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Abstract

We construct a new duality for two-dimensional Discrete Gaussian
models. It is based on a known one-dimensional duality and on a
mapping, implied by the Chinese remainder theorem, between the sites
of an N × M torus and those of a ring of NM sites. The duality
holds for an arbitrary translation-invariant interaction potential v(r)
between the height variables on the torus. It leads to pairs (v, ṽ) of
mutually dual potentials and to a temperature inversion according to
β̃ = π2/β. When v(r) is isotropic, duality renders an anisotropic ṽ.
This is the case, in particular, for the potential that is dual to an
isotropic nearest-neighbor potential. In the thermodynamic limit this
dual potential is shown to decay with distance according to an inverse
square law with a quadrupolar angular dependence. There is a single
pair of self-dual potentials v? = ṽ?. At the self-dual temperature
β? = β̃? = π the height-height correlation can be calculated explicitly;
it is anisotropic and diverges logarithmically with distance.

Key words : Discrete Gaussian SOS model, Chinese remainder theorem,
two-dimensional duality.
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1 Introduction
The Discrete Gaussian (DG) model is a particular lattice model belonging
to the class of the so-called Solid-on-Solid (SoS) models which aim to de-
scribe the fluctuations of a crystal surface. The most usual versions of SoS
models are two-dimensional. In such a model a surface is described as a
collection of integer-valued height variables {hi} associated with the sites i
of a two-dimensional (2D) lattice. The interaction between two height vari-
ables hi and hi′ is some function of their difference |hi − hi′ |, and in the case
of the DG model it is a simple quadratic form. When v(r) represents an
isotropic nearest neighbor coupling, the DG model is dual to the XY model
in its Villain version [1], and therefore it undergoes a phase transition in
the Kosterliz-Thouless universality class. This phase transition has been the
main motivation for the interest in this short-ranged two-dimensional DG
model.

The DG Hamiltonians of interest to us in this work take the form

H =
1

2

∑
i

∑
i′

v(i− i′)(hi − hi′)2, (1)

where the coupling constants v(r) constitute a translation-invariant pair po-
tential. We may impose without loss of generality the symmetry v(r) = v(−r)
under parity transformation. We consider a toroidal lattice of N ×M sites,
which for M = 1 includes also the one-dimensional (1D) case. The partition
function associated with Hamiltonian (1) reads

∑′

{hi}
exp[−βH] in which

the hi are summed over all integer values except for the condition, indicated
by the prime on the summation sign, that one height, say hi0 , should be kept
fixed, say hi0 = 0. This “global gauge” condition eliminates a trivial infinite
factor in the partition function, which is due to H being invariant under the
global translation hi 7→ hi+h. After this trivial factor has been removed, the
only further condition on v(r) is that (1) define a positive definite quadratic
form.

The one-dimensional DG model with arbitrary interaction potential v(r)
at inverse temperature β was studied by Kjaer and Hilhorst (KH) [2], who
found that it is dual to another such model but with a dual potential ṽ and
a dual inverse temperature β̃ = π2/β. Whereas in general v 6= ṽ, there is
a unique and explicitly known self-dual potential v? for which v? = ṽ?. In
the thermodynamic limit N →∞ the self-dual potential v?(r) tends toward
1/[π(r2 − 1

4
)]. The temperature β? such that β? = β̃? is a candidate for a

critical temperature of this model.
In this work we combine the one-dimensional KH results with a mapping

between one- and two-dimensional lattices that occurs in number theory in
the context of the Chinese remainder theorem. This theorem suggests to

2



represent the one-dimensional ring lattice geometrically as a helix wound
around the two-dimensional torus in such a way that the helix returns to
its origin after having passed through all sites on the torus. The theorem
requires that N and M be coprime, that is, have no common prime factor.

The result is a new duality relating the two-dimensional DG model with
arbitrary potential v to another such model but with a different potential ṽ
and, again, with inverse temperature β̃ = π2/β. More precisely, the partition
function on the torus is shown to obey the duality

ZN,M [βv] =
1

β(MN−1)/2 cN,M [v] ZN,M

[
π2

β
ṽ

]
, (2)

where the constant cN,M [v] is a functional of v, and where the relation be-
tween the potentials v(r) and ṽ(r) is given in section 4.2 in terms of their
Fourier transforms. Again, there is a self-dual potential v? and a candidate
critical temperature.

This paper is organized as follows. In section 2 we establish our notation
for the 1D and 2D Discrete Gaussian models, and we recall the results about
the duality on the ring. In section 3, by using the Chinese remainder theo-
rem we introduce and discuss the mapping between a one-dimensional and
a two-dimensional lattice and the corresponding transformation of periodic
functions. In section 4 we show how for the two-dimensional DG Hamiltonian
this mapping leads to a duality relation. In section 5 we consider the special
case of the self-dual potential v?. In section 6 we consider the well-known
2D DG Hamiltonian with isotropic nearest-neighbor interaction. In section
7 we point out the main features of the new duality.

2 Discrete Gaussian models
In this section we establish some notation and review some results on the
one-dimensional DG model that will be fundamental in the sections hereafter.
The length of the ring will be denoted by N , a coordinate difference by R,
and the potential by V (R).

2.1 DG model on a ring

For a ring of length N we shall write H1 for the DG Hamiltonian (1). The
lattice site i becomes a scalar i that may take the values i = 0, 1, . . . ,N − 1.
In a slightly more formal notation we then have

H1 =
1

2

∑
i∈ZN

∑
i′∈ZN

V (i− i′)(hi − hi′)2, (3)

3



where i ∈ ZN is the equivalence class of all integers equal to i up to a multiple
of N . Symmetry of the interaction under parity transformation is expressed
as

V (R) = V (−R). (4)

Since the labels i and i+N refer to the same site, the potential V (R) must
be N -periodic,

V (R) = V (R +N ). (5)

The two equations (4) and (5) together imply the reflection symmetry

V (R) = V (N −R). (6)

We define the partition function with the global gauge mentioned in the
introduction, namely

ZN [βV ] =
∑′

{hi|i 6=0}

exp[−βH1], (7)

where the prime indicates the constraint h0 = 0. This restriction implies
that the mean height at any site i vanishes at any temperature.

We observe that Hamiltonian (3) is independent of the value of V (0). In
the Fourier transforms below we shall consider that V (0) has been assigned
an arbitrary value, knowing that the results cannot depend on it.

Fourier transformed variables are defined as

ĥK =
1√
N

∑
j∈ZN

e−iKj hj , (8)

and the Fourier transformed potential is

V̂ (K) =
∑
R∈ZN

e−iKR V (R), (9)

where K = 2πp/N with p ∈ ZN . Then Hamiltonian (3) takes the form

H1[V ] =
∑
K 6=0

W (K)ĥK ĥ−K (10)

in which

W (K) ≡
N−1∑
R=1

[1− cos(KR)]V (R) = V̂ (0)− V̂ (K), K 6= 0. (11)

The last equality in (11) comes from the symmetry (6). Equation (10) shows,
incidentally, that in order for the partition function (7) to exist we must have
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that W (K) > 0 for all K 6= 0; we impose this condition throughout the
remainder of this paper.

Equation (9) is the usual Fourier transform in the space of N points with
inverse

V (R) =
1

N
∑
K

eiKR V̂ (K), R = 0, 1, . . . ,N − 1. (12)

Equation (11) transforms only the subset {V (1), V (2), . . . , V (N − 1)} which
excludes the nonphysical variable V (0), and its inverse is

V (R) = − 1

N
∑
K 6=0

eiKRW (K), R = 1, 2, . . .N − 1. (13)

The symmetries (4)-(6) lead for V̂ (K) to the corresponding symmetries

V̂ (−K) = V̂ (K), V̂ (K + 2π) = V̂ (K), V̂ (2π −K) = V̂ (K), (14)

of which only two are independent. Clearly W (K) satisfies the same sym-
metries as V̂ (K).

2.2 Duality in one dimension

It was shown in reference [2] that the one-dimensional DG model with ar-
bitrary potential V (R) obeying the symmetries (4)-(6) is dual to a similar
one-dimensional DG model with a potential Ṽ (R). In particular, the parti-
tion functions of the two models are related by

ZN [βV ] =
1

β(N−1)/2CN [V ] ZN

[
β̃Ṽ
]
, (15)

where β̃ = π2/β and

CN [V ] =
√
N
√∏

K 6=0

π

W (K)
(16)

withK = 2πp/N , p ∈ ZN , andW (K) defined in (11).1 The relation between
V (R) and Ṽ (R) takes its simplest form in terms ofW (K) and W̃ (K), namely

W̃ (K) =
4 sin2(K/2)

W (K)
, K 6= 0. (17)

When expressed in terms of V̂ (K) and ̂̃V (K) this relation becomes

̂̃
V (0)− ̂̃V (K) =

2[1− cosK]

V̂ (0)− V̂ (K)
, K 6= 0, (18)

1The partition function of the dual model depends on β̃Ṽ and in reference [2] the
normalizations of the potential Ṽ and the inverse temperature β̃ are such that β̃ = 1/β.
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and leaves ̂̃V (0) undefined. The real-space expression Ṽ (R) of the dual po-
tential may be obtained by inverse Fourier transformation of (17) according
to (13) with the result

Ṽ (R) = − 1

N
∑
K 6=0

eiKR
4 sin2(K/2)

W (K)

= − 1

N
∑
K 6=0

eiKR
2[1− cosK]

V̂ (0)− V̂ (K)
, R = 1, . . . ,N − 1. (19)

This equation leaves Ṽ (0) undefined. Furthermore, neitherW (K) nor W̃ (K)
appears in the transformations with argument K = 0.

We also notice that, according to (14) and (18), ̂̃V (K) obeys the same
reflection symmetry as V̂ (K), namely

̂̃
V (2π −K) =

̂̃
V (K). (20)

As a consequence Ṽ (R) obeys the same reflection symmetry as V (R),

Ṽ (R) = Ṽ (N −R). (21)

In figure 1 we have represented two examples of a potential V (R) and
its dual. In general, the relation between V (R) and Ṽ (R) cannot be made
more explicit than equation (18) or equivalently (19). Among the exceptions
is the exponentially decaying potential, appropriately symmetrized to satisfy
equation (6),

Vexp(R) =
e−αR + e−α(N−R)

e−α + e−α(N−1)
, (22)

whose dual is
Ṽexp(R) = A(δR,1 + δR,N−1) +N−1B (23)

with

A =
cosh α(N−2)

2
sinh α

2

sinh αN
2

cosh α
2

, B = 4A sinh2 α

2
. (24)

For future use we introduce an auxiliary potential U(R),

U(R) = − 1

N
∑
K 6=0

1− cos(KR)

V̂ (0)− V̂ (K)
, R = 0, 1, 2, . . . ,N , (25)

in which V̂ (0) − V̂ (K) > 0. It is easily checked that Ṽ (R) may be derived
from U(R) by

Ṽ (R) = U(R + 1) + U(R− 1)− 2U(R), R = 1, 2, . . . ,N − 1, (26)
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Figure 1: Three examples of a potential V (R) and its dual Ṽ (R) on a ring of N =
100 sites. (a) Open black circles: The power law potential V (R) = π−1N3/[R(N−
R)]3, appropriately symmetrized to satisfy equation (6); for N → ∞ it tends to
V (R) = 1/(πR3). (a′): Its dual (filled black circles); for N → ∞ it tends to
a potential that decays with distance as ∼ 1/R. (b) Open blue squares: The
exponential potential Vexp(R) of equation (22) for α = 0.25. (b′): Its dual (filled
blue squares), equations (23) and (24). (c) Red stars: The self-dual potential
V (R) = Ṽ (R) = V ?(R), equation (72).

a relation that appears in reference [2] (but with another normalization). This
U(R) arises through the well-known correspondence between a DGmodel and
a lattice model in which the Hamiltonian reads 1

2

∑
i∈ZN

∑
i′∈ZN

U(i− i′)qiqi′
and the configurations of integer qi’s obey the neutrality constraint

∑
i qi =

0. Therefore the integer-valued qi are called “charges” and their interaction
potential U the “charge potential.” Consequently equation (26) shows that
Ṽ (R) is the potential created by a quadrupole of charges 1 ,−2, and 1 located
on the sites R = −1, R = 0, and R = 1, respectively. We shall therefore
sometimes refer to Ṽ (R) as the “quadrupolar interaction.”
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2.3 DG model on a torus

In the special case of an N ×M lattice with toroidal boundary conditions we
shall write the DG Hamiltonian (1) as H2. Sites will be labeled by i = (i, j),
where i = 0, 1, . . . , N − 1 and j = 0, 1, . . . ,M − 1. The Hamiltonian (1) then
becomes

H2 =
1

2

∑
(i,j)∈ZN×ZM

∑
(i′,j′)∈ZN×ZM

v(i− i′, j − j′)(hi,j − hi′,j′)2. (27)

Parity symmetry is now expressed as

v(r, s) = v(−r,−s). (28)

Since the labels (i, j), (i + N, j), and (i, j + M) refer to the same site, the
potential v must have the periodicity properties

v(r +N, s) = v(r, s), v(r, s+M) = v(r, s). (29)

As a consequence of (28) and (29) we have the reflection symmetry

v(N − r,M − s) = v(r, s). (30)

For M = 1 this system reduces to the ring model described above.
Again, the Hamiltonian (27) is independent of the value of the interaction

constant v(0, 0). The partition function is defined as in (7),

ZN,M [βv] =
∑′

{hi,j |(i,j)6=(0,0)}

exp[−βH2], (31)

where the prime denotes the gauge condition h0,0 = 0.
We shall consider in this work only functions on the ring and on the torus

that have the symmetry properties (4)-(6) and (28)-(30), respectively.

3 Mapping between a torus and a ring
In this section we show how, under the condition that N andM are coprime,
the Chinese remainder theorem allows us to introduce a mapping between
the ring ZNM and the torus ZN × ZM for both coordinates and periodic
functions. For the Chinese remainder theorem at an elementary level see
reference [5] and for more advanced topics see reference [6].
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3.1 Mapping for spatial coordinates

3.1.1 Chinese remainder theorem

For any bijection of the sites (r, s) of the torus ZN ×ZM onto the integers R
of the ring ZNM the Hamiltonian (27) becomes formally a one-dimensional
Hamiltonian. We wish, however, to apply a bijection that preserves the
group law (i.e., translation and inversion). The Chinese remainder theorem
provides such a bijection at the condition that N and M be coprime, that is,
that their only positive common divisor be unity. We shall henceforth take
M and N such that this condition is met.

In the case of two integers N,M > 1 the Chinese remainder theorem may
be stated as follows. For any given pair of integers (r, s) the set of equations
with unknown R,

r = R (mod N), s = R (mod M), (32)

where x = y (mod N) means that x and y differ by a multiple of N , has a
solution given by

R = aNs+ bMr (mod NM), (33a)

in which the pair of integer Bézout coefficients (a, b) is, in turn, a solution of

aN + bM = 1. (33b)

Bézout’s theorem guarantees that there exists a pair (a, b) satisfying (33b)
which may be found by the so-called extended Euclidean algorithm. The
linear combination in (33a) is readily shown to satisfy the set of equations
(32) as follows. By construction aNs+bMr = bMr (mod N); then according
to the identity (33b), bMr can be rewritten as r − aNr and r − aNr = r
(mod N). As a result aNs + bMr = r (mod N). A similar argument leads
to aNs+ bMr = s (mod M).

We notice that from the definition (33b) of the Bézout coefficients it
immediately follows that another pair of the form (a+ cM, b− cN), where c
is any integer, is also a solution. We may make the solution of (33b) unique
by imposing, for example, that 0 < a < M and −N < b < 0, or, alternatively,
that −M < a < 0 and 0 < b < N . With the constraint 0 < a < M and
−N < b < 0, we give the solutions for various special cases of N and M . For
N > 1 and M = 2, the solution is a = 1 and b = (1−N)/2; for N > 2 and
M = N − 1 one gets a = 1 and b = −1; and for M > 1 and N = qM + 1,
where q = 2, 3, . . ., one finds a = 1 and b = −q.

9



3.1.2 Geometrical interpretation

The Chinese remainder theorem may be interpreted as a helicoidal mapping
of a one-dimensional path around the N ×M torus in the following way. We
refer to figure 2. We let R take the successive values R = 0, 1, 2, . . . , NM
and consider the path traced out on the torus by the pair (r, s) parametrized
by R according to equation (32). At R = 0 the path starts in the origin
(r, s) = (0, 0), and as long as R < min(N,M) we have (r, s) = (R,R), that
is, the path follows the main diagonal, undergoing at each step an increment
(1, 1). For larger R the path continues to undergo increments (1, 1), but the
N,M -periodicity of the lattice has to be taken into account. This leads to a
path that winds around the torus until it returns to the origin. The condition
that N and M be coprime guarantees that this return will occur only after
the path has visited all sites of the torus.

r

s

A’

A

B’B

0 1 2 3 54

0

1

2

3

4

O

Figure 2: The sites of an N ×M toroidal lattice with N = 6 and M = 5. The
fundamental domain is the region inside the dashed red rectangle, which must be
considered as periodically repeated; in particular, A and A′ are identical sites, and
so are B and B′. The path described in the text starts at the origin O and moves
at each step diagonally in the direction (1, 1), as indicated by the black dots. When
it steps to site A′, it leaves the fundamental domain but in fact arrives at A. Its
subsequent step in the (1, 1) direction then takes it to B′, but in fact it arrives at
B. Upon continuing it will visit all lattice sites until at its NMth step it returns
to O.
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3.1.3 Another mapping and corresponding helicoidal winding

In section (3.2) we shall show that the functions F (R) ≡ f(r, s) defined with
the mapping (33a) are periodic with period MN . We notice that we could
have chosen another helix which winds around the torus while also preserving
the periodicity of the lattice, so that the corresponding mapping (r, s) 7→ R′

leads to the same periodicity NM for functions F ′(R′) ≡ f(r, s).
For instance another proper helix is built by again mapping the origin

(r, s) = (0, 0) onto the integer R = 0 and then by incrementing the position
on the N ×M lattice by steps of (−1, 1) while at the same time increasing
R by one unit. After R′ steps on the helix the corresponding coordinates on
the torus are

r = −R′ (mod N), s = R′ (mod M). (34)

A simple argument similar to that presented for the derivation of the Chinese
theorem (33) shows that the linear combination

R′ = aNs− bMr (35)

is a solution of (34), because a and b are the solutions of (33b). We shall see in
subsection (4.3) how the results of interest in the present paper depend on the
choice of one among the two mappings R = aNs+ bMr or R′ = aNs− bMr.

3.2 Mapping for periodic functions

3.2.1 Periodicity on the torus and on the ring

Let f(r, s) be a given biperiodic function on the N ×M torus obeying the
symmetry properties (28)-(30).

f(r +N, s) = f(r, s+M) = f(r, s) (36)

and
f(N − r,M − s) = f(r, s). (37)

We define a corresponding function F (R) on the ring of length NM by

F (R) = f(r, s) with R = aNs+ bMr (mod NM). (38)

We shall show that the symmetries of f imply those of F and that the
reciprocal is also true.

The pairs (r+N, s) and (r, s+M) are associated with R+bNM and R+
aNM , respectively. The periodicity properties (36) then lead to
F (R + bMN) = F (R + aMN) = F (R). It follows that F (R) =
F (R +N(aNM) +M(bNM)), whence, with the use of (33b), we find that

F (R +NM) = F (R). (39)
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Similarly, by virtue of (33b), the reflected point (N − r,M − s) is associated
with aN(M − s) + bM(N − r) = NM −R, and the symmetry property (37)
leads to

F (NM −R) = F (R). (40)

As a consequence we also have the third symmetry, F (−R) = F (R); that is,
F obeys the symmetries (28)-(30) for a ring of NM sites. We point out that
similar arguments show that the periodicity (39) and the reflection symmetry
(40) are also valid for the second mapping (35).

Let conversely F (R) be given and satisfy (39) and (40); then
f(r+N, s) = f(r, s+M) = f(r, s) and f(N − r,M − s) = f(r, s) . Indeed if
F (R+NM) = F (R) then F (R+aNM) = F (R), and R+aNM corresponds
to (r, s + M). Similarly if F (NM − R) = F (R) then F ((a + b)NM − R) =
F (R), and (a+ b)NM −R corresponds to (N − r,M − s).

3.2.2 Mapping Fourier transforms from the torus to the ring

The Fourier transform of anNM -periodic function F (R) on the ring of length
NM is

F̂ (K) =
∑

R∈ZNM

e−iKR F (R) (41)

with the wavenumbers
K =

2π

NM
p, (42)

where p ∈ ZNM . Similarly, the Fourier transform of an N,M -biperiodic
function f(r, s) on the torus is

f̂(k1, k2) =
∑
r∈ZN

∑
s∈ZM

e−i(k1r+k2s) f(r, s) (43)

with the wavenumbers

k1 =
2π

N
n, k2 =

2π

M
m, (44)

where n ∈ ZN and m ∈ ZM . We now investigate the relation that results
between these two Fourier transforms in case F (R) = f(r, s).

The Chinese remainder theorem allows us to establish a bijection between
the index p of the wavenumber on the ring and the index pair (n,m) on the
torus,

p = aNm+ bMn (mod NM), (45)

which is analogous to R = aNs+ bMr (mod NM). Hence the wavenumber
on the torus may be expressed in terms of those on the ring as

K = bk1 + ak2. (46)
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After some rewriting and use of identity (33b) we find

e−iKR = e−i(bk1r+ak2s). (47)

When we substitute (46) in (41) and identify F (R) = f(r, s), we obtain

F̂ (K) =
∑
r∈ZN

∑
s∈ZM

e−i(bk1r+ak2s)f(r, s) = f̂(bk1, ak2). (48)

The Fourier transform F̂ (K) on the ring proves to coincide with a scaled
Fourier transform on the torus. Relation (48) allows to determine the Fourier
transform F̂ (K) on the ring when the Fourier transform f̂(k1, k2) on the torus
is given.

3.2.3 Mapping Fourier transforms from the ring to the torus

We shall now see how to determine the Fourier transform f̂(k1, k2) on the
torus when the Fourier transform F̂ (K) on the ring is given. We first write
f(r, s) = F (R) = 1

MN

∑
K eiKRF̂ (K), and from (46) and (47) we get

f(r, s) =
1

MN

∑
(k1,k2)

ei(bk1r+ak2s)F̂ (bk1 + ak2). (49)

where (k1, k2) is related to a pair of integers (n,m) through (44).
We then notice that, according to (33b), the coefficient b is coprime with

N (because if b and N had a common divisor different from 1 or −1 then
aN+bM could not be equal to 1). By virtue of Gauss’s lemma, the fact that
there exists no common divisor of b and N entails that if b(n−n′) is a multiple
ofN , then n−n′ is also a multiple ofN . Equivalently n 6= n′ (mod N) implies
bn 6= bn′ (mod N) and n 7→ bn is a one-to-one correspondence from ZN to
ZN . Similarly, according to (33b), the coefficient a is coprime with M and
m 7→ am is a one-to-one correspondence from ZM to ZM . As a result, if the
function A(n,m) is N,M -periodic, then∑

(n,m)∈ZN×ZM

A(bn, am) =
∑

(n,m)∈ZN×ZM

A(n,m). (50)

Hence the sum in (49) can be rewritten without the coefficients a and b, and
eventually

f(r, s) =
1

MN

∑
(k1,k2)

ei(k1r+k2s)F̂ (k1 + k2). (51)

Upon Fourier transforming both members of this equation we find

f̂(k1, k2) = F̂ (k1 + k2), (52)

which is the desired relation that yields f̂(k1, k2) when F̂ (K) is given.
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4 New duality for two-dimensional DG models

4.1 Mapping between torus and ring Hamiltonians

In the preceding section we have defined a mapping between the sites of the
torus and those of the ring, and an identification of functions defined on the
torus with functions defined on the ring. Now we consider how a Hamiltonian
given on the torus transforms into one defined on the ring.

Let the Hamiltonian H2 of equation (27) be given. A mapping of this
Hamiltonian, defined on the torus ZN ×ZM , onto a Hamiltonian on the ring
ZNM is constructed as follows. We relabel the height variables hr,s according
to

hR = hr,s , (53)

where R is given by (33) and we define the potential V (R) by

V (R) = v(r, s). (54)

According to section (3.2) the periodicity properties (29) and the reflection
symmetry (30) of v(r, s) imply that

V (R) = V (R +MN) (55)

and
V (R) = V (MN −R). (56)

When we express the two-dimensional DG Hamiltonian H2 defined in (27)
in terms of the new quantities V (R) and hR, we find that H2 becomes a
one-dimensional DG Hamiltonian of type (3),

H1[V ] =
1

2

∑
i∈ZMN

∑
R∈ZMN

V (R)(hi − hi+R)2, (57)

and the partition functions of the two models are identical,

ZN,M [βv] = ZNM [βV ] . (58)

Hence we have identified the partition function on the torus with a partition
function on the ring.

4.2 Duality on the torus

Relation (58) embodies the mapping of a given two-dimensional system with
potential v onto a one-dimensional one with related potential V . We may
now apply, without recalling all the intermediary steps, the mechanism of
section 2.2 whereby V (R) is related to a dual one-dimensional potential Ṽ (R).

14



Subsequently we return to a dual two-dimensional potential ṽ(r, s) by means
of the relation

ṽ(r, s) = Ṽ (R), (59)

Because of (21) the dual potential also has the reflection property on the
torus

ṽ(r, s) = ṽ(N − r,M − s). (60)

The corresponding DG partition function is given by the identity (58),

ZN,M [β ṽ] = ZNM

[
β Ṽ
]
. (61)

By combining the duality relation (15) between the partition functions on
the ring with (58) and (61) we obtain the two-dimensional duality

ZN,M [β v] =
1

β(MN−1)/2CNM [V ] ZN,M

[
π2

β
ṽ

]
. (62)

In the relation (62) the constant CNM [V ], given in (16), is still a functional
of the intermediate one-dimensional potential V . We re-express it as follows
as a functional cN,M [v] of v. Indeed, W (K) = V̂ (0) − V̂ (K) and, according
to (48) a Fourier transform on the ring is equal to a scaled Fourier transform
on the torus. Hence we have

CNM [V ] =
√
NM

 ∏
(n,m)∈ZN×ZM\(0,0)

π

v̂(0, 0)− v̂(2πbn/N, 2πam/M)

1/2

=
√
NM

 ∏
(k1,k2) 6=(0,0)

π

v̂(0, 0)− v̂(k1, k2)

1/2

≡ cN,M [v] (63)

where to arrive at the second line we have used the property (50), and we used
the notation k1 = 2πn/N and k2 = 2πm/M . Eventually the duality relation
(62) between partition functions on the torus reads in terms of functions
defined on the torus

ZN,M [βv] =
1

β(NM−1)/2 cN,M [v] ZN,M

[
π2

β
ṽ

]
. (64)

This achieves the purpose of establishing a duality relation for partition func-
tions on the torus.

The relation between the given potential v(r, s) and its dual ṽ(r, s) may
be rendered more explicit. As in the one-dimensional case, ṽ(r, s) may be re-
expressed in terms of the Fourier transform of v(r, s) as follows. According
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to (52) the Fourier transform on the torus for ṽ(r, s) is given in terms of

the Fourier transform on the ring for Ṽ (R) by ̂̃v(k1, k2) =
̂̃
V (k1 + k2), while

the expression for Ṽ (K) in terms of V (K) is given by (18). As a result̂̃v(k1, k2)− ̂̃v(0, 0) = 2[1− cos(k1 + k2)]/[V̂ (k1 + k2)− V̂ (0)]. By using again
relation (52) to go back from the ring to the torus, namely V̂ (k1 + k2) =
v̂(k1, k2), we find that the Fourier transform of the dual potential on the
torus takes the simple form

̂̃v(k1, k2)− ̂̃v(0, 0) = −2[1− cos(k1 + k2)]

v̂(0, 0)− v̂(k1, k2)
. (65)

Subsequently the expression of the dual potential ṽ(r, s) in terms of v(r, s)
is given by the inverse Fourier transform on the torus, for (r, s) 6= (0, 0)

ṽ(r, s) = − 1

MN

∑
(k1,k2)6=(0,0)

ei[k1r+k2s]
2[1− cos(k1 + k2)]

v̂(0, 0)− v̂(k1, k2)
(66)

with v̂(0, 0) − v̂(k1, k2) > 0 for (k1, k2) 6= (0, 0). An explicit example of the
duality embodied by equation (65) will be considered in section 6.

Finally, we may check that the square of the duality transformation is the
identity. Indeed, iteration of the duality relation (64) leads to ZN,M [βv] =

(1/π)NM−1 cN,M [v]cN,M [ṽ]ZN,M

[
β˜̃v], where ˜̃v = v according to (65), while

the identity
∏

K 6=0 2| sin(K/2)| = NM implies that cN,M [v]cN,M [ṽ] = cN,M [V ]cN,M [Ṽ ]

= πNM−1.
We notice that for a given mapping the expressions for the constant cN,M

and the dual potential are independent of the Bézout coefficients (a, b) ac-
cording to (63) and (66). As a result we could have chosen the pair of Bézout
coefficients (a, b) such that −M < a < 0 and 0 < b < N with the mapping
R = aNs+ bMr (mod NM) without changing the duality relation between
the partition functions nor the expression of the dual potential ṽ in terms of
the potential v.

4.3 Dependence of the dual potential upon the choice
of the mapping

As noticed above, the constant cN,M as well as the relation between the
Fourier transforms of the dual potentials on the torus prove to be independent
of a and b for a given mapping. However the dependence upon the choice
of the mapping can be exemplified by the comparison of the two mappings
presented in section (3.1.2) and (3.1.3).

With the mapping R = aNs+ bMr, the coordinates R and R± 1 corre-
spond to (r, s) and (r±1, s±1), respectively. Then the relation (26) between

16



Ṽ (R) and U(R) implies that ṽ(r, s) = V (aNs+ bMr) may be rewritten as

ṽ(r, s) = u(r + 1, s+ 1) + u(r − 1, s− 1)− 2u(r, s), (67)

where, by using (25),

u(r, s) =
1

MN

∑
(k1,k2) 6=(0,0)

[cos(k1r + k2s)− 1]
1

v̂(0, 0)− v̂(k1, k2)
. (68)

(The latter relation may also be directly derived from the inverse Fourier
transform representation (66) for ṽ(r, s), as was done to derive (26)-(25)
from (19).) With the other mapping the coordinates R′ = aNs − bMr and
R′± 1 correspond to (r, s) and (r∓ 1, s± 1), respectively. Then relation (26)
on the ring implies that ṽ′(r, s) = V (aNs− bMr) and may be rewritten as

ṽ′(r, s) = u(r + 1, s− 1) + u(r − 1, s+ 1)− 2u(r, s), (69)

with the same potential u(r, s) as in relation (67) for the first mapping.
With the terminology introduced after (26), in the case of the first map-

ping ṽ(r, s) appears as a quadrupolar charge interaction, with charges (1,−2, 1)
aligned at points (−1,−1), (0, 0), and (1, 1), respectively, along the direction
of the first mapping helix. For the second mapping ṽ′(r, s) still appears as a
quadrupolar charge interaction with the same charge triplet, but the charges
are located at different points, namely (−1, 1), (0, 0), and (1,−1), respec-
tively, along the direction of the second mapping helix at a given point.

The interaction u is definitely independent of the mapping by virtue of
(68). However the above discussion shows that the dual potential ṽ depends
on the mapping since it is a quadrupolar interaction (involving the charge-
charge interaction u) and the locations of the charges in the quadrupole
depend on the mapping.

This investigation ultimately proves that the different options presented
in section 3 for the choice of the path in figure 1 amount to carrying out
reflection symmetries with respect to the r and/or s axes. They do not
result in any essentially new dualities.

5 Self-duality

5.1 Self-dual potential and self-dual temperature

As shown in reference [2], the relation between the potentials V (R) and Ṽ (R)
on the ring, which is given by relation (18) between their Fourier transforms,
leads to the existence of a self-dual potential V ?(R) such that for any R 6= 0

Ṽ ?(R) = V ?(R). (70)
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Indeed, according to (18), if for K 6= 0

V̂ ?(K)− V̂ ?(0) = −2| sin(K/2)|, (71)

then ̂̃V ?(K)−̂̃V ?(0) = V̂ ?(K)−V̂ ?(0), namely W̃ ?(K) = W ?(K) = 2| sin(K/2)|.
The expression for V ?(R) when R 6= 0 is obtained by inserting (71) in (13).
The potential V ?(R) is periodic in R with period MN and it may be written
in various forms. For the following discussion we write

V ?(R) =
1

MN
sin π

MN

sin2( π
MN

R)− sin2( π
2MN

)
. (72)

For the corresponding self-dual potential on the torus, v?(r, s) = V ?(R)
with R = aNs+ bMr. Moreover cN,M [v?] = CNM [V ?] = π(NM−1)/2 according
to definition (16) and the identity

∏
K 6=0 2| sin(K/2)| = NM . Therefore when

v = v? the duality relation (64) for partition functions becomes

ZN,M [βv?] =

(
β?

β

)(NM−1)/2

ZN,M

[
β?2

β
v?
]

(73)

with β? = π. This equation shows that there is a self-dual (inverse) tem-
perature β = β? = π at which (73) becomes a trivial identity. In the next
two sections we shall first investigate the self-dual potential v? and then the
height-height correlation function for this potential when the system is at
the dual temperature β = β?.

5.2 Self-dual potential for large N

We now investigate some of the properties of this two-dimensional self-dual
potential. We wish to consider its limit for a strip of infinite length and
finite width, N →∞ with M fixed, and for an infinite lattice, N →∞ and
M → ∞. By virtue of (72) the explicit expression of v?(r, s) = V ?(R) is in
fact a function of R/(NM). In order to study the large-N limit of v?(r, s) it
is convenient to make the change of variables (r, s) 7→ (r, t) with

t = s− r, (74)

which, with the use of the identities (33), leads to rewriting R as R = aNt+r.
Then R/(NM) becomes

R

MN
=
at

M
+

r

MN
, (75)

and, according to (72), the self-dual potential v?(r, s) becomes the function

v?(r, r + t) =
1

MN
sin π

MN

sin2 π
(
at
M

+ r
MN

)
− sin2

(
π

2MN

) . (76)
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For coordinate differences (r, r) we have that t = 0 and

v?(r, r) =
1

MN
π

MN

sin2 π
(

r
MN

)
− sin2

(
π

2MN

) , (77)

which depends only onMN . Therefore when N goes to infinity, and whether
or not M remains finite, equation (77) gives

lim
N→∞

v?(r, r) =
1

π
[
r2 − 1

4

] . (78)

For coordinate differences (r, s) with s 6= r we have to distinguish between
M remaining finite or tending to infinity, and we must know the Bézout
coefficient a as a function of N and M . We shall choose to take

N = qM + 1, (79)

with q an arbitrary positive integer, which ensures thatN andM are coprime.
In this case a = 1 and b = −q. Then, by virtue of (76), v?(r, r + t) becomes
a function of t

M
+ r

MN
.

In order to study strips of finite width M we consider the scaling (79)
with M fixed and q → ∞, whence N → ∞. For M = 2 the torus is the
ladder lattice with each interchain bond counting twice, and for M = 4 it is
a beam with a square section. Then for r and t 6= 0 fixed, t/M remains finite
while r/(MN) vanishes. Upon inserting this limit behavior in equation (76)
and restoring the original coordinates r and s we find

v?(r, s) ' π

M2N2 sin2 π
(
r−s
M

) , N →∞, M fixed. (80)

A two-dimensional infinite lattice is obtained when both M and N go to
infinity with q fixed. For r and t fixed, r/MN and 1/(2MN) vanish faster
than t/M , and expression (76) tends to the limit

v?(r, s) ' 1

N2π(r − s)2
. (81)

In all cases considered above

lim
N→∞

v?(r, s) =
δr,s

π
[
r2 − 1

4

] . (82)

This says that in the limit N →∞ each height variable on a given site (i, j)
interacts only with the height variables on the diagonal (i+ r, j + r) passing
through that site in the direction (1, 1), and we recover the large distance
behavior of the potential (72) on the one-dimensional chain of length MN
in the limit MN →∞.
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5.3 Self-dual height-height correlation at β?

Let hi+r − hi be the difference between two height variables at sites i and
i+ r in either dimension 1 or 2. By symmetry we have that 〈hi+r−hi〉β = 0.
However the correlation

g(r; β) ≡ 〈(hi+r − hi)2〉β (83)

is a nonvanishing and interesting function of r.
For the DG model on a ring it was shown in reference [2] that, although

the correlation G(R; β) ≡ 〈(hi+R−hi)2〉β is not known for a generic potential
V (R) at any inverse temperature β, the duality relation (15) for the partition
functions implies that this correlation can be explicitly determined in the case
of the self-dual potential V ?(R) at the dual temperature β? = π defined after
(73). It reads

G?(R; β?) = − 1

2π
U?(R), (84)

where the superscript ? of the correlation G signals a statistical average with
the potential V ?(R) and where U?(R) is the periodic potential associated
with V ?(R) by (26) and which vanishes at R = 0. Relation (26) can be seen as
a finite difference equation to be solved for R in the set {0, 1, . . . ,MN} with
the boundary conditions U?(0) = U?(NM) = 0. By rewriting expression
(72) for V ?(R) as a difference of cotangents with arguments proportional to
R + 1 and R we find that for R = 0, 1, . . . , NM

U?(R) = − 1

NM

R∑
R′=1

cot
π

NM

(
R′ − 1

2

)
, (85)

with the understanding that for R = 0 the sum is empty. The expression for
U?(R) when R = −NM,−NM + 1, . . . ,−1, 0 is obtained by using the peri-
odicity property U?(−|R|) = U?(NM −|R|) derived from (25) and rewriting
the sum for U?(NM − |R|) by taking into account the value U?(NM) = 0.
The result is that for R = −NM,−NM + 1, . . . , NM we have

U?(R) = − 1

NM

|R|∑
R′=1

cot
π

NM

(
R′ − 1

2

)
. (86)

For the DG model on a torus an argument similar to that presented in
reference [2] shows that, for the potential v?(r, s) = V ?(R) at the inverse
dual temperature β?, the correlation g?(r, s; β?) = 〈(hi+r,j+s − hi,j)2〉?β? can
be determined as

g?(r, s; β?) = − 1

2π
u?(r, s) (87)

in which
u?(r, s) = U?(R). (88)
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Since for the model on the ring U?(R) is known, equations (87) and (88) allow
us to determine the explicit expression for g?(r, s; β?) on the torus. This will
be the subject of the next subsection.

5.4 Height-height correlation in the thermodynamic limit
for N = M + 1

In the present section we consider the thermodynamic limit where N =
M + 1 and N goes to infinity. Then M and N are coprime, a = 1, and
R = r +N(s− r). Before taking the limit we consider the variables r and s
in intervals centered at (0, 0). If, for instance, M is even, the intervals read

−M
2
≤ r ≤ M

2
and − M

2
< s ≤ M

2
. (89)

5.4.1 Fixed coordinate differences

In the case of r = s fixed we have that u?(r, r) = U?(r) where U?(r) is
the sum up to |r| given in (86). In the thermodynamic limit the argument
of every cotangent in this sum is at least of order O(1/N2) so that we can
replace cotx by 1/x and u?(r, r) becomes

u?(r, r) = − 1

π

|r|∑
r′=1

1

r′ − 1
2

+O
(

1

N4

)
. (90)

Therefore when r = s the correlation given by (87) is a nonvanishing function
in the thermodynamic limit. It is denoted as g?∞(r, r; β?) and reads

g?∞(r, r; β?) =
1

2π2

|r|∑
r′=1

1

r′ − 1
2

. (91)

For large r it behaves as

g?∞(r, r; β?) =
1

2π2

[
ln |r|+ A0 +O

(
1

r2

)]
(92)

with A0 = C + 2 ln 2 where C denotes Euler’s constant.
In the case r 6= s it is more convenient to make the change of variables

(r, s) 7→ (r, t) with s = r + t and to consider

g?(r, r + t; β?) = − 1

2π
U?(Nt+ r). (93)

The expression for U?(Nt + r) is the sum given in (86) with M = N − 1
and |t| < N according to (89). When r and s are kept fixed while N and
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M = N − 1 become very large, t is fixed and |r + Nt| ' N |t| with N ≤
N |t| � N2. Therefore the argument of every cotangent in the sum is at least
of order O(1/N) and one can again replace cotx by 1/x, while the upper
bound of the sum is of order N . As a result in the thermodynamic limit the
leading contribution in the correlation g?(r, r + t; β?) is the large distance
behavior (92) of expression (91), where the argument r is to be replaced by
Nt = N(s− r),

g?(r, s; β?) =
r 6=s

1

2π2
[ln(N |s− r|) + A0 + o(1)] , (94)

in which o(1) denotes a contribution that vanishes in the limit N → ∞.
Equation (94) expresses that when N = M+1, according to (81), two height
variables on parallel diagonals have an interaction whose coupling constant
decreases with N so that the variance of their difference increases with N .

5.4.2 Coordinate differences scaled with the lattice size

Whereas in the preceding subsection we investigated the height-height cor-
relation g?(r, s; β?) = −(1/2π)U?(R) in the regime of fixed r and s with
N = M + 1 and N → ∞, it is also interesting to study the nature of this
correlation at the scale of the system, that is, for fixed values of

ξ =
r

N
, η =

s

N − 1
(95)

where, according to (89), −1
2
< ξ < 1

2
, −1

2
< η ≤ 1

2
and N →∞. Then

R = (η − ξ)N(N − 1) (mod N(N − 1)) (96)

with −1 < η − ξ < 1. Equation (86) now leads to

U? ((η − ξ)N(N − 1)) = − 1

N(N − 1)

|η−ξ|N(N−1)∑
R′=1

cot
π(R′ − 1

2
)

N(N − 1)
,

≡ U?(η − ξ). (97)

with U?(0) = 0 according to (85). Since only the absolute value |η−ξ| appears
in the upper limit of the sum in (97), it suffices to calculate U?(η − ξ) with
0 < η−ξ < 1. Moreover, according to expression (25) for U?(R) as an inverse
Fourier transform, and as can be checked on its explicit R-dependence given
in (86), U?(R) has the symmetry U?(N(N − 1) − R) = U?(R). Therefore
U?(η− ξ) takes the same value for η− ξ and 1− (η− ξ) and we may further
restrict ourselves to 0 < η − ξ < 1/2, which we shall do now.

With the present scaling, when 0 < η − ξ < 1/2, the argument
π(R′ − 1

2
)/(N(N − 1)) of the cotangent increment in the sum runs up to
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values of order π/2 and for every R′ all terms in the large-N(N − 1) ex-
pansion of the cotangent contribute. Therefore we shall write U? = I0 + I1,
where I0 and I1 are the sums of the contributions of the first term and of all
remaining terms, respectively, in the full expansion. This gives

I0 = − 1

π

(η−ξ)N(N−1)∑
R′=1

1

R′ − 1
2

= − 1

π

[
ln
(

(η − ξ)N(N − 1)
)

+ A0

]
+O

(
1

N4

)
, (98)

where we have used (92), and

I1 = − 1

N(N − 1)

(η−ξ)N(N−1)∑
R′=1

[
cot

π(R′ − 1
2
)

N(N − 1)
− N(N − 1)

π(R′ − 1
2
)

]

= − 1

π

∫ (η−ξ)π

0

du
[

cotu− 1

u

]
+ o(1)

= − 1

π
ln

sin
(
(η − ξ)π

)
(η − ξ)π

+ o(1). (99)

We obtain U? by adding (98) to (99). When doing so, a factor η − ξ in
the argument of the logarithm cancels against its inverse, so that the only
dependence on η − ξ occurs through sin

(
(η − ξ)π

)
. We have assumed

0 < η−ξ < 1
2
, but as already noticed U?(η−ξ) = U?(1−(η−ξ)) = U?(|η−ξ|).

By using sin(1− α)π = sinαπ we arrive at the result

g?(ξN, η(N − 1); β?) =
ξ 6=η

1

2π2

[
ln

(
N(N − 1)

sin
(
|η − ξ|π

)
π

)
+ A0 + o(1)

]
,

(100)
valid for all −1 < η − ξ < 1 except η − ξ = 0, that is, for all (ξ, η) ∈
]− 1

2
, 1
2
[×]− 1

2
, 1
2
] except the values η = ξ. It so happens that if in (100) we

put again ξ = r/N and η = s/(N − 1), and expand the resulting expression
in powers of N , now at r and s fixed, we obtain equation (94).

6 Two-dimensional DG model with nearest-neighbor
interaction

In this section we consider the standard DGmodel with homogeneous isotropic
nearest-neighbor interaction vnn(r, s) on the N ×M torus, that is,

vnn(r, s) = J
[(
δr,−1 + δr,1

)
δs,0 + δr,0

(
δs,−1 + δs,1

)]
. (101)
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In this case we do not have a simple formula for the height-height correla-
tion even at a specific temperature and we shall therefore limit ourselves to
studying the dual potential.

6.1 Dual potential on the N ×M torus

The Fourier transform of the nearest-neighbor interaction (101) reads

v̂nn(k1, k2) = 2J [cos k1 + cos k2] . (102)

The Fourier transform of the corresponding dual potential is readily found
by means of the general relation (65),

̂̃vnn(k1, k2) = − 1

J
× 1− cos(k1 + k2)

2− cos k1 − cos k2
. (103)

where we have set ̂̃vnn(0, 0) = 0.
The two-dimensional lattice Laplacian of a function f(r, s) is defined as

∆2f(r, s) = f(r+ 1, s) + f(r− 1, s) + f(r, s+ 1) + f(r, s− 1)− 4f(r), (104)

and its Fourier transform reads

∆̂2f(k1, k2) = −2 [2− cos k1 − cos k2] f̂(k1, k2). (105)

Let us now consider the 2D lattice Coulomb potential with toroidal peri-
odicity created by a neutral charge distribution ρ(r, s), that is, the solution
UC
[ρ](r, s) of the Poisson equation

∆2U
C
[ρ](r, s) = −ρ(r, s). (106)

It has the Fourier transform

ÛC
[ρ](k1, k2) =

ρ̂(k1, k2)

2[2− cos k1 − cos k2]
. (107)

By comparing this expression with (103) and by identifying
2[cos(k1 + k2)− 1] as the Fourier transform of

ρquad(r, s) = δr,1δs,1 + δr,−1δs,−1 − 2 δr,0δs,0 , (108)

we interpret J × ṽnn(r, s) as the two-dimensional lattice Coulomb potential
created by the quadrupolar charge distribution (1,−2, 1) located at sites
(−1,−1), (0, 0), and (1, 1), respectively. In other words

ṽnn(r, s) =
1

J

[
uC(r + 1, s+ 1) + uC(r − 1, s− 1)− 2uC(r, s)

]
, (109)
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where uC(r, s) denotes the periodic 2D Coulomb potential created by the
neutral distribution of a single unit charge at the origin and a negative uni-
form background with charge −1/(MN) at each site. A priori the solution
of the lattice Poisson equation (106) is defined up to an additive constant.
The potential uC(r, s) is chosen to vanish at the origin and reads

uC(r, s) = − 1

NM

∑
(k1,k2)6=(0,0)

1− cos(k1r) cos(k2s)

2[2− cos k1 − cos k2]
. (110)

When substituted in (109) this expression yields the interaction ṽnn(r, s) dual
to the nearest neighbor interaction (101).

6.2 Dual potential in the thermodynamic limit for N =
M + 1

We are now interested in the large-distance behavior of the quadrupolar
potential (109). In the thermodynamic limit, where N = M + 1 and N goes
to infinity with r and s fixed, the Coulomb potential uC(r, s) of equation
(110) tends to a function uC

∞(r, s) still given by the same expression (110)
but with the sums replaced with the appropriate integrals. Next, we expand
uC
∞(r, s) for large r and s and obtain [7, 8]

uC
∞(r, s) = − 1

2π
ln
√
r2 + s2 + cst +O

(
1

r2 + s2

)
. (111)

When (111) is substituted in (109), the constant cancels out on the RHS and
the result is

ṽnn
∞ (r, s) '√

r2+s2�1

2

πJ

rs

(r2 + s2)2
. (112)

We may still set r = X cosφ and s = X sinφ, after which expression (112)
becomes

ṽnn
∞ (X cosφ,X sinφ) ' sin 2φ

πJX2
, X →∞, (113)

where the factor sin 2φ in the numerator brings out the quadrupolar character
of the interaction.

7 Conclusion
We have constructed a new duality for the Discrete Gaussian model on a
torus with arbitrary translation-invariant interactions. The duality inverts
the temperature and the interactions are in general anisotropic. There is a
self-dual interaction potential which we have studied in particular at its self-
dual temperature. We have also considered the well-known DG model with
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isotropic nearest-neighbor interactions. Our work is exact for an N × M
torus with finite N and M which should be coprime. This condition has
its origin in the Chinese Remainder Theorem, which we invoke to transpose
known one-dimensional results to the two-dimensional torus. The mapping
avoids the appearance of any kind of seam on the torus. One simple way to
satisfy the coprime condition is to set M = N − 1, where N is an arbitrary
integer. At several points in our discussion we have taken the thermodynamic
limit N → ∞. Another similar duality can be derived for a neutral charge
system corresponding to the Discrete Gaussian model and will be discussed
elsewhere.

We have not in this paper attempted to be fully general. Indeed the
same method may be used to construct dualities in arbitrary dimension d on
a hypertorus of N1 × N2 × . . . × Nd sites, provided the Nj are all mutually
coprime. Moreover this work relates partition functions, hence free energies,
as well as correlation functions, in dual pairs of models. In the case of the
self-dual potential v?(r, s) and at the self-dual inverse temperature β? the
relation allows us to determine the spatial correlation as discussed in section
5. The study of the possible critical regimes requires further investigations.
However the present paper contributes to the large body of exact results, in
particular for duality relations, in lattice models.
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