K = −
(
f1 + ∂x1g(x1(t), x2(t)) f2 + ∂x2g(x1(t), x2(t))

)
.

For the numerical example, we use a test case from [1, 22], namely a robotic
manipulator system, governed by the pendulum equation

Jq̈(t) +Bq̇ +MgL sin q(t) = u(t),

with MgL = 10, J = 1 and B = 2 and initial data q(0) = 20, and q̇(0) = 0.
This correspond to g(x1, x2) = −MgL

J
sinx1 − B

J
x2 = −10 sinx1 − 2x2.The

state feedback matrix reads

K(t) = −
(
6− 10 cosx2(t) 3

)
.
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Figure 9: Pendulum case: Comparison of continuous and event-triggered
controls for α = ζ and δt = 10−4.

The norm matrix in the original domain is N(t) = P .
On Figure 9, we compare as previouly a continuous control and event-

triggered control for α = ζ on this test-case for a fine time-step δt = 10−4.
This system is not at all singular and behaves smoothly, much smoother

than the two previous example in fact since the coefficients remain bounded
and there is no singularity to avoid. Therefore as Figure 10 shows, there is no
advantage in taking large simulation time steps, and the number of updates is
smaller for a small time step than for a large one. In this context, talking large
time step means determining too coarsely the event times. With a smaller
time step the events are captured on time, and the most appropriated control
is applied sooner.

The number of updates is quite similar to that of [1], as well as the time
distribution of events. It is smaller than in [22] but the parameterization of
the methods follows quite different principles and a fair comparison difficult.
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Figure 10: Pendulum case: Times (gray) and cumulative values of the num-
ber (blue) of updates for large (δt = 10−1, left) and small (δt = 10−4, right)
time-steps.
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Figure 11: Pendulum case: Number of updates with respect to the time-step.

5.2 Non-trivial similarity transformation

We can also treat nonlinear systems for which the change of variable is non-
trivial. Indeed we now consider the following two-state, control affine non-
linear system, with one input and one output [7]{

ẋ1(t) = x2(t) + sin x1(t),

ẋ2(t) = x2
1(t) + u(t),

with initial data x0 =
(
1 .5

)T
. The linearization at time t of this system

leads to

A(t) =

(
cosx1(t) 1
2x1(t) 0

)
, B(t) =

(
0
1

)
,

and to the change of variable

B(t) =
(
0 1
1 0

)
, Θ(t) =

(
−1 0

− cosx1(t) −1

)
20



for which d(t) = −1 ̸= 0 for all t ∈ R. We also compute

K(t) =
(
−(f1 + f2 cosx1(t)− sinx1(t) + cos2 x1(t) + 2x1(t)) −(f2 + cosx1(t))

)
,

N(t) =

(
67 + 10 cosx1(t) + 7 cos2 x1(t) 5 + 7 cos x1(t)

5 + 7 cosx1(t) 7

)
,

and detN(t) = 4.44.

0 5 10 15

−1

0

1

x1
x2

0 5 10 15

−10

−5

0

u

0 5 10 15
time

0

2

4
xTx

0 5 10 15
time

0

2

4 xTNx

0.0 2.5 5.0 7.5 10.0

−2

−1

0

1

x1
x2

0.0 2.5 5.0 7.5 10.0

−10

0

u

0.0 2.5 5.0 7.5 10.0
time

0

2

4

6 xTx

0.0 2.5 5.0 7.5 10.0
time

0

2

4 xTNx

Figure 12: Control affine nonlinear system with constant B: Comparison of
continuous and event-triggered controls (δt = 10−4).

The first results on the comparison of the continuous and event-triggered
controls are displayed on Figure 12. They yield similar results to the first
example (see Figure 13) for values of α far from its maximum value: Strategy
1 still proves to be the best one, and the number of updates converges to some
limit as δt goes to zero, which is the number of updates which would be
needed if a continuous implementation of the event-triggered strategy were
possible.
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Figure 13: Control affine nonlinear system with constant B: Number of
updates with respect to the time-step .

The analysis of the update time stamps (see Figure 14) shows that the
control is updated regularly in time for a large time steps. For a small time
step, the system undergoes a large number of control updates at the beginning
of the time evolution. Then the control is satisfactory for the sequel of the
time evolution (this is very different from the previous rotating case) and has
not to be updated anymore.
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Figure 14: Control affine nonlinear system with constant B: Times (gray)
and cumulative values of the number (blue) of updates for large (δt = 10−1,
left) and small (δt = 10−4, right) time-steps.

6 Conclusion

In this paper, we have introduced a step-by-step event-triggered control algo-
rithms that can be applied to LTV systems and a class of nonlinear systems,
without going through the trouble of finding a Lyapunov function. The pro-
posed method consists in a detailed procedure that, unlike methods that
rely on Lyapunov theory, contains information on how to choose the design
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parameters and tune them. In the meanwhile, this method leaves several
degrees of freedom to the user, like the choice of the state matrix of the
transformed system.

This work opens the door for many challenging research problems. For
instance, it is of great interest to be able to extend this approach to deal with
the case of nonlinear time-varying systems. The robustness of the proposed
methods to time delays should be evaluated in future works to ensure stability
of the systems even if there is a latency in the reception of the updated control
value. On the other hand, it is important to extend this method to deal
with the tracking problem. In fact, by considering the virtual displacement
between two neighboring trajectories inside a contraction region, it is possible
to design event-based set-point tracking controllers.
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A Introducing Lie Derivatives

The Lie derivatives introduced in Section 2 are defined in [10] and [11]. They
are used because of the following computation. Recall equations (5) multi-
plied by B(t):

(θ̇j(t) + θj(t)A(t))B(t) = θj+1(t)B(t).
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In the n − 2 first equations we have θj+1(t)B(t) = 0, and in the last one
θn(t)B(t) = d(t). We compute step by step

0 = θ1(t)B(t) = θ1L
0B(t) where L0 = I,

0 = θ2(t)B(t) = (θ̇1(t) + θ1(t)A(t))B(t),

= (θ̇1(t) + θ1(t)A(t))B(t)− d

dt
(θ1(t)B(t))

= θ1(t)A(t)B(t)− θ1(t)
d

dt
B(t) which allows to eliminate θ̇1

= θ1(t)L
1B(t) where L1B(t) = AL0B(t)− d

dt
(L0B(t)),

0 = θ3(t)B(t) = (θ̇2(t) + θ2(t)A(t))B(t),

= (θ̇2(t) + θ2(t)A(t))B(t)− d

dt
(θ2(t)B(t))

= θ2(t)A(t)B(t)− θ2(t)
d

dt
B(t)

= θ2(t)L
1B(t)

= (θ̇1(t) + θ1(t)A(t))L
1B(t)− d

dt
(θ1(t)L

1B(t))

= θ1(t)L
2B(t) where L2B(t) = A(t)L1B(t)− d

dt
(L1B(t)).

Iterating this process, and setting

LjB(t) = A(t)Lj−1B(t)− d

dt
(Lj−1B(t)),

we have

θ1(t)L
jB(t) = 0, j = 0, . . . , n− 2,

θ1(t)L
n−1B(t) = d(t).

B Explicit derivation in the 2-D case

B.1 Construction of the feedback matrix K

In the two-dimensional case, we denote (dropping the time dependence)

A =

(
a11 a12
a21 a22

)
, B =

(
b1
b2

)
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Under the assumption d = det(B) ̸= 0, we can compute

BT =

(
b1 b2

(a11b1 + a12b2)− ḃ1 (a21b1 + a22b2)− ḃ2

)
,

B(t)T−1
=

1

d

(
(a21b1 + a22b2)− ḃ2 −b2
−(a11b1 + a12b2) + ḃ1 b1

)
,

B(t)T−1
D(t)T =

(
−b2
b1

)
.

Hence we obtain for θ1 =
(
−b2 b1

)
. Since θ2 = θ̇1 + θ1A, we deduce

Θ =

(
−b2 b1

a21b1 − a11b2 − ḃ2 a22b1 − a12b2 + ḃ1

)
.

Finally dK = −f1θ1 − f2θ2 − θ̇2 − θ2A. In this specific case we need a little
less regularity than in the general case. Indeed, θ1 involves only B and not
its first derivative, and therefore Θ only involves B, its first derivative, and
A.

In all our two-dimensional examples, we will always have B ≡
(
0 1

)T
.

This simplifies the above formulae, and

Θ = −
(

1 0
a11 a12

)
, B =

(
0 a12
1 a22

)
.

Thus detB = −a12, which yields a simple characterization of the ability to
construct a change of variable for all t. The feedback matrix is then computed
as

K = − 1

a12

(
f1 + a11f2 + ȧ11 + a211 + a12a21 a12f2 + ȧ12 + a11a12 + a12a22

)
.

B.2 Change-of-basis approach

Let C, the matrix which columns are the eigenvectors of F associated to
λi < 0, i = 1, . . . , n, then C−1FC = diag λi. Setting y = C−1z, we have

ẏ = C−1FCy

and
d

dt
(y(t)Ty(t)) = y(t)T (2 diag λi)y(t) ≤ −2λ−Fy(t)

Ty(t).

Let us set
M(t) = Θ(t)T (C−1)TC−1Θ(t),

then we have
y(t)Ty(t) = x(t)TM(t)x(t),
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and defining the norm ∥x∥M(t) =
√

xTM(t)x,

d

dt
∥x(t)∥M(t) ≤ −λ−F∥x(t)∥M(t).

In the two-dimensional case, we construct the transfer matrix

C =

(
1 1
λ− λ+

)
where λ± = −1

2
f2 ± 1

2

√
f 2
2 − 4f1, and

C−1 =
1

λ+ − λ−

(
λ+ −1
−λ− 1

)
and

(C−1)TC−1 =
1

(λ+ − λ−)2

(
λ2
− + λ2

+ −(λ+ + λ−)
−(λ+ + λ−) 2

)
.

For the specific choice of matrix F

F =

(
0 1
−6 −5

)
,

we have λ+ = −2 and λ− = −3, and

(C−1)TC−1 =

(
13 5
5 2

)
,

We have seen that the value of ζ associated to the construction of the Lya-
punov matrix is ζ ≃ 0.89. Here the decreasing rate is λ−F = −λ+ = 2 and
is therefore much bigger.

C Proof of the existence of a minimal inter-

event time

Minimum value for ∥z(t)∥ for t ≤ Tlim

For all time, and specifically at time tk, λP∥z(tk)∥2 ≤ z(tk)
TPz(tk) ≤

ΛP∥z(tk)∥2, and by definition of δ, δ ≤ z(tk)
TPz(tk), and hence

∥z(tk)∥2 ≥ δ/ΛP .

At time t,

ż(t) = Fz(t)−B(t)
(
K(tk)Θ

−1(tk)z(tk)−K(t)Θ−1(t)z(t)
)
,

In absence of degeneracy the product K(t)Θ−1(t) and z(t) are both Lipschitz
for t ∈ [0, Tlim) so that ∥K(tk)Θ

−1(tk) − K(t)Θ−1(t)∥ ≤ LK(t − tk) and
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∥z(tk) − z(t)∥ ≤ Lz(t − tk). Besides the integral form of the differential
equation on z reads

z(t) = eFtz(tk)−
∫ t

tk

eF (t−s)B(s)
(
K(tk)Θ

−1(tk)z(tk)−K(s)Θ−1(s)z(s)
)
ds,

Since F is Hurwitz, we can bound ∥z(t)∥ for t ∈ [tk, tk + τ0) (τ0 to be deter-
mined) from below by

∥z(t)∥ ≥ ∥z(tk)∥ −
(t− tk)

2

2

(
LK sup

[tk,tk+τ0)

∥z(s)∥+ Lz max
[tk,tk+τ0)

|||K(s)Θ−1(s)|||

)
,

sup
[tk,tk+τ0)

∥z(s)∥ ≥
√

δ

ΛP

− (t− tk)
2

2

(
LK sup

[tk,tk+τ0)

∥z(s)∥+ Lz max
[0,Tlim)

|||K(s)Θ−1(s)|||

)
,

where ||| · ||| is the operator norm associated to ∥ ·∥. For t− tk < τ0 sufficiently
small (not depending on k) , we can have (t − tk)

2LK/2 < 1 and then we
first have

sup
[tk,tk+τ0)

∥z(s)∥ ≥ 1

2

√
δ

ΛP

− (t− tk)
2

4
Lz max

[0,Tlim)
|||K(s)Θ−1(s)|||.

Up to a possible further reduction of τ0,

sup
[tk,tk+τ0)

∥z(s)∥ ≥ 1

4

√
δ

ΛP

≡ ε.

We also have a maximum bound for ∥z(t)∥2 that stems from z(t)TPz(t) ≤
z(0)TPz(0), namely

∥z(t)∥2 ≤ z(0)TPz(0)/λP ≡ Z2.

Notice that this result is independent of the choice of the triggering con-
dition. The sequel depends on the strategy.

Minimum inter-event time for Strategy 1
We have

d((z(t)TPz(t))

dt
= −z(t)TQz(t) +

(
K(tk)Θ

−1(tk)z(tk)−K(s)Θ−1(s)z(s)
)T

BTPz(t)

+ z(t)TPB(t)T
(
K(tk)Θ

−1(tk)z(tk)−K(t)Θ−1(t)z(t)
)
.

We therefore have

d((z(t)TPz(t))

dt
≤ −λQ∥z(t)∥2+2

∥∥z(t)TPB(t)T
(
K(tk)Θ

−1(tk)z(tk)−K(t)Θ−1(t)z(t)
)∥∥ .
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To show that for a certain time
d((z(t)TPz(t))

dt
remains lower than−αzT (t)Pz(t)

which is larger or equal to −αΛP∥z(t)∥2 ≥ −αΛPZ
2, it is sufficient to show

that

2
∥∥z(t)TPB(t)T

(
K(tk)Θ

−1(tk)z(tk)−K(t)Θ−1(t)z(t)
)∥∥ ≤ δ(ζ − α).

This is valid if

2
∥∥K(tk)Θ

−1(tk)z(tk)−K(t)Θ−1(t)z(t)
∥∥ ≤ δ(ζ − α)

max
t∈[0,Tlim)

|||PB(t)T ||| Z
.

Now∥∥K(tk)Θ
−1(tk)z(tk)−K(t)Θ−1(t)z(t)

∥∥ ≤ sup
[0,Tlim)

|||K(s)Θ−1(s)|||Lz(t−tk)+LK(t−tk)∥z(t)∥.

Taking a sufficiently small t− tk < τ1 < τ0 (independent on k) allows to have
both

sup
[0,Tlim)

|||K(s)Θ−1(s)|||Lz(t− tk) ≤
1

4

δ(ζ − α)

max
t∈[0,Tlim)

|||PB(t)T ||| Z
,

LK(t− tk)∥z(t)∥ ≤ LK(t− tk)Z ≤ 1

4

δ(ζ − α)

max
t∈[0,Tlim)

|||PB(t)T ||| Z
.

This value of τ1 bounds the inter-event time by below for Strategy 1.

Minimum inter-event time for Strategy 2
We reproduce here the proof of [25] in our context. Between times tk

and tk+1 we know that d(zT (t)Pz(t))/dt necessarily vanishes, therefore this
quantity remains negative for a certain time.
For t ∈ [tk, tk + τ0), ∥z(t)∥ ≥ ε, and therefore −z(t)TQz(t) ≤ −λQε

2 ≡ −β.
Similarly to the proof for Strategy 1, we now want to prove that for t − tk
sufficiently small

2
∥∥z(t)TPB(t)T

(
K(tk)Θ

−1(tk)z(tk)−K(t)Θ−1(t)z(t)
)∥∥ ≤ β

2
.

This once more stems from the Lipschitz property, since for t− tk < τ2 < τ0
sufficiently small, we can both have

sup
[0,Tlim)

|||K(s)Θ−1(s)|||Lz(t− tk) ≤
β

8 max
t∈[0,Tlim)

|||PB(t)T ||| Z
,

LK(t− tk)∥z(t)∥ ≤ LK(t− tk)Z ≤ β

8 max
t∈[0,Tlim)

|||PB(t)T ||| Z
.

This value of τ2 bounds the inter-event time by below for Strategy 2.
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Minimum inter-event time for Strategy 3
For Strategy 3, at times tk we exactly have δ = z(tk)

TPz(tk) so the result
for the minimum value of ∥z(t)∥ based on the fact that δ ≤ z(tk)

TPz(tk) is
still valid. As for Strategy 2, since we also have δ = z(tk+1)

TPz(tk+1), there

is a time for which
d((z(t)TPz(t))

dt
= 0, so we will also seek a minimum time

on which this time derivative remains negative.
We once more have −z(t)TQz(t) ≤ −λQε

2 ≡ −β, but now z(t)TPz(t) ≤
δ, so that ∥z(t)∥2 ≤ δ/λP . For t− tk < τ3 < τ0 sufficiently small, and using
a Lipschitz constant L′

K for t 7→ K(t)Θ−1(t) for t ≥ Tlim, we can both have

sup
[Tlim,∞)

|||K(s)Θ−1(s)|||Lz(t− tk) ≤
β

8 max
t∈[0,Tlim)

|||PB(t)T |||
√
δ/λP

,

L′
K(t− tk)∥z(t)∥ ≤ L′

K(t− tk)
√

δ/λP ≤ β

8 max
t∈[0,Tlim)

|||PB(t)T |||
√
δ/λP

.

which allows to bound

2
∥∥z(t)TPB(t)T

(
K(tk)Θ

−1(tk)z(tk)−K(t)Θ−1(t)z(t)
)∥∥ ≤ β

2
.

This value of τ3 bounds the inter-event time by below for Strategy 3.
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