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HLA-based time management and synchronization
framework for lean manufacturing tools evaluation

Jalal Possik1, Gregory Zacharewicz2, Anne Zouggar3 and Bruno Vallespir3

Abstract

Discrete event simulation (DES) is a method for digitally replicating the behavior and performance of real-world pro-
cesses, systems, and facilities. DES is widely applied in manufacturing, logistics, healthcare, and military domains. In some
cases, DES method is insufficient. On one hand, the simulation must be disassembled into subsystems and then distribu-
ted on a multiprocessing environment to enhance the simulation performance. On the other hand, to expand current
functionality and prevent future application development, a set of interacting simulations is required. In this project, the
IEEE high-level architecture (HLA) standard mechanisms are adopted to solve the interoperability problems between
heterogeneous components. Time synchronization between federates is essential to have all DESs running in parallel. In
this paper, we present a distributed simulation framework designed to assist decision-makers in making the best deci-
sions and prioritizing the adoption of Lean tools and techniques.
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1. Introduction

In the past 50 years, the advancements in simulation soft-

ware and the computing field have helped DES (Discrete

Event Simulation) to become one of the most widespread

modeling and simulation techniques. The pioneering

period dates to the late 1950s and continues to the 1960s.

During this period, simulations were performed on first-

generation computers. These simulations were designed

and developed using machine code. Moreover, the 1960s

witnessed drastic improvements in the field of DES. This

is due to the development of programming languages and

the increased reliability and power that computers could

offer during that time. In addition, many simulation soft-

ware were developed in this period such as GPSS and

SIMSCRIPT.1 The period of innovation started in the

1970s. It embodies persistent improvement and innova-

tion. Simulation software continued to progress along with

the advancements in the computing field. Numerous new

programming languages appeared (i.e. SLAM, GPSS-H,

etc.).2 In addition, microcomputers were first introduced

in the late 1970s. During that time, everything was being

prepared for the ‘‘revolution’’ to occur in the 1980s where

microcomputers became more commonly available in

organizations and enterprises due to IBM’s introduction to

the market. During this period, powerful microcomputers

became accessible by most organizations, and new simula-

tion systems and languages appeared (HOCUS, SIMAN/

CINEMA, and GENETIK) incorporating new features

especially for manufacturing systems’ modeling and simu-

lation.3 Thus, the manufacturing sector started adopting

DES as a decision-aiding tool. Since 1990s, the world wit-

nessed the success of personal computers, workstations,

and servers, as well as a remarkable evolution of

Windows, Mac, and Linux operating systems. These tech-

nologies helped the field of DES and enabled models to be

executed at high-speed rates.4 The evolution of DES cov-

ered many areas such as software integration, visual inter-

active modeling, and simulation optimization, and it is
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widely applied in manufacturing, logistics, healthcare, and

military domains.5

In some cases, DES alone is not an effective solution.

The simulation system must be disassembled into subsys-

tems or nodes to be parallelized or distributed on a multi-

processing environment for performance enhancements.6 In

other cases, a collection of interacting simulations is needed

to form a prominent system that extends the existing one to

offer additional functionalities while distributing the com-

ponents on a network of processors.7 For all the aforemen-

tioned scenarios, time management and synchronization

mechanisms are necessary to avoid timing discrepancies

and to ensure precise event interconnections and data com-

munication between subsystems or simulations. In addition,

companies are constantly looking for a solution to assure

interoperability between diverse heterogeneous systems

and applications. Interoperability becomes crucial for the

modern economy and a key requirement for most compa-

nies. Nevertheless, interoperability is a difficult and com-

plex task to achieve. To solve interoperability issues, a

tremendous advancement was made through simulation

integration resulting in the birth of distributed simulation

(DS).8 Different standards exist for DS. In this project, the

IEEE high-level architecture (HLA) standard mechanisms

are adopted for the DS implementation process.

Concurrently, managers and engineers are in continuous

search for supported methodology and cross-analysis for

effective Lean management implementation.9,10 One of

the major challenges that managers face is the difficulty to

choose the Lean tools and techniques that best fit their

company and lead toward better productivity and qual-

ity.11–14 Managers are not taking into consideration the

context in which Lean tools should be applied, they often

rely on their own experience and subjective appreciation.

However, there exists a relation between the context and

Lean techniques. Consequently, different scenarios showed

Lean implementation failures. This constitutes a hypoth-

esis in this project. The research literature consolidates this

research path to identify and analyze the possibility of con-

texts influencing the choice of the prior Lean techniques to

implement. Indeed, the scientific context is targeting to

test various configurations revealing the beginning of con-

text influence (e.g., market fluctuation, demand diversifi-

cation, or uncertainty of resources). Furthermore, using the

right tools in a convenient context reflects the company’s

profitable or poor implementation of Lean.

The goal of this project is to guide decision-makers

willing to implement Lean Manufacturing in their indus-

tries to choose the right Lean tools that suit their industry

and economic contexts. For this purpose, a DS framework

has been developed to simulate an industrial model in par-

allel and simultaneously with the model having Lean tools

applied on (predefined tools are set in place for simulation

target). A graphical interface has been developed for the

users to choose the Lean tools to load, test, and

experiment. The user can also fill in the information

related to the market demand, the number of references,

the setup time and processing time of each machine, the

travel time between machines, the planned/unplanned

downtime of each machine, the defects rate, and so on.

Users are also able to start/pause/stop the simulations or

change the simulation speed factor from this platform.

Federates that represent the Lean tools can run on a net-

work of processes, on different machines and different

operating systems, which makes this framework powerful

and independent from the computer resources.

By varying the data input and the industrial contexts

during the simulation run, the user can easily compare the

simulation results and choose the ultimate Lean tools that

best fit the organization’s production and financial targets.

The remaining part of this paper provides a structured

approach of DS framework developed to support the

decision-makers in taking the right choices and priorities

for the implementation of Lean tools and techniques.

2. Literature review

The simulation in manufacturing and supply chain fields

became a widespread scientific approach because of the

ability to reproduce a virtual system that simulates the real

production system.15 In addition to ‘‘What If’’ analyses to

observe and understand the Supply Operations16 and to

forecast the impact of alternative configurations,17 the

DES, in particular, is becoming one of the preferred

research topics nowadays especially in the production

domain.18 DES was often considered as a dynamic tool

that allows the visualization and quantification of techno-

logical and operational changes in processes.19 It is con-

sidered an effective tool for process improvement. In

addition, it is a method used in different environments

(manufacturing plants, queuing systems, distribution sys-

tems, inventory and delivery systems, healthcare, transpor-

tation networks, communication networks, and many

others) to simulate a real system or process. DES is a fre-

quently used tool for Production Planning and Control

problems. It represents more than 45% of the simulation

models in the studied samples.20 Further studies have

made the attempt of combined methods as DES and Agent

technology for studying complex supply network21 to be

able to integrate micro-behaviors of individuals and

macrosystem to guide the managers in their decision-

making process. In a complex production environment

with a complex demand evolution, many authors use DES

to quantify the effect of Lean implementation on perfor-

mance measures.22,23

However, the traditional DES approach becomes

insufficient in complex simulation contexts, requiring

interoperability between various components and resource-

intensive calculations. Over the last two decades, hybrid



DS, defined as an approach that integrates multiple model-

ing methodologies (DES, system dynamics, agent-based

simulation, etc.) has increased in popularity in the model-

ing and simulation field.24,25 In this case, DS becomes nec-

essary to solve the interoperability problems between

multiple heterogeneous components. The majority of the

early DS applications were developed in the defense sector

to train the army at a minimal cost and without risk.26

Several simulators, including flight simulators and

computer-generated forces, were integrated to create a

fully immersive virtual environment for hypothetical and

real-world modeling and simulation scenarios.27 Some

hybrid, parallel, or distributed systems and applications

have been developed outside of the military industry. To

simulate a complicated transportation network, Bae et al.28

created a hybrid and collaborative model that combines

agent-based simulation, an auction mechanism, and opti-

mization. Kim et al.29 built a parallel simulation system to

model and control air traffic operations. To address intero-

perability concerns and improve the reusability of discrete

event systems, Cao30 designed a distributed interactive

simulation based on HLA for emergency material delivery.

Different hybrid and distributed systems and simulations

have been developed in the production and manufacturing

domain to improve manufacturing processes, prevent fail-

ures, shorten lead and repair times, and optimize produc-

tion systems.31–33 However, to our knowledge, no

simulation system has yet been created to compare the effi-

ciency of Lean tools based on the industrial context of the

company in order to avoid the adoption of tools that will

not benefit the industry or that might lead to financial

failures.

Nevertheless, in terms of both dynamism and heteroge-

neity, DS systems are becoming increasingly complex and

difficult to implement. The level of difficulty is character-

ized by the interoperability barriers in terms of data, appli-

cations, and middleware heterogeneities.34 In addition to

the interoperability barriers, time management and syn-

chronization between different running simulations are

considered another challenge that may face a DS imple-

mentation.35 There are two main DS standards: a European

standard called functional mock-up interface (FMI), which

was recently developed and managed as a Modelica

Association Project (MAP), and an international standard

called HLA, which was developed in the early 1990s by

the US Department of Defense (DoD) and transformed into

an open international IEEE standard in the year 2000.

FMI supports model exchange and co-simulation of

dynamic models based on Extensible Markup Language

(XML) files and compiled C code. This standard was

developed during a project named MODELISAR. It is

now developed and managed as an MAP.36 FMI 1.0, pub-

lished in 2010, is the first version of the FMI. This version

was followed by FMI 2.0 issued in 2014. FMI was devel-

oped to improve the simulation models’ exchange between

the suppliers and the original equipment manufacturers. It

is now supported by more than a hundred simulation tools

mostly used in automotive industries.37 HLA standard has

three versions: HLA 1.3 published by the DoD in 1998,

HLA IEEE 1516-2000 published in 2000 by IEEE, and

HLA IEEE 1516-2010 known as HLA evolved. The next

version of HLA (HLA 4) is currently under development.

This version includes new object modeling capabilities as

well as simulation security improvements.38

Due to certain significant limitations in the FMI stan-

dard, this work employed the HLA standard to communi-

cate data among running models. FMI lacks the time

management and synchronization features found in the

HLA standard.11 In FMI, programmers must create a mas-

ter algorithm to coordinate the steps of the co-simulation.

The master algorithm is responsible for the synchroniza-

tion and the exchange of data between the simulation

models. FMI does not have HLA mechanisms that enable

the interaction with external heterogeneous DS compo-

nents. Such interactions are made possible by HLA’s pub-

lish/subscribe (p/s) and time management mechanisms.

Furthermore, FMI does not allow time stamp events, mak-

ing event-driven simulations difficult and time-consuming

to conduct. Moreover, FMI is reliant on the master unit

and operates as a single black box entity, which is not the

case under the HLA standard.39

3. Materials and methods

The main goal of HLA standard is to enable the simulation

interoperability and reuse of simulations distributed on

local or wide area networks and implemented in different

programming languages and operating systems. The con-

nected simulation components form a federation. The

components are called federates. Using the p/s mechanism

of HLA, components can exchange data and collaborate

information. The HLA is a centralized architecture, where

all connected federates are connected to the central run-

time infrastructure (RTI). The federation object model

(FOM) in Figure 1 is an XML file that contains all shared

objects/attributes and interactions/parameters between

connected federates. The developed framework discussed

in this paper is composed of a master federate developed

on Java and different DES models. The master federate is

responsible for the orchestration process of all running

models. One of the models represents the current scenario

of the simulated company and the others represent the

Lean tools implemented in the company. The HLA-based

DS framework is developed using the Java library of pitch

technologies40 and JaamSim DES for the models’

development.41

Each of the linked federates begins by determining

whether the federation exists in order to build or join the

federation accordingly. Following the registration of object



instances, each federate declares the Objects/Attributes

and Interactions/Parameters that should be used for either

the publishing or subscription processes (refer to Figure 2).

The p/s mechanism of HLA is employed to collaborate

data between federates. Data can be exchanged in two

ways: as an interaction with its parameters or as an object

with its attributes. When a model delivers an object or an

interaction to the RTI throughout the simulation process,

all subscribed models receive this object or interaction at

the appropriate time.

The updateAttributeValues() method can be used by any

of the linked federates to communicate the updated

objects/attributes to the RTI. Similarly, using the

sendInteration() function, a federate can publish an interac-

tion class with its associated parameters. Figure 3 depicts a

business process modeling and notation (BPMN) flowchart

illustrating a tiny example of HLA-based communication

between three connected federates. In this example,

Federate 1 uses the function updateAttributeValues() to

update its registered objects/attributes. Through the method

reflectAttributeValues(), an RTI callback is issued to all

associated federates at the appropriate time. Following this,

Federate 2 sends an interaction to the RTI. Through the

method receiveInteraction(), an RTI callback is issued to

all associated federates at the appropriate time.

The primary objective of this project is to simulate the

basic scenario of the company on JaamSim, a DES plat-

form, in parallel with other DESs, each of which repre-

sents one or more Lean tools applied to the manufacturing

model. All the DESs, as well as an external Java applica-

tion, are linked to the same RTI. Using this platform,

decision-makers can induce industrial context changes

during a simulation run to see how Lean tools react to

such a change or fluctuation. They can experiment the

Figure 1. HLA federation.

Figure 2. Publish/subscribe mechanism of HLA.



tools response to a market fluctuation, demand diversifica-

tion, uncertainty of resources, and others. Furthermore,

during the simulation run, users can change the input data

(machine processing and setup times, transfer time

between workstations, planned/unplanned down time, etc.)

to see how such a change might affect the production pro-

cess and which tool would serve as a solution for such a

change (refer to Figure 4).

The following sections discuss the time management

implementation used to synchronize the operating DESs,

the DES configuration, as well as the key performance

indicators (KPIs) utilized to compare production results.

3.1. Time management and synchronization

The RTI offers optional time management capabilities to

help federates organize the interchange of events. Events

can be linked to a certain point in time, and the RTI can

guarantee causal behavior. In a federation, one or more

federates can completely disregard time. The RTI does not

coordinate time among federates by default. One of the

HLA’s features is that it not only enables a diverse set of

time management rules but it also forecasts interoperability

between federates with different policies. Time constantly

moves forward in a federation. The sense of the present

time, however, may differ between connected federates.

The time management mechanism of HLA is responsible

for controlling the progression of each federate along the

time axis of the federation. Time advances are coordinated

to the object management services so that federates will

get their information in a precise and causally ordered

manner.

Federates can be assigned as regulating, constrained, or

regulating/constrained. A regulating federate can control

the logical time progress of constrained federates. The

time regulating and time constrained services are initially

disabled.

To enable the time management services, a federate

requests to be a time regulating federate using the method

EnableTimeRegulation(), or to be time constrained using the

method EnableTimeConstrained(). A federate could be time

regulating/constrained at the same time. When these two

methods are used, the Federate Ambassador calls back the

TimeRegulationEnabled() and TimeConstrainedEnabled()

methods. In this study, all DESs have the time regulating/

constrained feature activated, allowing them to operate in

parallel at almost the same simulation time. However, both

time regulating/constrained mechanisms are disabled in the

external master application because this federate receives

time stamped data from each federate, making it indepen-

dent from the federation time axis.

Different time advancement services, such as event-

based, time-step, and optimistic, can be requested.

Because this work is using event-based federates, it

employs the event-based time advancement service. This

service’s objective is to process all events in time stamp

order (TSO). In event-based federates, the method

nextEventRequest() is called to request a logical time

advancement. Each federate declares a positive value for

the lookahead. The lookahead being the time delay that

cannot be exceeded between simulations, it is essential to

allow the processing of concurrent events having different

time stamps. The larger the lookahead value, the longer it

takes for messages to reach the other federates. With a

zero lookahead, messages should reach the other federates

instantly. The aforementioned HLA services are used to

prevent messages from being delivered out of sequence.

Figure 4. DS framework architecture.

Figure 3. BPMN process to update attributes and interactions.



When a federate calls the nextEventRequest() method to

request a time advancement and communicate new events,

the RTI ensures that no messages with a TSO smaller than

the lookahead time and the federate actual time combined

are delivered.

The orange triangle in Figure 5 displays the current

simulation time of each federate. Each federate’s looka-

head value is shown by the purple bar. During the simula-

tion process, the lookahead for each federate is 5 s. The

DS will be slower if the lookahead is too small. Figure 5

shows that lookahead 5 is picked as a compromise between

instant parallel communication and simulation slowness.

The goal of this study is to run the DESs representing

the Lean tools simultaneously in parallel and inject the

same input data to all of them to test the reaction (output

result) of each implemented Lean tool. Each DES simula-

tor might have a different simulation time or running

slower or faster than other simulators. This HLA config-

uration will pause/resume each DES numerous times dur-

ing the DS run to maintain simulation parallelism. As a

result, no federate’s logical time can exceed the minimum

existent logical time plus its lookahead. As seen in

Figure 5, all simulations run at nearly the same logical

time, and the lookahead is never exceeded.

3.2. DES tool

JaamSim, an open-source Java-based simulator, was uti-

lized in this research as the DES tool. JaamSim has built-

in objects for modeling and simulation. Users with Java

programming skills can create new objects and modify

current built-in objects. The JaamSim model may be auto-

matically launched from the terminal or command line. To

enhance performance, tags can be appended to the com-

mand to start the simulation without a graphical interface.

JaamSim’s graphical user interface (GUI) is split into six

major components. The first component is the control

panel window, which provides a variety of simulation con-

trol options. The second is the model builder, which

allows the user to search for various items and choose the

entities required to create the simulation model. Users can

select from a variety of graphic objects, probability distri-

butions, basic objects (FileToVector, FileToMatrix,

ExpressionLogger, TimeSeries, etc.), process flow objects

(EntityGenerator, Server, Queue, Branch, etc.), calculation

objects (Controller, Polynomial, Integrator), and fluid

objects in the model builder palette. This project was cre-

ated using JaamSim version 2019-05. It is compatible with

both Windows and Unix operating systems.

JaamSim is a black box simulator that does not commu-

nicate with other systems and is incompatible with DSs. A

significant effort has been put into building an HLA inter-

face for JaamSim, which will allow us to link JaamSim to

external HLA compliant components in order to collabo-

rate and exchange data with those components. This work

introduced a function to all JaamSim objects that reads all

attributes set to JaamSim objects; if an entity contains an

attribute named ‘‘waitRTIOrder,’’ it will be regarded as an

HLA entity capable of collaborating with other systems

and exchanging data, as shown in Figure 6. This entity

Figure 5. Time management and synchronization of connected Lean tools federates.



seeks a time advance from the RTI during the simulation

run. Following this, it will await the RTI answer before

moving on to the next entity. If the next entity does not

have a ‘‘waitRTIOrder’’ attribute, the following entity will

be handled directly. This process is repeated throughout

the simulation process until the simulation is completed.

An HLA interface is developed for the master external

platform designed for users to visually define their suitable

models as well as the Lean tools settings. As shown in

Figure 7, both interfaces are linked to the same RTI in

order to exchange messages (objects/attributes and interac-

tion/parameters). Messages are transmitted in both direc-

tions: JaamSim gets the initial data input from the External

platform before or during the simulation run, and then deli-

vers the output result to the External platform, which

draws them into real-time graphs.

3.3. A quick overview of the case study and tested
Lean tools

The case study used in this work comes from the aeronau-

tical industry sector and is named here ‘‘Aerocomp’’ for

confidentiality.42,43 The product manufactured by

Aerocomp is an aeronautical fastener consisting of a

metallic cylinder section with bearings on the right and

left sides. The gears are then welded and fitted onto the

back of the metallic cylinder. The metallic cylinder has a

certain length and diameter given by the client in a specifi-

cation document. Raw materials are first transported to the

cutting shop based on the order book, where the metallic

cylinder is cut to the exact specifications requested by the

client. The goods in process are then transported to the

treatment shop, where a layer of zinc is applied to the

product. The product is subsequently sent to the assembly

shop, where four workstations create the semi-finished

axis, add the bearings, and then fix the gears. Finally, it is

delivered to the machining shop, where two workstations

insert the pins and send the finished aeronautical fastener

to the warehouse for distribution (refer to Figure 8).

The Lean-free situation is represented by the current

model (Scenario 0). The following describes briefly the

Lean tools implemented in this project:

The Pull technique seeks to reduce and eliminate over-

production. In the Pull scenario, when a machine’s work

in progress (WIP) surpasses a preset number of units, it

sends a signal to the upstream machine to cease supply-

ing items in process.22,12,44

SMED is designed to reduce/eliminate waste caused by

a shortage of materials, to keep tools and machines

clean, and to manage the workshop space associated

with setup/changeover procedures. SMED decreases

the changeover time required to setup a machine.45,46

5S seeks to create a self-explanatory, organizing, and

improving workplace. It is a collection of concepts that

enhance the workplace environment, which improves

the quality and efficiency of production.47,48

Cross-training seeks to develop workers’ multiskills.

This broadens the scope of the job and ensures that the

operators’ workloads are balanced.49,50

Figure 6. BPMN process of JaamSim developed HLA module.

Figure 7. HLA interfaces.



Ucell is concerned with product flow. Machines are

situated near to one another to reduce transfer time

between them.11,51

Poka Yoke means ‘‘mistake-proofing.’’ This is a

straightforward tool that prevents defective goods in

progress from being sent to the next step. The funda-

mental idea behind this method is to detect, remove,

and repair mistakes at their source before they reach

the consumer.52,53

3.4. Operating instructions for the platform (master
application)

The master component builds the HLA federation after the

platform is started. Following the establishment of the

HLA federation, the master federate joins the federation

and launches the other federates, which also join the feder-

ation. It is worth noting that the simulations have not yet

been loaded; they have only joined the HLA federation.

At this point, 5S, SMED, Poka Yoke, Cross-training, Pull,

and Ucell federates are all linked to the federation’s RTI,

along with the master federate (external application). The

communication between federates is based on the p/s

mechanism of HLA. All configured objects/attributes and

interactions/parameters can be found in the FOM file of

Figure 9.

The user begins by running the master federate and

choosing one or more Lean tools to load before beginning

the simulation process. For instance, in Figure 10, all avail-

able tools are selected (5S, SMED, Poka Yoke, Cross-

training, Pull, and Ucell). To load these DESs, the user hits

the ‘‘LOAD’’ button. The Master federate publishes the

interaction ScenarioLoad to the RTI, and all subscribing

federates to the ScenarioLoad interaction load their DES

accordingly. The federate that successfully loaded its simu-

lation publishes the interaction ScenarioLoaded with the

name of its federate (as a parameter—FederateName) to

the RTI. When a federate encounter an error while loading

its simulation, it publishes the interaction ScenarioError

with both arguments, FederateName and Error. The mas-

ter federate, which is the sole federate subscribed to

ScenarioLoaded and ScenarioError interactions, receives

all loaded scenarios with their federate names, as well as

all scenarios that experienced issues (FederateName and

the Error encountered).

After loading the DESs, the user has the option of

changing the simulation speed factor on the master feder-

ate, which is set to ‘‘1.0’’ by default. The simulation speed

may be doubled by hitting the ‘‘+ ’’ symbol button.

Using the ‘‘2’’ symbol button, the user may slow down

the simulation. Furthermore, the user may enter the simu-

lation speed factor in the text box. A SimulationControl

and RealTimeFactor interactions are configured to publish

simulation speed data to all JaamSim federates.

The data entry procedure comes next. In this work, the

master federate plays two major roles. The first role is to

provide all running models with input data, and the second

is to collect the outcomes of the DS from running federates

in order to plot them and provide the user with graphical

results information. Input/output data are configured as

objects/attributes in the HLA federates. The FOM file in

Figure 9 displays the input data that must be entered on the

master federate, such as the processing time required on

each machine, the setup time required to switch from one

Figure 8. Case study JaamSim model.



type of product to another, the travel time between work-

stations, the planned and unplanned downtime intervals for

each workstation, the time required to fix the downtime on

each machine, the number of workers in each shop, the

defect rate, the Lean tools configuration, and others. In

addition, Figure 9 displays the output variables, including

lead time, WIP, production throughput, and defect rate,

that the master federate uses to depict the co-simulation

outcomes during the simulation run. All of the input/output

variables mentioned above have been added to the FOM

file and configured as objects/attributes in each federate’s

HLA interface. However, both in the FOM file and the

HLA interfaces, all of the interactions that take place are

set up as interactions/parameters. Any of the connected

federates can use the updateAttributeValues() function to

send the modified objects/attributes to the RTI. A federate

can also publish an interaction class with its associated

parameters by utilizing the sendInteration() method.

When the user clicks the ‘‘Send’’ button, the master

federate publishes the objects/attributes to the RTI, and

based on the p/s mechanism, the RTI then distributes them

to all subscribed operational federates.

The user then clicks the green ‘‘Start’’ button to concur-

rently run all loaded simulations. The co-simulation is

handled by the time management services and mechanism

of HLA using both methods nextMessageRequest() and

timeAdvanceGrant(). A federate must request the time

advancement during the DS run and wait for the RTI call-

back function timeAdvanceGrant() in order to move for-

ward in simulation time. This regulates how quickly each

federate advances in time, enabling us to run the models

concurrently. This process is detailed in section 3.1.

Figure 9. FOM file configuration.

Figure 10. Master platform home interface.



Simulations can be paused or terminated at any time.

During the simulation run and based on HLA’s p/s and

time management mechanisms, if the user changes any of

the input data, this change will be received by all ongoing

simulations. Furthermore, the output data supplied to the

master external application will alter accordingly. This

enables us to compare the outcomes of Lean tools in

response to any input or context change.

3.5 KPIs

Performance indicators are the instruments used by

decision-makers and managers to assess, comprehend, and

verify whether the business is on track to meet its goals or

deviating. The establishment of KPIs should begin with

the firm’s plans and the goals that the organization wishes

to achieve. It is critical to select KPIs that are tailored to

the organization’s specific requirements and conditions.54

In this study, we picked four KPIs to measure the indus-

try’s four primary objectives (quality, flexibility, cost, and

responsiveness). The developed platform is integrated into

the master federate, which oversees receiving/sending data

from/to other federates (Lean tools). KPI values are shown

concurrently in real-time throughout the simulation pro-

cess. The following are the KPIs that were used.

3.5.1. KP1—lead time. Lead time is the amount of time

needed to fulfill the customer’s request, from the time the

order is received until the final product is delivered.55

Companies strive to reduce lead times and meet client

deadlines on a continuous basis. This section explains the

average lead-time calculation, which is the total number of

lead times divided by the total number of orders placed,

because the lead time is most likely different for each

order. The value of lead time on the lead-time graph is

automatically updated for all ongoing DESs representing

the different Lean tools retained in this study.

Knowing that:

� Sp: set of products produced by the company. Each

reference is denoted by XRFi, where i= 1, . . . , n.
� Sp = fXRFiji= 1, . . . , ng.
� (t): period of time over the global planning horizon.
� DXRFit

: demand of the product XRFi at a period of

time (t).
� D̂XRFit

: demand fluctuation of the product XRFi at a

period of time (t).
� DCu

: variety of demand required by client (Cu).
� Qti: quantity of products of type (i) produced at

period (t).

The designed KPI can be written as follows:

8i= 1, . . . , n, t 2 f0, . . . ,mg, and whatever are the

assigned values to DXRFit
, D̂XRFit

, DCu
, and Qti, we

define the following elements:

Oi0: the simulation time where the product XRFi started

the production process;

OiF : the simulation time of product XRFi at the end of

the production process.

KP1 : leadtimeXRFi
=OiF�Oi0, lead-timeof theproductXRFi

3.5.2. KP2—WIP. In this production case study, there are

only stocks at the beginning (raw materials) and at the end

(finished goods) of the production process; therefore, it

will be considered that the WIP is directly linked to the

cost of partially finished products in the manufacturing

process.56 As shown in Figure 11, the manufacturing pro-

cess is divided into three stages: raw materials, WIP, and

finished products. The cost of production can include the

cost of raw material storage, the cost of WIP within pro-

duction lines, the cost of finished goods in the warehouse,

the cost of daily human labor, the cost of machines, and

other costs. In all cases, the assumption is that the cost of

daily human labor and the cost of machines are identical.

They reflect the common stable costs, and the variations

in scenarios will have no effect on this stable part but will

influence the variable elements such as WIP. The costs of

raw material storage and completed product storage are

considered neglected since the supplier is regarded as a

reliable partner that delivers the required components on

time. The finished products are delivered as soon as they

are produced. As a result, the cost of WIP inside the pro-

duction line can be testimonies about the variation of pro-

duction costs. Analysts can track the WIP inventory of the

company to guarantee that costs are allocated properly.57

The major purpose of maintaining WIP as low as pos-

sible is to reduce the associated expenses with in-process

products (in the machines and in the queue). WIP prod-

ucts, in fact, necessitate storage, as well as floor space

and a variety of utilities to keep them running.

Furthermore, warehouses may consume electricity, and

labor costs are frequently required to preserve and safe-

guard WIP products. Furthermore, WIP in queue will

block the production flow, resulting in decreased

Figure 11. Manufacturing stages.



production rates and, as a result, missed client deadlines.

When raw materials are introduced into the manufactur-

ing process, they become WIP. However, if they have

not yet completed the entire production process, they are

considered unfinished goods.

Regarding the case study and the steps through

which the products are moving, we can write the

following:

8Mp,p=1, . . . ,U , 8i=1, . . . ,n, t 2 f0, . . . ,mg, DXRFit
,

D̂XRFit
, DCu

, and Qti, we define the following elements:

queueMpt
: the queue of machine Mp at time t;

eMpt
2 f0, 1g: takes the value 1 if Mp is in a working

state, otherwise it is equal to 0.

KP2 : WIPt =
XU

p= 1
(eMpt

+ queueMpt
),WIP at time t

3.5.3. KP3—production throughput. Production throughput

refers to the quantity of products that can be produced/

manufactured within a period of time.58 The production

throughput is calculated each day (eight working hours) in

the developed DS framework and is updated during the

simulation process. Product complexity and nature,

machine setup times, defective goods, worker skills, and

other factors can all have an impact on production

throughput.

Production throughput can be expressed as follows:

8i= 1, . . . , n, t 2 f0, . . . ,mg, 8k = 0, . . . , 241, the

number of working days over 1-year simulation hori-

zon, each day being equivalent to eight working hours.

KP3 : Production throughput=
Xn

i= 1

X8k + 8

t = 8k + 1

Qti, production throughput per day

3.5.4. KP4—defect rate. The defect rate is the most accu-

rate predictor of product quality.59 It is used to monitor

and assess productivity, projects, services, programs, and

processes. Companies strive to lower defect rates in order

to improve product quality. In addition, lowering the fail-

ure rate enhances on-time delivery and production

throughput.

Defect rate can be expressed as follows:

8i= 1, . . . , n, t 2 f0, . . . ,mg, 8k = 0, . . . , 241;
tti 2 f0, 1g: takes the value 1 if the product XRFi is

defective, otherwise it is equal to 0.

KP4 : defect rate=

Pn
i=1

P8k+8
t=8k+1 ttiPn

i=1

P8k+8
t=8k+1Qti

!
3100, defect rate per day

The aforementioned KPIs are used in this work to

demonstrate the impact of each Lean tool on the manufac-

turing system and how it can effectively help a company

achieve its key objectives. Figure 12 displays the general

concept of the DS framework. During the simulation run,

industrial context changes are induced to the seven models

running in parallel. The first model represents the current

situation of the company depicted in Figure 8. The other

models correspond to the same model that has been modi-

fied with Lean tools’ implementation. Attractive charts are

set up to display the co-simulation results based on the

KPIs indicated above, allowing the user to monitor the per-

formance of each applied Lean tool. These KPIs stand in

for the business’s industrial goals. This paper emphasizes

the simulation part of this work. Possik (2019) describes in

full the experiments and findings that are relevant to pro-

duction and industrial concerns.11

4. Results and discussions

The major goal of this project was to present a co-

simulation framework that simulates several Lean tools

along with the current model of an aeronautic company

in parallel in order to investigate the outcomes and

impacts of the tools on the production process. Decision-

makers that need to research how lean techniques will

affect their industrial goals will find this DS tool to be of

great relevance. Users of this tool only need to alter one

or more input variables (such as the processing and setup

times of machines, the travel distances between worksta-

tions, the Lean configuration, unplanned and planned

downtime, and others) or an industrial context (such as

market fluctuations, demand diversification, resource

uncertainty, and others) to see which Lean tool responds

to the change more effectively. In the KPI graphs, each

Lean tool/technique is represented by a line color (see

Figure 13).

A 1-year simulation for each model takes around

8 min on a workstation with an Intel� Xeon� E5-1600 v4

Processor (up to eight cores, 3.7 GHz), 16 GB of RAM,

an NVIDIA� Quadro� P6000 graphics card, and Linux

operating system. Running the seven models sequentially

would take roughly 56 min, without including the time

required to compare the models (Lean tools) for

each input alteration to identify which tool is performing

better than the others. However, running all the models in

parallel takes approximately 8.5 min. Given that each

federate is operating on a different computer with the

same specifications, the network communication and



time management/synchronization used to make the fed-

erates run in parallel account for the 0.5-min difference

between running one tool and running all the tools simul-

taneously. This showed that the DS performs 84.8%

faster than running the simulations serially. In addition,

on the DS platform, the decision-makers have their KPI

results plotted on a single window, with the outcomes of

each tool shown in a distinct color. This makes it incred-

ibly simple and obvious for users to select the tool that

will respond to input/context changes the most effec-

tively. The outcome comparison in serial simulation must

be performed manually, which adds to the process’ com-

plexity and time requirements.

Figure 13 depicts the outcomes of three different sce-

narios run on the DS architecture to test the responsiveness

of Lean tools. The red circles in the graphics indicate the

location of the disturbance or context fluctuation. In the

market fluctuation scenario, 5S demonstrated to be the

best in class during these fluctuations. The WIP value was

improved by SMED and Poka Yoke. However, at a strong

demand rise (+30%), both were unable to limit WIP over-

capacity, resulting in a high WIP growth. In a market fluc-

tuation scenario, Ucell and Cross-training have no

substantial improvements in production.

The production of 2, 4, 8, and 16 references has been

tested in the demand diversification scenario. Lead-time

value is reduced during this scenario with Poka Yoke and

SMED tools. However, when the number of references

reached a specific threshold, the aforementioned tools

experienced overcapacity in their WIPs, resulting in an

increase in lead times. When it comes to demand diversifi-

cation, Pull and 5S are the best in class. However, when

the number of product references was extended to 16, the

lead time for 5S grew dramatically. Even though, Pull kept

the lead-time consistent. During an operator disturbance,

Cross-training was the only tool capable of keeping the

production running.

The preceding findings are useful and should be consid-

ered when a company is confronted with any of the scenar-

ios listed above. Actually, we highlighted the application

of the developed DS framework for enterprises interested

in experimenting the implementation of Lean tools in their

manufacturing processes. This tool can be used with many

settings and configurations to suit the needs of users’ busi-

nesses or industries. They can test a variety of scenarios,

adjustments, and input configurations.

Simulating each tool sequentially, waiting for findings,

and storing them keep the user from performing

Figure 12. Overall concept.



immediate analysis and force him to cumulate the output

results on each simulation run. The aim behind the new

digitally produced platform is to allow for a common

‘‘input introduction’’ for several tools running concur-

rently. The developed DS framework constitutes a

decision-aided framework for managers to help them in

selecting Lean tools that best suit their organization pro-

duction and financial targets. The parallel HLA-based

simulation allows real-time monitoring of Lean tools

response, which helps managers to choose one Lean solu-

tion versus another. This platform is simple to use, with

the production line represented by modular components

that the user may edit, combine, move, and remove to

depict his own industrial system. Market condition

updates, internal production line execution, and any type

of disruption can be represented, modeled, parameterized,

and simulated.

5. Conclusion

Leading manufacturers are progressively incorporating

Lean principles into their manufacturing processes. Lean

methods and approaches are becoming increasingly impor-

tant in eliminating or reducing waste and non-value

activities in the production process. However, Lean

deployment necessitates an in-depth examination of the

company’s context to implement appropriate Lean prac-

tices and secure financial and quality improvements. Many

manufacturing businesses are inefficiently implementing

Lean tools, even though Lean offers benefits regardless of

the form of the applied tools; most of these organizations

are experiencing failure. This paper introduces a DS plat-

form that enables interoperability between a master feder-

ate and other components representing the implemented

Lean tools and techniques to experiment their response to

disturbance and industrial context fluctuations. A signifi-

cant effort was put into designing a new module for

JaamSim DES tool to convert it into an HLA compatible

DES tool capable of interfacing and exchanging data with

external federates. These functionalities were critical in

this research because they allowed us to run all the mod-

eled Lean tools (federates) in parallel and impose input

data changes throughout the simulation run to test the

behavior and responsiveness of the Lean tools.

The use of HLA standard broadens the horizons and

opens the door for the development of additional Lean

tools. Six Lean tools are developed till now; the goal is to

expand the built co-simulation framework to gradually

Figure 13. Lean tools response to disturbance and context changes.



integrate additional Lean techniques. The co-simulation

framework will enable us to create and run multiple Lean

scenarios over a broad processors’ network. Using this

framework and digital platform, one can introduce modifi-

cations and disruptions in many variables from design to

commercialization (market demand, travel time, process-

ing time, setup time, planned/unplanned down time,

defects, and others). Different hypothesis leading to differ-

ent and diverse output results can be explored on this

framework. As a future work, the reinforcement learning

technique could be used to automatically produce input

changes and identify the tools that are best suited to firms

depending on context changes and companies’ objectives.
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