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HIGHER HIDA THEORY FOR HILBERT MODULAR VARIETIES IN THE TOTALLY
SPLIT CASE

GIADA GROSSI

ABSTRACT. We study p-adic properties of the coherent cohomology of some automorphic sheaves on the
Hilbert modular variety X for a totally real field F' in the case where the prime p is totally split in F. More
precisely, we develop higher Hida theory & la Pilloni, constructing, for 0 < ¢ < [F' : Q], some modules M4
which p-adically interpolate the ordinary part of the cohomology groups H?(X,w"®), varying the weight x of
the automorphic sheaf.
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1. INTRODUCTION

The theory of p-adic families of ordinary modular forms was introduced by Hida in the ’80s and has
been proved to be fruitful in many aspects of number theory, such as the construction of p-adic L-functions
or, together with the corresponding theory of Galois deformations, modularity-type results. This theory,
later generalised to more general automorphic forms, provides a p-adic variation of the degree zero coherent
cohomology groups of suitable Shimura varieties: the idea is to use the additional structure of the geometry
of the ordinary locus of the Shimura variety to p-adically interpolate the automorphic sheaves (whose global
sections are automorphic forms). By applying a projector with respect to certain Hecke operators at p, one
is then able to determine when sections over the ordinary locus come from a classical automorphic form (see
[Hid04, Hid02, Pil12] and more recently [Zha21]). The same circle of ideas was extended in the 90s by Coleman
[Col96, Col97], who developed, working on neighbourhoods of the ordinary locus, the finite slope theory.

The recent pioneering works [Pil20, BCGP18, BP20b, BP20a] have developed analogous theories for higher
degree coherent cohomology. In [Pil20], Pilloni introduced higher Hida and Coleman theory for automorphic
forms for GSp, /Q and these ideas were later generalised in [BCGP18] for Resy/q GSpy, where F is a totally
real field in which the prime p totally splits, and used to prove potential modularity of abelian surfaces over
F'. Boxer and Pilloni conjectured the existence of Hida and Coleman theories in all cohomological degrees for
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all Shimura varieties, confirming this prediction in the simplest case of GLg in the recent work [BP20b] and
started developing Coleman theory more generally in [BP20a]. In [Pil20] and [BCGP18], the integral control
theorem for ordinary families is obtained assuming the weights are big enough. The control theorem for more
general weights is obtained at the cost of inverting p and losing control of torsion, using Coleman theory:
the authors of op. cit. construct over (Q, an overconvergent version of the considered complex and develop a
theory of finite slope cohomological families, which they can prove to be classical cohomology classes in the
small slope situation.

In this paper, we study the theory of p-adic ordinary families of Hilbert modular forms, which are automor-
phic forms for the group Resp,qg GL2, where F' is a totally real field and we assume the prime p to be totally
split in F'. We develop higher Hida theory in this context and, using the ideas of [BP20b], we are able to prove
integral control theorems without appealing to an overconvergent theory.

Higher Hida (and Coleman) theory, as developed in [Pil20], has been applied in [LPSZ19] for the construction
of p-adic L-functions and was one of the main ingredients in the proof in [L.Z20] of new cases of the Bloch-Kato
conjecture in rank 0 and one divisibility in the Iwasawa main conjecture for the spin motive of automorphic
forms for GSp,. We expect the work carried out in this paper to have similar applications. In a forthcoming
paper, the author will use the results on higher Hida theory to construct p-adic L-functions for the Asai motive
of Hilbert modular forms (and the twisted triple product associated to a Hilbert modular form and an elliptic
modular form), following the strategy of [LPSZ19]. We hope the integral classicality result will simplify the
techniques of op. cit., where the authors had to rely on the overconvergent results. In order to obtain the
application for the Bloch—-Kato conjecture (for F' a real quadratic field), we plan to prove an explicit reciprocity
law, linking such p-adic L-functions with the Euler system classes studied in [LLZ18, Gro20].

1.1. Main results. We now state our main result more precisely. Let F' be a totally real field of degree n
and X be a smooth toroidal compactification of the Hilbert modular variety for F' of level coprime to p. Let
L denote the Galois closure of F' containing the square roots of the totally positive units of F' and let Of, be
its ring of integers. Fix g | p a prime of L and denote by R the ring of integers of the completion of L at .
Assume that p is odd and splits completely in F'. The set X, of embeddings of F' in R is then identified with
the set of p-adic embeddings F — Q,, and therefore with {p C Op : p | p}. Let

A = R[[(1+pZy)" ]

Any k € Z",w € Z gives an algebra homomorphism (k,w) : A — R, induced by the character on (1+ pZ,)"*!
given by ((2:)i=1....m,y) — y* - [[2¥". The main result of the paper is the following.

Theorem (Classicality, Theorem 4.2.13). For any J C X, there exists a perfect complex of A-modules MY
w—k

satisfying the following property: for any k € Z",w € Z such that ky, —5* =0 mod p — 1 for every p | p,
ky, =w mod 2 for everyp | p and ky, < —1 forp e J, k, >3 forp & J, we have an isomorphism

M5 @7 (kn) R~ e(Ty) RF(X7Q(&“’))’

where wEY) s the automorphic sheaf on X of weight (k,w) and e(Ty) is the ordinary projector with respect
to the Hecke operator T,,. Moreover, for any J C X, there exists a perfect complex of A-modules N, which,
for the same range of weights as above, satisfies

N3 @4, (k) R = e(T) RT(X, w®*)(-D)),

where D is the cuspidal divisor of X.
Moreover MY is concentrated in degrees [#J,n| and N is concentrated in degrees [0, #J].

In other words, M (and N$) p-adically interpolate the ordinary part of coherent (cuspidal) cohomology
of X in a range of weights depending on J. In particular, if J = 0, H 0(N@‘ ) interpolates ordinary classical
holomorphic Hilbert cuspforms of weight (k,w) for k, > 3 and = 0 mod (p — 1) for every p, i.e. it recovers
classical Hida theory for Hilbert modular forms. Such theory was developed by Hida in [Hid88] and [Hid89)
with a very different method: the construction in his work is not geometric but it relies on the duality between
cuspforms and Hecke algebras and the Jacquet—Langlands correspondence between Hilbert modular forms
and quaternionic modular forms. In [Hid88], Hida constructs a Hecke algebra over R[[W]], where W is the
torsion-free part of the Galois group of the maximal abelian extension of F' unramified outside p and oo, fixing
n € Z", which interpolates the ordinary Hecke algebra of cuspforms of weight (k, w) for k = w + 2n. Later in
[Hid89], he unifies these infinitely many Hecke algebras to obtain a universal one (without the restriction on
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the weight being parallel to 2n). Assuming Leopoldt’s conjecture holds true for F, the number of variables
in Hida’s work in the same as in our theorem and both classicality results are for characters of the torus of
Resp g GLa(Zyp) factoring through the quotient by the (p-adic closure of the) units of Op. However, Hida
considers the diagonal embedding of the units, whereas we need to consider, because of the geometric nature
of our construction and its moduli space interpretation, the embedding given by € — (e, €2), which results in
a slightly different formulation of the classicality result (see Remark 4.2.5 for more details).

It is also important to mention that the geometric theory of p-adic Hilbert modular forms was developed,
in the overconvergent setting, in various works (see for example [AIS14, ATP16, TX16, KL05]), where the
rational classicality results are obtained for finite slope families of degree zero coherent cohomology classes.
We also remark that in the past works where big sheaves interpolating the automorphic sheaves of classical
Hilbert modular forms ([AIS14, AIP16]) were constructed, this was done for automorphic forms for the group
G* = G Xget Gy, Hilbert modular forms for the group G are then obtained as the image of the global sections
of the sheaves for G* under a projector for a suitably defined action of the units of Op. In this work we
instead descend the interpolating sheaves to sheaves over the toroidal compactification of the Shimura variety
for G, exploiting the action of the units encoded in the definitions and, since the novelty of our construction
is that it also interpolates the determinant factors AzHl(A)(Tw_kT)/Q, we do not need to add the twist in the
unit action as done for example in [AIP16] (see the discussion right before Definition 4.1), where the twist by
the power (w — k.)/2 is added artificially (see §2.3.2 for more details).

Finally, after showing (see Proposition 4.2.15) that the natural map of A-complexes Ny — M}$ becomes
an isomorphism after localising at a non-Eisenstein maximal ideal 9t of the Hecke algebra, we deduce that
the localised complexes are concentrated in exactly one degree (namely #J) and are therefore projective A-
modules. Using this, we also prove that there is a perfect pairing interpolating in the classical weights Serre’s
duality pairing. More precisely, let M; = H#7(M$)on, we show in §4.3 that we can define a pairing

<—,—>ZMJ><MJC—)A

of A-modules (where, in order to be precise, the structure of A-module of M . is actually twisted by a certain
automorphism of A) which satisfies the following.

Theorem (Theorem 4.3.2). The pairing (—,—) is a perfect pairing compatible with Serre duality, i.e. for a
classical weight (k,w) as above, the following diagram is commutative

My @, (k,w) R X Mje ®A,<2k,w>R7 R

e(Tp) H#7 (X, w ™)) X e(Tp)H" #/ (X, w57 (=D))m

where the bottom pairing is induced by Serre duality and the vertical maps are the one obtained by the classicality
theorem.

1.2. Strategy. We briefly sketch how the complexes M$ (and NY) are constructed. As explained above, the
idea is to construct a sheaf of A-modules over (the formal completion) of the ordinary locus of a fixed smooth
toroidal compactification of the Hilbert modular variety. This sheaf is constructed using Igusa towers, which
are torsor over the ordinary locus, and recover the classical automorphic sheaves w®®) when specialised at
weights (k,w). The complexes My and Ng are obtained simply as the image of the ordinary projector e(U,)
of the cohomology over the ordinary locus of this sheaf. In order to define M5 and N5 in general we use the
divisors D, which are the vanishing locus of (various lifts of powers of ) the partial Hasse invariants. Then, very
roughly, we consider extensions of the sheaf above to the formal completion of the Hilbert modular variety and
take cohomology over the complement of Uyg;D, with compact support towards the divisors D, for p € J.
Then the desired complexes are obtained by taking the image of this cohomology under the projector with
respect to a certain operator 1’y given by the composition of the operators U, for p ¢ J and the partial Frobenii
F, for p € J. The way we obtain the classicality result is by first working on the special fibre of the variety and
prove the classicality result modulo p (§4.1, Theorem 4.1.7). Since the sheaf of A-modules modulo the maximal
ideal of A is simply w®®) (for certain choices of (k,w)), this result can be formulated as follows: for certain
choices of (k,w) depending on J, the image under e(7},) of the cohomology of w®™) over the complement, of
Upgs Dy with compact support towards the divisors Dy, for p € J is isomorphic to e(T},) RI(X1,w®®), where
X1 is the special fibre of the Hilbert modular variety X/R. The proof of this result relies on the study of the
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partial 7}, operators on the special fibre, once they have been carefully normalised in order to be optimally
integral. The last ingredient we need is then to show that the operator T'; specialised at the desired weight
(k,w) is congruent to the operator T,, modulo p.

The vanishing result of Theorem 4.2.13 is proved again by reducing it to a vanishing result of the cohomology
modulo g and using a filtration by #.J-strata of the complement of U,¢;D,, such that the complement of each
stratum in the previous one is affine (in the minimal compactification).

The whole construction has various technical difficulties coming from the Hilbert modular variety not being
a Shimura variety of PEL type. It is however a union of moduli spaces of Hilbert-Blumental abelian varieties
(with prescribed polarisations) quotiented out by the action of the totally positive units of Or. Hence we
often give definitions and constructions for the moduli space and then need to check how they behave with
respect to this action in order to show that they descend to the Shimura variety (see for example Definition
2.3.3 and § 4.2.2).

1.3. Outline of the paper. We recall in §2 the preliminaries on Hibert modular varieties, their compactifi-
cations and the automorphic vector bundles over them.

In §3 we define the partial Hecke operators T} acting on cohomology of the automorphic vector bundles and
normalise them so that they are optimally integral; we also recall the definition of the partial Hasse invariants
on the special fibre of the Hilbert modular variety and how (certain powers of) these sections lift modulo
powers of p.

The main constructions are carried out in §4, where we first work on the special fibre (§4.1) and then move
on (in §4.2) to the Igusa tower constructions on the formal completion of the Hilbert modular variety and the
proof of the classicality result.

We finally construct the duality pairing in §4.3 and prove its compatibility with Serre duality.

Acknowledgements. 1 would like to thank Vincent Pilloni for his seminal work on higher Hida theory, from
which this article originates from. I thank both him and George Boxer for helpful discussions and explanations
on their work. I am also grateful to Jacques Tilouine for many useful remarks and conversations. Last but
not least, I thank David Loeffler and Sarah Zerbes for their encouragement and valuable comments and
discussions. I also thank Ana Caraiani, Mladen Dimitrov and the anonymous referee for pointing out the
issue about projectivity. The author was supported by the postdoctoral fellowship of the Fondation Sciences
Mathématiques de Paris.

2. PRELIMINARIES

2.1. Hilbert modular varieties and moduli interpretation. Let F' be a totally real field of degree n. We
consider G := Resp/g GLo.
Consider K a neat open compact subgroup of G(Ay) and let

Y,k (C) = GQ\G(A)/Za(R) "KLK,

where KT = O(2)"NG(R)™" is the connected component of the maximal compact subgroup of G(R). We have
GR)/ZcR)TKL = (HUH )" where HUH~ = C\ R and H is the upper half plane. The n-dimensional
Shimura variety Yg, i (C) carries a natural structure of complex quasi-projective variety.

The determinant map det : G — Resg/q (G;,) induces a bijection between the set of geometric connected
components of Y x(C) and the finite double coset space

(2.1) CUE(K) i= F\(Apy)*/ det(K)

where F* denotes the subgroup of F* of totally positive elements. There is a natural surjective map ClL(K) —
C’l}', where C’l; is the strict ideal class group of F. The preimage of each ideal class [c] is a torsor under
the group I := Of/det(K)Oy ,, where Of , denotes the group of totally positive units in Or. By strong

approximation we can write G(Ay) as a finite disjoint union over elements ¢ € G(Ay) such that det(c)’s form
a set of representatives of Cl}(K)

Glas) =[c@"eK

and we therefore have

Yok (C) = [[T (e, K)\H",
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where I'(c, K) = G(Q)" NeKe .

This Shimura variety is not of PEL type. However, as explained for example in [TX16] (whose exposition
we follow closely) it acquires a moduli space interpretation as follows. Firstly, from now on, we assume that
K = KPK,,, where K? C G(AI;) and K, = GL2(Op ® Z,) and p is an odd prime greater or equal than 5. We
rewrite the above disjoint union as

Yox(C) = J[ Mi(C), where Mg (C)= J] T(ci K)\H",
[cJect), ci€lclk

where for every ideal ¢ we write [¢] for its class in Cl}, we select such representatives to be coprime to p and
we choose a subset [¢]x = {¢;,7 € I} C G(Ay) such that the fractional ideal associated to det(c;) is ¢ and the
set {det(c;)}ier is a set of representatives of the preimage of [¢] in Clf(K).

Note that M% does not depend on the choice of [¢]x and descends to an algebraic variety defined over Q.
Following [TX16], we will realise M% as quotient of some moduli space M, by the action of the finite group

A(K) = OF /(K N OF)*.

If K? is sufficiently small, we denote by M, the smooth quasi-projective Z,)-scheme (see [Rap78, Cha90]) rep-
resenting the moduli problem which associates to a locally noetherian Z,)-scheme S the quadruple (A, ¢, A, ax»)
given as follows

e A is an n-dimensional abelian variety over S with a homomorphism
t:O0p — Ends(A)

such that Lie(A) is a locally free Og ®7 Op-module of rank one;
e )\ is a c-polarisation on A, i.e. it is a Op-linear isomorphism

A A®p, ¢ = AY,

where AV denotes the dual abelian variety of A, which has a natural Op-action;
e ayr is a KP-level structure on (A, ¢, ), namely, assuming firstly that

K=T(N):={yeG(Z):y=1 mod N},
for an integer N coprime to p, akr is an Op-linear isomorphism of étale group schemes over S
akr : (Op/N)? = A[N].
The Weil pairing together with the polarisation A\ gives an Op-linear pairing A[N] x A[N] — un ®z
cflbgl, where 0 is the different ideal of F/Q. Hence akr determines an isomorphism Op/N —
UN @ c_lbgl. One similarly defines a KP-level structure by choosing N such that K(N) C K, working

on fibres A over points s of S and using the action of GLa(Op/N) on the K (N)-level structures on
As as above (see [TX16, §2.3] for more details).

We now recall that there is a natural action of A(K) on M, given as follows. Firstly if e € O, , we can

define
€- (A1, \,are) = (A, L, () o A\, agr).

Moreover, if € = n? for some n € KNOJ, then e- (4,1, A\, ax») = (4,1, X\, axr). This follows from the fact that
any totally positive unit ¢ defines an isomorphism € : A ~ A such that e*\ = ¢2\. Therefore we have defined
an action of A(K) on M5, and the set of equivalent classes of geometric components under such action is in
bijection with O/ det(K )OF , and the stabiliser of each component is det(K) N Of , /(K NOf)?. Following
[TX16], we write (A, ¢, \,ax») for the O;’+—orbit of (A,t,\,akr). The following is [TX16, Proposition 2.4,
Lemma 2.5].

Proposition 2.1.1. The quotient of M (C) by A(K) is isomorphic to M§(C), which can be identified with
the coarse moduli space over C of the orbits (4,1, \,akr). Moreover, up to replacing KP by an open compact
normal subgroup of finite index, we can assume det(K) N O§’+ = (K NOx)? and therefore the quotient map

M (C) = M (C)

induces an isomorphism between every connected component of MS(C) with its image.
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We assume from now on that K is sufficiently small and det(K) N Op , = (KN OF)% Let

Mg = [ Mk My :=Mi/AK) and Yorx= [[ Mk
[cJect], [ecth
The proposition implies that every geometric connected component of Yg g is identified with a geometric

connected component of M for some ¢. Hence Yg i is quasi-projective smooth over Z, and it is the
integral model of Y i (C). It also has a universal family of abelian varieties over it, denoted by

-AHYG,K

built using the universal abelian schemes A° — M.
We will also need the auxiliary variety of Iwahori level at a prime p above p. Assume p > 5 is unramified
in F' and let K? as above. Consider

Ko(p) ={g € G(Z,) : g = (3%) mod p}.

Then KPKy(p) is again sufficiently small and we denote by M (p) the smooth quasi-projective Z,)-scheme
(see [Rap78]) representing the moduli problem which associates to a locally noetherian Z,-scheme S an
isogeny ¢ : Ay — As of degree Norm(p), where A;, Ay corresponds to quadruples (A;, ¢, Ai, o xr) as above
where

e the kernel of ¢ is annihilated by p;

e )\ is a c-polarisation on A; and As is a cp-polarisation of As and for every x € ¢p C ¢ we have

9" 0 Xa(x) 0 b = Mi(2);
o the KP-level structures a; gr are compatible, i.e. if K? is the congruence subgroup of level N

Q2 Kr = Q|A,[N] © 01, K-

The fibre of M5, (p) over p is smooth outside a closed subset of codimension 1. We can define an action of the
units on this moduli space and we let as above

Mip):= [T M), Mi(p) = Mic(p)/AK') and Yor@p)= [] Mi(p).

[cJect]); [cJect]):

As above, Yg i (p) is quasi-projective smooth over Z,) and it is the integral model of Yg k/(C), where K’ =
KPKy(p). Moreover, there is a natural forgetful morphism M5 (p) — M which is equivariant for the actions
of A(K) and hence induces a finite étale morphism

(2.2) p1: Yo r(p) = Yok

Fix a fractional ideal ¢ and an isomorphism 6, : ¢ — cp for some [¢/] € CI}; such isomorphism is unique up
to an element of O .. Then one can also consider the forgetful morphism ps g, : M (p) — M5, which now

sends the isogenous pair to the second quadruple with polarisation As ® ¢’ B, A ® cp 22, AV, This map
is equivariant under the action of A(K) and pa .., is equal to pa g, composed with the map induced by the
action of €. Therefore we obtain a well defined étale morphism

(2.3) p2: Yo k() = Yo i

independent on the choice of ..

2.2. Compactifications. We recall a few facts about toroidal compactifications. Let K = KP?K, C G(Ay)
an open compact as above with K, =[], Ky and Ky € {GL2(Op, ), Ko(p)}-

Choosing an admissible rational polyhedral cone decomposition, one constructs a smooth toroidal compact-
ifications of MY, see for example [DT04, § 5], [Rap78, Cha90] and more recently [Lan13, Lan17]. In particular
the case K, = GL2(Op,) for every p | p is covered in [Lanl3] and the case with some level at p is covered
in [Lan17]. More precisely, there exists a scheme M flat, local complete intersection and normal over
Zp) containing M- as a fiberwise dense open subscheme. This depends a priori on the choice of the cone
decomposition, but we will see later that the cohomology groups we work with are independent on this choice.

. . . t . . .
Moreover, there exists a semi-abelian scheme A" — M3 extending the universal abelian scheme over
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M with c-polarisation, Op-action and level structure extending the data on A°¢. The boundary divisor
D= I_Ic./\/l§’<t()]r — UM is a relative simple normal crossing divisor, endowed with a free action of A(K). Let

M= ] M M = M /AK)  and  Xex = [[ M
[Ject], [cJect),

and denote by D the boundary divisor of X¢ k.

2.3. Automorphic vector bundles. Let L denote the Galois closure of F(y/e : e € Of ) and let O,
be its ring of integers. Fix a noetherian Op (,y-algebra R. Let us rename for simplicity M = (Mg)gr
and let A" = LAY — M be the semi-abelian scheme extending the universal abelian variety with real
multiplication by Op. Let e : M — A*" be the unit section and

— o+l .
Q~—€ Q_Ator/M,

this is (Oap ®z Op)-module locally free of rank 1. Its restriction to Mg coincides with the sheaf defined
analogously using the unit section of the abelian scheme LIA®. We can write

w = @TEZOQWT

where w, is the direct summand on which the Og-action is given by the composition of the embedding 7 with
the structure morphism Oy, () — R. Let H' be the canonical extension of Hjg (A/M) = e*Q*(A/M). Tt is
a (Ox ®z Op)-module locally free of rank 2. We have the Hodge filtration

(H) 0= w— Hig(A/M) = (W) @01 =0,

where w 4v = (e’)*Qi‘v/M, where €’ is the unit section of A".
For (k,w) € Z#¥= x Z such that k, =w mod 2 and k, < w for every 7 € ¥, let

w—kr
s @ () k)
TEY
Remark 2.3.1. One has (see for example [Kat78, 1.0.13-1.0.15]) that .y, (A*H1) admits a trivialisation

on each of the components M. Such trivialisation however depends on the c¢-polarisation and is not canonical
on XG,K-

Global sections of this sheaf can be interpreted as Hilbert modular forms a la Katz. See for example
[Kat78, 1.2] (where however the definition corresponds to sections of the sheaf @ oy w¥7, in view of the
above remark).

Definition 2.3.2. A c¢-Hilbert modular form of weight (k, w) of level K defined over an Op-algebra R is a
rule f which assigns to every quadruple (A,¢, \,ax) as above defined over R, where A is a c-polarisation,
given with a pair (w,n), where w is an Op basis of Q}A/R and 7 is an Op-basis of A2HI;(A) an element
f(A L, N\ ak,w,n) € R, satisfying the following conditions:

(i) f(A, 1, A\ ax,w,n) depends only on the R-isomorphism class of (A, ¢, A\, ax,w, n);

(ii) f commutes with extension of scalars Ry — Rs of R-algebras;

(iii) for any a,b € (R*)¥> ~ (Op ® R)*, we have

w—k,
f(A,L,)\,ClK,Q'w,b‘ﬂ): H a:kfb; 2 f(AM)\»OéK»WaU)'

TEY o

Clearly, in order to get sections of the sheaf w®™) one needs to admit different polarisation types.
One could more generally define, for (k,n) € Z#¥= x Z#*= a sheaf

whn) = ® ((/\”Hi)m ®w’j7> .
TEX o
w—k
For k; = w mod 2 for every 7, we recover Q(E’T) = wkw),
Let us denote by X the compactified Shimura variety Xg x. In order to define a sheaf over X, we need to
give a descent datum for the map M — X. We will see that this will force &, 4+ 2n, = w for some w € Z.
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Definition 2.3.3. The action of € € O;ﬁ + is given on stalks by the isomorphism (see for example [DT04, §4])

WA, e\ akr) = WAL akp) T WALAaKp)

where the first equality is given by the fact that the sheaf w does not depend on the polarisation and the
second map is the multiplication by []. T(e)*l/z. Similarly the action on A?H! is given by multiplication by

[T, (7"
If €2 € (K N OF)?, one easily verifies that the action defined above is trivial. More precisely, we have

(A 1, N\ ager,w) = (A, 1, N, ew, €2n)

k.n

and any section f of wE®) satisfies

f(62 : <A7 Ly )‘a aKr,W, 77)) = H T(E)_(kr+2nT)f(A7 Ly 6_2)‘a QKp,W, 77)
= 1—[7'(6)_("'TJF2"T)f((e_l)*(A7 LA agr e tw e ?n)) = f(A 1, N axe,w,n).

By abuse of notation we will still denote by w®™) the descent of the sheaf w®™) over X. Note that section
of this sheaf are rules as in Definition 2.3.2 satisfying the additional condition

f(As e N age,w,m) = f(A 4, A ake,w,m)  Ye€ Op .

This implies, if R has characteristic zero, that g%’ﬂ)

k; + 2n, = w for some w € Z.
Finally, we recall that the cohomology of this sheaf does not depend on the cone decomposition chosen to
define the toroidal compactification X.

Lemma 2.3.4 ([Lan13]). The cohomologies RT(X,w®®)), RT'(M,w®E®)) RI(X,wE®) (~D)) and
RI'(M,w®w) (D)) are independent on the cone decompositions chosen to define M and X.

has non-zero global sections over X if and only if

Moreover, we define the Hodge line bundle
det(w) := A, W.
One can construct minimal compactifications of Yg k, following [Cha90] or [Lanl3, § 7.2], as follows
X¢ k= Proj (dm=ol'(Xa k, det(w)®™)) .

It is a normal projective scheme over Z,) and det(w) descends to an ample line bundle on X* = X¢ .
The inclusion Yg g — X induces an inclusion Yg x < X* and X* is canonically determined by Yg x. The
boundary X* — Yg i is finite flat over Z(,). The following is [Lan18, Theorem 8.2.1.3].

Lemma 2.3.5 ([Lanl8]). Let m: X — X* be the canonical projection. Then we have
R’ (wEY)(=D)) =0 for every i > 0.

We finally recall (see for example [TX16, 2.11.2-2.11.3]) that the Kodaira—Spencer isomorphism gives an
isomorphism

(KS) KS:w29(—-D) - Q%)z,. where w20 = ® ((/\%—Li)fl ® wg) .

TEY

2.3.1. A more general definition. The automorphic vector bundle w®™) can also be defined using the theory
of torsors. Compare for example with [DT04, Définition 4.4], where however the twist by A2H! is not consider.
Let

T = mOM(goF (Om @ Op,w).
It is a T" = Resp,/z Gp-torsor over M, representing the functor sending a Z,)-algebra R to the set of
isomorphisms of tuples (A, ¢, A\, ax,w), where (A, ¢, A, ax) is an abelian variety over R with extra structure as
above and w : RQOp ~ e*Q} /R is a trivialisation of the conormal sheaf of A/ R with respect to the unit section

e. We can decompose w with respect to the Op-action and write w = (w;),, where w; : R ~ (6*9,14/3)7- The
action of T is then given as follows: if t = (¢;) € T(R), then

t'(A,L,A,O[K,UJ) = (A,LvAaaK;t‘w)a
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where ¢ - w = (t; - w;),. One can similarly define the T-torsor

L= ISOmOM®OF (OM X OF, /\2H(1:1R(A))
It represents the functor sending a Z,-algebra R to the set of isomorphisms of tuples (A, ¢, A, ax,n), where
n:R®Op ~e*HJz(A/R). The action of T is given similarly as above.

Let us write 77 : T — M, wc : L — M for the natural maps (corresponding to the forgetful functors).
Let (k,n) € Z[Xx] X Z[Es]. We can consider the sheaves (77).(O7), (72).(Oz). They both have an action
of the torus T" and we can consider the component on which T acts via the character ¢ — ¢t £, respectively
via the character ¢ — ¢72 and denote the corresponding invertible sheaves over M by (77).(O7)[—k] and
(72)x(Or)[—n] respectively. We define

@52 i= (7). (0781 ® (mc). (O]
Sections of this sheaf are rules as in Definition 2.3.2, where clearly (iii) is replaced by the analogous condition,
with the discrepancy factor being [] a;"7b,"". We obtain wkn) ~ g kn) and, in particular,

Or)[—n].

w—k

(2.4) Q(E’w) ~ Q(E’f),

—k .
for n = “== in the case where k; = w mod 2 for every 7.

Moreover, we can observe that, using the exact sequence (H), there is a natural map
s: TxMmT :=Isomp 00, (OMR0F,w)xIsomy oo, (OMm@0p,wiv) = Isome g0, (OM@OF, ANHIR(A)).
This map is defined over R after fixing a generator of the principal ideal 2!, which is coprime to p under our
assumptions.

The sheaf (m7x77).«(s*O¢) has an action of the torus T. It is the sheaf (m7x7).O7x7s which would
te 0 ), but the pullback via s makes the action of the first

0t !t

naturally have an action of T x T 3 (t,¢) = (

component trivial. Let
&) 1= (7). (O7)[-4] @ (v77) (5O ) -1,

Lemma 2.3.6. There is an isomorphism SlEn) ~ Q(ﬁ’ﬂ).

Proof. We prove that there is an isomorphism of Opa-modules (m7x77).(s*Of)[—n] ~ (7£)«(Of)[—n]. To
construct such an isomorphism we essentially use the fact that /\Q"HéR(A) is an O ® Op-module of rank
one. Local sections of the second sheaf are rules associating to (z,7n), where x = (A,¢, A\, ax) € M(R) and
n = (ns)s, where 5, : R ~ A2H}; (A, /R);, such that such that

(2.5) fz,tn) =t2f(z,n), foreveryte (R® Op)*.

Local sections of the first sheaf are rules associating to (z,a ® ), where © = (4,1, A\, ax) € X(R) and
a = (a;),f = (B:)r and a, : R ~ QY(A,/R);,3; : R ~ ((QA]A\//R)T)\/7QT ® By + R ~ A*Hlz(A./R)+,
satisfying

(2.6) flxtla®pP) =t 2f(z,a®f), foreveryte (R® Ofp)*.

Given f as above, we define a local section f of (7.).(Or)[~n] as follows. Since A2HL: (A, /R), is of rank one

over R, given n; : R ~ /\QHéR(AI/R)T, we choose arbitrarily «, 8 and we find that there must exists A, € R*
such that the following diagrams commute

R " A2H}:(A./R),

H L
REE A2HL (A,/R)-.

We then let f(z,7) == A2f(z,a ® 8). We need to check this definition does not depend on the choice of
a,B. Since Q'(A;/R), has rank one over R, any other trivialisation /. is of the form o/ = A; ;o for some
A,r € R* and similarly any other 5 is of the form Ay -3, for some Ay » € R*. Therefore o/ ® 8’ = M A2(a® )
and = A"\ (o ® #'). Thanks to (2.6) we have

A2 f(z,a®B) = AN D)2 f(z, 0/ @ )

and hence f is well defined and it satisfies (2.5) since f satisfies (2.6). The natural restriction map from
(7 x7)(s*Or)[—n] to (m2)«(Or)[—n] is the inverse on the map we have just defined. O
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Moreover, similarly as above, we can define a natural action of the units on 7,77, £ and descend these
sheaves to the Shimura variety X compatibly with the previous definitions.

2.3.2. Comparison with other works. We clarify the choices we made with respect to other works on the subject
to help the reader who may want to compare this definition with the ones of [ATP16, TX16, ERX17, KL05,
DTO04, Kat78]. The definition of w®™) corresponds to the one of w*, w* for x = (k,w) in [ERX17, § 2.2] for
the sheaf over M and X respectively and to w®%+2) in [TX16, § 2.12]. Similarly as in op. cit., our definition
of the action of the units (O5)" is both on the polarisation and on the sheaves of differentials.

In [KL05, DT04, Kat78] the sheaf considered is ®,w*r. In fact, in [KLO5, § 1.11] and [Kat78, § 1.2], the
authors only work with the moduli space M and do not consider the Shimura variety for G. This however
brings some complications when defining Hecke operators for the ideals p | p. For example in [KLO05, (1.11.6)]
the Hecke operator is defined by carefully considering a trivialisation of the sheaf ®T€Ew (/\Q’Hi).

In [AIP16], the authors also consider the sheaf w® = ®,w¥", but they work both with the moduli space and
the Shimura variety for G, however their descent is different from the one considered here. The action of the
units on sections f in H°(X,wk) is given by

€ F(A N ager,w) = [ [T (A L €N arer, w).

If we fix a polarisation class ¢, this definition can be thought as follows: the sheaf &), s (/\23’-{,1)(1071%)/2
is trivial but it carries a non-trivial action of the units. The action of the units of [AIP16] is therefore given
both on the polarisation and on the A2H! factor, but not on the sheaf w® itself. This choice results, when
defining Hecke operators, in a normalisation differing from the classical one (the one we define in 3.1) by a
power —(w — k,)/2 factor, as explained in [ATP16, Remark 4.7].

In some sense, here and in [TX16, ERX17], w is encoded in the definition of the sheaf, whereas in the other
mentioned works it comes in only when defining the action of the units.

2.3.3. BGG decomposition (and higher coherent cohomology). For a weight (k,w) as above let

w—k,
2

Flw) = Sym* 2 HL @ (A*HE) Flw = g Flw),

The extended Gauss-Manin connection on H! induces an integrable connection
Vi Fee) o e ook (log D).

One can show (see [TX16, § 2.12]) that (F&®) V) gives an integral model of the automorphic bundle on
X¢, i (C) given by the representation of G¢

w—k,
o) = Q) (Symk*_Q(StT) ® det, > )

T

where St is the 7-projection of the dual of the standard representation of G¢ = (GLgc)*= and det, is the
T-projection of the determinant map.

In the next chapters, we will study the cohomology of the sheaves w®®) in degree zero (hence classical
holomorphic Hilbert modular forms) and in positive degrees. One reason for which the cohomology of higher
degree is also interesting is the fact that it contributes to the middle degree de Rham cohomology of the Hilbert
modular variety. More precisely, the de Rham complex of F&®) is quasi-isomorphic to a simpler complex,
called the dual BGG-complex (see [Fal83, §3,7], [FC90, § 5] and for an overview with examples [Lanl9, §
2.3]). In this context, the Weyl group W is isomorphic to {£}*~. For J C ¥, we denote by s; the Weyl
element whose 7-component is —1 if 7 € J and is equal to 1 is 7 € J. If we work over C, we find the following
decomposition

Hin(Yo.x (O, FE"™) = @B HY (Xox(©),u"™™),
JCE

where the action of the Weyl group on k is given by (sy - k), =2 —k, if 7 ¢ Jand (s - k), =k, if Tt € J. A
more detailed discussion can be found in [TX16, § 2.15].
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3. HECKE OPERATORS AND HASSE INVARIANTS
From now on we assume that p > 5 splits completely in F' and we write

(p) =p1--Pn.

Recall that L is a Galois extension of QQ containing the totally real field F. We fix once for all an embedding
t: L = Q,. This fixes a prime p of L above p and we consider the ring of integers R of the completion of
L at p and the residue field F. The set 3., of embeddings of F' in R is then identified with the set of p-adic
embeddings F' < Q,, and therefore with

(3.1) Yoo = Homgz(Op,F) = {p C Op : p | p}.

From now on we will denote by 7, the element in X, such that ¢ o 7, induces the place p. Notice that from
the above identification there is a natural action of the Frobenius automorphism o of F on ¥, (given by the
composition 7 o ¢); in this particular setting, where p splits completely in F', this action is trivial.

We also fix the choice of a sufficiently small neat open compact subgroup K = KPK,, of G(Ay) such that
Ky =11, GL2(Zy). We let M = MR %z, Rand X = X¢ k Xz, R. We still denote by D the boundary

divisor in X.

3.1. Hecke operators. Consider p one of the primes above p. Let Mo(p) = M(p)R" Xz, R and Xo(p) =
X,k (p) Xz, R. We want to study the cohomolgical correspondence obtained by the maps in (2.2) and (2.3)

Xo(p)
X X.

For general background and notation on correspondences and coherent cohomology, we refer for example to
[Pil20, § 4]. We denote by A the universal semi-abelian variety A" — M. The maps p1,ps parametrise an
isogeny p1 A — p5A of degree p and with kernel annihilated by p. From this isogeny we get a rational map
prw®Ew) s pr(Ew) of sheaves over Mo(p). Since this map is equivariant under the action of A(K), we get
an analogous map of sheaves over Xo(p). Tensoring with the natural trace map Trp, : Ox,(p) — p1Ox we get
the naive cohomological correspondence

Ty ) : P ™) =5 pruw®).

We finally normalise it letting
+h g if ko > 1
S5y p py(kw) WL Rp Z
2 }Tp’(&w) = wiky (k,w)
P2 Thkw iRy <1,

—inf{w_TkF-&-l,

Ty, (ksw) =P

where, if p=p;---p, and p = p;, we write k, = k;. To simplify the notation we will often denote simply by
T}, the operator Ty (i, for the automorphic sheaf wkw),

Proposition 3.1.1. T, is a cohomological correspondence piwEW) — ptoEw) G e well defined and optimally
integral). Moreover it is supported on the étale locus (respectively multiplicative locus) if ky, > 1 (resp. k, < 1).

Proof. We only need to check that T} is well defined on the complement of a codimension 2 locus. Since it is
well defined over Q,, we only need to verify the statement locally at generic points of the special fibre of the
open variety Yy(p).

Since the isogeny p3.A — p3.A is a p-isogeny, for every generic point of the special fibre the map p3(A2H1) —
pi(A*H]) is an isomorphism for 7 not corresponding to p and factors through an isomorphism p5(A*H,) —
p(pi(A*H,})) otherwise.

We say that the generic point £ is multiplicative (respectively étale) if the kernel of the isogeny pi A — p3.A
is the multiplicative (respectively constant) p-group scheme. We have the following characterisation of the
maps p1,p2 on the open varieties

étale multiplicative
p1 | totally ramified of degree p isomorphism
D2 isomorphism totally ramified of degree p
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In particular (Trp, )¢ : (Ox,(p))e = (P1Ox )¢ is an isomorphism at points in the multiplicative locus and factors
through an isomorphism (Trp, )e : (Ox,(p))e — P(P1Ox)e at points of the étale locus.

Moreover, the isogeny p7.A — p3.A is separable if and only if the kernel is étale. Hence we have that for £
in the étale locus, the differential map (psw)e — (pjw)e is an isomorphism. And overall we find that for such
£, the correspondence factors as in isomorphism

- -~ w—kyp
(€ étale) Ty : (psw®)e Sp-p= 2 (P,
On the other hand, if £ is in the multiplicative locus, the differential map is an isomorphism of the compo-

nents of the differential sheaves different from the one corresponding to p and factors through an isomorphism
(piwp)e — p(piwyp)e at the component corresponding to p. Hence we get an isomorphism

* =~ .k +L uf *
(Piw)e = P77 2 (Piw)e.
Overall we find that for ¢ in the multiplicative locus, the correspondence factors as in isomorphism
w+ky

(€ multiplicative) Ty : (phw®))e S p7 2 (pw®W),.

. inf w—ky 1 w+ky
Hence we have shown that multiplying T;'"* by p~ ™ 5+ gives a well defined correspondence,
optimally integral and that this vanishes on the multiplicative locus if “’;kp < % —1 and on the étale locus
otherwise. O

We obtain that the operator T}, induces a map on cohomology obtained by the following composition

RI(X, w®)) 225 RD(Xo(p), pj w®™) 22 RD(Xo(p), pt w®) T2 RI(X, wkm)).

Hence we view T}, € End(RI'(X,w®%))). We can similarly obtain a map on cuspidal cohomology and see the
operator as T, € End(RI'(X,w®®)(-D))).

We now want to understand the behaviour of this correspondence with respect to duality. We follow [BP20b,
§ 3.2], to which we refer for notation and a recap on duality. First, we need to fix some notation regarding dual
isogenies. We consider the p-isogeny 7 : pj.A — p5A. To be more precise, we have isogenies 7 : pJ A® — pg.A‘/
for our fixed choice of representatives ¢ € Clf. We can consider the dual isogeny 7V : (p5. A% )Y — (pr.A)Y.
Since we are working over R and we have taken every ¢, ¢’ to be coprime to p, using the universal polarisations
and quotienting out by the units, we obtain a well-defined isogeny 7 : p§.A — piA and for any (k,w), the
pullback map on differentials

W@,w) :p;w(&w) s pgw(&w).

We also recall that the composition mom?, seen as an isogeny p;.A — p.A again using the universal polarisations
and the fact that their types are coprime to p, is the canonical isogeny with kernel pj.A[p]. Hence we find that

w—

k
(3.2) M) © Ty =022 1d=p"1d.
Proposition 3.1.2. T, is self dual. More precisely, the dual of the Hecke operator T, . acting on the
cohomology of w=") is equal to the Hecke operator Ty, (2—k,—w) acting on the cohomology of g(Qfﬁ’fw)(—D),
where (2 —k)r =2 — k.

Proof. We proceed similarly as in the proof of [BP20b, Lemma 3.8]. Since the correspondence Xy(p) is
isomorphic to its transpose, by sending the isogeny 7 to the isogeny 7P, with notation as above, we can think
of the operator T, in weight (2 — k, —w) as a map

Ty preoh—w) gl y@—kmw),

obtained as before but replacing 7 by the dual isogeny m”. We need to compare this operator with D(Tp)
where T, is the operator in weight (k,w) acting on cohomology via

R (X, w)) 2 RI(Xo (), p w ) 22 RE(Xo(p), ph w®)) =24 RI(X, w(k)),
It dualises to an operator

D(T)

D(RI(X,w5")) 23 RD(Xo(p), pi D(wE)) RI(Xo(p). pbD(w®™)) ~225 D(RT(X,w®")),
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where D(T},) can be written as the composition

id ® Trp, |

D(Ty) : pi (w57 @ 0% 7 ) P @O ) pp (BT @ 0% 7).

In order to describe the second map, recall that we have the Kodaira—Spencer isomorphism (KS)

KS:wZ9(—D) = 0%/z,, where w@0 = ® ((/\27{1)71 ®w3) .
TEY 0o
So that we can identify the sheaf w(~%~) @ Q% /7, with WP k-0 (D) = Wk~ @ y(20) (—D). The map
pi(wEBY) O/p,) — ph(wE~) ® ¥%/7,) can be written as piwEBv) @ V/z,) = (B~ @

Q}O ®) /Zp) and is equal to 7r(__1k ) ® id. Applying the Kodaira—Spencer isomorphism, the identity

Do)z, = P1Ox ©piwEV(=D) = Q% ()2, @ P50 (=D)
can be decomposed as Tr,, (Tr;ll) ® Wéyo) (see for example [BP20b, Lemma 3.7]). All in all, we find
D(T;) = Trp, ®(m3.0) ® W(}E,fw))'
As explained in (3.2) above, we have

w—k
kp+2(—5 )
7

T(k,w) © W@,m =p T(—k,—w) © ”fj—k,—m =p ", mzo° 7Té,o) =1

Hence we obtain that D(T,) = p*T, and from the equalities

R b b bl
_w;k_1+w _7k27w+1:_*w+2(2*k)

and the definitions of the normalisation factors in the different weights, we obtain D(T},) = p™'T,. 0

3.2. Partial Hasse invariants and the Goren—Oort stratification. We recall the definition of partial
Hasse invariants of [Gor01, GO00, AG05]. We follow the exposition of [ERX17, § 3.1].

Let F be the residue field considered above and let subscript F denote the base change to SpecF. Consider
the Verschiebung isogeny

VAP 5 Ay

It induces a morphism of Or ® Oq,-modules wy — g](Fp). For every 7 € Y this gives a map wr, — w%jﬁ.

Note that in general the identification W ) = (wap)®P is not Op-linear, but induces Wy (WAzo-107)®P,
where o is the Frobenius automorphism of F. However, as recalled above, in this particular setting where p
splits completely, we have 0~! o 7 = 7. Therefore we get a section in H ()(./\/l]p,w];9 ip _1)) which is invariant

under the action of A(K) and hence descends to a section
hr € HO(Xe,wp V),

which is called partial Hasse invariant at 7 (or at p when identifying ¥, with Homz(Op,F)). The product
of all the partial Hasse invariants (which is induced by the differential of the Vershiebung) is the usual total
Hasse invariant h € HO(Xg, w® 5?71,

Remark 3.2.1. Note that, when looking at the special fibre points of the isogeny defining the cohomological
correspondence T}, (as in the proof of Proposition 3.1.1), in the étale locus the p-component of the pullback of
the isogeny p7TA — p35.A identifies with the partial Hasse invariant hy.

Finally let us recall the following results about the vanishing loci of the partial Hasse invariants.

Proposition 3.2.2 (|[GO00, AG05)). Let D, = Va(h;) be the vanishing locus of h. It is a proper, reduced,
non-singular divisor on Xg with simple normal crossing. For any S C Yoo, Nres D+ is a reqular subvariety of
codimension #S. Moreover, Va(h) = Urexn, D, does not intersect the toroidal boundary D.



14 GIADA GROSSI

The analogous results holds for the vanishing loci over the moduli space My. Moreover, Mr — Va(h) is
the open subscheme of My where the universal abelian variety Ay is ordinary and Z, is the closed subscheme
where Ap is supersingular at p, or, in the language of [Gor01], the type of Ap contains the vector (zp:)u|p,
where z, = 0 if p’ # p and x,y = {1} if p’ = p. This amounts to saying that it is the locus where the rank 2
group scheme given by the p torsion is of multiplicative rank equal to zero. In particular, the multiplicative
rank of Ap is < (n — 1) over D, for every p and is maximal, i.e. equal to n over the ordinary locus. We will
write

Mgt = Mg —Va(h); X' = Xp — Va(h).

3.2.1. Lifts of the Hasse invariants. We now recall that suitable powers of the partial Hasse invariants lift to
the reduction of X modulo ™. More precisely, we denote by X,, the base change X Xgpec r Spec(R/p"). In
particular for n = 1 we have Xy = X;.

Let 4 C X,, be an open affine subscheme. As explained in [ERX17, § 3.3.1], the restriction of the partial

Hasse invariant h; to U Xgpec(r/on) SPecF can be lifted to an element ilq—yu in HO(U, wf?(p_l)), where by abuse

of notation we are still denoting by w, its base change over R/p™. We find that (hﬂu)pw1 is independent on

the choice of the lift BT,U. One then deduces that the sections {(iLT’u)pnf1 tu, for U varying over an open affine
covering of X,,, glue into a global section

o € HO(X,, 00" (0

which is the only lift of the p"~!-th power of h, € HO(X17w§(Tp71)). We let

D, , = Va(ltLT,n)
be the divisor on X,, given by the vanishing locus of fzmb. Under the natural map X; — X,,, the divisor
p"~1. D, on X; is mapped to D, ,. Moreover, since (h, )P is the unique lift of (hf)p" over X,,, we have that
for every n, 717,”+1 € HO(XnH,w?p (pfl)) is a lift of (BT7n)P. In particular, the divisor p - D, ,, is mapped to
D, 11 under the map X,, — X,,41. We let as above X2 = X, — Va(Il, hrpn)-

4. HIGHER HIDA THEORY

In this section, we finally move to the construction of the higher Hida theory A-modules. Under the
identification (3.1), we will denote by k, the p-component of a vector k € Z>=.

4.1. Mod p theory. Consider X; the special fibre of the compact Hilbert modular surface X. In this section
we want to prove a mod p control theorem (Theorem 4.1.7), which will be used crucially to prove the classicality
results of the next section.

Let us denote by Xo(p)$t and Xo(p)7* the étale and multiplicative locus of Xo(p); and with ¢, ™ the
inclusions into Xo(p);. We denote by p¢t, p™ the restriction of the projections p; to Xo(p)$t and Xo(p)7
respectively.

Lemma 4.1.1. Ifk, > 1 we have the following factorisation

T,
protw) ey ) k)

| l

) —— i )
If ky, <1 we have the following factorisation

prwtw) Tt w)

| |

i (g ) W) —— i (p ) w ).

Proof. The result follows from the study of the correspondence T}, on the special fibre carried out in the proof
of Proposition 3.1.1. d
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Proposition 4.1.2. If k, > 1, T}, induces a map
5B ((np + ky — 2)Dy) — pw®¥) (nDy).
If k, <1, Ty, induces a map
pw B (—nD p) = D1 Lo EW) ((—np + kp)Dy).

Proof. Assume that k, > 1. The correspondence T, is supported on Xo(p)Et and, restricting to the inter-

section of this locus with the open Shimura variety, we know that pS' is an isomorphism and p$' is totally
ramified of degree p. The divisor D, does not intersect the toroidal boundary and we therefore obtain that
(p$*)*(Dp) = p(p§t)*(Dy). By a slight abuse of notation we still denote by D, the divisor (pSt)*(Dy). Twisting
by OXO(p)eit (npDy), if k, = 2 the cohomological correspondence pgw(ﬁ’w) - pl w®®) induces a morphism
pswE) ((np)Dy) — plw®®) (nD,). If ky, > 2 and w is even, the cohomological correspondence can be written
as the tensor product of

(k' ,w) &ty (K w) &t % kp2 21M &\ x kp2 21ﬂ
(p5")*w = (p7")'w and  (p3)" (wp® T@(ATH,) 2 ) = (p1)" (wp” T (ATH,) 2,

where E; =2, E;‘ = k, if ¢ # p. The p-component of the differential of the isogeny (p{)* A — (p§')* A identifies
with the partial Hasse invariant h, and induces a map (p§')*wy(Dy) — (p$*)*wy. Combining this with the
result for k, = 2, we obtain a map piw &%) ((np + ky, — 2)D,) — plw®®) (nD,). It remains to discuss the case
of w odd, which can be treated similarly, writing the correspondence as tensor product of

() ™7 ('Y and ()" (wp" (AP 0@ wa) = (b1) (w3 0 (A*H)* 2R wg),
a7#p a7#p
Wherekg:Q,Eg:qulifq7ép.

Now assume k, < 1. In this case the correspondence is supported on Xo(p)7* and, since the role of pJ* and
ph* is interchanged, we find (p5*)*(Dy) = p(p7")*(Dy). Denoting by D, the divisor (p7*)*(D,), we obtain that
T, induces a map (p5*)*(Ox, )p(—nDp) — (p7*)'(Ox,)p(—npDy), which yields the case k, = 0. For the case
ky, <0, we proceed as above and decompose the correspondence, reducing to study the map

<p2 )* (kw)_>(p )* (k,w)

in the case where k, < —1. The p-component of the differential of the isogeny dual to 7 : (p")*A — (p5*)*A
can be identified with the partial Hasse invariant h,. More precisely recall that the composition

myx  — R D M T
(P5) wyt T () eyt s (05wt

~! (and multiplication by p*» when taking the kp-th power). Hence the corre-

is given by multiplication by p
spondence (pT)*wf" — (p’ln)*o.);fp (which by our normalisation carries a multiplication by p~*»), is given by

(hyp)®*» and therefore induces a map (pgl)*wfp — (p’ln)*wﬁ” (—kpDy). O

From the previous proposition we deduce the following two corollaries.

Corollary 4.1.3. For all ky > 1 and n > 0, T, acts on RI'(X1,w®™)(nD,)) and for n' > n the natural
maps RT (X7, w®) (nD,)) — RT(X1,w®®)(n'D,)) are equivariant for this action. Moreover, we have a
commutative diagram

RI(X;,w®) (nDy)) —— RT(Xy,wE) (np + ky — 2)D,))

T, [l JT‘,
J/ (/—"’ TP

RI (X1, w®®) (nD,)) —— RT(X1,w®) ((np + k, — 2)D,)).
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Forallky, <1 andn >0, T, acts on RT(X1,w &) (—nD,)) and forn’ > n the maps RT(X1,w®®) (—n/Dy)) —
RI'(X1,w®™)(—nD,)) are equivariant for this action. Moreover, we have a commutative diagram

RI(X1,wE) ((—np + ky)Dy)) —— RO(X, %) (—nD,))

T, T J{Tp
J« A/’(” TP

RI(X1,w®) ((=np + ky)Dy)) —— RI(X1,w®®) (—nDy)).

Recall that, since T}, acts on the cohomology groups of the considered complexes, which are finite vector
spaces, the sequence (Tg”)n converges to an idempotent e(7},). Up to quasi-isomorphism, we can also make
sense of the projector e(T}) acting on the complexes themselves (see [Pil20, Lemma 2.1.3 and Lemma 2.3.1]).
The above corollary hence implies the following crucial result.

Corollary 4.1.4. After applying the idempotent e(T,) the horizontal maps considered above become quasi-
isomorphisms, namely if n > 0 then we have quasi-isomorphisms

e(Ty) RT(X1,w®™) (nDy)) = e(Ty) RD(X 1, wE) ((np 4 ky — 2)Dy))  if kyp > 1;

e(Ty) RU(X1,wE™) ((—np + ky) Dy)) = e(Ty) RO(X 1, w B (—nDy))  if ky < 1.
We now prove a vanishing result for certain cohomology groups of the special fibre.

Proposition 4.1.5. Fix (Icp)p such that k, <0 when k, € J and ky, > 2 when ky, € J. Then the complex

Tp np pdJ ped

RI(k, w)(—D) := (@) (colim) RI(X1,w®) (=D + Y npyDy = > nyDy))
peJ pEJ

is concentrated in degrees [0,1;] where iy = #J and the complex

RI(k, w) := (@) <colim) RE(X1,w®™ (Y nyDy = > npDy))
peJ pgJ

e o p&J peJ
is concentrated in degrees [iy,n]. Moreover T), =[], Ty acts locally finitely on RI'(k,w)(—D) and RT'(k, w).

Proof. The second statement follows from Corollary 4.1.3, since T}, acts on each term of the limits-colomits.
We prove RI'(k, w) is concentrated in degrees [0,4;]. So by duality

(m) (coum> R (X3, w27 () ngDy = 3 npDy))
peJ pégJ

e e peJ peJ

is zero outside degrees [n — is,n]. Since such complex is RT'(2 — k, —w) we obtain the claim.
First we notice that RI'(k,w) ~ (lim,, )pesRI'(X7 \ (UpgsDp), w®w) (— > pesMpDyp)). We now use the
stratification

Zo = X1\ (UpgsDp) D Z1 = Z},_1 \ (UpgsDp) D -+ D Zp = Zy \ (UpgsDy) D Zny1 =0,

where Z! is the closure of the Ekedahl-Oort stratum of X; of dimension ¢, which in our case is given by
the locally closed subspace of X; where the multiplicative rank of the universal p-divisible group is < i,
which in other words is Up,+p,...#p,_,(Dp, N Dy, --- N Dy, ). By the theory of generalised Hasse invariants
of [Box15, GK19], one has that Z] \ Z/_, is affine and we hence have that Z; \ Z;41 is affine (where for
i = 0 the statement holds only inside the minimal compactification). Now we fix (ny)pes and we prove
that H'(X1 \ (UpgsDy),w®E) (=37 npDy)) = 0 for i > iy, Let w := w®&") (=Y _;nyDy) and Xy ;5 :=
X1\ (UpgsDy). Tt follows from [BCGP18, Theorem 3.9.6] that w — Cousz(w) is a quasi-isomorphism, where
Cousz(w) is the Cousin complex associated with the stratification Z = (Z;) given above. We claim that the
cohomology of RI'(X1 s,w) is computed by I'(X; ;, Cousz(w)). To see this, we write explicitly the complex
Cousz(w) and show that it is a complex of acyclic sheaves. Since it is a complex of length ¢, this concludes
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the proof. Let £ := & (p V. By [BCGP18, Remark 4.2.32], Cousz(w) is given by

pes ¥
0 —>c0hmw Lk — cohm@ w( Ek/hk))
k

ped
— cohm ED (w® £k /( hki,h’;j)) - cohmw@ L£r/( th —0
piFp;€J peJ
Note that w@LF = (®,g(ws" ® AZ(HY® /) @ (R, (wp” 7Y @ A2 @8)/2) (= 32, 5 1 Dy).
We can replace all the colimits over £ > 0 by the same cohmlts over k > maxyesn,. Moreover, [BCGP18,

Lemma 4.2.31] tells us that

cohmc J(h . ) %ck/(fﬁ;l,...,h,’;)mw,\Dm ,,,,, b
where Dy, _p, =Va<<npej hy) gl ).

Combining these observations, we obtain that every summand appearing in the (i + 1)—th term of the
above sequence is supported on Va((h];17 ol h’;)) N(X1,7\ Dy, ,...p,) for p1,...,p; € J and some k > 1. This
support is equal to (Dp, M-+~ N Dy, ) \ (Ugtp,...p, Dg), which is affine in the minimal compactification again by
the theory of generalised Hasse invariants of [Box15] (we can restrict to (Dp, N--- N D,,) the Hasse invariant
defined on Z/ _, and vanishing on the < n —i — 1 locus, then our support is the complement of the vanishing
locus of this restriction). Since the sheaves appearing in the exact sequence are acyclic with respect to the
minimal compactification by Lemma 2.3.5 and their support is affine in the minimal compactification, we have
shown Cousz(w) is a complex of acyclic sheaves. Then RI'(X;, s, w) is computed by I'(X; s, Cousz(w)) and
the latter is precisely of length i ;. O

We are finally ready to define the objects for which we can prove classicality results.

Definition 4.1.6. Consider (k,w) a cohomological weight as above such that k, # 1 for every p | p. Let
Ty =1y Tos J = {p : kpy <1} and i; := #J. We then let

M (k,w) = (m) (gohm) e(Ty) RT (X1, 0" (3 “npDy = Y npDy))
ped pegJ

Tp Ty pegJ peJ

M (k,w)(—D) := (@) (m) e(T,) RT(Xy,w®™) (=D + > "nyDy — Y " n,Dy))
peJ pgJ

e e peJ peJ

Notice that this is well defined thanks to Corollary 4.1.4, which tells you that there is no ambiguity when
“deciding in which order taking the limits and colimits”.

Theorem 4.1.7. If for all k,, we have k, < —1 when k, € J and k, > 3 when k, & J, then there are
quasi-isomorphisms

M(k,w) =~ e(T,) RD(X1,w®)) and M (k,w)(—D) =~ e(T,) RD(X,,w &) (~D)).
Moreover M (k,w)(—D) is concentrated in degrees [0,4;] and M (k,w) is concentrated in degrees [iz,n]

Proof. The result follows from Proposition 4.1.5 and Corollary 4.1.4, which tells us that, under the above
conditions on the weights, the transition maps in the limits are isomorphisms. O

Remark 4.1.8. The quasi-isomorphisms in the statement of the above theorem can be obtained by the fact

that the modules M*(k, w), M*(k, w)(— D) are constant limits-colimits of e(T},) H* (X, w®®)) and e(T},) H*(X1,w&®) (- D))

respectively. However we notice that we have natural maps

(4.1) M (k, w) — (f@})pwe(Tp) RF(Xlaﬂ(E’w)(Z npDy)) < e(Tp)RF(Xl,Q(E’w)),
e peJ

(4.2) M (k, w) « (lim)pese(T,) RT (X1, w®™) (=Y " nyDy)) — e(T,) RT (X1, w®)),
e peJ

where the first ones are given by the properties of limits and colimits respectively and the second ones by
the ones of colimits and limits respectively. Hence, again by applying Corollary 4.1.4, the statement of the
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theorem can be made more precise saying that all these four natural maps are quasi-isomorphisms if k, < —1
when k, € J and k, > 3 when k, ¢ J (and the analogous statement for the cuspidal version).

4.2. Characteristic zero theory. Let X be the formal completion of X along its special fibre. It is the limit
of the schemes X,, = X Xsgpec g Spec(R/p™). We denote by x°'d the ordinary locus of ¥. It is defined by
choosing a lift of the total Hasse invariant of § 3.2 in characteristic zero and taking the formal completion of
the subscheme X°'4 of X where such lift does not vanish. Even if X°™¥ does depend on the chosen lift, X
(and hence X°') does not. We use analogous notation for the formal completion 9 of M along M; and its
ordinary locus 9)t°™d,

In order to define the p-adic module we will introduce Igusa towers.

4.2.1. Igusa tower sheaves. We can consider the Z;-torsor over Merd (actually defined over the larger locus
corresponding to the universal abelian variety being p-ordinary)

Tp : 36, = Isom(Z,, Ty (A)*) — amord.
More precisely one defines the scheme

with the obvious action of (Z/p™)* on the right. The natural morphism 3&;"" — M,, makes J&,"" an étale
cover of M,,, with group (Z/p")*. Letting 3&, = colim,, lim J&,"" we obtain a Z)-torsor over the ordinary
locus of the formal completion of M along M.
Let A, = R[[Z}]] and denote by ky, : Z) — A the universal character. We consider the invertible sheaf of
Ay @Ogpora-modules
QF = (1. Og6, ® Ap)%r .
We can now consider the full Igusa tower, i.e. the (Z;)ZW—torsor given as follows

71 36 = Isomapers oy (Zp ® O, Ty (A)*) = [ Tsomapera (Zp, Typ(A)*) L2 aypord,
plp
We then define the sheaf
OF = (1,036 @ R[[Ty,. .., T,]))% < *%

where (Z)*= acts on R[[T},...,T,]] via the universal character  : (Z))*> — R[[T1,...,T,]] and on 7, Oz
via the action on J&.

For k = (k;); € Z™ we write k for the R-valued homomorphism of R][[Ty,...,T,]] induced by the characters
T; — Tf". We hence can consider the sheaf

0k = Q" @ R.

We now recall the construction of the Hodge-Tate map, which provides an isomorphism between Q% and the

restriction over the ordinary locus of the automorphic bundle @), constructed in § 2.3.1 using the torsor 7.
Let B be a R/p™-algebra and A an ordinary semi-abelian scheme over Spec B of dimension n with Op-

multiplication and with polarization coprime to p. Let e be the unit section and assume we are given a

Op-linear trivialisation ¢,, : Z/p"Z @ O — A[p™]*. The dual of this map (using the prime to p polarisation)

gives a trivialisation ¢2 : A[p"]° — ppn ® Op. For n > m, we obtain a (Z/p")*-equivariant isomorphism

(¢7)"

(4.3) HT,, 0 (¢n) : BO O = €'Q), g0, —— ¢ Qy,p,

where the first map is given by sending an element ¢; of the basis of B™ ~ B ® Op to dt;/t. We then have a

map HT,, , : Je™" ﬂm%d for m < n. Passing to the limits, we obtain a commutative diagram

Jjo T, T

e

mord.
Exploiting the commutativity of the Hodge-Tate map with respect to the (Z;( )"-action we obtain

Lemma 4.2.1. Let k = (k;); € Z™. The Hodge-Tate map above gives a canonical isomorphism of Ogyora-

modules Ok ~ H*E0)
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Proof. Sections of the sheaf QF are rules associating to (x,¢ : Z, ® Op ~ Tp(A;)¢") € IJ&(R) an element
f(z,¢) € R such that for every A = (Ap), € (Z;)",

Fz, oo™ =T\ £, 9).

plp

On the other hand, sections of the sheaf @& = (77),07[—k] are rules associating to (z,w : R ® Op ~
el /r) € T(R) an element g(z,w) € R such that for every A € (R® Op)*
g(x,wo X7t Hx\pgacw
plp

The claimed isomorphism is then explicitly given by sending g to the rule defined by (z,¢) — g(z, HT(¢)).
The fact that this is an isomorphism follows as, for example, in [Pil12, §4.2.1-4.2.2]. O

We now want to twist the sheaf Q" by a factor that will allow to recover after specialisation the sheaves
@®2) and, in particular, the sheaves w(k ©) in light of (2.4). We perform a p-adic construction analogous to
the one employed for constructing @®™) and use Lemma 2.3.6.

Let 36" the torsor defined by Isomgporago, (T,(AY)°, tpee ® OF). Via the Hodge-Tate map, we obtain
a map J&Y — T’. More precisely, we define a map (J&")™" — T jonora for m < n. We start with a
trivialisation ¢, : AY [p"]® = ppn @ O where A is an ordinary semi-abelian scheme over Spec B of dimension
n with Op-multiplication and with polarization coprime to p and B is a Z/p™-algebra. By fixing a canonical
basis of B ® Op as above we find the isomorphism

~ " (Pn)" &
HTm,n((bn) B®0F — € Qp, n®0p — e Q.}4V/B'

Identifying B ® Op = Hompgo,(B ® O, B® OF), we obtain an isomorphism
(4.4) HT,, n(¢n) : B® O = Hompgo, (e*QUyv 5, B® OF)

defined by g — g o (H~Tm7n(¢n))*1. Passing to the limits, we obtain a map HT : 36" — 7’ commuting with
the projections of the torsors over 9t°rd.
We can now define a sheaf of R[[Th,...,Ty, T}, .., T, ]]-modules.

Definition 4.2.2. Consider T the maximal torus of Resp/q GL2(Z,) and write T = (Z)" x (Z;)" 3 (2,t) =
(Zt 0 ) We write (k,x") : (Z;)" x T = R[[T1,...,T,,T1,...,T}]] for the character given by the universal

0zt
character x : (Z;)" — R[[T1,...,T,]] and the character #' : T'(Z,) — R[[T},...,T}]] obtained by the compo-
sition of the projection map T — (Z,)", (z,t) — t with the universal character (Z;)" — R[[T},...,T}]]. We
then let

KoK S Z: "xT
(4.5) Q) = (1,058 ®o (WJQSXHGV)*OJQSXHCBV)®RHT1>~"aTn7T1/7-~'7T7/1H)( ) ;

onord

where (Z, )" x T acts on the Iwasawa algebra by (k, x’) and on the factors on the left as follows: the natural
action of the first n-copies of Z,; on 3& defines an action of (Z,5 )" on 7,056 and T acts on (T3 x 367 )« Osex 36V
via the decomposition T = (Z, )" x (Z,’)"™ and the natural actions of (Z, )™ on each of the two terms.

This is, roughly speaking, the p-adic analogue of what we obtained via the pullback by s of the sheaf
O, in § 2.3.1. Similarly as above, for (k,n) € Z™ x Z™, we denote again by (k,n) the homomorphism of
Zy\[Ty,...,Tn,T},...,T.]] given by the characters T; — T, T/ — (T})™. Let

QEn) . kK" k) R-
We obtain the following result.
(k.n)

Lemma 4.2.3. Let (k,n) € Z"™ x Z™. There is a canonical isomorphism of Ogyora-modules QkEn) ~ g

Proof. We prove Q&n) ~ ¢ @®" and the result will follow from Lemma 2.3.6. The proof is similar to the
one of Lemma 4.2.1. Sections of the sheaf Q%) are rules associating to (z,¢ : Z, ® Op ~ Tp(A,)¢, ¢y :
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Zp @ Op ~ T,(Az)¢ b2 + T,(AY)° ~ ppe ® Op) an element f(z,$,11,12) € R such that for every A\ =
t ",

-1
z kyp ,n
oo Wav)o (3.%0) ) =[Nt F(x, 6,01, va).
plp
On the other hand, sections of the sheaf Q(E’ﬂ) are rules associating to (z,w : R® Op ~ e*QhI/R,a ® B),
where o : R® Op ~ e*Qi‘m/R,ﬁ :R® Of ~ (e *QLV/R)V an element g(z,w,a ® B) € R such that for every
A€ (R®Op)*

g(z,wo X (a@B)ut) = [[ A 1y (e, w, 0 @ B).
plp
We can send g to the rule (z, ¢, 11, 19) — g(x, HT(¢), HT(v1) @ HT (¢)2)). O

In particular, if there exists w € Z such that k, = w mod 2 for every p | p, we have an isomorphism

QBT o )

4.2.2. Descent to the Shimura variety. Let T' = [], (Z,)*. Recall that the sheaf Q") defined above is a
sheaf of R[[T?]] ® Ogpora-modules. We now let Ty = I1,,(1 + pZp), which can be identified with a quotient of
T. We denote by z( the projection to Ty of an element x € T'. Let

A= R[[Th x (14 pZp)]] = (SpipRI[L + pZy])OR[[1 + pZy]].

We have a canonical character (k1,k2) @ Top X (1 + pZ,) — A, where k1 : Ty — R[[To]],k2 : 1 + pZ, —
R[[1 + pZ,]]. Moreover, composing the canonical projection 72 — T¢ with the map

TO X TO — TO ( +pZ )
2
((p)ps (Yp)p) = xpyp mHyl/ .

we obtain a map R[[T?]] — A. We can therefore define Q(r1:52) = Q(%:r") @pren A Ik € 2", w € Z and we
assume

(4.6) ky, w;k” =0 modp—1forallp|p and ky,=w mod2forallp|p

the algebra homomorphism (k,n) : R[[T?]] — R induced by the character ), — xlg" ,Tp > Tp" With ny = w;k"

factors through a morphism (k,w) : A — R, since the character factors through the character of Ty x (1+pZ,)
given by ((zp)p,y) — y* - waf“-

By defining an action of the units, we now descend the sheaf Q("1:%2) to a sheaf of A ® Oyora-modules. We
have a diagonal embedding of O , C (Op,;))% in T x T, given by sending = to ((xp)y, (xp)p), where z, € Z
is the image of x in the completion of I at p. Now notice that on Ty, the map x +— 22 is bijective. We denote
by /2 the preimage of 2 € Ty under this map. Finally we let d be the following character

d:0%, — (RITZ)™
z = (((2p)p)o""%, ((2p)p)o)-

We define an action of 2 € OF , on Qrr) 1y

x*Q(n,n') — Q(n,n’) N Q(I{,I{l)7

where first map is the tautological isomorphism (being the construction of Qrr) independent on the po-
larisation) and the second one is multiplication by d(z). This action is compatible with the action given in
Definition 2.3.3.

For an algebraic character (k,n) satisfying (4.6) as above, we obtain

(4.7) Q(r1,k2) DA (om) B~ @(E,ﬁ))lx%d_
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Remark 4.2.4. For clarity, we write explicitly the action of the units on sections of the sheaf Q(%1:52) They
are functions f on ((4,4, A, @),¢: Zp @ Op ~ T,(A)* b1 : Zp @ Op ~ T,(A) by : Tp(AY)° =~ ppe @ OF),
such that for any A = (Ap)p,t = (tp)p, 2 = (2p)p € (Z)", they satisfy

A so X W) o (5 .0) ) = (Ot b e o ([T (A 1.2 06,60, 1)

Additionally they are invariant by the action of the unit €, i.e. €- f(A, ¢, A\, a, &, ¥1,%2) = f(A, 1, A, @, d, 1, 12),
where the action of the units is defined by

€ f(Aa L,)\,a,¢,¢1,1/}2) = f(A7 Ly € )\70[7(]5, (1[1171/12))
The fact that there exist non-trivial global sections of this sheaf follows from the fact that e*((A4, ¢, A, o, @, 11, 12))
is cqual t0 (4,1, A, 60, (61,42) 0 (5 %)) and s ((co(c3,)/2)p) - ma(T1(3,)%) = 1.

Remark 4.2.5. This is a good point where we can briefly draw a comparison with [Hid88, Hid89]. The
construction in op. cit. is of course very different, since the author works with Hecke algebras and on
quaternionic Shimura varieties (via the Jacquet—Langlands correspondence). The reader may however be
confused by the discrepancy on the definition of weights and universal characters of A. Hida considers the
map 7% — T x ZX given by ((zp)p, (Up)p) = ((ypxp )p, [ @p). The character T? — ZX, x, xﬁ‘“,yp —

with v, = w;k" factors through the character (v, w) of T'x Z given by ((ap)p, 2) — 2z [], ay”. In particular
these characters are trivial on the units of O embedded diagonally in 7' x T', whereas the ones we considered
above are trivial on the units of O embedded in T' x T via € — (¢, €2). This turns out to be the correct thing
to do with our construction in light of the previous remark.

4.2.3. Uy and Frobenius operators. Being the cohomology of the sheaves we have just defined too big, we define
some operators, whose associated idempotents will cut out a smaller part of the cohomology for which we can
prove the classicality result.

We define the partial Frobenius F, : (91)°"d — (9M¢)°"d to be the morphism sending (A Ly A, agp) >
(A/Hy, VN, dlxp), where Hy, C Alp] is the multiplicative subgroup of the p-torsion of A, ¢/, o/, are defined
by the composition of ¢, ax» with the isogeny m, : A - A/H, and X' =6, o A, where X is a cp-polarisation of
A/H, determined by the commutative diagram

A/Hy, Qo p SLLEN A®oy ¢

b b

(A/Hp)Y —— AY

where 7, is the unique map such that the composition A ® cp KL A/H, ®o, p SLNY| ®op ¢ is the canonical
map with kernel Alp] ® p and 6. : ¢/ — c¢p is an isomorphism as in the definition of ps in (2.3), unique up to
an element of (9;7 +- We therefore have an isogeny w'? defined by the commutative diagram

D
A/H, ®0, ¢ L A®o, ¢

(4.8) b/ ; JA

(A/Hp)Y —— AY

Hence F; is well defined up to O;V + and it is equivariant by the action of A(K'). We therefore obtain a well
defined morphism

Fp X0 — xord,
The following result follows from [TX16, Lemma 3.14].

Lemma 4.2.6. The trace map Trp, : (F})«Oxora — Oxora satisfies Trp, ((F})xOxora) C pOxora.

The morphism F, : (M) — (M)°"d extends to a morphism between the partial Igusa towers J&,, I& ./
over (9°)°" and (I )* given by (A, 1, X, ager, @ = Ly = Ty(A)) 5 (A)/Hy, !\ N, @yen, @' Ly =~ Ty (A/Hp)Y),
where ¢ : Z, 5 Ty(A)* ~ T,(A/H,)* and the last ibomorphism is induced by the isogeny m,. We
also have a morphlsm between the partial igusa towers CTQSV 3@5 obtained as follows: the dual isogeny
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my i (A/Hp,)Y — AY induces an isomorphism T}, ((A/Hy)Y)° — Tp(AY)°. Composing this with the rigidifica-
tion ¢ : T, (AY)® = pipe, We obtain an isomorphism ¢ o 7y : Ty ((A/Hp)Y)° = pipe. So the morphism induced
by F}, on the Fiual Igusa towers is given by (A, t, \, axr, ¢ : Zp = Ty(AY)e) = (A/Hy, V', N, aep, oy : Ly
T,((A/Hp)Y)e). With these constructions in mind, we prove the following.

Lemma 4.2.7. F}, induces two well defined maps
Fy : (Fp)*QUren2) 5 Qlrik2) gpd U, : (F), Q082 5 Qrike),

Proof. We temporarily denote by J& the partial Igusa tower (parametrising rigidifications for the étale p-adic
Tate module) and we denote with a subscript the tower above the component 91", First we notice that the
canonical map Fy X mye, : I& = TG Xgpe/ ora gmeord ghtained by the following diagram

TIS

j@c/ X gy’ ord mc,ord gﬁc,ord

T3S

I6 . <! , gﬁc’,ord
is an isomorphism. The inverse morphism is given by sending
[(A/Hp, '\ N, gen, @ Ly = Tp(A)Hp)®), (A, 1, N, cugen)] v (A, 1, A age, 7y o),

where 7y, : Ty (A)¢* ~ T,,(A/H,)® is the isomorphism induced by the isogeny 7,. We apply Lemma 4.2.6 and
the fact that the map Fj x 3¢, is an isomorphism to obtain Trg, ((F}).Os5e,) C pOse,, and

Trrp, (Fp)«(m36.)« O3, ) = (m36_, )« (Trr, (F)+O056.)) C p(136,, )+ 056, -

Patching together the corresponding maps, we have the natural pullback map Fy, : (F})*1,.Oz6 — .03 and
%Trpp : (Fp)«m Oz — 1,056, which are well defined up to units, equivariant by the action of A(K) and
(Z,)* -invariant.

Similarly, if we still denote by F}, the map induced by the partial Frobenius on the dual Igusa towers F}, :
fiQicV — 3@52/,, we have again that the canonical map Fy, x myev : jQicv — 362/, X e’ ord Me-ord i an isomorphism.
Proceeding as above, we obtain the pullback map F}, : (Fy)* (Tisx36v )+« Osexs6v = (Miex36v)«Oss %6V and
%Trpp () (Tasxaey )«Osexaev = (TaexasY )«Ossxasv, which are well defined up to units, equivariant
by the action of A(K) and (Z,)*-invariant.

We can then consider the full Igusa towers, where the partial Frobenius on 9t°"? lifts to F, on J6, J6Y
and to isomorphisms on all the factors of the Igusa towers for p’ # p. Tensoring with R[[T?]] and taking
T?-invariants we obtain maps of sheaves over 9)t°'d

Fy : (Fp) Q) — Q) and Uy o= L Trp, : (F,), Q) — Qo)

again well defined up to units and equivariant by the action of A(K). We therefore obtain maps Fy, U, for
the shaves over X°™ as claimed. O

We now look more closely to the specialisation of these maps at classical weight k,n € Z".

Consider the universal isogeny m, : A¢ — A /Hy. The pullback gives an O p-equivariant map m : (F)*w —
w of sheaves over M. Similarly we obtain a map m} : (F)*(A*H') — A*H! and we therefore obtain, for
any k,n € Z"

(4.9) T

(Fy)* wkn) _y ykn)

The dual isogeny induces an isogeny 71'1{,D A J/Hp, ® ¢ — A° ® ¢ using the prime to p polaristaions. We
therefore find, being ¢, ¢’ all coprime to p, an Op-equivariant map (m)* : wkEn) s (F)* w®En) | We can then
construct a map

1
,TYFP

D\ *
. (k) (™) x k) P (k)
. D * W * 2% w .
(4.10) Urp (Fp)rw —— (Fp)(Fyp)*w —w
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Lemma 4.2.8. The map F, specialised to weight (k,n) coincides with p=F» =" (’R’;)(E’ﬂ).

cialised to weight (k,n) coincides with p~™r U7rpD,

The map U, spe-

Proof. Let m < n and recall J&;*" = Isom yqora (Z/p™, Alp™¢Y), Ty = Isomm,, (Opm,,, (e*QY)p). where Ty is
the p-component of the torsor 7. We have the following commutative diagram

F F
36;:'”’71 : 36;’3”7” (A7L?)‘7O[Ki’agpn) }—P> (A/Hp,L/,)\/,O/I(p,ﬂ'p o gpn)
J{HTmm, J{HTTM IHTm,n IHTm’"
(TrpD)* (xD)*

Toimord —— Tojmera (A1, N age, (©5)) —— (A/Hy, !\ N, g, (70)* 0 (0F)*))

D
p

by the diagram (4.8); note that we use the fact that ¢, ¢’ are coprime to p. Moreover, to simplify the notation,
we denoted by (¢2)* the image of ¢, : Z/p™ ~ A[p"]** under the map defined in (4.3) (obtained by fixing a
basis of QLP) Similarly, recall (J&,)™" = Isom yqora (AY[p"]%, ppn ), Ty = Isomp,, (O, ((e°QY)p)Y). We
have the commutative diagram

where (7”)* is the map induced by the (p-component) of the pullbacks QY — QY s, of the dual maps defined

(jﬁg)m,n i> (j@Z)m,n (A, 0, )\, aer s o) }L (A/Hy, V', N, 0, 0n owg)

lHTm,n lHT IHTWL IHTm,n

(")~} ((m)) 7!
p/|M%d — p/|M%d (A, 0, ar, (95)7h) —— (A/HpaL/7)‘l?a/I(P’((<pn077;\3/)*)_1)

where ¢ denotes the isomorphism Opgora — (e*Qv ), and ()" denotes the isomorphism O ygora —
((e*Q}v)p)Y obtained as in (4.4). Moreover the bottom map is given by pre-composing with ((my)*)~" :
(e*Q4v)p)Y — ((e*Q%A/HP)v)p)V. Passing to the limits, we obtain commutative diagrams

16— e 36V —" J0Y

(4.11) JHT . JHT JHT lHT

() ((m)*)
P
Timera —— Tptera Ty s == Ty gonas

where we replaced the partial Igusa towers and partial G,,-torsors with the full Igusa towers J&,3®" and the
G, ® Op-torsors T, T, letting F}, act as the identity on the components J&,, 3(’5;/ for q # p and exploiting
the fact that being m, a p-isogeny, the bottom pullback maps are isomorphisms on the components 7;,7;’
for q # p. We find the corresponding commutative diagrams on the structural shaves and taking the (k,n)-
components we obtain that the pullback map Fy : (F,)* wtEn) 5 &1 i therefore given on the p-component
by (7))t @ [(w2)*)~* @ (7)))*], where we are identifying, by (H) and the fact that the polarizations are
prime to p, A*Hig (A/Hp)p ~ (e*Q), ® (e*QYv)y. Under this identification the natural pullback map m}
decomposes as

NHig(A/Hy),p - NHig(A)p

1~ 1~
*QLie(mwY
L) (e*2y)p ® Lie(AY),

(€* QY )p @ Lie((A/Hy)Y)p
and, under the isomorphism [Kat78, (1.0.13)], we can write the second component of the map as Lie(r) =
(9 ) (e*Q%A/Hp)v)V ~ Lie((A/Hp)") — (e*QY4v)Y ~ Lie(A), where here (m,/)* denotes the map obtained
composing with ()" : e*Qyy — €*Qy, #,yv- So, since the composition 7} o (mP)* is given by multiplication
by p on (e*Qh)p and is an isomorphism on the q # p-components, we obtain

Fy = ((m))) @ (7)) @ (m))] = p~ vy

On the other hand, again by the commutativity of the diagrams (4.11), the specialisation of the trace map

1/pTrp,
-

is given by the composition (F},), w®En) — (F,),(F,)* w®n) wEn) wwhere the first map is given on
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the p-component by (77)* @ [(x))* @ ((wy)*)~']. As before the natural pullback map (m}’)* decomposes as

()"

NH g (A

\L: D
Py *@Lie((xP)v
(e 01y © Lie(AY), )Y

NHig (A/Hp)p
\Lz
6*Q}A/H,ﬂ)p ® Lie((A/Hyp)")p,

where Lie((m])Y) = ((mP)¥)* : (e*Qv)Y ~ Lie(AY) — (e”‘le/Hp)v)v ~ Lie((A/Hy)"). The composition

(my)* o ((mP)¥)* is given by multiplication by p on (e*€.)Y, so we obtain

D D -1 _
Up = 3 Trr, o))" @ ()" © (m))) 1] = 07" Unp.
These maps are all invariant by the action of the units, so we obtain the desired statement for the map between

the sheaves over ¥°rd, O

We now compare these operators with the operator T}, constructed in § 3.1. As we did for M and X, the
moduli space and Shimura variety of level K such that K, = G(Z,), we can consider My (p) and X (p) the
formal completion of Mg(p) and of Xo(p) along their special fibres. The ordinary locus Mo (p)°™ of Mo (p)
is the disjoint union of the loci My(p)** and My(p)™, where the universal p-isogeny has respectively étale
and multiplicative kernel. Passing to the quotient by the action of the units, we similarly let Xo(p)¢*, Xo(p)™,
noting that the kernel of the isogeny is independent on the polarisations. By construction we have that
the two projection maps pi,p2 are either an isomorphism or can be identified with F, when restricted to
Xo(p)®, Xo(p)™, more precisely

Xo(p)** Xo(p)™
(4.12) pi=Ey " NPQ I% g =Fp
xord - %ord xord - xord .

Using the previous lemma, we can prove the following

Lemma 4.2.9. Let F, and U, be the specialisations of the operators Fy, and U, in weight (k,n), where

w—k

n ==, forw,k as in (4.6). We have the following equalities

2
(i) T, = p*1F, + U, when ky, > 1;
(ii) Ty = Fy + p' % U, when ky, < 1.

Proof. We denote by Ty aive’ét,Tg @ET™ the projection of the restriction of the correspondence Tpeive over
Xo(p)°™ on the component Xo(p)®* and Xo(p)™ respectively. They are obtained via the pullback induced
by the isogeny w,? and m, respectively. By the above observations and Lemma 4.2.8, we have that I}, =

Ty
T,

p R TR and U, = p~™ T TR Our definition of the normalised operator T}, gives

g T TR Ry p ) = p TR + Uy iRy 21
Pl R (it By 4 pTIU) = By +pt U, if Ky <

O

Note that, in particular, this lemma tells us that we have T, = U, mod p when k, > 1 and T}, = F},
mod p when k, < 1. This will be crucial in the next section to reduce the classicality result in characteristic
zero to the classicality result we proved modulo p in §4.1.

Finally, we have the following analogue of Proposition 3.1.2.

Lemma 4.2.10. We have D(F,) = U,.

Proof. Using the description of the specialisations of F}, and U, given in Lemma 4.2.8 we can obtain the claimed
result similarly as in the proof on Proposition 3.1.2. Alternatively, this follows by the same proposition and
the equalities of Lemma 4.2.9. d
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4.2.4. Construction of p-adic families. Recall that X is the formal completion of X along its special fibre and
we denoted by X; = X Xgpee r Spec(R/p?) the reduction of X modulo p’ and by Xfrd the ordinary locus of
X;. In order to define the desired A-modules, we need to extend over X suitable quotients of the sheaf Q(%1:52)
which is only defined over X°™d. We start by considering a general framework.

Let F be any quasi coherent sheaf defined over X?'. Let T the sheaf of ideals corresponding to the divisor
D; = X;\ Xfrd; we can write it as Z = [[Z,, where Z; is the sheaf of ideals corresponding to D, ;.

We consider an extension F of F over X;. In particular we have

(4.13) G F = colimZ*F
¢
where j d i jon - xord ) ; _ #(Eoo—J)
j denotes the inclusion j : X" — X;. Let J C X, consider m = (m;)rgs € ZZ,
Z?bj and let

= (nT)TEJ €

RLy(F)mn = RO, [[ 2 [[ 2 F
TEJ TEJ
RI/(F) = (@) (colim) RL(F)mn-
nr/ red mr TEJ

These complexes may a priori depend on the extension F of F. We now go back to the Igusa sheaf, quotient
it by a certain A-ideal so that is a quasi coherent sheaf over Xfrd and show that it has a locally finite action
of the operator

(4.14) T, =[] Us [] Fo-

pEJ peJ

We can then apply the idempotent e(T’y) to RF;-] (F) and we show that the obtained complex is independent
on the choice of F.

Let A = R[[(Z))?"]]. Recall that we defined the sheaf of A ® Ogpora-modules Q%) in (4.5). We will now
define truncated versions of this sheaf using 3&"*, (3&" )™ the level p™ Igusa towers on the reduction modulo
ot of M. Let A; = R/p'Z[[((Z/p'Z)*)?"]] and let mp i : IE™" — M, 7l 0 3&™ x (3&Y)™i — Mo,
For m > i let (Km,i, & ((Z/p™)*)?™ — A the natural character that factors through ((Z/p'Z)*)?". We
let

mz)'

Q:f) = (((Wm,i)*ommvi ®OM?rd (T1,0)xOg8mi x 36V )m.i) @ ]\i) [(Fm,is K )]
This is a sheaf of A; ® Ogpora-modules. Let us denote by m; the kernel of the map A — A;. We have natural
inclusions m; C m;_; and the kernel of the natural map A; — A1 can be identified with ;_; /m;. These

maps induce the horizontal maps in the diagram

Q(’%{'@/) Q(H K )

m,i m,i—1

| [

Q(f‘iv"ﬂ/)‘ Q("iv"ﬂ/)‘

m—1,: m—1,i—1°

where on the other hand the vertical maps are induced by the natural maps between the Igusa towers. Let
Q(K ';" )= = colim, Q(F" ). We then have Q<) = = lim, Q(H ") We can identify Q(N ) = Qe )/mz, which is a
quasi- coherent sheaf over M¢Td,

Let A; = R/¢'[(14pZ,/1+p'Z, )”*1] Let m; be the kernel of the map A — A;; we have a natural surjective
map A;/m; — A/m;. The sheaf Q(152) = Q=) @ A over M can hence be written as lim, Q") /i, ®K /m;
A/m; = lim, Q(#1:52) /m;. From the above construction and the definition of the descent datum in § 4.2.2, we
obtain that the above description remains valid when we descend Q(%1:52) and Q(#1.:52) /m; to sheaves over X°rd
and X?™ respectively.

Finally, we denote by Q(%1:%2) /m;(—D) the O yora ® A-modules (Q(%1:%2) @,
D is the cuspidal divisor in X. '

Oxora(—D)) @A A/m;, where

yord

Proposition 4.2.11. For any i > 1, let F; := Q152) /m; and F;(—D) := Q152) /m;(=D). Let H’ (F;) =
H*(RTY ().
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(i) The natural map X{™ — X219 induces a well defined map RIY. | (Fit1) — RUY(F) and, similarly, a
well-defined map RT,, (Fi+1(—D)) — R} (F;(~D)).
(ii) The operator Ty acts on R} (F;) compatibly with respect to the maps RF;»]+1(.7:"1-+1) — RTY(F).
Moreover Ty is locally finite on lim, RI'/(F;). The same statements hold for RT'] (F;(—D)).
(iii) H ' (Fi(=D)) =0 for x > #J, H'(F;) = 0 for « < #J

?

(iv) The modules e(TJ)H:’J(JEZ-), e(_T_])H;"J(]:'i(—D)) are independent on the choice of the extension F; of

Fi; more precisely e(T7) RTY (F;) is quasi-isomorphic to e(T;) R (F!) if Fi and F' are to extensions
of Fi (and similarly for the cuspidal complex).

Proof. Firstly, we observe that H*/ (F;) ~ (lim, ) _; (MmT)TW H*(RT;(F)mn)- This follows from the
fact that the colimit functors are exact and so are the inverse limit functors (since the modules appearing in
the complex RT;(F),,.n are finite R/p'-modules and hence their inverse system varying one n, satisfies the
Mittag-Leffler condition).

We start by proving (i). Recall that, as explained in 3.2.1, the natural map X; — X;41 maps p- D, ; to
the divisor D ;1. Hence the map induces H;\ | (Fi41)mn — H; (Fi)pm,pn, Where (pm), = pm, and similarly
for pn. Since we can rewrite H;"/ (F) = (lim,, )res(colim,, )rgsH*(RT;(F)pm.pn) We obtain the desired map
passing to the limits-colimits. ,

To prove (ii), we exhibit a continuous action of Ty on H:”*’ (F;) compatible for all i’s. Once we have that,
in order to prove that the action is locally finite, it is enough to prove it for ¢ = 1. Then we can use [Pil20,
Lemma 2.1.2] to deduce that T’ is locally finite on the limit. Finally, to deduce that T); acts locally finitely
on the complex, we apply [Pil20, Proposition 2.3.1]. The statement for i = 1 follows from the isomorphism we
will find later in (4.16), which is compatible with the action of T; on the left and T}, on the right by Lemma
4.2.9. Moreover we have that T}, is locally finite on the right hand side by Proposition 4.1.5.

For every p, we can decompose Xo(p)?™ = Xo(p)$*UXo(p)7, where Xo(p)$t and Xo(p)™ are the components
where the universal p-isogeny has étale and connected kernel. Using the diagram (4.12), we can think of
F, F;Q("“””) — QmR2) (respectively Uy @ (Fp).QF1%2) — QK1:52)) a5 a cohomological correspondence
ps(QFR2) fmy) — ph (QF1R2) /my) on Xo(p)$*? given by F, on Xo(p)™ and by zero on the other component

(respectively by U, on Xo(p)$t and by zero on Xo(p)™). From (4.13) we get that there exists ¢, ¢, such that

7

F, (respectively U,) induces
Fy:psFi = p(T%F),  (vesp. Uy : p3Fi — pi(Z 5 F) )

Moreover, when restrif:ting to Xo(p)y" (respectively Xo(p)s"), there exists hy, hj, > 1 such that p3 (I;Lp) C pi(Zy)
(resp. p5(Zy) C p{(I:“ )) and p5(Zy) = pi(Z,) for every q # p. This gives us maps
FyoH (X 1™ [ z5™ [[ zoF) —» x> " [[ze™ " ] Zo " 7).
agJ pFacJt agJ p#qe]

—-m ng - % —h!my,—2! —mgq—£! ng—40, =
Up : H(X;, [[Za™ [[ Za° F) » H (X, ™ ] Zo ™ [[Za" 7
a¢J qeJ p#ag¢J qeJ
where p € J and p & J respectively. We can deduce that there exist h,h’ € (Z>1)", L, L € (Z>o)™ such that,
for every m € (Z>o)" #7,n € (Z>o)*’, T; gives a map

(4.15) Ty H;J(}_-i)(m,ﬁ'ﬂ) - H;K’J(ﬁi)(h/-meL’,nfL)-

One can take h = (hy)y € J,1' = (hy)p & J and we can replace the £,’s, £,’s to be big enough such that
[Tqes ha | €p, €, for every p and, choosing an order pi,...,ps € J,p3,...,p; & J, we can take

r j—1 s s j—1
L= Z%; + Q) ey Y b L= h;;(zém + Z%;) + &y
k=1 u=1 u=yj u=1 k=1

Taking the limits-colimits, we therefore obtain a continuous map Ty : H*’ (F;) — H*’(F;). Tt is not hard
to show that the maps (4.15) can be chosen to be compatible with respect to the maps X; — X;y1. This
concludes the proof of (ii).
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In order to prove (iii), the key ingredient is Proposition 4.1.5. Firstly we treat the case i = 1. We consider
the following complex, obtained for any (k,n) € Z?" as in Proposition 4.1.5:

RI(k,w) := (@) <cohm> RE(X1,w®™ (" npDy— > npDy)).
p:kp <0 pikp >2

Ty Tp pikp>2 p:ky <O

By definition, we find that Q(*1-%2) /m; is isomorphic to the sheaf w®®) where ky,w : Z; — F) are any

characters factoring through the trivial character Ty x (1 + pZ,) — F,*. We can then choose k, = —2(p — 1)
when p € J, k, = +2(p — 1) when p ¢ J and w = 2(p — 1). We obtain

(4.16) RI'Y(Fy) ~ R (k, w),

Then Proposition 4.1.5 tells us that H;"/ (Fi(—D)) # 0 only if * < #J and H;/(Fy) # 0 only if * > #J.
Now consider the following exact sequence of sheaves over X}

0— Fit1 ®A/m¢+1 mi/miH — fi+1 — fi+1/(fi+1 ®A/mi+1 m,-/mi+1) — 0.
Since the first sheaf is isomorphic to F; and the third one to F;, we obtain the following long exact sequence
(4.17) o= HITWNF) = HY(F) = HEY(Fi) — HY(F) — HTY (F) — ..

This follows similarly as in [Har72, §3(a)]; one needs to choose the extensions of the sheaves to X, in order
to still have a short exact sequence of sheaves over X; 11 and then the long exact sequence is obtained using the
fact that the colimit functors are exact and so are the inverse limit functors (since the modules H7\ 1 (Fi41)m.n
are finite R/p'*t!-modules and hence their inverse system varying one n, satisfies the Mittag-Leffler condition
and similarly for H}, ;(G)m.n for G the other sheaves in the short exact sequence). We can similarly obtain
analogous exact sequences replacing the shaves with their cuspidal versions.

We have proved that H;*/(Fi(—D)) # 0 only if + < #J and by induction and using (4.17), we obtain
H?'(F;(=D)) # 0 only if * < #.J for every i. We obtain similarly the vanishing statement for H;"” (F;).

We finally prove (iv). We now fix ¢ and to ease the notation we write F for the sheaf F;. If we have two
sheaves F, F' extending F, the sheaf 7 N F’ also extends F, hence we can reduce to prove that if 7/ C F are
two sheaves extending F to X;, then H*/(F) ~ H'(F).

In particular, under this assumption, we have that the sheaf 7 /F’ is supported on a subset of Up|pDp i
hence we find that there exists ¢ > 0 such that Z*F C F’ and therefore for any m € (Zo)" #/,n € (Z>0)*’

(with m, > t) we find maps

(4~18) Hz* (]:—)m*t,ﬂth — Hz* (]?/)m,ﬂ - H;(f)m,ﬂv

where (m — t); = m,; —t,(n+t), = n, +t. Consider the cohomological correspondence T;. As discussed
above, from (4.13) we get that there exist L, L', L,, L} such that T induces

Assume without loss of generality that L > L;,L" > L', so that we can write T/ : H:’J(ﬁ)(m,ﬁ_ﬂ) —
H .*’J(]:"i’ )W m+L'.n—1)- Moreover we can replace ¢ by a bigger integer and we can therefore assume that

(ITpes o) [ t and we have maps as in (4.18). We find the following diagram
H:(]:—,)m,@ ka(]:—)m,h

\%

H (F)mttpn—t —— H (F)mtt,hn—t

T T} J J Ty T,

x( T/ *
H (F )ﬁ/(m+t)+él,ﬂ* -L — A (]:)b’(mﬂ”!vﬂ*%*@
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where f is given by the first map in (4.18), the horizontal arrows are given by F’ C F and the maps from the
bigger square to the smaller one are given by the connecting maps H; (G)m.n — H;(G)ms n for m, < m! for
every 7 € J, n, > nl for every 7 € J.

Taking the limits-colimits we obtain continuous maps T, € End(H;}/(F")), Ty € End(Hi*’J(]:')) and a
commutative diagram

Y (F) —— HY(F)
R
H}(F') —— H(F),
which implies that the map e(T))H."” (F') — e(T;)H;*’ (F) is an isomorphism. O
We now define the following A-complexes

RI(QU0")) := m RTY (F;), , My(QU1"2)) := lim e(T;) RTY (F;)

where the limit is taken with respect to the maps of Proposition 4.2.11(i).

Remark 4.2.12. Note that a priori the RFJ(Q('“”‘”"?)) may depend on the chosen extension of the sheaves
Qrr2) fmy from X' to X;, but the definition of M ;(Q(%1%2)) is independent on such choice by Proposition
4.2.11(iv). Moreover, the definition of M;(Q(%1:%2)) is also independent on the order in which we take the
limits and colimits in the definitions of RF;’(]:'Z-). More precisely, writing J = J; U J3, J¢ = Jy U Jy, for
J; C o, ome could define M (Q%1%2)) = lim, e(T,)RT; (F;), where

W) = (i) (cotin) (i) (colin) RO
nr TEJl mr TEJQ nr T€J3 mr T€J4

The definition of M;(2(#1:%2)) is the one for the choice J3 = J, = (). We have natural maps between the
M J(Q(“l*”Z)) for different choices of J; and for different ordering in each subset J;. Using the isomorphism
(4.16), Corollary 4.1.4 and Lemma 4.2.9 we obtain that these maps are quasi-isomorphisms modulo the maximal
ideal m. Then [Pil20, Proposition 2.2.2] implies that the ]\ZJ(Q(’“”‘?)) are quasi-isomorphic A-complexes.

In order to state the main theorem, we first write maps, which are the characteristic zero analogues of
(4.1)-(4.2) in Remark 4.1.8, obtained using the universal properties of limits and colimits

R (QU072)) — lim(colim), ¢ RT(X;, [ [ Z, ™" Fi) = lim RI(X;, F),
i mr i

TEJ
R (Q0+52)) ¢ lim(lim) e, RT(X;, [ [ Z77 Fi) = lm RT(X;, F).

ions TeJ g
Moreover, using the isomorphism (4.7) for any algebraic character (k, w) satisfying (4.6), we obtain
(4.19) RI (%)) @y (4 ) R = lim(colim) ¢ RI(X;, [ [ Z7™ w®™)) - RD (X, w®)),

@ mr TEJ
(4.20) RL;(Q¥152)) @) (4 ) R < lim(lim),e; RO(X;, [[ 207 w®*)) — RO(X, w®™)).

@ nr TeJ

Theorem 4.2.13. The A-complex MJ(Q('“’”Z)) is a perfect complex and is concentrated in degrees [#J,n].
Let k € ", w € Z such that ky, M_Tkp =0 mod p—1 for every p | p, w =k, mod 2 for every p and k, < —1
forpeJ, ky, >3 forp & J. Then

MJ(Q(m,m)) DA () R~ e(Tp) RI(X, g(@,w)).

Proof. The vanishing result and the fact that the complex is perfect follow from [Pil20, Proposition 2.2.1].
Indeed we can apply (4.16) together with Theorem 4.1.7 and Proposition 4.1.5 to show that the complex
modulo m is finite and concentrated in the right degrees. In order to prove the classicality result, recall that,
thanks to the condition &, w%m =0 mod p— 1 for every p | p, by (4.7), we obtain an isomorphism

MJ(Q('“’KZ)) QA (k,w) R~ RFJ((Q(E’w))m%d%
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where the right hand side is the limit over ¢ of (@M )peJ(COlimnp Jogs€(Tr) RU(X;, [1,0s " [Les Iy wkw)),
Hence applying the projectors, (4.19) and (4.20) give us maps

M (QUF152)) @) oy B — lime(Ty) (colim) ¢y RO(X;, [ Z7 ™ w®™)) « e(T,) RT (X, w®)),
@ Mr TEJ

M (0552 @ gy R € lim (7)) (lim) e RECK, T 207 w®) o ofTy) (X, b)),
@ nr TEJ

where we used that, by our assumptions on the weights and Lemma 4.2.9, the projectors e(T)y) and e(T},) are
the same. The classicality result modulo p (Theorem 4.1.7, combined with Remark 4.1.8) and Lemma 4.2.9
imply that these maps are isomorphisms modulo g. By [Pil20, Proposition 2.2.2] we deduce that they are
isomorphisms over R. U

Remark 4.2.14. We obtain the analogous result if we consider cuspidal cohomology, i.e. M;(Q(*1:%2)(—D)).
In this case, by [Pil20, Proposition 2.2.1] and Proposition 4.1.5, this complex is concentrated in degrees [0, #J].

Finally, we show that, after localising at a non-Eisenstein maximal ideal of the Hecke algebra, the complexes
My (Q1:52)) and My (Q(51:52) (= D)) give rise to a finite projective A-module interpolating the ordinary coho-
mology in degree #.J. More precisely, let us consider the Hecke sub-algebra T C R[Ty,a C O] generated by
Hecke operators outside a finite set of places containing the ones dividing 9ip, where 91 is such that I'(01) C K,
the level of the Hilbert modular surface X.

We have the usual action of the Hecke algebra T on RT'(X,w®®)) and RT'(X, w®®)(—D)), for any weight
(k,w). We need to verify that T acts on M;(Q*1:#2)) and M;(Q#1:%2)(—D)), compatibly with the classicality
isomorphisms of Theorem 4.2.13 and Remark 4.2.14. Let q be a prime ideal of Op coprime to p and 91. The
action of T, on classical coherent cohomology of X is given in terms of a correspondence (C, p1,p2) and we can
make sense of such smooth correspondence also over X°™ (see for example [Pil20, Proposition 15.1.1], where
this is done for the Siegel threefold). Since the correspondence parametrises g-isogenies and ¢ is coprime to p,
we obtain isomorphisms at the level of the Igusa tower and in particular an isomorphism

pg(Q(m,nz)) %pI(Q(m,nz)).

Using again the fact that the isogeny is coprime to p, we find analogous isomorphisms for the divisors given
by the vanishing loci of the (lifts) of the partial Hasse invariants. We hence obtain an action of T, on the
complex RI';(F)m.n = RT(X;, LI 1les I+ F) for F = Q"1:%2) /m? compatible with the natural maps
we introduced when varying n,, m, and 4. Since this action commutes with respect to the projector e(T), we
have produced an action of T;; on M, 7(Q1:52)) which is compatible by construction with the one on classical
coherent cohomology.

Now let p: Gp — GLg (Fp) be a Galois representation, unramified away from the primes not dividing p1.
We assume that p is absolutely irreducible. We let 9t be the associated maximal ideal of the Hecke algebra
T and Oy : T — IF‘p the corresponding morphism. Since M;(Q(%1:%2)) is a bounded above perfect complex,
the subalgebra of its endomorphisms generated by T is a finite A-algebra, which admits a decomposition as a
product of its localisations at the finitely many maximal ideals of T. We can therefore consider M (Q(%1:%2))gn

and, reasoning in a similar manner, M (Q(%1:%2)(—D))gy.
Proposition 4.2.15. The natural map of A-complexes My(Q¥F1:52)(—D)) — M;(Q¥1:52)) becomes a quasi-
isomorphism after localising at M. In particular, H# (M ;(Q51:52) (=D))on) ~ H# (M ;(Q"1:52))on) is a fi-
nite projective A-module, which specialises, for classical weights as in Theorem 4.2.13, to e(Tp)H#J(X, Q(E’w))gm.
Proof. We need to prove M;(Q"1:52) (—D))gn — M7(Q¥1:52))gn is a quasi-isomorphism. The second part of
the proposition follows then directly from Theorem 4.2.13. In order to prove that the map above is a quasi-
isomorphism we show that it is a quasi-isomorphism modulo m. By (4.16) and Theorem 4.1.7, we find that
the M;(Q152)(—D)) — Mz(QF1:52)) modulo m is given by

e(T,) RD(X1, 0™ (=D)) — e(Z;) RO(Xy, ™)),
for ky = —2(p—1) when p € J, k, = +2(p — 1) when p ¢ J and w = 2(p — 1). We are reduced to prove that
for every 0 < ¢ < n, the natural maps

H' (X1, w®")(-D)) = H'(X1,w®™))



30 GIADA GROSSI

become isomorphisms after localising at 99t. This follows from the description of the boundary (coherent)
cohomology given for example in [HZ94]. More precisely, we have a long exact sequence

0— H (X, w®") (D)) = H(X;,w®")) —» HO(X;,w®") @0p) — ...
— H'(X1,wE")(~D)) —» H' (X1,w®")) » H'(X;,wE") @0p)...

and we want to prove H*(X1,w®®) @Op)op = 0 for every i. It is shown in [HZ94, Corollary 3.7.8, Corollary
4.1.12] that the cohomology of the toroidal boundary of a Shimura variety with coefficients in an automorphic
vector bundle can be expressed in terms of the cohomology of the (restriction) of certain automorphic vector
bundles over the Shimura varities whose union gives the Baily-Borel boundary. The results of op. cit. are
actually proved in characteristic zero and the methods used are not expected to work in general in positive
characteristic. However, in the case of Hilbert modular varieties the Baily-Borel boundary is zero-dimensional,
since it is simply obtained by adjoining a finite number of cusps. Hence the study of the spectral sequence in
[HZ94, 3.5.10] does not require the use of Lie algebra cohomology. Moreover the sheaves Rim, W) where
7 : XPP — X is the canonical map, can be studied by means of group cohomology. All in all, the vanishing of
Hi(X,w®") @0p) after localisation will follow from the same statement for H(OXPZ Rir, w®®)), If any
of these groups is not zero, the contribution comes from an Eisenstein series which, on the other hand, gives
rise to a reducible Galois representation p’ : Gp — GL2(F,). Therefore, after localising at a non-Eisenstein
maximal ideal M we obtain H*(X,w®™) (=D)) ~ H (X;,w®")) for every i. O

4.3. Duality. The goal of this section is to define a pairing
(=, =) H* (M (Q5152)))gn 5 H#* (M e (QE =717 1782) (D))o — A

interpolating in classical weights the Serre duality pairing. Let us fix J C X, and let i; = #J. For every 1,
consider the modules
Amn =H (X, [[ 27 [T 227 7).

TEJ TeJ
Bpy=H"""(X;, [[ 70 [ 27 Fi © (w2 D (-D) ® Ay))
TEJ TeJ

which come with the Serre duality pairing, that we denote by
(= —)mmn : Amn X Bmn — Aj.
Recall H;"'(F;) = H" (RTY(F)) = (lim,, ), _, (colim,, ) o ; Amn and let

a7 Fy = () (i) B
TEJ TeJ

mr Nr

Lemma 4.3.1. The pairing (—, —)mn nduces a well-defined pairing

(= =) H{ (Fo) > HY 7T (Fi) = As.
Proof. For any q & J,p € J, let 15 € n—#J 1, € 7Z#7 be the vectors which are equal to zero everywhere but
at the g-th (respectively p-th) place, where they are equal to 1. Hence we have maps

Amg

[ bmg by
Am,ﬂ ? Am+1q>ﬂ’ AM7E ? Am,ﬂflpa Bm,ﬂ ? Bﬂ*1q7ﬂ7 Bm,ﬂ ? Bm,n+1p-

Since the pairings (—, =), are just obtained by Serre duality, they are compatible with respect to these
maps. Namely, the following diagram is commutative

Am-1,n X Br-1,n
J{amqfl bqu Y_>ﬂ_lqﬂ
A (==)mmn A
™m,n X Bmn ? i
ny, by 71T /
l ? <7’7>ﬂ-,£*1p
Am,ﬂflp X Bﬂ1ﬂ*1p

Therefore the pairings (—, —).m, » induce a well-defined pairing on the limits with respect to these maps. O
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Let QCZ=r17r2) (D) = w2~V (-D) @ Hom(Q"1%2) A ® Oxora). Taking the limit over i, we obtain from
the previous lemma, a pairing

(—, =)« H7(Qrm2)y o g7 (QR—R0=R2) (L D)) — A,

Note that we have an isomorphism of A ® Oxera-modules QZ~"1:7%2)(— D) ~ QK1:52) (— D) @4 o A, where ¢ is
the automorphism of A induced by the character

6 1(1+ 92, = A
((zp)py) = Hmﬁ k1 ((zp)p) T R2(y) 7,
p

which commutes with taking the twist of Q(**") by the homomorphism of R[[(Z,)"]] induced by the character
((zp)ps (Wp)p) = [T, #3yp ' - w((xp)p) 'K ((yp)p) ' Note that, similarly as in the proof of Proposition 4.2.11,
we have a well-defined action of the operator T'jc on H ﬁJC(Q@_’“’_”?)(—D)). Moreover, the classicality result

(Theorem 4.2.13) for this module reads as follows: for k € Z", w € Z such that k,, w%“ =0 mod p—1 for

every p | p, w =k, mod 2 for every p and k, < —1forpe J, k, >3 for p ¢ J. Then
H#JC(NJC(Q(2—R17—52)(_D))) N (kw) R e(Tp)H#JC(X7 g(z_ﬁ,—w))’

where Nj.(QZ#1:=%2)(_D)) is defined, similarly to Nj.(Q*1:%2)(—D)), by applying e(T-) to the complex
lim, R['/ (Q2~*1:7%2)(—D)). We now let

MFT (@) = H# (M QU )) gy, M (QEm752) (D)) = HA*(Ne(QP757%2) (= D)))on,
Theorem 4.3.2. (i) For any (f,g) € HfJ(Q(“l’“Q)) X HﬁJc(Q@_“l*_“z)(—D)), we have

<TJfa g> = <fv Tch>,

and hence the pairing restricts to a pairing
(=, =) s MFT(Qrr2)y s MET (QCF =R (- D)) — AL

(ii) It is a perfect pairing compatible with Serre duality, namely, for any J C Yo and classical weights
(k,w) as in Theorem 4.2.13, the following diagram commutes

MFT(QF152)) @) ) R X ME" (QE=r1=r2) (—D)) @5 () R R

e(Tp) H# (X, ™)) X e(Tp) H"#7 (X, w57 (=D))am

where the bottom pairing is the restriction of the classical Serre duality pairing on the ordinary part of
the cohomology localised at 9.

Proof. Recall that Z"*' C Homeont((1 + pZp)" ', Z5) is dense, where the embedding is given by sending
(ki,... kni1) to the character (z1,...,2n41) — [[2F. Consider the subset of Z"! given by H C ((p —
1)?Z)™+'. Since (p— 1) and p are coprime, this set is again dense in Homeont((1 + pZy)" ", ZX) and hence for
M = H#J(Q("“*“?)) or M = Hﬁjc(ﬂ(z_“h_“?)(—D)), the map M — [[ ;. wyem M ®(k,w) R is injective and so
is the map A — H(E,w) < R Hence to prove the identity claimed in (i), it is enough to prove it for the pairing
specialised in weight (k,w) for every (k,w) € H, which is a pairing

Y (@E) x B (W@ (~D)) —» R.

Then the statement follows using Lemma 4.2.10, which tells us that, when specialised at classical weights, F}
and U, are dual to each other for every p.
In order to prove that this pairing is perfect, it is enough to prove the commutativity of the diagram in (ii),

since the bottom pairing is perfect and the A-modules MfJ(Q(“l’“Q)), Mﬁ‘]c (QC=r1,=82)(_ D)) are projective
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by Proposition 4.2.15. By construction, we have a commutative diagram

HTT(QU52)) @4 o) R X HY (@175 (= D)) @4 () R

|

lim, (colim,, )rgs H#/ (X;, [, 0y T, w®))

|

H#J(X, Q(&w)) X Hn—#J(X7Q(2—E7—w)(_D))

where the vertical maps are the ones obtained in (4.19) (for the left ones) and in (4.20) (for the right ones).
As before, since the projectors e(Ty) and e(T),) are the same for our choice of (k,w) we can write analogous
maps for the image of such projectors. We need to check the pairings commute. This follows from (i). Indeed
the top square is commutative by construction. For the bottom one, if we take f € e(T,)H#”(X,w®™)) and
g € lim, e(TJ)(@mT)TgJH#JC (Xi L gs 27 wE ) we obtain

(e(T)i(f),g) L G(f), e(Tr)a) L (£, 9) = (£,5(a)) L (e(T) £,5(a)) 'L (F,e(T)i(9),

where for (a) and (a’) we used part (i) of the theorem and Proposition 3.1.2 respectively and for (b) and (') the
fact that the projectors are idempotent and g lies in the image of e(T},), f lies in the image of e(T;) respectively.
The remaining equality follows from the commutativity of the bottom part of the above diagram. O
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