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Abstract

We construct a new duality for two-dimensional Discrete Gaussian
(DG) models. It is based on a known one-dimensional duality and on
a mapping, implied by the Chinese remainder theorem, between the
sites of an N ×M torus and those of a ring of NM sites. The du-
ality holds for an arbitrary translation invariant interaction potential
v(r) between the height variables on the torus. It leads to pairs (v, ṽ)
of mutually dual potentials and to a temperature inversion accord-
ing to β̃ = π2/β. When the potential v(r) is isotropic, ṽ inherits an
anisotropy from the mapping. This is the case for the potential ṽ that
is dual to an isotropic nearest-neighbor potential v. In the thermody-
namic limit the latter dual potential is shown to decay with distance
according to an inverse square law with a simple angular dependence.
There is a single self-dual pair of potentials (v?, v?). At the self-dual

temperature β? = β̃? = π the height-height correlation can be cal-
culated explicitly; it is anisotropic and diverges logarithmically with
distance.

Key words : SoS Discrete Gaussian model, Chinese remainder theorem,
two-dimensional duality.
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1 Introduction

The Discrete Gaussian (DG) model is a particular lattice model belonging to
the class of the so-called Solid-on-Solid (SoS) models which aim to describe
the fluctuations of a crystal surface. The most usual versions of SoS models
are two-dimensional. In such a model a surface is described as a collection
of integer valued height variables {hi} associated with the sites i of a two-
dimensional (2D) lattice. The interaction between two height variables hi
and hi′ is some function of their difference |hi− hi′ |, which in the case of the
DG model is a simple quadratic form. In the case where v(r) represents an
isotropic nearest neighbor coupling, the DG model is dual to the XY model
in its Villain version [1], and therefore it undergoes a phase transition in
the Kosterliz-Thouless universality class. This phase transition has been the
main motivation for the interest in this short-ranged two-dimensional DG
model.

The DG Hamiltonians of interest to us in this work take the form

H =
1

2

∑
i

∑
i′

v(i− i′)(hi − hi′)2, (1)

where the coupling constants v(r) constitute a pair potential that depends
only on the difference of coordinates between two sites. We may impose
without loss of generality the symmetry v(r) = v(−r) under parity trans-
formation. We consider a toroidal lattice of N ×M sites, which for M = 1
includes also the one-dimensional (1D) case. The partition function asso-

ciated with Hamiltonian (1) reads
∑′

{hi}
exp[−βH] in which the hi are

summed over all integer values except for the condition, indicated by the
prime on the summation sign, that one height, say hi0 , should be kept fixed,
say hi0 = 0. This “global gauge” condition eliminates a trivial infinite factor
in the partition function, which is due to H being invariant under the global
translation hi 7→ hi + h of all height variables. After this trivial factor has
been removed, it still remains to impose some positivity condition on v(r)
ensuring that (1) defines a positive quadratic form.

The one-dimensional DG model with arbitrary interaction potential v
at inverse temperature β was studied by Kjaer and Hilhorst (KH) [2], who
found that it is dual to another such model but with a dual potential ṽ and
a dual inverse temperature β̃ = π2/β. Whereas in general v 6= ṽ, there is
a unique, and explicitly known, self-dual potential v? for which v? = ṽ?.
The temperature β? such that β? = β̃? is therefore a candidate for a critical
temperature of this model. In the thermodynamic limit N → ∞ the self-
dual potential v?(r) behaves as 1/[π(r2 − 1

4
)].

In this work we combine the one-dimensional KH results with a mapping
between one- and two-dimensional lattices that occurs in number theory in
the context of the Chinese remainder theorem for two coprime integers N
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and M . Geometrically one may represent the one-dimensional ring lattice as
corresponding to a helix wound around the two-dimensional torus in such a
way that the helix returns to its origin after having passed through all sites
on the torus.

The result is a new duality relating the two-dimensional DG model with
arbitrary potential v to another such model but with a different potential
ṽ and with inverse temperature β̃ = π2/β. More precisely the partition
function on the torus is shown to obey the duality

ZN,M [βv] =
1

β(MN−1)/2 cN,M [v] ZN,M

[
π2

β
ṽ

]
, (2)

where the constant cN,M [v], which is a functional of v, and the relation be-
tween the Fourier transforms of the potentials v(r, s) and ṽ(r, s) are given in
section 4.2. Again, there is a self-dual potential v? and a candidate critical
temperature.

This paper is organized as follows. In section 2 we establish our notation
for the 1D and 2D Discrete Gaussian models, and we recall the results about
the duality on the ring. In section 3, by using the Chinese remainder theo-
rem we introduce and discuss the mapping between a one-dimensional and
a two-dimensional lattice and the corresponding transformation of periodic
functions. In section 4 we show how for the two-dimensional DG Hamil-
tonian this mapping leads to a duality relation. We discuss several more
technical aspects of this mapping. In section 5 we consider the special case
of the self-dual potential v?. In section 6 we consider the well-known 2D
DG Hamiltonian with isotropic nearest-neighbor interaction. In section 7 we
point out the main features of the new duality.

2 Discrete Gaussian models

In this section we establish some notations and review some results on the
one-dimensional DG model that will be fundamental in the following sections.
In view of the discussion in the next sections the length of the ring is denoted
as N , the relative distance as R, and the potential as V (R).

2.1 DG model on a ring

For a ring of length N we will write H1 for the DG Hamiltonian (1). The lat-
tice site i becomes a scalar i to which we assign the values i = 0, 1, . . . ,N −1.
In a slightly more formal notation we then have

H1 =
1

2

∑
i∈ZN

∑
i′∈ZN

V (i− i′)(hi − hi′)2, (3)
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where i ∈ ZN is the equivalence class of all integers equal to i up to a multiple
of N . Symmetry of the interaction under parity is expressed as

V (R) = V (−R). (4)

Since the labels i and i+N refer to the same site, the potential V (R) must
be N -periodic,

V (R) = V (R +N ). (5)

The two equations (4) and (5) together imply the reflection symmetry

V (R) = V (N −R). (6)

We define the partition function with the same gauge as that used by KH
[2], namely

ZN [βV ] =
∑′

{hi|i 6=0}

exp[−βH1], (7)

where the prime indicates the constraint h0 = 0. The latter restriction entails
that the mean height at any site i vanishes at any temperature.

We observe that the Hamiltonian (3) is independent of the value of V (0).
In the Fourier transforms below we will consider that V (0) has been assigned
an arbitrary value, knowing that the results cannot depend on it.

The Fourier transforms of the variables are defined as

ĥK =
1√
N

∑
j∈ZN

e−iKj hj , (8)

and the Fourier transform of the potential is

V̂ (K) =
∑
R∈ZN

e−iKRV (R), (9)

where K = 2πp/N with p ∈ ZN . Then the Hamiltonian (3) takes the form

H1[V ] =
∑
K 6=0

W (K)ĥK ĥ−K , (10)

in which

W (K) ≡
N−1∑
R=1

[1− cos(KR)]V (R) = V̂ (0)− V̂ (K), K 6= 0. (11)

The last equality in (11) comes from the symmetry (6). Equation (10) also
shows, incidentally, that the conditions for the partition function (7) to exist
is that W (K) > 0 for all K 6= 0.
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Equation (9) is the usual Fourier transform in the space of N points with
inverse

V (R) =
1

N
∑
K

eiKRV̂ (K), R = 0, 1, . . . ,N − 1. (12)

Equation (11) transforms only the subset {V (1), V (2), . . . , V (N − 1)} which
excludes the nonphysical variable V (0), and its inverse is

V (R) = − 1

N
∑
K 6=0

eiKRW (K), R = 1, 2, . . .N − 1. (13)

The symmetries (4)-(6) lead for V̂ (K) to the corresponding symmetries

V̂ (−K) = V̂ (K), V̂ (K + 2π) = V̂ (K), V̂ (2π −K) = V̂ (K), (14)

of which only two are independent. Clearly W (K) satisfies the same symme-

tries as V̂ (K).

2.2 Duality in one dimension

It was shown in [2] that the one-dimensional DG model with arbitrary poten-
tial V (R) obeying the symmetries (4)-(6) and for which the partition function

exists is dual to a similar one-dimensional DG model with a potential Ṽ (R).
In particular, the partition functions of the two models are related by

ZN [βV ] =
1

β(N−1)/2CN [V ] ZN

[
π2

β
Ṽ

]
, (15)

where

CN [V ] =
√
N
√∏

K 6=0

π

W (K)
, (16)

with K = 2πp/N , p ∈ ZN , and W (K) is defined in (11).1 The relation

between V (R) and Ṽ (R) takes its simplest form in terms of W (K) and
tW (K), namely

W̃ (K) =
4 sin2 1

2
K

W (K)
, K 6= 0. (17)

When expressed in terms of V̂ (K) and
̂̃
V (K) this relation becomes

̂̃
V (0)− ̂̃V (K) =

2[1− cosK]

V̂ (0)− V̂ (K)
, K 6= 0, (18)

1The partition function depends on β̃Ṽ and in [2] the normalizations of the potentiel

Ṽ and the inverse temperature β̃ are such that β̃ = 1/β.
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where
̂̃
V (0) is arbitrary since Ṽ (0) is arbitrary according to the structure (3)

of H1. The real-space expression Ṽ (R) of the dual potential may be obtained
by inverse Fourier transformation of (17) according to (13) with the result

Ṽ (R) = − 1

N
∑
K 6=0

eiKR
4 sin2 1

2
K

W (K)
, R = 1, 2, . . .N − 1. (19)

In other words

Ṽ (R) = − 1

N
∑
K 6=0

eiKR
2[1− cosK]

V̂ (0)− V̂ (K)
, R = 1, . . . ,N − 1. (20)

We recall that
̂̃
V (0) is arbitrary. Furthermore, neither W (K) nor W̃ (K)

appears in the transformations with argument K = 0.

We also notice that, according to (14) and (18),
̂̃
V (K) obeys the same

reflection symmetry as V̂ (K), namely

̂̃
V (2π −K) =

̂̃
V (K). (21)

As a consequence Ṽ (R) obeys the same reflection symmetry as V (R),

Ṽ (R) = Ṽ (N −R). (22)

For future discussion we introduce another potential U(R), which ap-
pears in the derivation presented in [2] (but with another normalization),
and such that U(0) = 0. In the following the potential U will be some-
times called a “charge potential” because it arises through the well-known
correspondence between a DG model and a lattice model whose Hamiltonian
reads 1

2

∑
i∈ZN

∑
i′∈ZN

U(i−i′)qiqi′ with the constraint that the configurations
of integer charges qi are neutral,

∑
i qi = 0. Without resorting to the latter

derivation the potential U(R) can be introduced as follows. In the expression
(20), the factor eiKR can be replaced by cosKR by virtue of (21), and one
rewrites 2[1−cosK] cosKR = 2 cosKR−cosK(R+1)−cosK(R−1). Then

the dual potential Ṽ (R) reads

Ṽ (R) = U(R + 1) + U(R− 1)− 2U(R), (23)

where, if we choose to set U(0) = 0,

U(R) =
1

MN

∑
K 6=0

[cos(KR)− 1]
1

V̂ (0)− V̂ (K)
(24)

with V̂ (0) − V̂ (K) > 0 for K 6= 0. According to the relation (23) the

dual potential Ṽ (R) may be interpreted as a potential created by a (neutral)
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quadrupolar charge configuration where charges 1 ,−2, and 1 sit on the sites
R = −1, R = 0, and R = 1, respectively. Therefore Ṽ (R) will be sometimes
referred to as a “quadrupolar U -charge interaction”. In the case where V (R)
is a nearest neighbor interaction the “U -charge” interaction is the so-called
Coulomb interaction.

2.3 DG model on a torus

In the special case of an N ×M lattice with toroidal boundary conditions we
will write the DG Hamiltonian (1) as H2. Sites will be labeled by i = (i, j),
where i = 0, 1, . . . , N−1 and j = 0, 1, . . . ,M−1. The Hamiltonian (1) reads

H2 =
1

2

∑
(i,j)∈ZN×ZM

∑
(i′,j′)∈ZN×ZM

v(i− i′, j − j′)(hi,j − hi′,j′)2. (25)

Parity symmetry is now expressed as

v(r, s) = v(−r,−s). (26)

Since the labels (i, j), (i + N, j), and (i, j + M) refer to the same site, the
potential v must have the periodicity properties

v(r +N, s) = v(r, s), v(r, s+M) = v(r, s). (27)

As a consequence of (26) and (27) we have the reflection symmetry

v(N − r,M − s) = v(r, s). (28)

For M = 1 this system reduces to the ring model described above.
Again, the Hamiltonian (25) is independent of the value of the interaction

constant v(0, 0). The partition function is defined as in (7)

ZN,M [βv] =
∑′

{hi,j |(i,j)6=(0,0)}

exp[−βH2], (29)

where v is now the two-dimensional potential v(r, s) and the prime denotes
the gauge condition h0,0 = 0,

We will consider in this work only functions on the ring and on the torus
that have the symmetry properties (4)-(6) and (26)-(28), respectively.

3 Mapping between a torus and a ring

In this section we show how, under the condition that N and M are coprime,
the Chinese remainder theorem allows us to introduce a mapping between
the ring ZNM and the torus ZN × ZM for both coordinates and periodic
functions. For the Chinese remainder theorem at an elementary level see [5]
and for more advanced topics see [6].
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3.1 Mapping for spatial coordinates

3.1.1 Chinese remainder theorem

For any bijection of the sites (r, s) of the torus ZN ×ZM onto the integers R
of the ring ZNM the Hamiltonian (25) becomes formally a one-dimensional
Hamiltonian. We wish, however, to apply a bijection that transfers the prop-
erties of the group structure (translational invariance,. . . ) from the torus
to the ring. The Chinese remainder theorem provides such a bijection at
the condition that N and M be coprime, that is, when their only positive
common divisor is unity. We will henceforth take M and N such that this
condition is met.

In the case of two integers N,M > 1 the Chinese remainder theorem can
be stated as follows. For any given pair of integers (r, s) the set of equations
with unknown R,

r = R (mod N), s = R (mod M), (30)

where r = R (mod N) means that r and R differ by a multiple of N , has a
solution given by

R = aNs+ bMr (mod NM), (31a)

in which the pair of integer Bézout coefficients (a, b) is, in turn, a solution of

aN + bM = 1. (31b)

Bézout’s theorem guarantees that there exists such a pair (a, b), which can be
found by the so-called extended Euclidean algorithm. The linear combination
in (31a) is readily shown to satisfy the set of equations (30) as follows. By
construction aNs + bMr = bMr (mod N) ; then according to the identity
(31b), bMr can be rewritten as r − aNr and r − aNr = r (mod N). As a
result aNs+bMr = r (mod N). A similar argument leads to aNs+bMr = s
(mod M).

We notice that from the definition (31b) of the Bézout coefficients it
immediately follows that any other pair of the form (a+ cM, b− cN), where
c is any integer, is also a solution. We may make the solution of (31b) unique
by imposing, for example, that 0 < a < M and −N < b < 0, or, alternatively,
that −M < a < 0 and 0 < b < N . With the constraint 0 < a < M and
−N < b < 0, we give the solutions for various special cases of N and M . For
N > 1 and M = 2, the solution is a = 1 and b = (1−N)/2; for N > 2 and
M = N − 1 one gets a = 1 and b = −1; and for M > 1 and N = qM + 1,
where q = 2, 3, . . ., one finds a = 1 and b = −q.

3.1.2 Geometrical interpretation

The Chinese remainder theorem can be interpreted as a helicoidal mapping
of a one-dimensional path around the N × M torus as follows. We let R
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take the successive values R = 0, 1, 2, . . . , NM and consider the path traced
out on the torus by the pair (r, s) parametrized by R according to equation
(30). At R = 0 the path starts in the origin (r, s) = (0, 0) , and as long
as R < min(N,M) we have (r, s) = (R,R), that is, the path follows the
main diagonal, undergoing at each step an increment (1, 1). For larger R the
path continues to undergo increments (1, 1), but the N,M -periodicity of the
lattice has to be taken into account. This leads to a path that winds around
the torus until it returns to the origin. The condition that N and M be
coprime guarantees that this return will occur only after the path has visited
all sites of the torus.

3.1.3 Another mapping and corresponding helicoidal wrapping

In next section (3.2) we will show that the functions F (R) ≡ f(r, s) defined
with the mapping (31a) are periodic with period MN . We notice that we
could have chosen another helix which wraps around the torus while also
preserving the periodicity of the lattice, so that the corresponding mapping
(r, s) 7→ R′ leads to the same periodicity NM for functions F ′(R′) ≡ f(r, s).

For instance another proper helix is built by again mapping the origin
(r, s) = (0, 0) onto the integer R = 0 and then by incrementing the position
on the N ×M lattice by steps of (−1, 1) while at the same time increasing
R by one unit. After R′ steps on the helix the corresponding coordinates on
the torus are {

r = −R′ (mod N)

s = R′ (mod M).
(32)

A simple argument similar to that presented for the derivation of the Chinese
theorem (31) shows that the linear combination

R′ = aNs− bMr (33)

is a solution of (32), because a and b are the solutions of (31b). We will see in
subsection (4.3) how the results of interest in the present paper depend on the
choice of one among the two mappings R = aNs+ bMr or R′ = aNs− bMr.

3.2 Mapping for periodic functions

3.2.1 Periods on the torus and on the ring

Let f(r, s) be a biperiodic function on the N×M torus obeying the symmetry
properties (26)-(28).

f(r +N, s) = f(r, s+M) = f(r, s) (34)

and
f(N − r,M − s) = f(r, s). (35)

9



We define a corresponding function F (R) on the ring of length NM by

F (R) = f(r, s) with R = aNs+ bMr (mod NM). (36)

We will show that the symmetries of f imply those of F and that the recip-
rocal is also true.

The pairs (r + N, s) and (r, s + M) are associated with R + bNM and
R + aNM , respectively. The periodicity properties (34) then lead to

F (R + bMN) = F (R + aMN) = F (R).

It follows that F (R) = F (R+N(aNM) +M(bNM)), whence, with the use
of (31b), we find that

F (R +NM) = F (R). (37)

Similarly, by virtue of (31b), the reflected point (N − r,M − s) is associated
with aN(M − s) + bM(N − r) = NM −R, and the symmetry property (35)
leads to

F (NM −R) = F (R). (38)

As a consequence we also have the third symmetry, F (−R) = F (R); that is,
F obeys the symmetries (26)-(28) for a ring of NM sites. We point out that
similar arguments show that the periodicity (37) and the reflection symmetry
(38) are also valid for the second mapping (33).

We notice that conversely, if F (R + NM) = F (R) then f(r + N, s) =
f(r, s + M) = f(r, s). Indeed if F (R + NM) = F (R) then F (R + aNM) =
F (R), and R + aNM corresponds to (r, s+N).

3.2.2 Mapping for Fourier transforms from the torus to the ring

The Fourier transform of an NM -periodic function F (R) on the ring of length
NM is

F̂ (K) =
∑

R∈ZNM

e−iKR F (R), (39)

with the wavenumbers

K =
2π

NM
p (40)

where p ∈ ZNM . Similarly, the Fourier transform of an N,M -biperiodic
function f(r, s) on the torus is

f̂(k1, k2) =
∑
r∈ZN

∑
s∈ZM

e−i(k1r+k2s) f(r, s), (41)

with the wavenumbers

k1 =
2π

N
n, k2 =

2π

M
m (42)
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where n ∈ ZN and m ∈ ZM . We now investigate the relation between these
two Fourier transforms that results in the case F (R) = f(r, s).

The Chinese remainder theorem allows us to make a bijection between
the index p of the wavenumber on the ring and the index pair (n,m) on the
torus,

p = aNm+ bMn (mod NM), (43)

which is analogous to R = aNs+ bMr (mod NM). Hence the wavenumber
on the torus may be expressed in terms of those on the ring as

K = bk1 + ak2. (44)

After some rewriting and use of identity (31b) we find

e−iKR = e−i(bk1r+ak2s). (45)

When we substitute (44) in (39) and identify F (R) = f(r, s), we obtain

F̂ (K) =
∑
r∈ZN

∑
s∈ZM

e−i(bk1r+ak2s)f(r, s) = f̂(bk1, ak2) (46)

The Fourier transform F̂ (K) on the ring proves to coincide with a scaled
Fourier transform on the torus. The relation (46) allows to determine the

Fourier transform F̂ (K) on the ring when the Fourier transform f̂(k1, k2) on
the torus is given.

3.2.3 Mapping for Fourier transforms from the ring to the torus

We will now see how to determine the Fourier transform f̂(k1, k2) on the

torus when the Fourier transform F̂ (K) on the ring is given. If F̂ (K) is

given we write f(r, s) = F (R) = 1
MN

∑
K eiKRF̂ (K), and from (45) and (46)

we get

f(r, s) =
1

MN

∑
(k1,k2)

ei(bk1r+ak2s)F̂ (bk1 + ak2), (47)

where (k1, k2) is related to a pair of integers (n,m) through (42).
We notice that, according to (31b), the coefficient b is coprime with N

(because if b and N had a common divisor different from 1 or −1 then
aN + bM could not be equal to 1). By virtue of Gauss lemma, the fact that
there exists no common divisor of b and N entails that if b(n−n′) is a multiple
of N then n−n′ is also a multiple of N . Equivalently n 6= n′ (mod N) implies
bn 6= bn′ (mod N) and n 7→ bn is a one-to-one correspondence from ZN to
ZN . Similarly, according to (31b), the coefficient a is coprime with M and
m 7→ am is a one-to-one correspondence from ZM to ZM . As a result if the
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function A(n,m) is N,M -periodic, nameley A(n+N,M) = A(n,m+M) =
A(n,m), then ∑

(n,m)∈ZN×ZM

A(bn, am) =
∑

(n,m)∈ZN×ZM

A(n,m). (48)

Hence the sum in (47) can be rewritten without the coefficients a and b, and
eventually

f(r, s) =
1

MN

∑
(k2,k1)

ei(k1r+k2s)F̂ (k1 + k2). (49)

Upon Fourier transforming both members of this equation we find

f̂(k1, k2) = F̂ (k1 + k2), (50)

which is the desired relation that yields f̂(k1, k2) when F̂ (K) is given.

4 New duality for two-dimensional DG mod-

els

4.1 Mapping between torus and ring Hamiltonians

In the previous section we have defined a mapping between the sites of the
torus and those of the ring, and an identification of functions defined on the
torus with functions defined on the ring. Now we consider how a Hamiltonian
given on the torus transforms into one defined on the ring.

Let the Hamiltonian H2 of equation (25) be given. A mapping between
this model, defined on the torus ZN × ZM , onto a model on the ring ZNM
is constructed as follows. We relabel the sites of the height variables hr,s
according to (31)

hR = hr,s , (51)

and the potential function V (R) is defined through the same mapping,

V (R) = v(r, s). (52)

According to section (3.2) the periodicity properties (27) and the reflection
symmetry (28) of v(r, s) entail that

V (R) = V (R +MN) (53)

and
V (R) = V (MN −R). (54)

When we express the two-dimensional DG Hamiltonian H2 defined in (25)
with potential v(r, s) and variables hi,j in terms of the new quantities V (R)
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and hR, we find that H2 becomes a one-dimensional DG Hamiltonian of type
(3),

H1[V ] =
1

2

∑
i∈ZMN

∑
R∈ZMN

V (R)(hi − hi+R)2, (55)

and the partition functions of the two models are identical,

ZN,M [βv] = ZNM [βV ] . (56)

The mapping allows to identify the partition function on the torus with the
partition function on the ring.

4.2 Duality on the torus

In the same way as the potential on the ring has been defined from the
potential on the torus by V (R) = v(r, s), a dual potential can be defined on
the torus as

ṽ(r, s) = Ṽ (R), (57)

where Ṽ (R) is given in terms of the Fourier transform
̂̃
V (K) by (20). Because

of (22) the dual potential also has the reflection property on the torus

ṽ(r, s) = ṽ(N − r,M − s). (58)

The corresponding DG partition function is given by the identity (56),

ZN,M [β ṽ] = ZNM

[
β Ṽ
]
. (59)

The duality relation (15) between the partition functions on the ring can be
rewritten as a two-dimensional duality

ZN,M [β v] =
1

β(MN−1)/2CNM [V ] ZN,M

[
π2

β
ṽ

]
, (60)

where the expression of CNM [V ] is given in (16).
The constant CNM [V ], which is a functional of the one-dimensional Fourier

transform of V , can be re-expressed in terms of a constant cN,M [v] which is
a functional of the two-dimensional Fourier transform of v. Indeed, the ex-
pression (16) for CNM [V ] contains W (K) = V̂ (0)− V̂ (K) and, according to
(46), a Fourier transform on the ring is equal to a scaled Fourier transform
on the torus. Therefore CNM [V ] reads

CNM [V ] =
√
NM

 ∏
(n,m)∈ZN×ZM\(0,0)

π

v̂(0, 0)− v̂(2πbn/N, 2πam/M)

1/2

.

(61)
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With the aid of (48), the product can be rewritten without a or b, and

cN,M [v] ≡ CNM [V ] =
√
NM

 ∏
(k1,k2)\(0,0)

π

v̂(0, 0− v̂(k1, k2))

1/2

, (62)

with the notation k1 = 2πn/N and k2 = 2πm/M .
As in the one-dimensional case the expression of the dual potential ṽ(r, s)

can also be re-expressed in terms of the Fourier transform of v(r, s) as follows.
According to (50) the Fourier transform on the torus for ṽ(r, s) is given in

terms of the Fourier transform on the ring for Ṽ (R) by ̂̃v(k1, k2) =
̂̃
V (k1+k2),

while the expression for Ṽ (K) in terms of V (K) is given by (18). As a result̂̃v(k1, k2)− ̂̃v(0, 0) = 2[1− cos(k1 + k2)]/[V̂ (k1 + k2)− V̂ (0)]. By using again

the relation (50) to go back from the ring to the torus, namely V̂ (k1 + k2) =
v̂(k1, k2), we find that the Fourier transform of the dual potential on the torus
takes the simple form

̂̃v(k1, k2)− ̂̃v(0, 0) = −2[1− cos(k1 + k2)]

v̂(0, 0)− v̂(k1, k2)
. (63)

Subsequently the expression of the dual potential ṽ(r, s) in terms of v(r, s) is
given by the inverse Fourier transform on the torus, for (r, s) 6= (0, 0)

ṽ(r, s) = − 1

MN

∑
(k2,k1)∈ZN×ZM\(0,0)

ei[k1r+k2s]
2[1− cos(k1 + k2)]

v̂(0, 0)− v̂(k1, k2)
(64)

with v̂(0, 0)− v̂(k1, k2) > 0 for (k1, k2) 6= (0, 0).
Eventually the duality relation (60) between partition functions on the

torus reads in terms of functions defined on the torus

ZN,M [βv] =
1

β(NM−1)/2 cN,M [v] ZN,M

[
π2

β
ṽ

]
. (65)

The constant cN,M [v] is a functional of v given in (62), while ṽ(r, s) and its

Fourier transform ̂̃v(k2, k1) are given in terms of the Fourier transform of
v(r, s) by (64) and (63), respectively.

As in the one-dimensional case the square of the duality transformation
is the identity. Indeed, the iteration of the duality relation (65) leads to

ZN,M [βv] = (1/π)NM−1 cN,M [v]cN,M [ṽ]ZN,M

[
β˜̃v], where ˜̃v = v according to

(63), while the identity
∏

K 6=0 2| sin(K/2)| = NM implies that cN,M [v]cN,M [ṽ] =

cNM [V ]cN,M [Ṽ ] = πNM−1.
We notice that for a given mapping the expressions for the constant cN,M

and the dual potential are independent from the Bézout coefficients (a, b)
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according to (62) and (64). As a result we could have choosen the pair of
Bézout coefficients (a, b) such that −M < a < 0 and 0 < b < N with the
mapping R = aNs+ bMr without changing the duality relation between the
partition functions nor the expression of the dual potential ṽ in terms of the
potential v.

This achieves the purpose of establishing a duality relation for Hamilto-
nians on the torus.

4.3 Dependence of the dual potential upon the choice
of the mapping

As noticed previously the constant cN,M as well as the relation between the
Fourier transforms of the dual potentials on the torus prove to be independent
of a and b for a given mapping. However the dependence upon the choice
of the mapping can be exemplified by the comparison of the two mappings
presented in section (3.1.2) and (3.1.3).

With the mapping R = aNs+ bMr, the coordinates R and R± 1 corre-
spond to (r, s) and (r±1, s±1), respectively. Then the relation (23) between

Ṽ (R) and U(R) implies that ṽ(r, s) = V (aNs+ bMr) can be rewritten as

ṽ(r, s) = u(r + 1, s+ 1) + u(r − 1, s− 1)− 2u(r, s), (66)

where, by using (24),

u(r, s) =
1

MN

∑
(k1,k2)6=(0,0)

[cos(k1r + k2s))− 1]
1

v̂(0, 0)− v̂(k1, k2)
. (67)

(The latter relation can also be directly derived from the inverse Fourier
transform representation (64) for ṽ(r, s), as it was done to derive (23)-(24)
from (20).) With the other mapping the coordinates R′ = aNs − bMr and
R′ ± 1 correspond to (r, s) and (r∓ 1, s± 1), respectively. Then the relation
(23) on the ring implies that ṽ(r, s) = V (aNs− bMr) can be rewritten as

ṽ′(r, s) = u(r + 1, s− 1) + u(r − 1, s+ 1)− 2u(r, s), (68)

with the same potential u(r, s) as in the relation (66) for the first mapping.
With the terminology introduced after (24), in the case of the first map-

ping ṽ(r, s) appears as a quadrupolar u-charge interaction, with charges
(1,−2, 1) aligned at points (−1,−1), (0, 0), and (1, 1), respectively, along the
direction of the first mapping helix. However, for the second mapping ṽ′(r, s)
still appears as a quadrupolar u-charge interaction with the same charge
triplet, but the charges are located at different points, namely (−1, 1), (0, 0)
and (1,−1), respectively, along the direction of the second mapping helix at
a given point.
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The interaction u is definitely independent of the mapping by virtue of
(67). However the above discussion shows that the dual potential ṽ depends
on the mapping since it is a quadrupolar u-charge interaction and the loca-
tions of the charges in the quadrupole depend on the mapping.

5 Self-duality

5.1 Self-dual potential

As shown in [2] the relation between the potential V (R) and the potential

Ṽ (R) on the ring, which is given by the relation (18) between their Fourier
transforms, allows the existence of a self-dual potential such that for any
R 6= 0

Ṽ ?(R) = V ?(R). (69)

Indeed, according to (18), if for K 6= 0

V̂ ?(K)− V̂ ?(0) = −2| sin(K/2)|, (70)

then
̂̃
V ?(K)−̂̃V ?(0) = V̂ ?(K)−V̂ ?(0), namely W̃ ?(K) = W ?(K) = 2| sin(K/2)|.

The expression of Ṽ (R) for R 6= 0 is obtained by inserting the latter expres-

sion in (13). The potential Ṽ (R) is a periodic function of R with period MN
which can be written in various forms. For the following discussion we write

V ?(R) =
1

MN
sin π

MN

sin2( π
MN

R)− sin2( π
2MN

)
. (71)

For the corresponding self-dual potential on the torus, v?(r, s) = V ?(R)
with R = aNs+ bMr. Moreover cN,M [v?] = CNM [V ?] = π(NM−1)/2 according
to the definition (16) and the identity

∏
K 6=0 2| sin(K/2)| = NM . Therefore

the duality relation (65) for partition functions becomes

ZN,M [βv?] =

(
β?

β

)(NM−1)/2

ZN,M

[
β?2

β
v?
]

(72)

with β? = π.

5.2 Self-dual potential for large N

We now investigate some of the properties of this two-dimensional self-dual
potential. We wish to consider its limit for a strip of infinite length and
finite width, N → ∞ with M fixed, and for an infinite lattice, N → ∞ and
M → ∞. By virtue of (71) the explicit expression of ṽ(r, s) = Ṽ (R) is in
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fact a function of R/(NM). In order to study the large-N limit of ṽ(r, s) it
is convenient to make the change of variables (r, s) 7→ (r, t) with

t = s− r, (73)

which, with the use of the identities (31), leads to the rewriting of R as
R = aNt+ r. Then R/(NM) becomes

R

MN
=
at

M
+

r

MN
, (74)

and, according to (71), the self-dual potential ṽ(r, s) becomes the function

v?(r, r + t) =
1

MN
sin π

MN

sin2 π
(
at
M

+ r
MN

)
− sin2

(
π

2MN

) . (75)

For relative coordinates (r, r) we have that t = 0 and

v?(r, r) =
1

MN
π

MN

sin2 π
(

r
MN

)
− sin2

(
π

2MN

) , (76)

which depends only on NM . Therefore when N goes to infinity, and whether
or not M remains finite, the latter expression gives

lim
N→∞

v?(r, r) =
1

π
[
r2 − 1

4

] . (77)

For relative coordinates (r, s) with s 6= r we have to distinguish between
M remaining finite or tending to infinity, and we must know the Bézout
coefficient a as a function of N and M . We will choose to take

N = qM + 1, (78)

which ensures that N and M are coprime. In this case a = 1 and b = −q.
Then, by virtue of (75), v?(r, r + t) becomes a function of t

M
+ r

MN
.

In order to study finite strips of width M we consider the scaling (78)
with M fixed and q → ∞. For M = 2 the torus is the ladder lattice,
with each interchain bond counting twice, and for M = 4 a beam with a
rectangular section. Then for r and t 6= 0 fixed, t/M remains finite while
r/(MN) vanishes. Upon inserting this limit behavior in equation (75) and
restoring the original coordinates r and s we obtain

v?(r, s) ' π

M2N2 sin2 π
(
r−s
M

) , N →∞, M fixed. (79)

The case of an infinite lattice is obtained when both M and N go to
infinity with q fixed. For r and t fixed, r/MN and 1/(2MN) vanish faster
than t/M , and the expression (75) tends to the limit

v?(r, s) ' 1

N2π(r − s)2
. (80)
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In all cases considered above

lim
N→∞

v?(r, s) =
δr,s

π
[
r2 − 1

4

] . (81)

This says that in the limit N → ∞ each height interacts only with the
heights on the sites on the diagonal passing through it in the direction (1, 1),
and we recover the large distance behavior of the potential (71) on the one-
dimensional chain of length MN in the limit NM →∞.

5.3 Self-dual height-height correlation at β?

First we consider the DG model in either dimension 1 or 2. Let hri+r − hri
be the difference between two height variables at sites ri and ri + r. The
parity symmetry of the potential v(r) in the Hamiltonian (1) entails that the
mean height is the same at all sites ; moreover the height is fixed to the zero
value at site r = 0 by the gauge condition in the partition function in any
dimension (see (7) or (29)). Therefore the average 〈hri〉β vanishes at any site
ri and the average height difference at any relative position r vanishes as
well, 〈hri+r − hri〉β = 0. However the correlation

g(r; β) ≡ 〈(hri+r − hri)2〉β (82)

is a non-vanishing function of r at inverse temperature β.
For the DG model on a ring it was shown in [2] that, though the correla-

tion G(R; β) ≡ 〈(hi+r − hi)2〉β is not known for a generic potential V (R) at
any inverse temperature β, the duality relation (15) for the partition func-
tions entails that the correlation can be explicitly determined fn the case
of the self-dual potential V ?(R) at the specific inverse temperature β? = π
defined after (72). It reads

G?(R; β?) = − 1

2π
U?(R), (83)

where the superscript ? of the correlationG signals that the statistical average
is made for the Hamiltonian with the potential V ?(R), while U?(R) is the
potential associated with V ?(R) by (23) and which vanishes at R = 0. The
relation (23) can be seen as a finite difference equation to be solved for R in
the set {0, 1, . . . ,MN} with the boundary condition U?(0) = U?(NM) = 0.
By rewriting the expression (71) for V ?(R) as a difference of cotangents with
arguments proportional to R + 1 and R, respectively, one gets that for
R = 0, 1, . . . , NM

U?(R) = − 1

NM

R∑
R′=1

cot
π

NM

(
R′ − 1

2

)
. (84)
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The expression for U?(R) for R = −NM,−NM +1, . . . ,−1, 0 is obtained by
using the periodicity property U?(−|R|) = U?(NM − |R|) derived from (24)
and rewriting the sum for U?(NM − |R|) by taking into account the value
U?(NM) = 0. The result is that for R = −NM,−NM + 1, , . . . , NM

U?(R) = − 1

NM

|R|∑
R′=1

cot
π

NM

(
R′ − 1

2

)
. (85)

For the DG model on a torus an argument similar to that presented in
[2] shows that, for the potential v?(r, s) = V ?(R) at the specific inverse
temperature β?, the correlation g?(r, s; β?) = 〈(hi+r,j+s − hi,j)

2〉?β? can be
determined as

g?(r, s; β?) = − 1

2π
u?(r, s). (86)

Since for the model on the ring U?(R) is known, the identity

u?(r, s) = U?(R) (87)

allows to determine the explicit expression for g?(r, s; β?) on the torus.

5.4 Corresponding correlation in the thermodynamic
limit for N = M + 1

In the present section we consider the thermodynamic limit where N =
M + 1 and N goes to infinity. Then M and N are coprime, a = 1, and
R = r +N(s− r). Before taking the limit we consider the variables r and s
in intervals centered at (0, 0). If, for instance, M is even, the intervals read

−M
2
≤ r ≤ M

2
and − M

2
< s ≤ M

2
. (88)

5.4.1 Fixed relative coordinates

In the case r = s fixed, u?(r, r) = U?(r) where U?(r) is the sum up to |r|
given in (85). In the thermodynamic limit the argument of every cotangent
in the sum is at least of order O(1/N2) so that we can replace cotx by 1/x
and u?(r, r) becomes

u?(r, r) = − 1

π

|r|∑
r′=1

1

r′ − 1
2

+O
(

1

N4

)
. (89)

Therefore the correlation given by (86) is a non-vanishing function in the
thermodynamic limit for r = s. It is denoted as g?Th(r, r; β?) and reads

g?Th(r, r; β?) =
1

2π2

|r|∑
r′=1

1

r′ − 1
2

. (90)
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For large r it behaves as

g?Th(r, r; β?) =
1

2π2

[
ln |r|+ A0 +O

(
1

r2

)]
(91)

with A0 = C + 2 ln 2 where C denotes the Euler constant.
In the case r 6= s it is more convenient to make the change of variables

(r, s) 7→ (r, t) with s = r + t and to consider the function

g?(r, r + t; β?) = − 1

2π
U?(Nt+ r). (92)

The expression for U?(Nt + r) is the sum given in (85) with M = N − 1
and |t| < N according to (88). When r and s are kept fixed, while N
and M = N − 1 become very large, t is fixed and |r + Nt| ' N |t| with
N ≤ N |t| � N2. Therefore the argument of every cotangent in the sum is
at least of order O(1/N) and one can again replace cot x by 1/x, while the
upper bound of the sum is of order N . As a result in the thermodynamic
limit the leading contribution in the correlation g?(r, r + t; β?) is the large
distance behavior (91) of the expression (90) where the argument r is to be
replaced by Nt = N(s− r),

g?(r, s; β?) =
r 6=s

1

2π2
[ln(N |s− r|) + A0 + o(1)] , (93)

where o(1) denotes a contribution that vanishes in the limit N →∞. Equa-
tion (93) expresses that in the case N = M+1, according to (80), two height
variables on parallel diagonals have an interaction whose coupling constant
decreases with N so that the variance of their difference increases with N .

5.4.2 Relative coordinates scaled with the lattice size

Whereas in the preceding subsection we investigated the height-height cor-
relation g?(r, s; β?) = −(1/2π)U?(R) in the regime of fixed r and s with
N = M + 1 and N → ∞, it is also interesting to study the nature of this
correlation at the scale of the system, that is, for fixed values of

ξ =
r

N
, η =

s

N − 1
(94)

where, according to (88), −1
2
< ξ, η < 1

2
and N →∞. Then

R = (η − ξ)N(N − 1) (mod N(N − 1)) (95)

with −1 < η − ξ < 1. According to (85)

U? ((η − ξ)N(N − 1)) = − 1

N(N − 1)

|η−ξ|N(N−1)∑
R′=1

cot
π(R′ − 1

2
)

N(N − 1)
,

≡ U?(η − ξ). (96)
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Since only the argument |η − ξ| is involved in the upper bound of the sum
in (96), it suffices to calculate U?(η − ξ) with 0 < η − ξ < 1. Moreover,
according to the expression (24) for U?(R) as an inverse Fourier transform,
and as can be checked on its explicit R-dependence given in (85), U?(R) has
the symmetry U?(N(N − 1) − R) = U?(R). Therefore U?(η − ξ) takes the
same value for η− ξ and 1− (η− ξ) and we may further restrict ourselves to
0 < η − ξ < 1/2, which we will do now.

With the present scaling, when 0 < η − ξ < 1/2, the argument
π(R′ − 1

2
)/(N(N − 1)) of the cotangent increment in the sum runs up to

values of order π/2 and for every R′ all terms in the large-N(N − 1) ex-
pansion of the cotangent contribute. Therefore we will write U? = I0 + I1,
where I0 and I1 are the sums of the contributions of the first term and of all
remaining terms, respectively, in the full expansion. This gives

I0 = − 1

π

(η−ξ)N(N−1)∑
R′=1

1

R′ − 1
2

= − 1

π

[
ln
(

(η − ξ)N(N − 1)
)

+ A0

]
+O

(
(N(N − 1))−2

)
, (97)

where we have used (91), and

I1 = − 1

N(N − 1)

(η−ξ)N(N−1)∑
R′=1

[
cot

π(R′ − 1
2
)

N(N − 1)
− N(N − 1)

π(R′ − 1
2
)

]

= − 1

π

∫ (η−ξ)π

0

du
[

cotu− 1

u

]
+ o(1)

= − 1

π
ln

sin
(
(η − ξ)π

)
(η − ξ)π

+ o(1). (98)

We obtain U? by adding (97) to (98). When doing so, a factor η − ξ in
the argument of the logarithm cancels against its inverse, so that the only
dependence on η − ξ occurs in through sin

(
(η − ξ)π

)
. We have assumed

0 < η−ξ < 1
2
, but as already noticed U?(η−ξ) = U?(1−(η−ξ)) = U?(|η−ξ|).

By using sinπ(1− α) = sinαπ we arrive at the result

g?(ξN, η(N − 1); β?) =
1

2π2

[
ln

(
N(N − 1)

sin
(
|η − ξ|π

)
|

π

)
+ A0 + o(1)

]
,

(99)
valid for all −1 < η − ξ < 1, that is, for all (ξ, η) ∈ [−1

2
, 1
2
]2. It so happens

that if in (99) we put again ξ = r/N and η = s/(N − 1), and expand the
resulting expression in powers of N , now at r and s fixed, we obtain equation
(93).
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6 Two-dimensional DG model with nearest-

neighbor interaction

In this section we consider the standard DG model with homogeneous isotropic
nearest-neighbor interaction vnn(r, s) on the N ×M torus, that is,

vnn(r, s) = J
[(
δr,−1 + δr,1

)
δs,0 + δr,0

(
δs,−1 + δs,1

)]
. (100)

Its Fourier transform reads

v̂nn(k1, k2) = 2J [cos k1 + cos k2] . (101)

6.1 Dual potential on the N ×M torus

The Fourier transform of the corresponding dual potential is given by (63),

̂̃vnn(k1, k2) =
1

J
× cos(k1 + k2)− 1

2− cos k1 − cos k2
. (102)

where we have set ̂̃vnn(0, 0) = 0, since this value is arbitrary, as well as the
value ṽnn(0, 0) which does not appear in the DG Hamiltonian (25).

We notice that on a two-dimensional lattice the Laplacian of a function
f(r, s) is defined as

∆2f(r, s) = f(r+ 1, s) + f(r− 1, s) + f(r, s+ 1) + f(r, s− 1)− 4f(r), (103)

and its Fourier transform reads

∆̂2f(k1, k2) = −2 [2− cos k1 − cos k2] f̂(k1, k2). (104)

As a result the 2D lattice Coulomb potential created by a neutral charge
distribution ρ(r, s), namely the solution UC

[ρ](r, s) of the Poisson equation

∆2U
C
[ρ](r, s) = −ρ(r, s), (105)

has the following Fourier transform

ÛC
[ρ](k1, k2) =

ρ̂(k1, k2)

2[2− cos k1 − cos k2]
. (106)

By comparing the latter expression with (102) and by identifying
2[cos(k1 + k2)− 1] as the Fourier transform of the quadrupolar charge distri-
bution

ρquad(r, s) = δr,1δs,1 + δr,−1δs,−1 − 2 δr,0δs,0 , (107)
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we interpret J × ṽnn(r, s) as the two-dimensionnal lattice Coulomb potential
created by the latter quadrupolar charge distribution (1,−2, 1) located at
sites (−1,−1), (0, 0) and (1, 1) respectively. In other words

ṽnn(k1, k2) =
1

J

[
uC(r + 1, s+ 1) + uC(r − 1, s− 1)− 2uC(r, s)

]
, (108)

where uC(r, s) denotes the periodic 2D Coulomb potential created by the neu-
tral distribution of a single unit charge at the origin and a negative uniform
background with charge −1/(MN) at each site (which ensures the period-
icity). A priori the solution of the lattice Poisson equation (105) is defined
up to an additive constant. The potential uC(r, s) is chosen to vanish at the
origin and reads

uC(r, s) = − 1

NM

∑
(k2,k1) 6=(0,0)

1− cos(k1r) cos(k2s)

2[2− cos k1 − cos k2]
. (109)

6.2 Dual potential in the thermodynamic limit for N =
M + 1

We are now interested in the large-distance behavior of the quadrupolar po-
tential (108). In the thermodynamic limit, where N = M + 1 and N goes to
infinity while r and s are kept fixed, the Coulomb potential uC(r, s) of equa-
tion (109) tends to a function uCTh(r, s) which is equal to −(1/2π) ln

√
r2 + s2

plus a constant term. This constant cancels out on the RHS of (108), with
the result

ṽnnTh(r, s) = − 1

4πJ
ln

[
1− 8rs

(r2 + s2)2
+

4

(r2 + s2)2

]
. (110)

In the large
√
r2 + s2 limit the behavior of the latter potential reads

ṽnnTh(r, s) '√
r2+s2�1

2

πJ

rs

(r2 + s2)2
, (111)

which decays as 1/(r2 + s2) with an angular dependence. In the case of a
square lattice we set r = X cosφ and s = X sinφ ; then the expression (110)
for ṽnnTh(r, s) becomes

ṽnnTh(X cosφ,X sinφ) = − 1

4πJ
ln

[
1− 4 sin(2φ)

X2
+

4

X4

]
. (112)

In the limit X →∞ the latter potential behaves as (1/πJ) times sin(2φ)/X2.
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7 Conclusion

We have constructed a new duality for the Discrete Gaussian model on a
torus with arbitrary translation invariant interactions, which inverts the tem-
perature. The interactions are, however, in general anisotropic. There is a
self-dual interaction potential which we have studied in particular at its self-
dual temperature. We have also considered the well-known DG model with
isotropic nearest-neighbor interactions. Our work is exact for an N × M
torus with finite N and M , which however should be coprime. This condi-
tion has its origin in the Chinese Remainder Theorem, which we invoke to
transpose known one-dimensional results to the two-dimensional torus. One
simple way to satisfy this condition is by taking M = N − 1, where N is
an arbitrary integer. At several points in our discussion we have taken the
thermodynamic limit N → ∞. Another similar duality can be derived for
a neutral charge system corresponding to the Discrete Gaussian model and
will be discussed elsewhere. The present paper contributes to the large body
of exact results, and in particular of duality relations, for lattice models.
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