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Abstract
Aim: The Andean superpáramo ecosystem, above c. 4200 m a.s.l., currently forms an 
archipelago of isolated “sky islands” which provides a unique setting to study biogeog-
raphy.  However, there is still a poor understanding of how past geological events and 
climatic changes have shaped the distribution of life in this ecosystem. Our aim was 
to investigate the importance of biogeographic barriers in local diversifications and to 
analyze how populations have become isolated on current “sky islands”.
Location: Neotropics, Andes, Páramo, Ecuador.
Taxon: Coleoptera, Carabidae, Platynini, Dyscolus.
Methods: We first used distributional data of 45 superpáramo specialist species to 
define areas of endemism in Ecuador. We then selected 34 isolated populations of 12 
species to perform a high-throughput genome skimming approach encompassing the 
complete mitogenome and the complete nuclear ribosomal cluster. We also generated 
a time-calibrated estimation for the diversification of the group and compared it to 
geochronological data.
Results: A high proportion (60%) of the sampled species are microendemic, restricted 
to a single mountain summit. Three mutually exclusive areas of endemism are limited 
by deep transverse valleys, in relation to Pliocene speciation events. The genome-
skimming approach provides a robust phylogenetic base to analyze the diversification 
of species and populations throughout the Plio-Pleistocene. 
Main conclusions: The opening of the Interandean Valley did not play a significant 
role in the diversification of the group before the Pleistocene. More recently, multiple 
populations became isolated on the superpáramo of various volcanoes by indepen-
dently colonizing it during repeated glacial-interglacial cycles. Our results highlight 
the joint contribution of orogeny and climatic fluctuations for explaining current dis-
tribution patterns. Each species had a different colonization history, with its popu-
lations reaching the different volcanoes at different glacial-interglacial cycles. They 
also provide a powerful tool to constrain the geological processes responsible for 
topographic changes along and across the Cordillera.
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1  |  INTRODUC TION

Tropical Andes form a biodiversity hotspot (Myers et al., 2000) that 
presents a high level of species richness and endemism. Probably 
one of the most peculiar ecosystems of the Andes in term of species 
composition is the páramo (Arroyo & Cavieres, 2013), a 35,000 km2 
biogeographical province present above the treeline in the moun-
tain ranges of Northern Peru, Ecuador, Colombia and Venezuela 
(Morrone, 2014). The province is divided into three elevational zones: 
the subpáramo (c. 3200– c. 3500 m), the páramo itself (c. 3500– c. 
4200 m) and the superpáramo (above 4200 m). The superpáramo 
now forms an archipelago of the so- called ‘sky islands’ isolated 
on mountain tops (Jiménez- Rivillas et al., 2018; Peyre et al., 2018; 
Sklenář & Balslev, 2005; Vuilleumier, 1970), most of them being ac-
tive or potentially active volcanoes, which provides a fantastic set-
ting to study biogeography and understand how past geological and 
geomorphological events, in conjunction with past climatic changes, 
have shaped the diversification of life.

The evolution of the páramo ecosystem is intimately linked to 
the onset of the Andean orogeny which provided new mountain-
ous habitats and allowed the establishment of alpine climatic con-
ditions (Pérez- Escobar et al., 2022). Although Andean uplift started 
as early as 30 Ma in the Eastern Cordillera of Ecuador, a significant 
uplift was only reached during or after the Late Miocene (Coltorti & 
Ollier, 2000; Mora et al., 2011). This uplift caused exhumation rates 
≥0.5 km/Ma in the Eastern Cordillera from the last 15 Ma (Spikings & 
Simpson, 2014). Between 10 and 8 Ma, prior to the formation of the 
Interandean Valley, volcanic formations covered the Cordillera at el-
evations currently ranging from 2500 to 3600 m (Lavenu et al., 1992; 
Steinmann et al., 1999). A ‘prepáramo’ open high Andean vegetation 
might have been present above 2000 m from the Early Pliocene 
onward (van der Hammen, 1974; Vuilleumier & Monasterio, 1986). 
Palynological records highlight that páramo vegetation had been 
established by the Late Pliocene (Hooghiemstra et al., 2006). The 
Pleistocene saw the formation of the current volcanic arc since at 
least 1.5 Ma (Bablon et al., 2019, 2020a). In the same period, climatic 
fluctuations led to dynamic shifts in the elevation of páramo habi-
tats, creating a flickering connectivity system (Flantua et al., 2019). 
These repeated cycles of connections and allopatry might have set 
up a species- pump mechanism promoting speciation events.

Several studies have focused on analysing species distribu-
tion data in the páramo, either through a bioregionalization ap-
proach (Jiménez- Rivillas et al., 2018; Peyre et al., 2018; Sklenář 
& Balslev, 2005) or looking for climatic determinants of species 
richness (Peyre et al., 2019). While those studies provide interest-
ing insights into the patterns of biodiversity in the páramo, only 
evolutionary studies can settle the foundation for deciphering 

the underlying processes responsible for current patterns of spe-
cies distribution and richness. In this regard, the last decade has 
seen a plethora of phylogenetic studies largely focusing on plants 
(Hughes & Atchison, 2015; Luebert & Weigend, 2014; Madriñán 
et al., 2013) with charismatic examples such as frailejones (Cortés 
et al., 2018; Diazgranados & Barber, 2017; Pouchon et al., 2018) 
and lupins (Drummond, 2008; Drummond et al., 2012; Hughes & 
Eastwood, 2006; Nevado et al., 2016, 2018).

In this context, the emerging field of geogenomics can pro-
vide meaningful insights into the biogeographical processes as it 
is based on the use of phylogenetic data to test geological hypoth-
eses, and vice versa, in an integrated approach (Baker et al., 2014; 
Dolby et al., 2022). The case studies presented so far address 
broad regional or continental problems (Bacon et al., 2015). Here, 
we show that a geogenomics approach can also help understand 
local processes at the species and population level. We focus on 
the ground beetle genus Dyscolus (Carabidae, Platynini) which 
represents a major predatory component of insect communities 
in the tropical alpine páramo ecosystem above 3500 m. As many 
mountain- specialized ground beetle lineages (Brandmayr, 1991; 
Staunton et al., 2016), all the Dyscolus species living in the páramo 
are flightless, due to wing reduction (brachyptery). The dispersal 
ability of flightless ground beetles is drastically reduced, enhanc-
ing their sensitivity to isolation processes, which can explain their 
high level of endemism (Weng et al., 2020). More than 40 Dyscolus 
species are restricted to the superpáramo above 4200 m a.s.l., and 
within some of these species, isolated populations are distributed 
on currently isolated sky islands (Moret & Murienne, 2020). This 
group thus represents an ideal model to establish a biogeograph-
ical reconstruction of the diversification processes that led to the 
present- day distribution of species and isolated populations, taking 
advantage of recent geochronological advances in the dating of the 
Ecuadorian volcanic arc.

We first address the speciation process of high- altitude ground 
beetles in the framework of past tectonic, volcanic and valley inci-
sion processes. We hypothesize that at least some of the species 
might be originating from allopatric speciation processes related to 
the formation of the Interandean Valley and of transverse valleys 
across the Andes, which would have acted as orogenic barriers. In 
this case, we would expect to find a congruence between cladoge-
netic events and tectonic, volcanic and palaeogeographical events.

At the intraspecific level, that is, that of populations currently 
isolated on volcano summits, we postulate that two different pro-
cesses could explain the observed pattern (Figure 1). In the first 
hypothesis, a number of species are present in the páramo. As a 
consequence of volcanoes' growth, new habitats become available 
at higher elevations and the various species of the páramo colonize 

K E Y W O R D S
carabids, genome- skimming, geogenomics, neotropics, phylogeography, Pleistocene climate 
change, volcano
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    |  2079MURIENNE et al.

these newly available spaces. Following the upward shift of the 
páramo populations during the next warm interglacial period, pop-
ulations become isolated on each volcano. Under this hypothesis, 
we expect to see the age of each population matching the age of 
each volcano, but also the ages of populations to be congruent be-
tween species.

In the second hypothesis, a number of species are present in 
the páramo but not evenly distributed in all locations. Following 
volcanoes' growth and the emergence of high- altitude habitats, 
the páramo species colonize these available spaces in the nearby 
locations. Further to the extinction of the ancestral populations, 
the isolated superpáramo populations become connected during 
each glacial– interglacial cycle and can migrate to colonize a new 
volcano before becoming isolated again. The colonization process 
is therefore dependent on the local topographic constraints as well 
as on the location of the original population. Under this hypothe-
sis, we expect that the ages of each population do not necessarily 
correspond to the volcanoes' ages. In addition, because the colo-
nization process is not deterministic, the ages of populations are 
not expected to be congruent between the different species. To 
test these hypotheses, we used a phylogenomic approach based 
on complete mitogenomes and complete ribosomal clusters to 
provide a dated phylogeny of the Dyscolus species endemic to the 
superpáramo.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

This study covers the páramo ecosystem in the northern part of the 
Ecuadorian Andes, from 1° N to 2°30’ S (Figure 2). It is focused on 
the superpáramo zone that extends above c. 4200 m a.s.l., consisting 
of more than 20 currently isolated ‘sky islands’, most of them on the 
top of Quaternary volcanoes. The studied area exhibits the greatest 
extension of superpáramo patches in the tropical Andes. It is divided 
into two ranges, the Western Cordillera and the Eastern Cordillera, 
which are separated by the Interandean Valley, an approximately 
N– S- oriented topographic depression (Villagomez et al., 2005). 
Additionally, a major tectonic feature of this region is the Chingual- 
Cosanga- Pallatanga- Puna fault system which obliquely crosscuts 
the Cordilleras, forming a sharp boundary south and east of the 
North Andean Sliver (Alvarado et al., 2016; Nocquet et al., 2014).

2.2  |  Taxon sampling

The ground beetle genus Dyscolus is a hyperdiverse neotropical taxon 
with more than 400 described species (Lorenz, 2019). It is the major 
component of the páramo ground beetle communities, from the tree 

F I G U R E  1  Hypotheses explaining the current patterns of repeated isolated populations on superpáramo sky- islands.
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line to the permanent snow line (Gobbi et al., 2018; Moret, 2005). 
Ground beetles were systematically sampled above 4200 m on 17 
of the 21 superpáramo patches currently existing between 1° N and 
2°30’ S, which led to the recognition of 45 Dyscolus species as ex-
clusive superpáramo specialists (Table S1). Identification at species 
level is supported by a recent taxonomic revision coupling morphol-
ogy with DNA barcoding (Moret & Murienne, 2020). Based on this 
first set of species, the number of species shared by 120 pairs of 
currently isolated superpáramo units was calculated (Table S2).

To analyse the timing of diversification of the species under study, 
we selected four core species which present a relatively similar dis-
tribution over several mountains (Figure 3), namely D. orthomus, D. 
oopteroides, D. rotundiceps and D. diopsis. For each species, we se-
lected specimens from five to seven different localities. We included 
additional species either based on their taxonomic relationship to the 
core species (Moret & Murienne, 2020) or because of their particular 

ecology. We included all the members of the diopsis group (D. diopsis, 
D. rotundiceps, D. oreas, D. fusipalpis, D. montivagus) which represent 
a monophyletic group of closely related species, all endemic to the 
superpáramo. We also included D. irriguus which is located at the 
southern margin of the study area. Finally, we added to this set one 
fully winged species, D. purpuratus, widespread in the montane forest 
from Mesoamerica to Bolivia. Our dataset thus includes representa-
tives of 34 currently isolated populations belonging to 12 species, for 
which shallow shotgun sequencing was performed (Figure 3).

2.3  |  DNA extraction, sequencing, genome 
assembly and annotations

The páramo region underwent a recent explosive phase of di-
versification (Madriñán et al., 2013). This situation leads to short 

F I G U R E  2  Map of northern Ecuadorian Andes, featuring orography and some major elements of the tectonic (panel a) and volcanic 
setting (panel b) and their respective maximum ages (see main text for references). (a): Blue dashed lines indicate transverse basins; green 
dashed line, the Interandean Valley; red lines, the Chingual- Cosanga- Pallatanga- Puna fault system. (b): In red, Pleistocene stratovolcanoes 
<0.5 ma; in violet, rhyolitic centres dated around 1 ma or earlier; in green, uplifted Jurassic/cretaceous limestone.
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internodes with very few informative characters, rendering the es-
timation of a robust phylogeny from classical Sanger sequencing 
almost impossible. Several studies investigating lineage diversifica-
tion in the páramo thus failed to provide well- resolved phylogenetic 
trees with good statistical support (Bell et al., 2015; Diazgranados 
& Barber, 2017; Drummond et al., 2012; Nürk et al., 2013; Uribe- 
Convers & Tank, 2015; Zapata, 2013). Alternatively, some studies 
have taken advantage of the most recent high- throughput sequenc-
ing technologies to provide fully resolved phylogenetic trees for local 
diversification as for Lupinus (Nevado et al., 2016), Diplostephium 
(Vargas et al., 2017) and Espeletia (Pouchon et al., 2018). We here 
used a ‘genome- skimming’ approach (Straub et al., 2012) which al-
lows us to retrieve the high- copy fraction of the genome (complete 
mitochondrial genome and nuclear ribosomal clusters) using shal-
low shotgun sequencing (see Supporting Information for a detailed 
methodology).

2.4  |  Phylogenetic analyses and molecular dating

Phylogenetic inference combined with fossil calibration is classically 
used for divergence dating. However, reliable fossil evidence is often 
lacking for invertebrate groups and alternative approaches can be 
used such as tectonic calibration, secondary calibration or by applying 
rates of molecular evolution. In the case of the tribe Platynini, the two 
nearest fossils, both from the Baltic amber (Gamboa & Ortuño, 2018; 

Schmidt, 2015), are related to the current genus Platynus which is too 
distant from the tropical lineage of Dyscolus (Moret & Murienne, 2020) 
to constitute a reliable landmark. Indeed, the Baltic amber (37.2– 
33.9 Ma) is at least three times older than the onset of the last phase 
of Andean orogeny (since 10 Ma), and much older than the Plio- 
Pleistocene when we believe that most of the diversification occurred 
in the genus Dyscolus. As an alternative to fossil calibration, we used 
an approach based on rates of molecular evolution. Based on the use 
of multiple fossil and biogeographical calibration points, the semi-
nal study of the Carabid genus Carabus (Andújar et al., 2012) inves-
tigated the impact of analytical conditions (treatment of ambiguous 
characters, partitioning scheme, clock model, etc.) on the inference 
of rates of evolution for various mitochondrial and nuclear genes. For 
example, they found that the optimal analytical conditions for cob 
were two codon partitions (where first and second positions are con-
sidered together) and a strict clock model, inferring a rate of 0.0251 
(0.0151– 0.0369). Andújar et al.’s, 2012 study thus not only provided 
rate estimates for specific genes used in our study, but also provided 
specific guidelines about the optimal analytical conditions. As the phy-
logenetic analyses and time estimates are intimately linked, we used 
the optimal analytical conditions (treatment of ambiguous characters, 
partitioning scheme, clock model) of Andújar et al. (2012).

Ribosomal genes were aligned using clustalW2 (Larkin 
et al., 2007) while protein coding genes were aligned using 
TranslatorX (Abascal et al., 2010). Possible misaligned regions were 
trimmed with Gblock (Castresana, 2000) using the ‘all- gaps’ option 
as in Andújar et al. (2012) (see Table S3 for details). Preliminary anal-
yses were performed by rooting the tree using the genus Calathus 
(Carabidae, Sphodrini) for which partial sequences of the mitochon-
drial genome and the nuclear rRNA cluster are available (mitoge-
nome: Calathus melanocephalus KT876884; 18S: Calathus mollis 
FJ173117; 28S: Calathus ruficollis AF438033). The results confirm 
that the non- páramo Dyscolus purpuratus (PM085- 01) is sister to all 
the other páramo- endemic Dyscolus species, so it was used as an 
outgroup in the remaining analyses.

A maximum likelihood (ML) phylogenetic analysis was per-
formed on all the 13 protein coding genes and mitochondrial 
rRNA as well as the nuclear rRNAs (18S, 5.8S and 28S) and the 
Internal Transcribed Spacer 2. The ITS1 was too variable and was 
discarded from the analysis. Following Andújar et al. (2012), for 
the mitochondrial genes, we applied a partition by gene and each 
protein coding gene with two codon partitions where the first and 
second positions are considered together. For the nuclear genes, 
the different loci were considered as a single partition. Tree 
search was performed using RAxML- ng (Kozlov et al., 2019) with 
nodal support estimated using Transfer Bootstrap Expectation 
(Lemoine et al., 2018).

Divergence times were estimated using BEAST 2.5 (Bouckaert 
et al., 2019). Analyses were conducted using the same partitioning 
scheme as for the ML analysis. To reduce computational burden, the 
rate parameters of the GTR model as well as the shape of the Gamma 
distribution were fixed to the ones optimized under ML. Rates of mo-
lecular evolution for a large panel of mitochondrial and nuclear genes 

F I G U R E  3  Distribution of the 12 high- altitude species under 
study in 16 superpáramo sky islands. Dark grey: Populations from 
which specimens were selected for the present genome- skimming 
analysis. Light grey: Populations from which only DNA barcodes 
were retrieved (Moret & Murienne, 2020 and unpublished data)
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have already been estimated for the related genus Carabus in the same 
family Carabidae (Andújar et al., 2012). Because this study presents 
rates for only a subset of the genes used in the present study, we 
decided to apply a mean rate of 0.0134 (0.0108– 0.0162) to the mi-
tochondrial clock partition and a mean rate of 0.0029 (0.002– 0.0039) 
for the nuclear clock partition. Following Andújar et al. (2012), we 
applied a Strict Clock model to the mitochondrial partition and an 
Uncorrelated relaxed clock model to the nuclear partition. Because 
our sampling includes a mix of likely recent species and populations, 
we used as tree prior a coalescent. Analyses were run for 50 million 
generations, sampling trees every 2000 generations. The Maximum 
Clade Credibility tree was estimated with TreeAnnotator by discarding 
20% of the burn- in fraction.

3  |  RESULTS

3.1  |  Distribution patterns

Based on the distribution of the 45 species of our extended 
dataset (Table S1), three areas of endemism, exclusive to each 
other, can be traced. The largest one extends from 0°30’ N to 

1°30’ S, a zone previously defined as the Pichincha– Chimborazo 
area of endemism (hereafter PCAE) (Moret, 2009), encompass-
ing both cordilleras and limited by three transverse valleys: 
north the Mira/Chota, southeast the Pastaza and southwest 
the Chimbo (Figure 4). These limits are the same as those of 
a biogeographical clade including three districts, ‘Northern 
Cordillera Oriental’, ‘Northern Cordillera Occidental’ and 
‘Central Cordillera Occidental’, in the endemism area cladogram 
of Jiménez- Rivillas et al. (2018), which is based on plants and 
vertebrates. The Chiles area to the north, and the Ayapungu 
area to the south, do not have a single superpáramo species 
in common with the PCAE (Table S2 and Figure 4). Within the 
PCAE, microendemic species, that is, species that are only 
known from a single mountain summit or from a single super-
páramo sky island, are more frequent in mountains situated at 
the margin of the area. As a whole, 27 of the 45 sampled species 
– a very high 60%–  are microendemic.

The 12 species subject of a phylogenetic analysis exhibit the 
same broad distribution pattern (Figure S1). They all belong to the 
PCAE except D. montivagus at the northern end of the study area 
and D. irriguus at its southeastern end. Within the PCAE, eight spe-
cies are distributed over several isolated island- like superpáramos 
(D. arauzae in two, D. oreas in three, D. fusipalpis in four, D. lucifuga 
in five, D. orthomus in eight, D. diopsis in ten, D. oopteroides and D. 
rotundiceps in eleven sky islands), while D. funereus and D. pollens are 
microendemics restricted to a single mountain area. The Dyscolus 
communities are significantly more diverse in the Cordillera Oriental, 
especially in its broadest section between Cayambe and Cotopaxi. 
Seven of the ten PCAE species are sympatric in the Guamaní plateau 
superpáramo (which is part of the Chacana volcanic complex), while 
only four in the Pichincha superpáramo, which is the most diverse of 
the Cordillera Occidental.

3.2  |  Phylogeny and divergence time estimation

The ML (Figure S2) and the Bayesian topologies (Figure 5) are al-
most identical. Two deep lineages are retrieved (node 1), one com-
posed of D. orthomus and D. arauzae (clade A), and the second one 
with all the remaining species (clade B + C). The difference be-
tween the two topologies lies in the placement of D. irriguus which 
groups with clade A in the ML analysis (though with low bootstrap 
support, 52%) and is sister to clade B + C in the Bayesian analysis. 
The main lineage is split into two groups (node 4), with clade B 
comprising D. pollens, D. funereus, D. lucifuga and D. oopteroides 
while clade C is composed of D. montivagus, D. fusipalpis, D. ro-
tundiceps, D. oreas and D. diopsis. As expected, the topology is 
rather different from the one inferred from a single marker (Moret 
& Murienne, 2020), except for the monophyly of the diopsis group 
which was already retrieved by the COI alone. When the nuclear 
and mitochondrial datasets are analysed separately under ML (see 
Figures S3 and S4), the results are very stable with only minor 
changes in the topology.

F I G U R E  4  Areas of endemism in northern Ecuadorian Andes, 
based on the distribution of 45 superpáramo species of the ground 
beetle genus Dyscolus. First number after the mountain name: 
Microendemic species; second number: Total number of recorded 
species.
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For each of the following species (D. diopsis, D. rotundiceps, D. 
oreas, D. fusipalpis, D. oopteroides, D. lucifuga and D. orthomus), we re-
corded the molecular ages of currently isolated populations and com-
pared them to geochronological data (Figure 8). Taking into account 
the error margins as inferred from the Bayesian dating, we found that 
for most volcanoes, the ages are not congruent between the differ-
ent species. Colonization of Guamani happened during three different 
time periods while colonization of Cayambe, Antisana, Llanganatis, 
Pinchincha, Illiniza and Carihuairazo happened during two different 
time periods.

4  |  DISCUSSION

4.1  |  Speciation caused by tectonic events and 
valley incision processes

4.1.1  |  What was the impact of the incision of deep 
trans- andean valleys?

Based on distributional data, the PCAE is limited north and south 
by deep transverse valleys, respectively, the Chota- Mira valley 

F I G U R E  5  Diversification of the genus Dyscolus inferred with BEAST2. Node bars represent the node ages 95% confidence intervals. 
Node posterior probabilities are indicated on nodes. Black dots represent nodes that are supported by high bootstrap frequencies (above 
85%) in the maximum likelihood analysis.
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across the northern Western Cordillera, the Chimbo- Pangor val-
ley across the southern Western Cordillera, and the Pastaza valley 
across the Eastern Cordillera (Figure 4). Our dataset sheds light on 
the timing of the emergence of the northern topographic barrier. 
The split between D. montivagus and the rest of the diopsis group 
[fusipalpis + oreas + diopsis + rotundiceps] is dated c. 3.5 Ma (Node 
8). This diversification event is likely related to the formation of 
the Chota- Mira deep and arid depression. Our molecular dating is 
broadly congruent with the tectonic and geomorphological history 
of the region. By analogy with the Peruvian cordillera, fluvial erosion 
likely began to create deeply incised transverse valleys during the 
late Miocene or the early Pliocene (Montario et al., 2005 with dates 
for the north of Peru; Thouret et al., 2007 with ages from southern 
Peru). In northern Ecuador, the Chota basin began to form c. 6– 5 Ma 
(Spikings & Crowhurst, 2004; Winkler et al., 2005). Its tectonic his-
tory triggered strong erosion processes and put time constraints on 
the formation of the deep Chota– Mira valley across the Cordillera 
Occidental. The effect of this topographic gap is currently enhanced 
by a sharp contrast between the aridity that reigns at the bottom 
of the depression (Quintana et al., 2016) and the humidity of the 
adjacent páramos. Our molecular data suggest that the deepening of 
the Chota- Mira valley took place at a relatively early date after the 
formation of the Chota basin.

More recently, a fourth transverse valley had a similar impact. 
A little north of Quito, a deep gap in the Cordillera Occidental ap-
peared during the Middle Pleistocene, as a consequence of the for-
mation of the Quito– San Antonio– Guayllabamba basin (Figure 2), 

which is much more recent than the more northern Mira– Chota 
basin (Winkler et al., 2005). According to the dating of two volcanic 
deposits located beneath and inside its first sedimentary succession, 
the Quito– San Antonio– Guayllabamba basin began to form between 
1.15 and 1 Ma (Alvarado et al., 2014; Bablon et al., 2020a). The sub-
sequent incision of its outlet towards the western lowlands, through 
the deep gorge of the Guayllabamba river, was likely fostered by the 
high activity of the Quito fault over the Middle Pleistocene, although 
no precise timing is available (Alvarado et al., 2014). However, the 
erosion of the southern slopes of old volcanic edifices at the north-
ern edge of the Quito- Guayllabamba basin suggests that the drain-
age network was already in place at c. 0.4 Ma (Bablon et al., 2020a). 
In our dataset, the only allopatric event that can be related to the 
formation of this biogeographical barrier is dated around 0.65 Ma 
(node 14), when two infraspecific clades separated within the 
Western lineage of D. diopsis: north of the Guayllabamba valley an 
isolated population on the Cotacachi volcano, and south of the val-
ley a clade formed by several populations scattered on the Illiniza, 
Pichincha and Corazón volcanoes (Figure 6). Our molecular data 
are thus congruent with the scenario of a gradual deepening of the 
Guayllabamba valley after 1 Ma, leading to a complete transverse 
biogeographical break around 0.65 Ma.

4.1.2  |  What was the impact of the Interandean 
Valley?

The opening of the Interandean Valley during the Pliocene does not 
seem to have played a major role in the diversification of the Andean 
Dyscolus lineages. It began to open c. 6– 5 Ma in northern Ecuador 
and propagated southward, reaching its complete opening probably 
by the Late Pliocene c. 2.7 Ma (Spikings & Crowhurst, 2004; Winkler 
et al., 2005). During this period, our dataset does not reveal any evi-
dence of an east– west divergence pattern. On the contrary, specia-
tion events prior to 2.5 Ma appear to occur on a north– south axis 
within the Cordillera Oriental (node 7).

According to our results, the Interandean Valley appears to have 
been more involved in diversification events during the Pleistocene 
than during the Pliocene. The infraspecific clade structure of D. diopsis 
and D. rotundiceps, the two most recent species of our dataset, shows 
a clear east– west partition (nodes 12 and 13). In D. diopsis, a group of 
Western populations separated from a group of Eastern populations 
slightly before 1 Ma, that is, long after the Interandean Valley started 
to form. In D. rotundiceps, a similar pattern is dated to c. 0.9 Ma, but 
in a less systematic way, as the Antisana population groups with the 
western clade of this species. On the other hand, no such east– west 
partition at infraspecific level is observed in two other widespread 
species, D. oopteroides and D. orthomus. These results suggest that 
the Interandean Valley could be significantly younger than commonly 
accepted based on K- Ar dating performed in the 1980s (Barberi 
et al., 1988), which calls for the need of a new dating program focused 
on the older volcanic rocks of the Interandean Valley.

F I G U R E  6  Geographical distribution in northern Ecuador 
and phylogeny of the Dyscolus diopsis species group (clade C in 
Figure 5). Node numbers refer to Figure 5. Branch lengths are 
arbitrary.
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Even though the Interandean Valley may have acted as an im-
passable gap for cold- adapted species under the relatively warm 
climate of the early Pleistocene, later cool periods allowed for sec-
ondary contacts through two east– west passes, or Nudos (west– 
east structures formed by volcanic and tectonic processes) at 
elevations above 3000 m. The first one, named Nudo de Mojanda, 
is located between Cotacachi, Imbabura and Cayambe at the 
northern end of the Interandean Depression, the other one, named 
Nudo de Tiopullo, between Illiniza, Santa Cruz and Cotopaxi at its 
middle. These Nudos were, during the cooler phases, easy path-
ways from one Cordillera to the other, especially between Illiniza, 
Cotopaxi and Antisana which form an almost continuous páramo 
area (Figure 7). This is probably the reason why, at infraspecific 
level in D. rotundiceps and D. oopteroides, the Antisana population 
(in the Cordillera Oriental) is nested within a clade composed of 
western populations.

4.2  |  Volcanic growth and climatic oscillations 
shaped the current patterns of diversity

The uplift of the Andes accelerated after 4 Ma at the Pliocene– 
Pleistocene transition, attaining current or near current eleva-
tions (Gregory- Wodzicki, 2000), while the Interandean Valley 
reached its complete opening by the Late Pliocene c. 2– 3 Ma 
(Spikings & Crowhurst, 2004; Villagomez et al., 2005). Throughout 
this period, alternating warmer and cooler phases led to isolation 

followed by re- contact (Figure 7) (Flantua et al., 2019; Flantua & 
Hooghiemstra, 2018).

The formation of the páramo ecosystem gradually took place be-
tween 2.2 and 1.6 Ma (Hooghiemstra et al., 2019). The oldest known 
volcanic edifice of the Quaternary arc is the large rhyolitic Chacana 
volcanic complex, in the Eastern Cordillera, with ages as old as c. 
2.7 Ma (Opdyke et al., 2006), followed by mostly andesitic edifices 
such as ‘Viejo Cayambe’ at c. 1.1 Ma (Samaniego et al., 2005). In the 
Western Cordillera, Atacazo started to form at c. 1.3 Ma (Hidalgo, 
2007), Rucu Pichincha at c. 1.1 Ma (Robin et al., 2010) and old 
Mojanda edifice at 1 Ma (Bablon et al., 2020a).

However, most of the Pleistocene andesitic volcanic centres 
developed during the last 0.5– 0.6 Ma: later eruptive stages of 
Cayambe started from 0.4 Ma, of Rucu Pichincha from 0.45 Ma; 
Illiniza- Santa Cruz from 0.7 Ma (Santamaría et al., 2022), Cotopaxi 
from c. 0.5 Ma (Hall & Mothes, 2008), Antisana at 0.4 Ma (Hall et al., 
2017), Quilindaña and Chalupas at 0.2 Ma (Bablon et al., 2020b), 
Cotacachi at 0.2 Ma (Bablon et al., 2020b), Carihuairazo succes-
sively at 0.5 and 0.2 Ma (Bablon et al., 2019), and Chimborazo at 
0.1– 0.15 Ma (Samaniego et al., 2012) [see Figure 2b for a graphical 
summary].

Our results (Figure 8) indicate that the volcanic construction 
alone cannot fully explain the current patterns of diversity. Indeed, 
it seems that only a combination of volcano growth followed by 
various cycles of connection– disconnection related to climatic cy-
cles could explain them. Throughout the Quaternary, alternating 
warmer and cooler phases have been well documented (Flantua 

F I G U R E  7  Location of the páramo 
ecosystem in northern Ecuadorian Andes 
at two time periods. Green: subpáramo 
and lower grassland páramo; yellow: 
Grassland páramo; red: superpáramo; 
white: Ice cap. (a): Current situation. 
GCD, Galeras– Chiles district; PCAE, 
Pichincha– Chimborazo area of endemism; 
SCOD, Southern cordillera oriental 
district. (b): Hypothetical glacial scenario 
with the bottom limit of the ice cap at 
ca. 3800 m and the bottom limit of the 
superpáramo at ca. 3100 m, which might 
roughly correspond to the final last glacial 
maximum and the oldest dryas, ca. 18– 
15 ka (Angel et al., 2017). MN: Mojanda 
Nudo; TN: Tiopullo Nudo.

(a) (b)
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et al., 2019; Flantua & Hooghiemstra, 2018), leading to isolation of 
the superpáramo followed by re- contact (Figure 7). While the early 
divergence at the infra- specific level is broadly congruent with the 
history of volcanic construction (especially for Pichincha, Illiniza 
and Carihuairazo), the ages of populations on each volcano are not 
congruent between the different species (see Hypothesis 2). This 
suggests that each species had a different colonization history, with 
its populations reaching the different volcanoes at different glacial– 
interglacial cycles. Even taking into account the uncertainty of our 
age estimates, our results suggest that during the last million year, 
each volcano was colonized during multiple periods (Cayambe at 
least twice, Guamaní three times, Antisana, Pichincha, Illiniza and 
Carihuairazo twice). In addition, extinctions could also have an im-
pact on the resulting topologies, but the fact that for several species 
we found populations younger than the age of volcanoes also sup-
ports Hypothesis 2.

It is interesting to note that for D. orthomus and D. oopteroides, 
the two earliest emerging populations were those located on the 
Cayambe and on the Llanganatis mountains. The Llanganatis, situated 
at the Southern end of the Cordillera Oriental, is a non- volcanic moun-
tain with an uplift history estimated between 10 and 5 Ma (Aspden 
& Litherland, 1992). The Cayambe, situated at the Northern part of 
the Cordillera Oriental, is a volcanic mountain dated to 1.1 Ma and is 
thus one of the oldest Pleistocene volcanoes of the cordillera. The 
intraspecific patterns of diversity are thus congruent with geological 
history, with the earliest emerging populations situated on the oldest 
mountains.

The molecular ages of other divergence events that occurred 
on Cayambe c. 2.2 Ma, on Antisana from 0.7 to 0.5 Ma, and on 
Cotacachi c. 0.65 Ma, far precede the oldest radiochronological ages 
from these three volcanoes. We could assume that these events 
took place in situ on a still undetected volcanic edifice, but this 
would imply that Cayambe is twice as old as currently documented 
by geological research, and Cotacachi three times, which is a costly 

assumption. The divergence event may rather have occurred not on 
Cayambe, but in the neighbouring area of the old rhyolitic Chacana 
complex (Figure 2b), dated to 2.7 Ma. This proximity can also explain 
the oldest dates documented at Guamaní, close to the core area of 
the Chacana complex, and farther south at Antisana.

A similar scenario can be drawn at the southwestern end of the 
PCAE. D. oreas, which is endemic to the Chimborazo, Carihuairazo 
and Casahuala volcanoes, diverged from (D. diopsis + D. rotundi-
ceps) at c. 1.7 Ma (node 10). As the ages of Chimborazo (0.1 Ma) and 
Carihuairazo (0.2 Ma) are much younger (Samaniego et al. 2012), it 
can be assumed that D. oreas originated on Casahuala (also named 
Pilisurco in Bablon et al., 2019), a strongly eroded volcano 34 km 
north of the Chimborazo (Figure 2b). There has been no direct dat-
ing of the eruptive products of this volcano, but according to its 
advanced degree of erosion, Casahuala is certainly older than its 
immediate neighbour, the Sagoatoa volcano where K- Ar dating indi-
cates an initial stage prior to 0.83 Ma (Bablon et al., 2019). The mo-
lecular age of D. oreas is therefore fully consistent with a geological 
reconstruction in which Casahuala would be the oldest Pleistocene 
volcanic edifice of the southern Cordillera Occidental. D. oreas 
would then have spread to the Carihuairazo and the Chimborazo 
when these volcanoes were constructed at younger ages (<0.8 Ma).

5  |  CONCLUSIONS

The genome- skimming approach allowed us to obtain a robust phy-
logeny, providing a strong base to analyse the diversification of su-
perpáramo endemic species throughout the Plio- Pleistocene. We 
demonstrated that the Chota– Mira deep valley that cuts the Andean 
range played a crucial role as a biogeographic barrier. Conversely, the 
impact of the Interandean Valley formation appears to have been rather 
limited, possibly because of frequent connections between western 
and eastern mountains during the cooler phases of the Pleistocene, 

F I G U R E  8  Molecular ages of currently 
isolated populations of Dyscolus, 
compared to geochronological data. 
Black and white dots: Differentiation 
events at infraspecific scale in D. diopsis, 
D. rotundiceps, D. oreas, D. fusipalpis, D. 
oopteroides, D. lucifuga and D. orthomus, 
involving one mountain vs. another or one 
mountain vs. a group of other mountains. 
Orange diamonds: Oldest K- Ar dates 
from Ecuadorian volcanoes (from Bablon 
et al., 2019, Bablon et al., 2020a, 2020b, 
Opdyke et al., 2006, Samaniego et al., 
2005, 2012, Robin et al., 2010, Hidalgo 
et al., 2007, Hall et al., 2017). Time scale in 
million years.
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but an age younger than commonly accepted for the formation of the 
Interandean Valley is a hypothesis that shall be tested in the future. 
Finally, the current patterns of isolation of populations on volcanic 
sky- islands can be explained by multiple phases of colonization linked 
to Quaternary climatic fluctuations. Our phylogenetic study of key en-
demic species proved to be a powerful tool to constraint the geological 
processes responsible for the topographic changes along and across 
the Andean Cordillera. To complete it, it would be desirable to extend 
its scope to other Andean peaks such as the Chachimbiro- Yanaurcu 
volcanoes in the northern Western Cordillera, the Casahuala- Pilisurco 
in the southern Western Cordillera, and the Tungurahua, Altar and 
Sangay volcanoes of the southern Eastern Cordillera. It is to be hoped 
that an integrative geogenomic approach, coupled with geochrono-
logical and thermochronological data, will help to understand the main 
process and the timing responsible for their formation.
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