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Abstract
We define a family of runoff rules that work as fol-
lows: voters cast approval ballots over candidates;
two finalists are selected; and the winner is decided
by majority. With approval-type ballots, there are
various ways to select the finalists. We leverage
known approval-based committee rules and study
the obtained runoff rules from an axiomatic point of
view. Then we analyze the outcome of these rules
on single-peaked profiles, and on real data.

1 Introduction
Plurality with runoff (also known as runoff voting) is a widely
used single-winner voting rule, in fact the most common rule
for presidential elections throughout the world1. But the social
choice literature has pointed out that plurality with runoff
suffers from so many drawbacks that we may wonder why it is
used at all: it is highly sensitive to cloning, fails monotonicity,
reinforcement, participation, Condorcet-consistency, and is
very easy to manipulate. In particular, its high sensitivity to
cloning has a number of derived effects before the vote (at
the level of the determination of candidates) and at voting
time (with massive strategic voting of a specific kind, called
”useful” voting2). Perhaps the main reason why it is so widely
used after all is related to the fact that runoff voting is not used
as a one-shot voting rule but as two-round protocol: voters are
called to urns for the first round, the results are made public,
and then some amount of time passes (typically one or two
weeks), and in between the two rounds, many things happen.

In most variants, only two candidates are selected for the
runoff. The others candidates may negotiate their support
to one of the two contenders, leading to adjustments in the
platforms proposed in the second round. The TV debates
that take place between the two finalists at that point in time
are considered as the most important moment in the whole
campaign, and many voters may, during this period, review
their decision to participate or not to the second vote. For all

1See https://en.wikipedia.org/wiki/Two-round system.
2As an example, in the 2022 French presidential election, voter

from various left-wing parties voted for the left-wing candidate maxi-
mizing the chances to run on the second round (Jean-Luc Mélenchon),
even if he was not their preferred candidate.

these reasons, the existence of two rounds of vote separate in
time is considered to be crucial for the voters’ information.

Are the informational benefits of a runoff protocol enough
to overcome its numerous theoretical drawbacks? There can
be diverse opinions about this. However, instead of answering
this question, we may ask another one: is it possible to keep
the nice benefit of the two-round protocol without having to
bear all the drawbacks of Plurality at the first round?

Clearly, if the answer to this question is positive, the format
of the ballots at first round must no longer be uninominal.
Several possibilities exist: ordinal ballots, cardinal ballots, or
more simply, approval ballots. Approval ballots have several
advantages; to start with, they are simple and easy to express.

In this paper we explore this possibility seriously. We define
an approval-with-runoff election as a two-round protocol:

1. First round: voters cast approval ballots, from which the
two finalists are selected.

2. Second round: voters cast votes for one of the two final-
ists, and the majority winner wins the overall election.3

Formally, we define approval-with-runoff as a voting rule,
with a one-shot input, and study its properties in a similar
way as we would study the properties of plurality with runoff.
Then two major questions arise:

1. what should the input of the rule consist of?

2. which rule should be used to determine the two finalists?

For question 1, the answer becomes clear once we remark
that we need the approval data for computing the finalists, and
the pairwise comparisons between candidates for computing
the final winner. Of course, we will not need all comparisons
between arbitrary pairs of candidates; but just as plurality
with runoff, seen as a voting rule, takes full rankings as in-
put although most of this information will not be asked, here
too, we need more information in the input than we will ask
voters, and the normative properties of the rule will be eval-
uated with respect to this (mostly private) information. Now,

3The present paper is concerned with single-winner elections.
Approval voting with a runoff is effectively used in several cantons
in Switzerland for committee elections. The precise rules vary from
one canton to the other so that the second round is sometimes almost
unused, as in the canton of Zurich ([Laslier and Van der Straeten,
2016], [Van der Straeten et al., 2018]).
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requiring pairwise comparisons between all pairs of candi-
dates just means that we need each voter’s ranking of candi-
dates, and requiring her approval set means that this ranking
comes with a threshold that separates approved candidates
from disapproved candidates. This data structure is called an
approval-preference (AP) profile [Brams and Sanver, 2009].

Notice that, with respect to the points mentioned in the
introduction, the framework that we use does not allow taking
into account the evolution of voters and candidates in between
the two rounds. We leave these problems to further research
and, in this paper as it is often the case in social choice theory,
we concentrate on the counting of sincere ballots cast by a
fixed electorate.

For question 2, things are more complex because there is not
a unique way to select two candidates from approval ballots.
The general setting in which we select k candidates (here,
k = 2) from an approval profile is called an approval-based
committee rule (ABC rule); a recent and extensive survey is
in [Lackner and Skowron, 2020], and we have now a series
of results that tell us which properties these various rules
satisfy and for which contexts they are suitable for. Most
importantly, the choice of the rule used for the first round
has strong implications about the very nature of the two-stage
rule, both from a normative point of view and from a political
science point of view: should we send to the second round
the most two approved candidates? Or should we offer the
voters two candidates that are diverse enough? Should we pay
attention to proportionality issues? Should we guarantee the
most approved candidate is among the two finalists?

Our primary aim is to define approval with runoff not just
as one rule but as a family of rules, and to explore the reasons
that may guide us towards the choice of one of the rules in the
family.

The paper is organized as follows. We start by related work
(Section 2). We define the family of Approval-based Runoff
rules (Section 3) together with a selection of meaningful rules.
We study these rules form an axiomatic point of view (Section
4). We analyse the outcome of these rules on one-dimensional
Euclidean profiles (Section 5), and move on to applying the
rules on real data (Section 6). We conclude in Section 7.

2 Related Work
Approval with Runoff (in its most straightforward version,
see Section 3.2) was first introduced in [Sanver, 2010] and
compared to other rules based on approval-preference profiles.
Green-Armytage and Tideman [2020] consider plurality with
runoff together with eight other runoff rules for selecting the
finalists, with varying input formats (ordinal, approval, numer-
ical), including Approval with Runoff. Voters are supposed to
vote sincerely and, for Approval voting, to approve a candidate
if and only if the utility they give to this candidate is larger
than the average utility of all candidates running. They evalu-
ate these rules along four numerical criteria (expected utility
of winner, of the runoff loser, representativeness, resistance
to strategy); numerical results come both from using real data
and from simulations. Among other conclusions, plurality
with runoff scores particularly bad, and approval with runoff,
slightly better, although it is beaten by plurality with runoff on

two criteria: representativeness and resistance to strategy.
A runoff can also be seen as an extreme case of shortlisting

(with at most two selected candidates). Using approval for
shortlisting candidates was studied recently in [Lackner and
Maly, 2021]; a crucial difference with runoff rules is that
shortlisting does not impose constraints on the number of
selected candidates, which leads to very different rules.

ABC rules have received enormous attention these last ten
years: see [Lackner and Skowron, 2020] for a review. They
are clustered in several groups according to the objective of
the selection: excellence (select the individually best k candi-
dates), proportional representation (ensure that each coherent
group of voters is represented in the selection, proportionally
to its size), or diversity (output a diverse set of candidates,
avoid similar candidates in the selection). Which of these
three clusters of rules suits the selection of runoff candidates
better is not clear at this point; our paper aims at answering
(at least partly) this question.

Defining voting rules that take as input approval-preference
profiles has been initiated in [Brams and Sanver, 2009], who
propose and study two such rules (preference approval voting
and fallback voting) that have been studied in a number of
subsequent works, from the point of view of axiomatization,
computation, resistance to strategic behaviour; as far as we
know, they have not been studied in the context of runoffs.

3 Approval with Runoff: A Family of Rules
3.1 The Model
Let C = {c1, . . . , cm} be a set of m candidates and V =
{v1, . . . , vn} a set of n voters. An approval profile is a col-
lection of approval ballots V = 〈A1, . . . , An〉 with Ai ⊆ C
for all i. An ordinal preference profile is a collection of rank-
ings �= 〈�1, . . . ,�n〉, where �i is the preference ranking
of voter i over C. An approval-preference profile is a col-
lection of pairs P = 〈(A1,�1), . . . (An,�n)〉 where VP =
〈A1, . . . , An〉 is an approval profile and �= 〈�1, . . . ,�n〉 an
ordinal preference profile. We also note P = (VP ,�).

Throughout the paper, we assume ballot consistency: voter
vi has a threshold in her ranking �i such that every candidate
above the threshold is approved and every candidate below is
not; formally, a �i b holds for all a ∈ Ai and b 6∈ Ai. Ballot
consistency allows us to use the following notation [Brams and
Sanver, 2009]: x1x2 . . . xj |xj+1 . . . xm represents (�i, Ai)
with �i= x1 . . . xm and Ai = {x1, . . . , xj}. 4

Given an ordinal preference profile �, maj(�, {a, b}) is
defined as the set of winners of the majority vote between a
and b (which is a singleton except in the case of a tie).

We now define the family of approval-based runoff (AVR)
rules. The idea is that we use the approval ballots in the first
round to select two finalists, and the second round consists
in a majority vote between the two candidates. Let F be an
(irresolute) approval-based 2-committee rule, i.e. a function
that takes as input an approval profile and returns a nonempty
set of pairs of candidates. Then, FR is the (irresolute) AVR

4Ballot consistency does not necessarily hold if voters are strategic
and cast insincere approval ballots. Most results in the paper still
hold without assuming ballot consistency.
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rule such that we conduct the majority rule on every pair of
finalists selected by F . Formally:

FR(V,�) =
⋃

{x,y}∈F (V )

maj(�, {x, y})

For an approval profile V we denote SV (c) = |{i|c ∈ Ai}|
the approval score of a candidate c ∈ C. By extension, the
approval score of a set of candidates J ⊆ C is the number
of approval ballots that contains all candidates from the set
J , SV (J) = |{i|J ⊆ Ai}|. For simplicity, we write sets on a
simpler form, e.g. SV (abc) instead of SV ({a, b, c}). We call
approval winners the candidates that maximize SV , that is the
winners of standard (single-winner) approval voting.

3.2 Rules
We now define some ABC rules. Because we need them only
for k = 2, we only define them for this case. (See for instance
[Lackner and Skowron, 2020] for a general presentation.)

Multi-Winner Approval Voting (MAV):
MAV (V ) = arg max

x1,x2∈C
SV (x1) + SV (x2)

Some rules discount the satisfaction of voters who are al-
ready satisfied by one of the two finalists. This is the case of
these two rules:

Proportional Approval Voting (PAV):

PAV (V ) = arg max
x1,x2∈C

SV (x1) + SV (x2)− 1

2
SV (x1x2)

Approval Chamberlin Courant (CCAV):
CCAV (V ) = arg max

x1,x2∈C
SV (x1) + SV (x2)− SV (x1x2)

These rules select the pairs of candidates {x1, x2}maximiz-
ing SV (x1)+SV (x2)−αSV (x1x2) for some α ∈ [0, 1]. This
α is equal to 0 for MAV, to 1/2 for PAV and to 1 for CCAV.
We call these rules α-AV rules. There also exists sequential
versions of these rules. In these sequential versions, the first
finalist is always an approval winner.

Sequential Proportional Approval Voting (S-PAV): The
rule chooses the pairs {x1, x2} such that x1 maximizes
SV (x1) and x2 maximizes SV (x2)− 1

2SV (x1x2).
Sequential Approval Chamberlin Courant (S-CCAV):

The rule chooses the pairs {x1, x2} such that x1 maximizes
SV (x1), and x2 maximizes SV (x2)− SV (x1x2).

Note that sequential MAV would be equivalent to standard
MAV. For these sequential rules, the first finalist is an ap-
proval winner x1, and the second finalist maximizes the value
SV (x2)−αSV (x1x2) for some α ∈ [0, 1]. We call these rules
α-seqAV rules. A rule that almost falls into this family is:

Eneström Phragmen (EnePhr) : The rule chooses the
pairs {x1, x2} such that x1 maximizes SV (x1) and x2 max-
imizes SV (x2) − min(1, Q

SV (x1)
)SV (x1x2) for some quota

Q ∈ [0, n].

Here α = min(1, Q
SV (x1)

) and depends on the score of
the first finalist. The quota is usually the Droop quota Q =
n/(k + 1) = n/3 or the Hare quota Q = n/k = n/2.

Sequential Phragmen (S-Phr): The rule chooses the pairs
{x1, x2} such that x1 maximizes SV (x1) and x2 minimizes

1 + SV (x1,x2)
SV (x1)

SV (x2)

Example 1. Let V = (2× a, 6× ab, 4× abc, 4× cd, 1× d),
i.e., two ballots {a}, six {a, b} etc. With MAV, the selected
finalists are {a, b}; with PAV and S-PAV, {a, c}; with CCAV
and S-CCAV, {a, d}. For EnePhr, the finalists are {a, c} for
both Droop and Hare Quota, as every α-AV and α-seqAV rule
with α ∈ [1/3, 3/4]. {a, c} are also the finalists for S-Phr.

We also need the rule that returns all pairs of candidates:
Trivial Approval Voting (TRIV):

TRIV (V ) = {{x, x′} | x, x′ ∈ C, x 6= x′}
Note that the trivial approval rule with runoff is actually

not completely trivial: it outputs all candidates except the
Condorcet loser whenever there is one.

In addition to classic properties of ABC rules (see [Lackner
and Skowron, 2021]) we add this one:

Definition 1. A rule F is said to be favorite-consistent if
every winning committee contains an approval winner, i.e.
for all winning committee W ∈ F (V ), we have W ∩
arg maxc∈C SV (c) 6= ∅.

In our context, this property is important because it is hard
for voters to accept a voting rule in which the approval winner
may not be a finalist. Among the voting rules considered here,
it is clear that only sequential rules satisfy this property (MAV,
S-PAV, S-CCAV, EnePhr and S-Phr).

4 Axiomatic Analysis
In this section, we study the properties of AVR rules.

As usual, a ruleFR is anonymous if it is invariant by any per-
mutation of the voters, and neutral if for any permutation of the
candidates π and every profile P , FR(π(P )) = π(FR(P ))

We will use the following unanimity condition, that is
a strengthening of strict Pareto, adapted to the approval-
preference case. We say that candidate a unanimously
preference-approval dominates candidate b if

1. for every voter vi, a �i b
2. for some voter vi, a ∈ Ai and b 6∈ Ai
Together with ballot consistency, it implies that every voter

who approves b also approve a, and at least one voter who
approves a does not approve b. For simplicity we refer to this
condition as our Pareto condition, and say that a dominates b
when a unanimously preference-approval dominates b.

Definition 2. An AVR rule FR is Pareto-efficient if for all
approval-preference profile P in which there exists a, b ∈ C
such that a dominates b, we have b 6∈ FR(P ).

A i-deviation of a profile P is a profile P ′ such that for
all j 6= i, Aj = A′j and �j=�′j . We define weak strategy-
proofness as the impossibility for a voter to deviate from a
profile where she does not approve any winning candidate to
one where she approves at least one winning candidate.
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MAVR S-PAVR S-PhrR EnePhrR S-CCAVR PAVR CCAVR

Pareto-efficient
Monotonic

Weakly Clone-proof

Table 1: AVR rules and their properties

Definition 3. An AVR rule FR is weakly strategy-proof if
for every profile P , there is no i-deviation P ′ of P such that∣∣FR(P ) ∩Ai

∣∣ = 0 and
∣∣FR(P ′) ∩Ai

∣∣ ≥ 1.

It is hard to get strategyproofness in ABC voting, as it is
incompatible with proportionality [Peters, 2021]. For AVR
rules, this is no better: weak strategyproofness is incompatible
with Pareto-efficiency. Among the rules defined in Section 3.2,
the only strategyproof rule is TRIVR.

Theorem 1. No AVR rule is weakly strategy-proof and Pareto-
efficient.

Proof. Assume FR is Pareto-efficient and weakly strategy-
proof. Let P = (V,�) = (10× abc|, ab|c, a|bc, c|ab) — that
is, V contains 10 approval ballots {a, b, c}, one {a, b} etc.,
and � contains 12 rankings a � b � c and one c � a � b.
a dominates b in P , and maj(�, {b, c}) = b. By Pareto-
efficiency, b /∈ FR(P ) and thus {b, c} 6∈ F (V ).

Let P ′ = (V ′,�′) = (10 × abc|, a|bc, a|bc, c|ab). In P ′,
a dominates b and maj(�, {b, c}) = b, so {c, b} 6∈ F (V ′).
Let P ′′ = (V ′′,�′′) = {10 × cba|, a|cb, a|cb, c|ab}. In P ′′,
c dominates b and maj(�, {a, b}) = b, therefore {a, b} 6∈
F (V ′′). Because V ′ = V ′′, F (V ′) = F (V ′′) = {a, c}.

Assume {a, b} ∈ F (V ). Let P ′ = (V ′,�) = (10 ×
cab|, a|bc, a|bc, c|ab) and a deviation P = (V,�) = (10 ×
cab|, ab|c, a|bc, c|ab), where a voter who used to approve {a}
now approves {a, b}. We know F (V ′) = {a, c} so FR(P ′) =
maj(�, {a, c}) = c, and a ∈ FR(P ) because {a, b} ∈ F (V ).
Therefore, this is a successful manipulation, which contradicts
strategy-proofness. Thus, {a, b} /∈ F (V ) and F (V ) = {a, c}.

Let P ∗ = (V ∗,�∗) = (10 × bca|, ab|c, a|bc, bc|a). In
P ∗, b dominates c and maj(�∗, {a, c}) = c. Therefore,
{a, c} /∈ F (V ∗). Assume that {b, c} ∈ F (V ∗). Let P̂ =

(V, �̂) = (10 × acb|, ab|c, a|bc, c|ba) and P̂ ∗ = (V ∗, �̂) =
(10 × acb|, ab|c, a|bc, cb|a) a deviation where the last voter
now approves {b, c}. We have FR(P̂ ) = maj(�̂, {a, c}) =

a. However, if we assume {b, c} ∈ F (V ∗), then c ∈ FR(P̂ ∗)
because maj(�̂, {b, c}) = c. Therefore, the deviating voter
makes c win. This contradicts strategy-proofness, therefore,
{b, c} /∈ F (V ∗) and F (V ∗) = {a, b}.

Finally, let P̆ ∗ = (V ∗, �̆) = (10 × cab|, ab|c, a|bc, cb|a)

and the deviation P̆ = (V, �̆) = (10× cab|, ab|c, a|bc, c|ba),
where the voter approving {b, c} now approves {c}. We
have FR(P̆ ∗) = maj(�̆, {a, b}) = a and FR(P̆ ) =
maj(�̆, {a, c}) = c. This deviation is a manipulation. This
contradicts strategyproofness, and proves the theorem.

This set of properties is minimal: TRIVR is weakly strate-
gyproof but not Pareto-efficient, MAVR is Pareto-efficient but
not weakly strategyproof.

We now focus on monotonicity. Given a profile P = (V,�)
and a ∈ C, a profile P ′ = (V ′,�′) 6= P is an a-improvement
of P if for some i ∈ N we have

1. A′i = Ai ∪ {a} or A′i = Ai

2. For all x, y with y 6= a, if x �i y then x �′i y
3. For all j 6= i, A′j = Aj and �′j=�j

Definition 4. An AVR rule FR is monotonic if for every a ∈
FR(P ) and for every a-improvement P ′ of P , we have a ∈
FR(P ′).

MAVR satisfies both monotonicity and Pareto-efficiency.5
All omitted proofs, including this one, are in the long version
of the paper [Delemazure et al., 2022].

Finally, we focus on clone-proofness. Informally, this prop-
erty means that adding a clone of a candidate does not change
significantly the outcome of the election. Formally, let a ∈ C,
and a profile P ′ = (V ′,�′) over C ′ = C ∪ {a′}. P ′ is an
a-cloning extension of P = (V,�) if

1. For every vi and x, y ∈ C, x ∈ A′i if and only if x ∈ Ai,
and x �′i y if and only if x �i y

2. For every vi, a′ ∈ A′i if and only if a ∈ Ai
3. For every vi and x 6∈ {a, a′}, a′ �′i x if and only if
a �i x

Definition 5. An AVR rule FR is clone-proof if for any profile
P , candidate a ∈ C, and an a-cloning extension P ′ of P , the
two following conditions hold:

1. For every c 6= a, c ∈ FR(P ) if and only if c ∈ FR(P ′)

2. a ∈ FR(P ) if and only if
∣∣FR(P ′) ∩ {a, a′}

∣∣ ≥ 1

MAVR is not clone-proof. Let P = (a|b, ba|, ba|);
MAVR(P ) = {b}. P ′ = (aa′|b, baa′|, baa′|) is an a-cloning
extension of P and yet MAVR(P ′) = {a}. P can be used
to prove that CCAVR and S-CCAVR are not clone-proof ei-
ther: CCAVR(P ) = S-CCAV(P ) = {b}; P ′ = (V ′,�′) =
(aa′|b, baa′|, baa′|) is an a-cloning extension of P ; and yet
CCAV(V ′) = S-CCAV(V ′) = {(b, a), (b, a′), (a, a′)}, so
CCAVR(P ′) = S-CCAVR(P ′) contains a.

Among the rules considered in Section 3.2, none is clone-
proof. However, there exist AVR clone-proof rules: such a rule
is defined by the ABC rule that selects the pairs of candidates
maximizing f(x1, x2) = SV (x1) + SV (x2) − 2SV (x1x2).
However, this rule is not Pareto-efficient. More generally,
clone-proofness and Pareto-efficiency are incompatible:

5This is not the only rule satisfying these two properties. This is
also the case for FR, where F returns all pairs of candidates {a, b}
such that either (i) neither a nor b is Pareto-dominated in V or (ii) a
is the only candidate that dominates b in V .
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Figure 1: Position of the second finalist for α-seqAV rules for various values of the approval radius d and with α ∈ [0, 1]. The position
corresponds to the distance to the center of the distribution (which is also the position of the first finalist)

Theorem 2. No AVR rule is clone-proof and Pareto-efficient.

We now define a weaker version of clone-proofness, with a
domain restriction that eliminates pathological profiles:

Definition 6. An AVR rule FR is weakly clone-proof if it is
clone-proof on every profile P such that no candidate c ∈ C
is approved in every non-empty ballot: for every c ∈ C, there
exists a voter vi such that Ai 6= ∅ and c 6∈ Ai.

CCAVR and S-CCAVR are weakly clone-proof.6 Unfortu-
nately, we have the following impossibility:

Theorem 3. No AVR rule is monotonic, weakly clone-proof
and neutral.

Proof. Assume FR is monotonic, weakly clone-proof and
neutral. Let P = (V,�) = (10 × cab|, a|bc, b|ca, c|ab). By
neutrality, assume wlog {a, b} ∈ F (V ), so a ∈ FR(P ). P ′ =
(V ′,�′) = (10 × cab|, a|bc, ba|c, c|ab) is an a-improvement
of P . By monotonicity, a ∈ FR(P ′). Because maj(�′,
{a, c}) = c, this implies {a, b} ∈ F (V ′).

Let P ′′ = (V ′′,�′′) = (10 × cba|, a|bc, ba|c, c|ab)
and P ∗ = (V ∗,�∗) = (10 × cba|, ab|c, ab|c, c|ab) a b-
improvement of P ′′. Since V ′′ = V ′ we have {a, b} ∈
F (V ′′), and b ∈ FR(P ′′). By monotonicity, b ∈ FR(P ∗).
Since maj(�∗, {b, c}) = c, we have {a, b} ∈ F (V ∗).

Now consider P̂ = (V̂ , �̂) = (10× ca|, a|c, a|c, c|a). We
have FR(P̂ ) = {c}. If we clone a into another candidate
a∗, we can define the a-cloning extension P̂ ∗ = (V̂ ∗, �̂∗) =
(10 × ca∗a|, aa∗|c, aa∗|c, c|aa∗). By weak clone-proofness,
neither a nor a∗ is in FR(P̂ ∗), so {a, a∗} /∈ F (V̂ ∗). However,
if π is the permutation that exchanges a∗ and b, we have
π(V̂ ∗) = V ∗. By neutrality, F (π(V̂ ∗)) = F (V ∗). There
is a contradiction, because {a, b} ∈ F (V ∗) and {a, b} /∈
F (π(V̂ ∗)). This concludes the proof.

This set of properties is minimal: MAVR is monotonic and
neutral; CCAVR is weakly clone-proof and neutral; a rule

6Recall that they are not Pareto-efficient. A rule weakly clone-
proof and Pareto-efficient is FR, where F selects the CCAV finalists,
and uses MAV as a tie-breaking if there are several pairs of finalists.

with a constant pair of finalists is weakly clone-proof and
monotonic. On the positive side, some AVR rules satisfy one
of the two properties, cf. Theorem 4. In contrast, plurality
with runoff is neither monotonic or weakly clone-proof.

Theorem 4. Table 1 gives properties of the different AVR rules
(a rule satisfies a property if and only if there is a ).

5 Statistical Analysis with One-Dimensional
Euclidean Preferences

We now want to explore the spectrum between rules that select
the most popular candidates, typically MAV, and rules that
favour diversity in the set of finalists, typically CCAV and
S-CCAV or, to a lesser extent, PAV and S-PAV.

In this section we focus on one-dimensional Euclidean pref-
erences: we assume that there is a function φ : V ∪ C → R
such that c �i c′ if |φ(c) − φ(vi)| < |φ(c′) − φ(vi)|. We
also assume that there exists d > 0 such that every voter
vi approves all candidates c such that |φ(c) − φ(vi)| < d.
Given a distribution of voters, we want to know in which posi-
tion a candidate can maximize his score with α-seqAV rules.
Godziszewski et al [2021] studied the location of the winners
of ABC rules with a 2D-euclidean model.

5.1 Triangular Distribution
We first assume that the distribution of voters follows the fol-
lowing triangular density function f : all voters and candidates
are located on [−1, 1], and for all x ∈ [−1, 1], f(x) = 1− |x|.
Let us consider α-seqAV rules, for α ∈ [0, 1]: for all pairs of
finalists, one finalist x1 is an approval winner and the other fi-
nalist x2 maximizes SV (x2)−αSV (x1x2). Recall that α = 0
leads to MAV and α = 1 to S-CCAV. The first finalist will
always be the closest to the middle point of the interval (here
0). It can be shown that the position in which the second
finalist will get the maximum score for specific α and d is

|x∗2| =


α(1−d)
2−α if α ≤ 2d

1 + d− 2d
α if 2d ≤ α ≤ 2d

1−d
2d if α > 2d

1−d
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Rule MAV CCAV S-CCAV PAV S-PAV S-Phr
2017-Strasbourg Lib/Left Lib/Left Lib/ Left Lib/Left Lib/Left Lib/ Left
2017-Grenoble Soc/Lib Soc/Cons Soc/Cons Lib/Left Lib/Soc Cons/ Soc

2017-HSC Lib/Left Lib/Left Lib/ Left Lib/Left Lib/Left Lib/ Left
2017-Crolles Lib/Left Lib/Nat Lib/ Nat Lib/Left Lib/Left Lib/ Left
Best-Poster-A #1/#2 #1/#6 #1/#6 #1/#4 #1/#4 #1/#4
Best-Poster-B #1/#2 #1/#2 #1/#2 #1/#2 #1/#2 #1/#2

Table 2: Finalists with different ABC rules on several datasets
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Figure 2: Scores of pairs of candidates with α-AV and α-seqAV rules on the Grenoble dataset of the 2017 French presidential election.

This optimal distance to the first finalist is depicted on Figure
1a, which clearly shows that for rules close to MAV, the second
finalist is quite centrist, and the closer we are to S-CCAV, the
more extreme is the second finalist. Also, α-seqAV rules starts
to be equivalent to S-CCAV before α = 1 when d < 1

3 .

5.2 Gaussian Distribution
Now, we assume that we have a Gaussian distribution of voters,
with center 0 and standard deviation 1/2. We used simulations
on synthetic data. We sampled 20, 000 voters and 1, 000 candi-
dates. Again, every voter approves candidates at distance ≤ d.
For each d and α we compute the two finalists and observed
their positions on the line. The first selected finalist is always
the closest to the center. Figure 1b shows the distance between
the two finalists for α-seqAV rules with α ∈ [0, 1] and various
d. We observe that Figure 1b is very similar to Figure 1a.

6 Experiments
Finally, we want to compare the different rules on real data.
We used approval ballot datasets from different sources:

• Datasets from several cities conducted during the 2017
French presidential election [Bouveret et al., 2019] each
with around 1000 voters, and the 11 candidates running.

• Two datasets of a poster competition held at the San Se-
bastian Summer School on Computational Social Choice7

(17 candidates, around 60 voters per dataset).
After a debiasing step (for the presidential election datasets),

we ran the different rules presented in Section 3.2. Table 2
summarizes the finalists obtained for each dataset and each
rule. For some datasets, the choice of the rule has a strong

7Available on www.preflib.org

impact on the finalists, which suggests that the choice of the
ABC rule should be made with care.

We can also look at the evolution of the finalists with α-AV
and α-seqAV rules when α varies from 0 to 1. This gives us
a spectrum of rules from MAV to (S-)CCAV and we can see
how the results evolve between the extremes. For MAV, the
finalists are the two candidates from the strongest group, and
for CCAV, they are from two very different groups.

Figure 2a depicts the evolution of the pair of finalists for
α-AV rules for the 2017-Grenoble Dataset. We can see that
the pairs of finalists change twice and involve 4 different
candidates (Liberal, Left, Socialist and Conservative). As no
candidate appears in all three pairs, the final winner will differ
for at least two rules.

Figure 2b depicts the evolution of the α-seqAV score of can-
didates for second finalist spot in the 2017-Grenoble dataset.
The approval winner is the Socialist candidate; the second
finalist is either the Liberal or the Conservative.

7 Conclusion
Our main message is that approval with runoff is not one rule
but a family of rules, parameterized by the ABC rule chosen
for determining the finalists. Our axiomatic and experimental
results in Sections 4, 5 and 6 show that this choice makes a big
difference. If such rules have to be used in political elections,
the choice of the ABC rule will be crucial, and is far from
easy, but our results already give some useful elements.

An important question is, will citizens understand and ac-
cept such rules especially in comparison with plurality with
runoff and standard (single-winner) approval voting? Will
there be a difference in voting behaviour under AVR rules
between citizens used to runoff voting in their country and
those who are not?
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