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Toward robust scalar-based gradient plasticity modeling and
simulation at finite deformations

Mohamed Abatour · Samuel Forest? · Kais
Ammar · Cristian Ovalle · Nikolay Osipov ·
Stéphane Quilici

Abstract Strain gradient plasticity has been the subject of extensive research in the past
forty years in order to model size effects in metal plasticity, on the one hand, and provide
finite width shear bands in the simulation of localization phenomena, on the other hand.
However, the use of the emerging models is still limited to academic applications and has
not yet been adopted by industry practitioners. The present paper systematically reviews
the pros and the cons of gradient plasticity at finite strains based on gradient of scalar
plastic variables, in particular gradient of the cumulative plastic strain. It proposes bench-
mark tests addressing both size effect modeling and plastic strain localization simulation.
It includes new analytical solutions for validation of FE implementation. It focuses on the
micromorphic approach to gradient plasticity, as a convenient method for implementation in
FE codes. New features of the analysis include the comparison of three distinct formulations
of rate-independent gradient plasticity at finite deformations, based on the multiplicative
decomposition of the deformation gradient and on quadratic potentials with respect to gradi-
ent terms. The performance of micromorphic and Lagrange-multiplier based strain gradient
plasticity models is evaluated for various monotonic and cyclic loading conditions including
confined plasticity in simple glide and tension, bending and torsion at large deformations.
Limitations are pointed out in the case of bending and torsion, which can be overcome for
instance by the use of the gradient of equivalent plastic strain model.

Keywords Micromorphic elastoplasticity · Strain gradient plasticity · Strain localization ·
Finite deformation · Finite strain · Regularization · Size effect

1 Introduction

Many experiments have revealed the size-dependent nature of metal plasticity characterized
by intrinsic length scales interacting with small specimen dimensions: grain size effects in thin
films [1], the bending of thin foils [2], torsion of copper wires reviewed in [3] until more recent
experiments on confined plasticity in thin films [4]. In general, a smaller is stronger effect5

has been reported. The presence of plastic strain gradients leads to enhanced hardening due
to the generation of geometrically necessary dislocations [5–7]. The conventional plasticity
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theory is well established and is predictive to some extent. However, the size effects cannot
be captured by classical models since no length scale enters the constitutive equations.

On the other hand, strain-softening leads to ill-posed boundary value problems in classical10

continuum theories. This is due to the loss of ellipticity of the governing partial differential
equations in the rate-independent case. The numerical simulations are therefore sensitive to
mesh size [8], orientation of element edges [9] and element types. Various types of regulariza-
tion methods are studied in literature relying on non-local integral operators [10], gradient
formulations [11] or extra-degrees of freedom for smoothing strain or damage fields [12]. Fur-15

ther, this spurious mesh dependency can also be solved partially for rate-dependent models
[13] provided that rate sensitivity is high enough. Many regularization methods are intru-
sive regarding their FE implementation. The advantage of scalar micromorphic approaches
involving one additional degree for freedom lies in its relative simplicity of implementation
as illustrated by its use in explicit codes [14–16].20

The mechanics of generalized continua enables the introduction of characteristic lengths
into constitutive equations of materials with microstructure. For instance, the micromorphic
continuum theory was first proposed in [17, 18]. In this theory, a deformable triad of directors
is defined at each material point. Higher-order theories are constructed then by endowing
material points by tensors of various orders [19]. These tensors can be related to either25

deformation measures or internal variables. Various micromorphic models using scalar and
tensor variables accounting for elasticity, plasticity, and damage have been suggested in
[14, 20, 21]. In crystal plasticity, models with one micromorphic variable accounting for
plastic strain in all slip systems are used in order to decrease the number of additional degrees
of freedom [22–25]. Many contributions in strain gradient and micromorphic plasticity rely on30

quadratic potentials with respect to the gradient terms. Limitations of quadratic potentials
have been recognized in [26, 27] by comparison with scaling laws from mechanical metallurgy.
Rank 1 and logarithmic potentials were proposed by [28–33] based on dislocation density
arguments, whereas general power-law potentials are used by [34–36].

Finite strain modeling of elastoplasticity has been studied for decades and is still the sub-35

ject of current research. The widely used approach to extend the well-established infinitesimal
elastoplasticity theory to finite deformations is the so-called hypoelastic formulation relying
on the additive decomposition of the total deformation rate into elastic and inelastic parts,
and constitutive equations for objective stress rates. However, these formulations suffer from
several shortcomings. For instance, spurious energy dissipation in the elastic regime before40

yield and at post-yield, see [37] and references quoted therein. Formulations relying upon
the additive decomposition of the Green-Lagrange strain tensor were developed for isotropic
materials in [38] and the additive split of logarithmic strain was suggested in [39]. Several
authors have advocated the multiplicative decomposition as a general way of describing the
kinematics at finite strain [40, 41]. This decomposition assumes the existence of an inter-45

mediate configuration that is generally not unique. The concept of isoclinic intermediate
configuration was proposed first in [42] to overcome this limitation.

A general framework for the formulation of generalized continuum constitutive equa-
tions at finite deformations based on the multiplicative decomposition was proposed in [43]
for Cosserat, strain gradient, micromorphic and gradient of internal variable media. These50

models are applicable to the modeling of size effects in plasticity of materials as well as the
simulation of strain localization phenomena. As summarized in [44], finite strain formulations
for strain gradient plasticity lead to distinct regularization operators. Non-coaxial deforma-
tions, such as simple glide, reveal significant differences between finite strain formulations,
as recently discussed for the micromorphic approach of plasticity in [45]. In particular, the55

formulation based on additive logarithmic strain decomposition under non-coaxial deforma-
tion yields a softer response and eventually leads to early strain localization compared to the
multiplicative elastoplasticity. Further investigations on Lagrangian and Eulerian non-local
effects were conducted by , e.g. [46–49]. According to these works, various formulations de-
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viate from each other at finite strain, but with no clear preference. It remains that only few60

studies were dedicated to the computational analysis of strain gradient plasticity at large
deformations, see for instance in [50] based on the gradient of the plastic strain tensor, and
[23, 51, 52] for the gradient of scalar variables.

The present work focuses on the micromorphic approach based on the gradient of scalar
variables because this class of models remains rather easy to implement in FE codes and pro-65

vides computationally efficient simulations due to the reduced number of additional degrees
of freedom. Several issues related to the particular choice of scalar micromorphic variable are
reported in the literature. First, the gradient enhancement may lead to a negative isotropic
hardening and ultimately to a non-physical negative radius of elastic domain [53]. Further,
scalar variables do not account for flow direction [54]. A scalar enhanced model has been pro-70

posed in [55] at small strain to solve this conceptual problem. A tensorial gradient plasticity
model was proposed in [53] to address the aforementioned issues but this model remains
numerically expensive. Theories involving the gradient of the full plastic strain tensor go
back to the works [43, 56–58], these references being limited to the small strain case. The
numerical implementation of strain gradient theories has been widely investigated. An im-75

plementation of strain gradient plasticity based on Lagrange multipliers has been proposed
in [59]. It consists in duplicating the considered variable, one is local and one is non-local and
these two variables are then constrained to be equal. An augmented Lagrangian term was
introduced to prevent plastic strain oscillations [60, 61]. The computational cost of micro-
morphic and Lagrange multiplier-based approaches are compared for a rate-(in)dependent80

single crystal model in [25]. In that case, the authors suggest that the computational per-
formance can be improved by considering the Lagrange multiplier-based formulation. The
previous enhanced plasticity theories have been tested against benchmark problems, like
thin film behavior under biaxial tension, torsion of wires, but also growth of a spherical void
in [57], and bending [53].85

The objective of the present work is to provide a series of benchmark tests addressing
both size effects in hardening plasticity and simulation of localization phenomena in soften-
ing plasticity in order to evaluate the performance of the approach both theoretically and
computationally and investigate its limitations. Verification of the proposed finite element
implementation is performed via analytical solutions at small strains for hardening and soft-90

ening plasticity. The considered boundary value problems are simulated according to three
distinct formulations of the model at finite deformations. At finite strain, the gradient of
the micromorphic variable is defined with respect to (w.r.t.) either the reference, current or
intermediate configurations. The free energy potential is assumed to be a quadratic form
w.r.t. to one of this gradient variables. This results in three distinct models that will be95

compared throughout this work for monotonic and cyclic loading conditions. The present
approach is applied to size effects in two cases. First, plastic gradients are induced by par-
ticular boundary conditions applied to the micromorphic variable corresponding to confined
plasticity or passivation of surfaces. Further, gradients emerge from the geometry and the
loading in the case of bending and torsion applications. The torsion case is considered in 3D100

in order to evaluate the computational efficiency of the models and their implementation.
Finally, the capability of these models to cancel the spurious mesh dependency is investi-
gated through applications involving strain localization. The present approach is compared
in terms of computational cost to the Lagrange multiplier-based approach.

The paper reviews several aspects of micromorphic plasticity but also presents novel105

features. First, the three finite deformation frameworks are compared for the first time to
highlight the differences at large deformations under complex loading. Second, the analysis
of cyclic shear, tension and bending using several models shows significantly different mate-
rial responses ranging from unbounded size-dependent isotropic hardening to several types
of size-dependent kinematic hardening. In particular, a new model based on the gradient of110

an equivalent strain measure at finite deformation is proposed and shown to overcome some
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drawbacks of the initial approach. Then, original applications are presented for plastic strain
localization in shear and tension. A new analytical solution is presented for shear localization
describing the micromorphic model response in detail and thus providing sophisticated ver-
ification of the FE implementation. An anisotropic gradient contribution is finally proposed115

showing the interplay between two length scales during double shear banding in a plate in
tension.

The outline of the paper is as follows. The general micromorphic approach for finite
strain gradient plasticity is presented in Sec. 2. The special case of scalar micromorphic
variables is put forward. Three different finite strain formulations are discussed relying upon120

gradient variables defined w.r.t. reference, current or intermediate configurations. A strain
gradient plasticity model based on Lagrange multipliers is revisited. The finite element
implementation is discussed briefly. The capability of different micromorphic formulations
to predict size effects is discussed in Sec. 3 for a unit cell subjected to simple glide and
tension under confined plasticity boundary conditions. In Sec. 4, size effects in the case of125

bending of a two-dimensional foil and torsion of a cylindrical bar are investigated. The case
of strain localization is addressed in Sec. 5 for a unit cell subjected to simple glide and a
plate under tension. Finally, the computational efficiency and the limitations of the approach
are discussed in Sec. 6.

According to the notations used throughout this work, first, second and fourth rank130

tensors are written a ,a∼ and a
≈

, respectively. Divergence operator w.r.t. Lagrangian (resp.

Eulerian) coordinates is called Div (resp. div ). Note that the components of the gradient of
a second order tensor A∼ are taken as Aij,k in a Cartesian orthonormal coordinate system. Its
divergence is the trace of the gradient with respect to the last two indices. The scalar product
of two vectors is a ·b = aibi. The double contraction of two generally non symmetric second135

order tensors is A∼ : B∼ = AijBij . The inverse of the transpose of A∼ is A∼
−T . The material

points are located at position X in the reference configuration. The current position of
the material point is x , at time t. The analysis is limited to the isothermal case for the
sake of brevity although extensions to thermomechanics are possible [20, 62]. All the two-
dimensional simulations presented in this work are performed under plane strain conditions.140

2 Model formulation at finite deformation and FE implementation

According to the classical Cauchy continuum theory, the material body is characterized by a
set of degrees of freedom DOF0 = {u} and state variables STATE0 = {F∼ , T,αI}. The dis-
placement field, the deformation gradient, and temperature are denoted respectively by u,
F∼ , and T , whereas αI represent scalar and tensor internal variables accounting for harden-145

ing/softening properties. The micromorphic approach proposed in [20] at small strains and in
[44] at finite deformations, is a systematic enhancement of the classical continuum and con-
stitutive theory to account for size and microstructure internal length effects. Supplementary
degrees of freedom, denoted by χ, associated with selected internal variables are introduced,
i.e. DOF = {u, χ}. The micromorphic variables and related internal variables have the150

same tensor rank and physical dimension. The set of material state variables is enriched by
the micromorphic variable χ and its gradient ∇χ, i.e. STATE = {F∼ , T,αI , χ,∇χ}. In what
follows, notations are used for a scalar micromorphic variable, even though similar equations
are valid for tensor variables as well, but the present work addresses exclusively the case of
scalar variables.155
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2.1 Kinematics and balance equations of the reduced micromorphic elasto(visco)plasticity
continuum

The deformation gradient is decomposed multiplicatively following [40–42] into elastic and
inelastic parts as

F∼ = F∼
eF∼

p (1)

Following [42], the isoclinic local intermediate configuration, where the material directors160

describing the anisotropic material behavior have the same inclination or orientation as in
the reference configuration, is adopted. This intermediate configuration is then uniquely
defined up to an element of the material symmetry group.
The total, elastic and plastic relative volume changes are denoted by J , Je and Jp, respec-
tively:165

J =
ρ0
ρ

= det
(
F∼
)
, Je =

ρ

ρ
= det

(
F∼
e
)
, Jp =

ρ0
ρ

= det
(
F∼
p
)

(2)

where ρ, ρ and ρ0 denote the mass density in the current, intermediate and reference local
configurations, respectively. The Lagrangian gradient of additional degrees of freedom K =
∂χ

∂X
and the Eulerian gradient k =

∂χ

∂x
are related by

k = F∼
−TK (3)

Likewise, a generalized variable K can be defined w.r.t. the intermediate configuration as

K = F∼
p−TK = F∼

eTk (4)

It must be noted that K is not a gradient field since it is generally not compatible. The
power density of internal forces expressed w.r.t. the current configuration, P(i), is given by

P(i) = σ∼ : D∼ + aχ̇+ b · k̇ (5)

with σ∼ is the Cauchy stress, D∼ the strain rate tensor, a and b are generalized stresses170

associated with the micromorphic variable and its first gradient. By neglecting volume forces
for the sake of brevity, the principle of virtual power is written for all subdomains D of the
current configuration Ω of the body as follows∫

D

P(i)dV =

∫
∂D

(t.u̇+ acχ̇) dS , ∀D ⊂ Ω (6)

External forces arise from macroscopic surface traction t and a generalized surface traction
ac related to the micromorphic variable. The application of the virtual power principle, w.r.t.175

the generalized set of independent degrees of freedom, leads to the static balance laws in the
current configuration in the form{

divσ∼ = 0

div b = a
∀x ∈ Ω

{
t = σ∼ · n
ac = b · n ∀x ∈ ∂Ω (7)

where n denotes the outward surface unit normal. The power density of internal forces

expressed w.r.t. the reference configuration P(i)
0 = JP(i) is given by

P(i)
0 = P∼ : Ḟ∼ + a0χ̇+ b0 · K̇ , ∀X ∈ Ω0 (8)

where the generalized stresses a0 and b0 are related to a and b by

a0 =
ρ0
ρ
a = Ja, b0 = JF∼

−1b (9)
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and P∼ = Jσ∼F∼
−T is the Boussinesq stress tensor. In the reference configuration, Eq. (6)

becomes180 ∫
D0

P(i)
0 dV0 =

∫
∂D0

(T .u̇+ ac0χ̇) dS0 , ∀D0 ⊂ Ω0 (10)

where D0 is a subdomain of the reference configuration Ω0 of the body. Furthermore, the
balance laws write{

Div(P∼ ) = 0

Div(b0) = a0
∀X ∈ Ω0

{
T = P∼ · n0

ac0 = b0 · n0

∀X ∈ ∂Ω0 (11)

where n0 is the outward surface normal and T is the surface traction measured on the
reference boundary ∂D0. Likewise, the power density of internal forces is rewritten w.r.t.

the intermediate local configuration1 P(i)
= JeP(i) as185

P(i)
=

1

2
Π∼

e : Ċ∼
e + (M∼ +K ⊗ b) : L∼

p + aχ̇+ b · K̇ (12)

where b = JeF∼
e−1b =

1

Jp
F∼
pb0 and a = Jea =

a0
Jp

. The Cauchy-Green elastic strain measure

defined on the intermediate local configuration is C∼
e = F∼

eTF∼
e. The Piola stress tensor w.r.t.

the intermediate local configuration is Π∼
e = JeF∼

e−1σ∼F∼
e−T . The plastic velocity gradient

L∼
p is the work-conjugate of the Mandel stress tensor M∼ = C∼

eΠ∼
e. The expression of the

virtual power w.r.t. the various local configurations are related by the following190

P(i)

ρ
=
P(i)

ρ
=
P(i)
0

ρ0
(13)

2.2 On three forms of the Helmholtz free energy potential

The mass specific Helmholtz free energy density function for classical elasto(visco)plasticity
models, ψref , depends on the elastic strain tensor C∼

e and internal variables αI , both quan-
tities attached to the intermediate local configuration, according to [63].

The next constitutive choice is to select the dependence of the free energy potential on195

the micromorphic variables. For that purpose, the total free energy is split into two functions
in the form:

ψ = ψref + ψχ (14)

where the micromorphic contribution is incorporated into the function ψχ. The latter is
chosen to depend explicitly on one internal variable taken from the set αI , on the mi-
cromorphic variable χ and on either k ,K or K . In that way, three distinct functions,200

ψχ(αI , χ,k), ψχ0 (αI , χ,K), ψ
χ
(αI , χ,K), can be considered that differ only by the choice

of the third argument.

1 To establish this expression, the following equation was used

K̇ = F∼
pT K̇ + Ḟ∼

pTK
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Conversion between the three free energy potentials

The free energy potential is an isotropic function of its arguments, the arguments including
structural tensors in the case of anisotropic materials [64, 65]. In particular, the dependence205

on the gradient of the micromorphic variable must fulfill this requirement. This allows for
conversion of free energy function from one set of arguments to the others:

ψ(C∼
e,αI , χ,k ) = ψ(C∼

e,αI , χ,F∼
−TK )

= ψ(C∼
e,αI , χ,U∼

−TK )

=: ψ0(C∼
e,C∼ ,αI , χ,K ) (15)

by virtue of space isotropy principle applied at the second line. The right stretch tensor
U∼ = C∼

1/2 was introduced. It is apparent from this expression that a function ψ(C∼
e,αI , χ,k )

cannot be converted into a function ψ0(C∼
e,αI , χ,K ). The conversion is only possible if210

adding the right Cauchy–Green as an argument. On the other hand,

ψ(C∼
e,αI , χ,k ) = ψ(C∼

e,αI , χ,F∼
e−TK )

= ψ(C∼
e,αI , χ,U∼

e−TK )

=: ψ(C∼
e,αI , χ,K ) (16)

In that case, conversion from a function ψ(C∼
e,αI , χ,k ) to a function of the form

ψ(C∼
e,αI , χ,K ) is always possible.

In the present work, quadratic contributions to the free energy density w.r.t. either k ,K
or K , will be considered for simplicity. In the isotropic case, a quadratic contribution with215

respect to k takes the form:
1

2
A‖k ‖2 =

1

2
Ak · k (17)

where A is a constant material parameter regarded as a higher order modulus. It is apparent
that a quadratic contribution w.r.t. k can be converted into non–quadratic expressions for
K and K , in the following ways:

1

2
Ak · k =

1

2
AK ·C∼−1 ·K =

1

2
AK ·C∼ e−1 ·K (18)

As a consequence, adopting a quadratic contribution w.r.t.K ,k orK leads to three distinct220

material models. The corresponding responses will be compared in the various examples
handled in the following.

Multiplicative elastoplasticity constitutive equations are naturally expressed w.r.t. the
intermediate configuration, the Mandel stress being the driving force for plastic flow. The
state and internal variables are all expressed w.r.t. the intermediate configuration: Elastic225

Green-Lagrange strain and hardening variables. This is the motivation for bringing also the
higher order variable K into the intermediate configuration to obtain K̄ . Generally, it is
more consistent to consider all the arguments of the free energy density function w.r.t. the
same configuration and avoid mixing variables defined on distinct configurations. In that
way invariance requirements related to symmetry can be applied without ambiguity.230

The case of an anisotropic contributions of K ,k or K will also be considered and the
discussion is postponed to Sec. 5.2.

2.3 Exploitation of entropy principle and constitutive equations

The entropy principle in its local form is now exploited with the simplifying assumption of
non-dissipative generalized stresses (a, b, a0, b0, a and b). Three formulations are presented235

depending on the use of K,K or k as an argument of the free energy potential:
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Eulerian formulation The dissipation inequality is written as:

P(i) − ρψ̇ ≥ 0 (19)

The rate of change of free energy density is evaluated as

ψ̇(C∼
e,αI , χ,k) =

∂ψ

∂C∼
e : Ċ∼

e +
∂ψ

∂αI
α̇I +

∂ψ

∂χ
χ̇+

∂ψ

∂k
· k̇ (20)

By substituting Eq. (5) and the previous equation in the dissipation inequality Eq. (19), the
Clausius–Duhem inequality is obtained240 (

1

2Je
Π∼

e − ρ ∂ψ
∂C∼

e

)
: Ċ∼

e+
1

Je
M∼ : L∼

p+

(
a− ρ∂ψ

∂χ

)
χ̇+

(
b− ρ∂ψ

∂k

)
·k̇−ρ ∂ψ

∂αI
α̇I ≥ 0 (21)

where the Mandel stress tensor M∼ = C∼
eΠ∼

e is the driving force for plastic flow. Since Eq.

(21) holds true for any mechanical process (i.e. for any Ċ∼
e, χ̇ and k̇), and assuming that the

conjugate functions do not depend on these increments, the following state laws are derived

Π∼
e = 2ρ

∂ψ

∂C∼
e , a = ρ

∂ψ

∂χ
, b = ρ

∂ψ

∂k
, AI = ρ

∂ψ

∂αI
(22)

The latter equation defines the thermodynamic forces AI associated with the internal vari-245

ables αI . The residual dissipation rate takes the form

M∼ : L∼
p −AIα̇I ≥ 0 (23)

The previous condition of positive dissipation is automatically satisfied when there exists a
convex potential Ω(M∼ ,AI) providing the flow rule and evolution equations for the internal
variables:

L∼
p =

∂Ω

∂M∼
, α̇I = − ∂Ω

∂AI
(24)

The existence of such a dissipation potential is convenient but not necessary. In the rate-250

independent case, the dissipation potential is related to the yield function f(M∼ ,A∼ I
) by the

normality rule

L∼
p

= ṗ
∂f

∂M∼
, α̇I = −ṗ ∂f

∂AI
(25)

where ṗ is the plastic multiplier. The cumulative plastic strain results from the time inte-
gration the plastic multiplier.

Lagrangian formulation Alternatively, the Lagrangian version of the Clausius–Duhem in-255

equality reads(
Jp
2
Π∼

e − ρ0
∂ψ0

∂C∼
e

)
: Ċ∼

e+JpM∼ : L∼
p+

(
a0 − ρ0

∂ψ0

∂χ

)
χ̇+

(
b0 − ρ0

∂ψ0

∂K

)
·K̇−ρ0

∂ψ0

∂αI
α̇I ≥ 0

(26)
and constitutive equations are derived as follows

Π∼
e = 2ρ

∂ψ0

∂C∼
e , a0 = ρ0

∂ψ0

∂χ
, b0 = ρ0

∂ψ0

∂K
, AI = ρ

∂ψ0

∂αI
(27)

The equations (23,24) and (25) apply in this case as well.
A drawback of the two previous constitutive formulations is that they combine variables
defined on different local configurations. Appropriate push-forward or pull-back operations260

make it possible to consider variables all defined on the intermediate local configuration, as
proposed in [44]. For that purpose, use is made of the variable K which is the pull-back of
k to the intermediate local configuration.
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Formulation w.r.t. the intermediate configuration In that case, the dissipation inequality
was derived in [44] as265 (

1

2
Π∼

e − ρ ∂ψ
∂C∼

e

)
: Ċ∼

e+(M∼ +K⊗b) : L∼
p+

(
a− ρ∂ψ

∂χ

)
χ̇+

(
b− ρ ∂ψ

∂K

)
.K̇−ρ ∂ψ

∂αI
α̇I ≥ 0

(28)
The state laws are adopted in a form such that no dissipation is associated to the generalized
stress b:

Π∼
e = 2ρ

∂ψ

∂C∼
e , a = ρ

∂ψ

∂χ
, b = ρ

∂ψ

∂K
, AI = ρ

∂ψ

∂αI
(29)

The mechanical dissipation takes a specific form in that case:(
M∼ +X∼

b
)

: L∼
p −AIα̇I ≥ 0 (30)

where
X∼
b = K ⊗ b (31)

is an additional contribution to the Mandel stress tensor acting as a kinematic hardening270

variable that naturally emerges from the formulation w.r.t. the intermediate local configu-
ration. The physical meaning of the quadratic gradient term in the energy is related to the
development of geometrically necessary dislocations, as documented by many papers in the
literature. In contrast, the contribution X∼

b according to Eq. (31) is a purely “geometrical”
nonlinear contribution which arises when extending the usual small strain gradient contri-275

bution to finite deformations by means of a pull-back of the plastic strain gradient to the
intermediate configuration. It is of second order compared to the first order gradient term
and does not subsist in the infinitesimal case. It is a further consequence of plastic incompat-
ibility and has never been pointed out prior to [44]. The geometrical interpretation is that
plastic incompatibility results in a back-stress even when scalar-based gradient plasticity is280

considered. To our knowledge, there is no clear experimental evidence yet of the need for
such a subtle term. This is an incentive for performing cyclic tests at large amplitudes and
study the size dependence of the results.

A generalized dissipation potential can be introduced depending on the generalized Man-
del stress tensor:285

L∼
p =

∂Ω

∂(M∼ +X∼
b)

, α̇I = − ∂Ω

∂AI
(32)

The choice of a convex function Ω(M∼ +X∼
b,AI) ensures identical fulfillment of the positivity

of the dissipation rate.

2.4 Model based on the cumulative plastic strain

The previous formulations are now illustrated in a simple elastoplastic case with the choice
of the cumulative plastic strain p as a scalar internal variable controlling isotropic hardening,290

and of the tensor internal variable α∼ ∈ {αI} accounting for kinematic hardening, as done
in classical plasticity theory, see [63]. The micromorphic variable associated to cumulative
plastic strain is denoted by pχ (χ ≡ pχ). The following quadratic form for the free energy
potential is adopted

ψ0(C∼
e, p,α∼, pχ,K) = ψref (C∼

e, p,α∼) +
Hχ

2ρ0
(p− pχ)2 +

1

2ρ0
K ·A∼ ·K (33)
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where Hχ is a coupling modulus (MPa) and A∼ is a second rank tensor of generalized moduli.295

For the sake of demonstration, the following expression of the classical specific free energy
is adopted

ψref (C∼
e, p,α∼) =

1

2ρ
E∼
e : C

≈
: E∼

e + ψh(p,α∼) (34)

where E∼
e = (C∼

e − 1∼)/2 is the Green–Lagrange strain w.r.t. the intermediate configuration,
C
≈

is the fourth-order tensor of elastic moduli and ψh(p,αI) is the stored energy contribution
associated with work-hardening.300

The state laws (27) become

Π∼
e = C

≈
: E∼

e, a0 = −Hχ (p− pχ) , b0 = A∼ .K, R(p) = ρ
∂ψ0

∂p
(35)

The first equation is called the Saint-Venant-Kirchhoff hyperelasticity law w.r.t. the local
intermediate configuration. The yield function is then taken of the form

f(M∼ ,X∼ m
) =

[
M∼ −X∼ ref

]
eq
−R0 −R(p) (36)

involving the Mandel stress tensor following [37]. The scalar function [�]eq and the material
constant R0 denote the equivalent stress and the initial yield stress, respectively. The back-305

stress X∼
ref and the isotropic hardening Rref are related to internal variables α∼ and p by

X∼
ref = ρ

∂ψref

∂α∼
, Rref = ρ

∂ψref

∂p
(37)

Remark 1 The last equation (36) implies that the isotropic hardening variable can be written
as310

R(p) = ρ
∂ψref

∂p
+

ρ

ρ0
Hχ(p− pχ)

= ρ
∂ψref

∂p
− a0 = ρ

∂ψref

∂p
−Div b 0

= Rref (p)−A∆0pχ (38)

where plastic incompressibility condition and isotropic tensor A∼ have been implemented.
The constraint pχ ≡ p can be enforced by adopting a sufficiently large value of the penalty
modulus Hχ. The hardening law is then enhanced by a Laplace term and the model coincides
accordingly with the Aifantis theory of strain gradient plasticity, see [66, 67].

By combining Eq. (11) and Eq. (35), the following regularization operator is derived315

p = pχ −
1

Hχ
Div(A∼ ·K) (39)

In the isotropic and homogeneous case, i.e. A∼ = A1∼ and material parameter A independent
of material point, Eq. (39) reduces to

p = pχ −
A

Hχ
∆0pχ (40)

which involves the Laplacian operator ∆0 w.r.t. Lagrangian coordinates. The constitutive
choices of specific free energy potential for different formulations are summarized in Ta-
ble 1. For the sake of comparison, the regularization equations are all expressed in terms of320

Lagrangian operators.
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Eulerian Lagrangian intermediate

Specific free energy ψ = ψref +
1

2ρ
k.A∼.k +

Hχ

2ρ
(p− pχ)2 ψ0 = ψref +

1

2ρ0
K.A∼.K +

Hχ

2ρ0
(p− pχ)2 ψ = ψref +

1

2ρ
K.A∼.K +

Hχ

2ρ
(p− pχ)2

Yield function f
[
M∼ −X∼

ref
]
eq
− (Rref − Jea)

[
M∼ −X∼

ref
]
eq
−
(
Rref − J−1

p a0
) [

M∼ −X∼
ref +X∼

b
]
eq
− (Rref − a)

X∼
b = K ⊗ b

Generalized stresses a = −Hχ (p− pχ) a0 = −Hχ (p− pχ) a = −Hχ (p− pχ)

b = A∼.k b0 = A∼.K b = A∼.K

Regularization operator p = pχ −
1

Hχ
Div

(
J(F∼

−1A∼F∼
−T ) ·K

)
p = pχ −

1

Hχ
Div(A∼ ·K) p = pχ −

1

Hχ
Div

(
Jp(F∼

p−1A∼F∼
p−T ) ·K

)

Table 1: A summary of constitutive choices and regularization operators for different formu-
lations.

Remark 2 To illustrate the difference between the various formulations while assuming the
same form of free energy potentials, let us derive a Lagrangian formulation from a formu-
lation based on a quadratic potential ψ expressed in terms of Eulerian gradient k. In the
isotropic case, the conversion (18) shows that a quadratic potential of Eulerian arguments325

results in a non-quadratic potential in terms of Lagrangian arguments. As shown in Table
1, the regularization operators provided by the three formulations are then different for a
given form of free energy potential and the same material parameters.

2.5 Model based on the equivalent plastic strain

The model based on the cumulative plastic strain will be shown to lead to a size-dependent330

isotropic hardening. In contrast, an alternative scalar model has been proposed in [55], in the
small strain framework, in order to model size-dependent kinematic hardening without using
the full plastic strain tensor as done previously in [53] which is believed to be computationally
expensive. Here, we present an extension of that model to finite strains by considering the
norm of (B∼

p − 1∼) where B∼
p = F∼

pF∼
pT is the plastic left Cauchy-Green tensor. Accordingly,335

the micromorphic variable is associated to the equivalent measure of plastic strain Bpeq
defined by

Bpeq =

√
1

6

(
B∼
p − 1∼

)
:
(
B∼
p − 1∼

)
(41)

In what follows, the derivation of constitutive equations and flow rules for a Lagrangian
formulation are presented. Similarly, as shown in Sec. 2.1, other formulations are possible by
considering gradients of micromorphic variables defined w.r.t. to Eulerian and intermediate340

configurations. The free energy potential per unit mass, assumed to be a function

ψ0 = ψ0(C∼
e, αI ,B∼

p, χ,K) (42)

The Clausius-Duhem inequality becomes2(
Jp
2
Π∼

e − ρ0
∂ψ0

∂C∼
e

)
: Ċ∼

e +

(
JpM∼ − 2ρ0

∂ψ0

∂B∼
pB∼

p

)
: L∼

p +

(
a0 − ρ0

∂ψ0

∂χ

)
χ̇

+

(
b0 − ρ0

∂ψ0

∂K

)
.K̇ − ρ0

∂ψ0

∂αI
α̇I ≥ 0 (43)

The state laws follow as

Π∼
e = 2ρ

∂ψ0

∂C∼
e , a0 = ρ0

∂ψ0

∂χ
, b0 = ρ0

∂ψ0

∂K
, AI = ρ

∂ψ0

∂αI
(44)

2 It can be checked that

∂ψ0

∂B∼
p : Ḃ∼

p
=

∂ψ0

∂B∼
p : (L∼

pB∼
p +B∼

pL∼
pT ) = 2

∂ψ0

∂B∼
p : (L∼

pB∼
p) = 2

(
∂ψ0

∂B∼
pB∼

p

)
: L∼

p

assuming that ∂ψ0/∂B∼
p is symmetric.
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The residual dissipation becomes(
JpM∼ − 2ρ0

∂ψ0

∂B∼
pB∼

p

)
: L∼

p −AIα̇I ≥ 0 (45)

By assuming the existence of a convex yield function f(M∼ −X∼ m
,AI), the flow rule follows

from the normality condition

L∼
p = ṗ

∂f

∂
(
M∼ −X∼ m

) (46)

where a back-stress arises given by

X∼ m
= 2ρ

∂ψ0

∂B∼
pB∼

p (47)

The particular choice of a partly quadratic potential as345

ψ0(C∼
e,B∼

p, p, χ,K) = ψref +
Hχ

2ρ0
(Bpeq − χ)2 +

1

2ρ0
K.A∼ .K (48)

leads to the following constitutive equations

Π∼
e = C∼ : E∼

e, R(p) = ρ
∂ψ0

∂p
, a0 = −Hχ(Bpeq − χ), b0 = A∼K (49)

and

X∼ m
=
Hχ

3Jp

(
B∼
p − 1∼

)
B∼
p

Bpeq
(Bpeq − χ) (50)

The proposed yield function is given by

f(M∼ ,X∼ m
) =

[
M∼ −X∼ m

]
eq
−R0 −R(p) (51)

The size-dependent character of the enhanced kinematic hardening component X∼ m
is ap-

parent in Eq. (50) by noting that the term Hχ(Bpeq − χ) = −a0 = −Div b 0 thus involving
higher order derivatives.350

2.6 Implementation scheme

The generic implementation of constitutive and balance laws of scalar micromorphic mod-
els is briefly described in this section. The present approach is implemented in the Finite
Element code Zset [68] and follows the programming concepts from [69, 70].
The principle of virtual power in Eq. (10) is discretized as355

n∑
e=1

∫
De0

P(i)dV =

ns∑
e=1

∫
∂De0

(t.u̇+ acχ̇) dS , ∀D0 ⊂ Ω0 (52)

Here, the sub-domain De
0 corresponds to the space occupied by the individual element e.

The boundary ∂D0 is discretized into ns surface elements ∂De
0 for the application of surface

tractions. Within each individual element, ui is interpolated from the displacement values
of m nodes and χ from the values of q nodes as

ui =

m∑
k=1

uNkũki , χ =

q∑
k=1

χNkχ̃k (53)
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uNk and χNk are shape functions for ui and χ, respectively. The deformation gradient F∼360

and the Lagrangian gradient of χ denoted by K are given by

Fij − δij =

m∑
k=1

uBkj ũ
k
i , Ki =

q∑
k=1

χBki χ̃
k (54)

with uBkj =
∂uNk

∂Xj
and uBki =

∂χNk

∂Xi
. Finally, by substituting equations (53) and (54) into

Eq. (52), one gets

n∑
e=1

m∑
k=1

[∫
De0

(Pij
uBkj )dV0

]
˙̃uki +

n∑
e=1

q∑
k=1

[∫
De0

(a0
χNk + bχBki )dV0

]
˙̃χk

=

ns∑
e=1

m∑
k=1

[∫
∂De0

(
t0,i

uNk
)
dS0

]
˙̃uki +

ns∑
e=1

q∑
k=1

[∫
∂De0

(
ac0
χNk

)
dS0

]
˙̃χk (55)

According to Eq. (55), an internal (resp. external) reaction is associated with each degree of
freedom. The FE problem will be solved by a monolithic iterative method, using a Newton
algorithm. The consistent tangent matrix as shown in [23, 25] is given

[K] =
∂∆VOUT
∂∆VIN

− ∂∆VOUT
∂∆Vint

(
∂R

∂∆Vint

)−1
∂R

∂∆VIN
(56)

where VOUT , VIN and Vint denote output, input and integrated variables, respectively.365

The output variables are the Piola Boussinesq stress P∼ and generalized stresses a and b.
The input variables are F∼ , χ, K. For the sake of demonstration, we consider F∼

e and the
cumulative plastic strain p as integrated variables. Additional internal variables related to
isotropic/kinematic hardening are readily incorporated in this framework.
The residuals R(∆Vint, ∆VIN ) for the evolution equation for F∼

e and the yield conditions,
are given by
Re = ∆F∼

e −L∼F∼ e +∆pF∼
e ∂f

∂M∼
= 0

Rp =
f

Hχ
= 0 (plastic), or Rp = ∆p−∆t∂Ω

∂f
= 0 (viscoplastic)

(57)

where L∼ is the velocity gradient. Supplementary equations can be added in order to inte-370

grate internal variables (e.g. associated to isotropic and kinematic hardening). In order to
satisfy the plastic incompressibility condition (det

(
F∼
p
)

= 1), F∼
e is replaced in Eq. (57) by(

det
(
F∼
)

det
(
F∼
e
))1/3

F∼
e. The normalization of Rp by Hχ parameter is carried out to improve the

numerical efficiency by avoiding ill-conditioned Jacobian matrices J =
∂R

∂∆Vint
, especially

in case of rate-independent plasticity. The calculation of the tangent matrix [K] is detailed375

in Appendix A.

2.7 Limit case of Aifantis plasticity

Following the Remark 1, we present here an implementation of Aifantis strain gradient
plasticity relying upon Lagrange multipliers added to the micromorphic model. This method
has been applied for plasticity and damage models [25, 52, 59]. A Lagrange multiplier is380
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introduced to enforce the internal constraint pχ ≡ p at each material point. The enhanced
free energy potential, interpreted as a Lagrangian function, is given by

ψL0 (C∼
e, p, pχ,K) = ψref (C∼

e, p) +
1

2ρ
K.A∼ .K +

λ

ρ0
(pχ − p) +

µχ
2ρ0

(pχ − p)2 (58)

where λ is a Lagrange multiplier and µχ is a penalization modulus. The Lagrange multiplier λ
is introduced to weakly enforce the equality between pχ and p. The augmented Lagrangian
term µχ(pχ − p)2 provides an additional coercivity so as to avoid potential oscillation of385

the cumulative plasticity (see e.g. [25, 59]). By substituting Eq. (58) in the Clausius–Duhem
inequality and assuming that a0 and b 0 are non-dissipative generalized stresses, the following
constitutive laws are obtained:

Π∼
e = 2

∂ψ

∂C∼
e , a0 = ρ0

∂ψ

∂χ
, b0 = ρ0

∂ψ

∂K
(59)

When the constraint p ≡ pχ is met, one has

∂ψL0
∂λ

λ̇ =
λ̇

ρ0
(pχ − p) = 0 (60)

Similarly, formulations w.r.t. Eulerian and intermediate configurations are readily devel-390

oped. The numerical implementation of this approach is detailed thoroughly in [25] for the
Lagrangian case.

3 Size effects in confined plasticity

In the following, the ability of the present approach to model size effects is illustrated by sev-
eral examples. For convenience, only the model presented in 2.4 based on cumulative plastic395

strain is considered in this section. Confined plasticity conditions are applied to a unit cell
in order to induce high plastic strain gradients. Monotonic and cyclic loading conditions
are applied in order to compare the three finite strain formulations previously discussed.
Throughout the rest of the document, the material parameters for isotropic elasticity are:
Young’s modulus E = 78 GPa and the Poisson ratio ν = 0.3. The plasticity related coeffi-400

cients and the higher order parameters Hχ (unit MPa) and A (unit N) are varied.

3.1 Confined plasticity under shear loading

A strip of width 2h is considered in Fig. 1a. A macroscopic shear deformation F∼ = 1∼ +

F 12e x ⊗ e y is applied such that the displacement field takes the form

u = (F∼ − 1∼) ·X + v(X) (61)

Periodic boundary conditions are imposed on the displacement fluctuation v. Dirichlet con-405

ditions for the micromorphic variable are prescribed: pχ = 0 at x = ±h. Periodicity condi-
tions are enforced between top and bottom surfaces for pχ. As a consequence, the fields are
invariant along e y, except the linear distribution ux(y).

A time-independent von Mises plasticity model is considered. The hardening free energy
ρψh(p) = 1

2Hp
2 corresponding to linear hardening/softening leads to the following yield410

function for classical models

f(M∼ ) =

√
3

2
M∼
′ : M∼

′ − (R0 +Hp) (62)
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x-h h

pχ=0

γ

(a) (b)

Fig. 1: (a) Simple glide test with imposed microplastic boundary conditions; (b) deformed
shape and distribution of microplastic strain pχ for F 12 = 1, R0 = 20 MPa, H = 0 (La-
grangian formulation).

where M∼
′ is the deviatoric part of M∼ . The hardening law is modified in the micromorphic

model such that the enhanced yield function becomes

f(M∼ ) =

√
3

2
M∼
′ : M∼

′ − (R0 +R) with R = Hp+Hχ(p− pχ) (63)

where H is the plastic hardening modulus. Analytic solutions of this one-dimensional bound-
ary value problem can be derived in the small strain limit. They are provided in Appendix415

B for H ≥ 0. An important relation is derived therein, namely the characteristic length 1/ω
given by Eq. (98) which emerges from the analysis as a function of hardening modulus H
and generalized moduli Hχ and A. The deformed shape and the microdeformation fields are
illustrated by Fig. 1b. The latter profiles are also visible in Fig. 2a. The analytical solution
predicts parabolic shapes for H = 0, at small strain, but more complex distributions are420

found at large deformations.
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Fig. 2: (a) The profile of microplastic variable pχ for different values of A (Hχ = 105 MPa);
(b) the difference (p− pχ) for different values of Hχ (A = 104 N). The applied macroscopic
strain is F 12 = 1, R0 = 20 MPa, H = 0 (Lagrangian formulation).

As shown in Fig. 2b (H = 0), by increasing the value of the parameter Hχ, the difference
between p and pχ becomes smaller at a fixed value of higher order modulus A. Meanwhile,
the generalized stress a0 = −Hχ(p−pχ) increases with Hχ. It means that, enforcing equality
between p and pχ induces a very high yield stress in the vicinity of x = ±h given by425

σY = R0 +R = R0 +Hχ(p− pχ) (64)
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The analytical solution for H ≥ 0, detailed in Appendix B in the small strain framework,
predicts that the profile of cumulative plastic plasticity is given by a hyperbolic (exponen-
tial) function. Fig. 3 shows such profiles of microplastic variable pχ for several values of the
parameter A. These curves can be shown to agree well with the predicted profiles at small
strains but more complex distributions are found at large shear amounts. Fig. 4a depicts
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Fig. 3: The profile of microplastic variable pχ for different values of A (Hχ = 105 MPa).
The applied macroscopic strain is F 12 = 1, R0 = 20 MPa, H = 1000 MPa (Lagrangian
formulation).

430

the stress-strain curves for different values of the parameter A in the absence of classical
hardening (H = 0). A progressive stiffening is observed when increasing the value of param-
eter A or, equivalently, the intrinsic length scale. The same phenomenon is observed when
the size of the unit cell gets smaller for a fixed value of A according to Fig. 4b. This leads
to significant stiffening of the overall response when increasing the higher modulus A or,435

equivalently reducing the strip width. This corresponds to the well-known effect: smaller is
harder. This is directly related to the fact that gradients of plastic variables are higher at
small scales for the same loading conditions.

Some comments are due regarding the physical relevance of fixing the micromorphic
variable pχ = 0 at some boundaries. Prescribing pχ at a boundary is equivalent to imposing440

p if Hχ is sufficiently large and corresponds to a condition of surface passivation and the
blockage of dislocations [71, 72]. For intermediate values of Hχ, the interpretation of pχ
remains open. However the contribution (p−pχ)2 in the free energy density can be interpreted
as a variance of spatial distribution of plastic strain inside the volume element, in the spirit of
the recent article [73]. Another interpretation is possible based on homogenization arguments445

as proposed by [74]. These tracks remain to be explored in the future to better interpret the
physical content of the micromorphic variable.

The results of a cyclic simple glide loading, with similar boundary conditions as in Fig. 1a,
are provided in Fig. 5a for different finite deformation formulations. In this cyclic test, strain
values remain moderate so that the differences between Eulerian and Lagrangian formula-450

tions are negligible. Meanwhile, a kinematic hardening effect is induced by the formulation
w.r.t. the intermediate configuration. Over cycles, the gradient of microplastic variable pχ
increases, so that X∼

b, given by Eq. (31), increases as well. It turns out that the sign of X∼
b

components remains the same while shearing in both directions. The kinematic hardening
X∼
b becomes more significant after few cycles. Nevertheless, the effect of the finite deforma-455

tion formulation remains rather limited for the components σ12 and Xb
12. The effect is much

more pronounced for the components σ11, σ22 and σ33 which are not negligible due to the



Toward robust scalar-based gradient plasticity modeling and simulation at finite deformations 17

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

A
 ve

ra
ge

 C
au

ch
y 

st
re

ss
 s

12
  (

M
P

a)

F‾12

classical

A  = 10 N

A  = 10
2  N

A
  =

 1
0

3  N

A
  =

 1
0

4  N

A
  =

 1
05  N

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

A
 ve

ra
ge

 C
au

ch
y 

st
re

ss
 s

12
  (

M
P

a)

F‾12

h  = 500 mm

h  = 50 mm

h  
= 

5 
m

m

h  
=

 0
.5

 m
m

(a) (b)

Fig. 4: The macroscopic stress-strain curves for different values of (a) the parameter A,
h = 5 mm; (b) length of the unit cell h, A = 104 N. Material parameters: R0 = 20 MPa,
H = 0 and Hχ = 105 MPa (Lagrangian formulation).

Poynting effect, see Fig. 5b. The reason is that Xb
11 is the component having the highest

value.
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Fig. 5: Cyclic simple glide test with confined plasticity for different finite strain formulations.
Material parameters: R0 = 200 MPa, H = 0 MPa, Hχ = 104 MPa, A = 104 N.

3.2 Confined plasticity under tensile loading460

A simple tension test is considered with confined plasticity boundary conditions (passiva-
tion). The unit cell of width 2h is subjected to a uniform displacement ux at x = h, uy being
constrained to be uniform at the top and bottom lines, see insert in Fig. 6a. The microplastic
variable pχ is set to zero at x = ±h. Fig. 6a depicts the stress-strain curves for several values
of material parameter A and several sizes of unit cell h. It shows that the induced isotropic465

hardening increases with higher values of the ratio A/h.
The stress-strain curves for a cyclic loading (tension+compression) are shown in Fig. 7a

for the three finite deformation formulations. Small differences are noticed between La-
grangian and Eulerian formulations. In contrast, the formulation w.r.t. the intermediate
configuration differs significantly from the two others. Note that the stress response drifts470
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Fig. 6: Monotonic tensile loading: (a) overall stress-strain curves; (b) profiles of cumulative
plastic strain p for F 11 = 2. Material parameters are Hχ = 105 MPa, R0 = 200 MPa, H = 0
(Lagrangian formulation).

away towards negative values. This is due to kinematic hardening contribution byX∼
b having

the same sign in tension (points 1 and 2 on the curves) and compression (point 1’ and 2’).
The gradient of cumulative plastic strain increases over cycles, so does X∼

b (see results for

Xb
11 component in Fig. 7b). In fact, the quantity X∼

b grows proportionally to the square of

K components according to Eq. (31). This indicates that this back-stress is a second order475

contribution at small strains but becomes dominant at large strains.

-1000

-800

-600

-400

-200

 0

 200

 400

 600

 800

 0.94  0.96  0.98  1  1.02  1.04  1.06

C
au

ch
y 

st
re

ss
 s

1 1
 (

M
P

a)

F‾11

1

1'

2

2' Lagrangian
Eulerian

 Intermediate

(a) (b)

Fig. 7: Cyclic tensile loading with confined plasticity: (a) Comparison of stress-strain curves
for different finite strain formulations; (b) evolution of back-stress Xb

11. Material parameters:
Hχ = 105 MPa, A = 10000 N, R0 = 200 MPa, H = 0. Unit cell length h = 5 mm.
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4 Size effects in bending and torsion

At this stage, the scale effect was studied in cases where plastic strain gradients are caused
by applying particular boundary conditions (confined plasticity). In this section, another
type of loading conditions naturally inducing plastic strain gradients is addressed. Bending480

and torsion loadings were investigated thoroughly in the past to point out size effects in the
plasticity of metals, as discussed in [3]. They represent crucial benchmark tests to analyze
the pros and the cons of various gradient approaches. In the following, the bending of a
two-dimensional foil and the torsion of a cylinder are investigated at finite strains.

4.1 Bending485

The problem of thin foil bending is widely studied in the computational mechanics literature
in the small strain framework [53, 55, 75]. As pointed out by these authors, the cumulative
plastic strain is shown to be non smooth at the neutral axis when plasticity has invaded the
whole beam. The fact that the cumulative plastic strain distribution is not differentiable on
the neutral axis is challenging for most strain gradient plasticity algorithms. This difficulty490

can be overcome using the micromorphic approach since the plastic strain is not required to
be smooth. On the other hand, the micromorphic model relying on the cumulative plastic
strain was shown in [53] to induce spurious negative yield stress.

The present section aims to investigate this bending problem at finite strain. The plane-
strain bending of a 2D-foil of width 2w, around z-axis is considered. Due to mirror symmetry495

about y−axis, only the right half of the foil is simulated. Four-point bending is applied to
the sample, as shown in Fig. 8. The curvature is approximately given by κ = (F11(x = 0, y =
w)− 1)/w which will be used as loading parameter in the analysis. The material is assumed
to be perfectly plastic (H = 0 MPa in Eq. (63)). The micromorphic formulation given in
Sec. 2.4 where χ ≡ p is adopted. The FE mesh is made of 3232 P2P1 elements (quadratic for500

displacement and linear for the micromorphic variable) with reduced integration (C2D8R)
and 9963 nodes.

2

Fig. 8: Schematic of two-dimensional foil subjected to four points bending.

The distribution of cumulative plastic strain is shown in Fig. 9. The profiles of p and
pχ are plotted for two different values of parameter A in Fig. 10a. Contrary to small strain
case, the profile of cumulative plastic strain is not symmetric, due to tension-compression505

asymmetry at finite deformations. Due to nonlinear geometric effects, the neutral axis is
shifted. Besides, one can notice that the distribution of cumulative plastic strain p is not
smooth in the vicinity of the neutral axis for small values of A. This is in contrast to the
microdeformation pχ distribution exhibiting a horizontal tangent at the neutral axis where
p vanishes and pχ is finite. A gap between p and pχ occurs around y = ±w and at the510

neutral axis. The generalized stress b0 vanishes at y = ±w , so does the gradient K (see
Fig. 10b). As a consequence, the curve of pχ displays horizontal tangents at y = ±w. By
increasing A, the gap between p and pχ becomes larger. The negative contribution of (p−pχ)
in the vicinity of the neutral axis leads to a decrease of the radius of the yield surface (see



20 M. Abatour & al.

cumulative plastic strain 

Fig. 9: The contour of cumulative plastic strain in the foil. Material parameters
R0 = 100 MPa, H = 0, Hχ = 104 MPa, A = 500 N. Applied curvature κ = 0.0348 mm−1.

Fig. 11a). As the parameter A (or Hχ) increases, this negative term becomes stronger. To515

satisfy consistency conditions, the radius of the yield surface must remain positive. Beyond a
certain stage of deformation, Hχ(p− pχ) tends to become smaller than −R0, which leads to
a negative radius σY . Since the equivalent von Mises stress is positive as well, the condition
f = 0 cannot be satisfied when σY is negative and the numerical simulation will diverge
accordingly. It is the case for A = 2000 N in Fig.11b in which the simulation diverges at520

a curvature of 0.024 mm−1. In the work [53], a negative yield radius is mentioned. This is
due the fact that the provided analytical solution does not satisfy the consistency condition.
Note also that considering a viscoplastic model will delay to some extent the occurrence of
the aforementioned issue due to the overstress. Further discussion about this limitation is
postponed to Sec. 6.4.
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Fig. 10: (a) Cumulative plastic strain and associated micromorphic variable along the cross
section at x = 0; (b) the generalized stress component b0,2 along the cross-section at
x = 0. Material parameters: R0 = 100 MPa, Hχ = 104 MPa, H = 0. Applied curvature
κ = 0.0348 mm−1.
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The curves of bending moment w.r.t. current coordinates vs. curvature are depicted in
Fig. 11b. A size-dependent hardening effect can be observed while increasing the param-
eter A. A comparison between formulations w.r.t. Eulerian, Lagrangian and intermediate
configurations (see Table 1) has been carried out. Accordingly, no significant differences was
noticed between the various formulations. This is due mainly to the fact that the applied530

loading does not induce sufficiently large values of plastic strain to reveal potential devia-
tion. Note that when the plastic strain becomes higher, its gradient increases as well leading
to a negative yield radius σY and accordingly the simulation does not converge. That holds
true for both monotonic and cyclic loadings.
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Fig. 11: (a) The radius of yield surface σY = R0 +Hχ(p−pχ) captured at κ = 0.0348 mm−1;
(b) the bending moment-curvature curve. Material parameters: Hχ = 104 MPa, R0 =
100 MPa, H = 0.

4.2 Torsion535

The torsion of a bar with circular cross-section of diameter d = 2r and length L is considered,
see Fig. 12a for the FE mesh and the dimensions used. The cylinder is twisted along z-axis
by applying a rotation angle θ on the top surface (z = L) and fixing the bottom surface
(z = 0). The lateral faces are kept traction free. Studies carried out in literature, particularly
on single crystal plasticity [76] have shown the existence of plastic gradients along the outer540

circumference in addition to radial gradients due to the anisotropic activation of slip systems.
In the present application, a von Mises time-independent perfectly plastic model is adopted
as in Eq. (62). Accordingly, only radial plastic gradients are present, see Fig. 12b. Size-
dependent torsion of cylinders has been simulated recently using Cosserat isotropic plasticity
in [77] and using strain gradient crystal plasticity in [78]. The torsion test is used here as a545

benchmark for 3D finite element simulations at large strains.
The fields of cumulative plastic strain in Fig. 13a are found to be similar to the ones

obtained in bending case, except that no asymmetry is observed. The cumulative plastic
strain is not smooth along the cylinder axis in contrast to pχ which does not vanish at
the center and displays a horizontal tangent at the center and near the circumference. The550

difference (p − pχ) is negative in the middle of the cylinder. As this term decreases, the
cylinder’s core undergoes a softening. In contrast, the outer region is subjected to hardening
since p is larger than pχ. The resulting size effect is shown by the torque-twist curves of Fig.
13b. The model induces a size-dependent isotropic hardening/softening given by A∆0pχ.
Again, divergence occurs when the yield stress σY = R0 +R vanishes.555
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Fig. 12: Torsion of a circular bar: (a) geometry and boundary conditions. The mesh contains
77511 nodes; r = 1 mm and L = 10 mm; (b) cumulative plastic strain contours obtained for
rθ/L = 0.628 (θ = 2π).
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Fig. 13: Torsion test: (a) Profiles of cumulative plastic strain and microplastic variable for
Hχ = 104 MPa, A = 10 N; (b) the normalized torque (w.r.t deformed configuration) vs.
surface strain curves.

5 Regularization of strain localization behavior

The micromorphic model used for the modeling of size effects in hardening materials can
also be used for the regularization of spurious mesh-dependence in the simulation of plastic
strain localization phenomena for softening materials. Two benchmarks are considered for
that purpose. The first case is the simulation of one-dimensional shear banding, for which560

an analytical solution can be worked out for the micromorphic model at small strains. The
second case deals with a two-dimensional plate undergoing anisotropic shear banding. The
attention is focused on finite strain effects on plastic strain localization which has rarely
been tackled in the literature.

5.1 One-dimensional shear banding565

A macroscopic shear deformation F∼ = 1∼ + F 12 e x ⊗ e y is applied to a strip of width 2h.

The displacement field is given by u = (F∼ − 1∼) ·X + v(X). Periodic boundary conditions
are imposed on the displacement fluctuation v and the microplastic variable pχ. A defect is
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introduced in the middle of the strip (one element with an initial yield stress of ≈ 0.99 R0)
in order to trigger strain localization at a precise location. Fig. 14 shows the development of570

the shear localizing zone in the strip, see also Fig. 28 from Appendix B.3. A new complete
analytical solution for a linear softening model (H < 0 in Eq. (63)) for the micromorphic
model at small strains is derived and detailed in B.3. The following intrinsic length emerges
from the analysis:

`c = 2π

√
A
Hχ +H

Hχ|H|
(65)

When Hχ is sufficiently large, `c in Eq. (65) tends to 2π
√
A/|H| which corresponds to the575

characteristic length for the Aifantis model (see Remark 1).

cumulative plastic strain

Fig. 14: Localization band in a periodic strip under simple glide conditions (F 12 = 0.12);
R0 = 20 MPa, H = −20 MPa, Hχ = 105 MPa, A = 1 N, h = 5 mm.
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Fig. 15: Mesh dependency for (a) the classical plasticity model, (b) the micromorphic en-
hanced model. The corresponding material parameters are indicated in the caption of Fig. 14

The curves in Fig. 15a show that the overall response of the softening material without
micromorphic enhancement pathologically depends on the mesh size since the plastic strain
is localized in only one single element. However, by considering a micromorphic model, the
simulations will converge to one well–defined response as soon as the mesh is sufficiently580

refined, see Fig. 15b. The yield stress evolves according to the equation

σY = R0 +R = R0 +Hp− a0 = R0 +Hp+Hχ(p− pχ) (66)

The two softening/hardening contribution are depicted in Fig. 16. The generalized stress
a0 = −Hχ(p − pχ) is negative in the middle of the strip. This contribution therefore coun-
teracts the softening term Hp (H < 0) in Eq. (66). Fig. 17 shows the profiles of cumulative
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Hχ = 105 MPa, A = 4 N, h = 5 mm.

plastic strain and the generalized stress a0 for different values of the parameter A. By in-585

creasing A, and consequently the characteristic length `c, the magnitude of plastic strain
and of a0 becomes smaller and the band width is larger.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

C
um

ul
at

iv
e 

pl
as

ti
c 

st
ra

in

x/2h

A = 0.25 N

A = 1 N

A = 4 N

-20

-15

-10

-5

 0

 5

 10

 15

 20

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

G
en

er
al

iz
ed

 s
tr

es
s 

a 0
 (

M
P

a)

x/2h

Fig. 17: The distribution of cumulative plastic strain and the generalized stress a0 = A∆0pχ
for different values of generalized modulus A; F 12 = 0.12.

The distribution of plastic strain and stress-strain curves given by the three proposed
finite strain formulations are plotted in Fig. 18. For a value of imposed macroscopic shear
F 12 = 0.4, one can notice that the cumulative plastic strain given by the Lagrangian formu-590

lation is slightly higher compared to the two other formulations (see Fig. 18a). Accordingly,
the average Cauchy stress σ12 tends to be lower. Formulations w.r.t. Eulerian and interme-
diate configurations yield similar profile of cumulative plastic strain. Meanwhile, deviations
are noticed between corresponding stress-strain curves at large strain due to the kinematic
hardening term X∼

b.595

In the case of linear softening (H < 0), the bandwidth is bounded and takes a finite and
fixed value, as shown by Fig. 19a. Now, consider an exponential softening law by replacing
the linear hardening term (Hp) in Eq. (63) by the saturating function Rsat(p) given by

Rsat(p) = Q(1− exp(−cp)) (67)
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Fig. 18: Shear banding for the three finite strain formulations. Material parameters: R0 =
20 MPa, Hχ = 104 MPa, A = 2 N.

where Q and c are material parameters. Softening is obtained for Q < 0, c being always
taken positive. In that case, Rsat will decrease from 0 at p = 0 to the limit Q for p → ∞.600

Fig. 19b reveals a widening of the localization band for continuing applied shear. This
can be explained as follows. For a nonlinear law, the instantaneous softening modulus is

Hε = ρ
∂2ψh

∂p2
. When the softening law

∂ψ

∂p
saturates (e.g. Rsat), Hε tends to zero. Therefore,

the intrinsic length given in Eq. (65) (replace H par Hε) tends to infinity as plastic strain
increases.605
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Fig. 19: The exponential softening behavior induces widening of the localization band. Ma-
terial parameters: R0 = 20 MPa, A = 2 N, Hχ = 105 MPa.

The band broadening is observed for all three finite strain formulations. The band widen-
ing can be an undesirable feature of strain localization simulations. It will happen in case of
localization of plastic strain much larger than the saturating softening strain. This feature
of the model has been recognized by [24]. A remedy was proposed to ensure that the band
remains in a bounded region for ever increasing strain values. It consists in considering that610

the material parameter A is not constant any more but depends on plastic strain level. That
is to say that the width of the localization band is bounded by adjusting properly the value
of A(p). It is noteworthy that for nonlinear softening laws at finite strains, only approximate
evolutions of A can be derived. By doing that, A(p) tends to decrease for further straining



26 M. Abatour & al.

Fig. 20: Schematic of the geometry and boundary conditions for the plane-strain tension
problem. The material frame is rotated by -45◦. Geometry: 2L = 3l.

F 12. Consequently, continuing plastic flow was found in [24] to localize in a narrower band615

until it reaches the size of a single element. At the end, the classical model behavior is re-
trieved. A similar method was proposed in [79] for ductile damage, and recently in [80, 81].
In these contributions, an exponential function A(p) is introduced within a large deforma-
tion constitutive framework. All these works introduce a Lagrangian gradient formulation
in which the characteristic length is a decreasing function of plastic strain.620

5.2 Anisotropic shear banding in a plate in tension

The shear band formation in a plate in tension is studied in this section in the case of an
anisotropic contribution of the micromorphic model represented by the symmetric second
order tensor A∼ , see Eq. (33). The orthotropic class symmetry for A∼ is associated with 3
distinct eigenvalues A1, A2, A3 and 3 orthogonal eigenvectors characterizing the material625

anisotropy axes. The two-dimensional plate of width l = 400 mm and length L = 3l/2 is
shown in Fig. 20 where the red axes denote the Cartesian coordinate system of the mesh
whereas the green axes represent the material anisotropy axes. The simulations are limited
to plane-strain conditions, so that only the eigenvalues A1 6= A2 play a role in the simu-
lation. Regarding boundary conditions, the nodes along the bottom edge are prescribed to630

have displacement component ux = 0 and uy = 0, while the nodes along the top part are
prescribed to have ux = 0 and a non-zero uy displacement is applied. The remaining edges
are taken to be traction-free. Due to the fact that top and bottom edges are clamped, i.e.
not allowed to contract, localization bands emerge automatically in this simulation. Hence,
no imperfection is introduced to trigger shear bands at a specific location. This example has635

been studied previously in [51], also using the micromorphic approach at large deformations
(Lagrangian formulation), but the analysis was limited to an isotropic gradient contribution.
Quadratic elements with eight nodes and nine integration points C2D8R (reduced integra-
tion) are employed, meaning that the same quadratic interpolation is used for displacement
and micromorphic degrees of freedom. Fig. 21 shows the localization bands at tensile dis-640

placements uy/L of 0.02 and 0.14 for isotropic and anisotropic generalized moduli A∼ . The
material frame is rotated by an angle of −45◦ so that the anisotropy axes are parallel to
the localization bands. A perfect plasticity model is used for this simulation. For isotropic
generalized moduli A∼ = A1∼ (A1 = A2), the resulting bands are strictly symmetric w.r.t.
the y and x−axes. In the anisotropic case, the localization band that is parallel to the A1645

eigenvector, i.e. the smallest value, is wider, more diffuse and has a lower peak value than
the second one. Anisotropy therefore breaks the symmetry of the geometry and loading con-
ditions. The plastic strain profiles along two lines perpendicular to the localization bands
are plotted in Fig. 22 in the anisotropic case at 5 loading stages. The two lines are indicated
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(a) A1 = A2 = 10000 N (b) A1 = 1000 N, A2 = 10000 N

(c) A1 = A2 = 10000 N (d) A1 = 1000 N, A2 = 10000 N

>

Fig. 21: The localization of cumulative plastic strain in a plate under tension. Results ob-
tained for applied displacement of: (a)-(b) uy/L = 0.02, (c)-(d) uy/L = 0.14. Material
parameters R0 = 100 MPa, H = −20 MPa, Hχ = 105 MPa. The left (resp. right) pictures
correspond to isotropic (resp. anisotropic) gradient contribution in the model.

in Fig. 21d. At small plastic strain levels (levels 1 and 2), the width of the two bands is650

correctly estimated by means of the formula

`1c = 2π

√
A1

(Hχ +H)

|H|Hχ
≈ 44.4, `2c = 2π

√
A2

(Hχ +H)

|H|Hχ
≈ 140.5 (68)

which correspond to independent characteristic lengths induced by A1 and A2, respectively.
Band 1 is initially significantly wider than band 2. This is due to the fact that the gradient of
plastic strain in the direction perpendicular to the band is the dominant gradient component,
as can be seen from the fields for Fig. 21b-d. Only one constant A2 (resp. A1) then plays a role655

in the constitutive equations inside band 1 (resp. band 2). After further straining, gradients
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of plastic strain parallel to the bands also become significant, leading to a broadening of
the bands towards a finite width which is essentially the same for both bands due to the
combined influence of parameters A1 and A2. However the plastic strain inside the bands
remains different due to the localization history of each band.660
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Fig. 22: The evolution of two localization bands for anisotropic generalized moduli with A1 =
10000 N, A2 = 1000 N. Levels 1,2,3,4 and 5 correspond to nominal applied displacement
uy/L of 0.02, 0.04, 0.06, 0.08 and 0.14, respectively.

6 Discussion

Several aspects of the previous simulations are discussed in this section, including limitations
of the scalar gradient micromorphic approach and possible remedies. Computational aspects
are addressed for an efficient use of gradient plasticity models in practical applications.

6.1 Choice of interpolation665

The computation of the generalized stress a = −Hχ(p−pχ) involves two quantities p and pχ.
The cumulative plastic strain p is calculated incrementally by integrating the usual elasto-
plasticity constitutive equations. Accordingly, p is related to the deformation gradient F∼
which is computed as a function of the gradient of shape functions selected for displace-
ment interpolation. If these shape functions are quadratic, the interpolation degree for the670

deformation gradient is mainly linear. Hence, pχ should have the same interpolation de-
gree, i.e. linear shape functions. On the other hand, the proposed micromorphic model is
a first gradient theory meaning that only the first gradient of the degrees of freedom is
evaluated. Accordingly, the same degree of interpolation can be used for displacement and
micromorphic deformation degrees of freedom. Two interpolation schemes are evaluated in675

this section, namely P2P1 elements for which displacement and micromorphic deformation
interpolation functions are respectively quadratic and linear, and P2P2 elements involving
quadratic Lagrange polynomials for both types of degrees of freedom. Elements with linear
shape functions for displacement (P1P1-type elements) are excluded here because they are
subject to hour-glass arising in the early stage of plasticity and leading to strong oscillations680

in the displacement and micromorphic variable fields.
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On the one hand, the use of P2P1 elements is advantageous because it involves a smaller
number of degrees of freedom in the finite element simulation. On the other hand, the
use of the same interpolation functions may be useful for practical reasons. In applications
where boundary conditions on displacement and micromorphic variables are to be applied,685

using different interpolation degrees requires the duplication of lines and surfaces forming
the boundaries for considering the proper nodes involved. Indeed, handling such issues is
necessary to conduct systematic enhancement of classical models in finite element codes.
This somewhat cumbersome treatment of boundaries is seen as a drawback of P2P1.

The performance of these elements is evaluated in the case of torsion of the 3D circular690

bar of Fig. 12 up to an applied angle θ = π. The FE mesh is made of 18000 quadratic ele-
ments with reduced integration (C3D20R) and 77511 nodes. Brick elements with 20 nodes
and reduced integration possessing 8 Gauss points (instead of 27 for full integration) are
employed. Reduced integration is preferred in incompressible plasticity in order to limit
fluctuations of the hydrostatic stress. The performance of P2P1-type and P2P2-type ele-695

ments is compared in Table 2 which provides the number of degrees of freedom (DOFs), the
total number of Newton iterations to solve the entire problem with the same given precision
and the total CPU time on a single node with 24 processors whose characteristics are given
in the caption. The use of P2P2-type element leads to 30% higher computational time due
mainly to a 23% larger number of DOFs. Besides that, no significant differences between700

stress and plastic strain fields are noticed.

type of elements number of DOFs total number of iterations total CPU time (s)
P2P1 252389 602 3.24× 105

P2P2 310044 602 4.41× 105

Table 2: Computational cost for different element types. Simulations of a cylinder torsion,
meshed with 18000 C3D20R elements, run on 24 processors of type Intel(R) Xeon(R) CPU
E5-2650 v4 @2.20 GHz. R0 = 300 MPa, H = 0, Hχ = 104 MPa, A = 10 N.

6.2 Micromorphic vs. strain gradient plasticity

In the following, a comparison between Lagrange multiplier based strain gradient plasticity
(see Sec. 2.7) with the micromorphic approach is carried out. The strain gradient plasticity
model can be seen as the limit of the micromorphic model when increasing the penalty mod-705

ulus Hχ, as discussed in Remark 1 and Sec. 2.7. In the micromorphic approach, increasing
the penalty parameter reduces the gap between the micromorphic variable pχ and the macro-
variable p. The main drawback of the Lagrange based strain gradient plasticity element is
that it involves 5 DOFs per node (namely u1, u2, u3, pχ, λ) versus 4 in the micromorphic
element. The additional DOF is the Lagrange multiplier λ for which linear interpolation is710

used (P2P1P1 element). In contrast, the drawback of the micromorphic approach is related
to possible numerical problems induced by ill-conditioned matrices in case of high values of
the parameter Hχ. These aspects are investigated in the sequel.

The performance of micromorphic and strain gradient plasticity elements is evaluated in
the case of torsion of a circular bar, i.e. the same boundary value problem as in the previous715

section. Table 3 summarizes the results obtained for torsion of a cylinder meshed with 18000
C3D20R elements of type P2P1 (total number of DOFs: 252389). A von Mises perfectly
plastic model enhanced by the micromorphic approach is considered. The maximum gap
between p and pχ is observed in the vicinity of the neutral axis (see Fig. 13a). This gap
decreases as the parameter Hχ increases. If Hχ is not sufficiently large, the gap between p720

and pχ becomes very large (61%). In fact, by multiplying Hχ by 100, the maximum gap
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Micromorphic
Lagrange multiplier

Hχ = 10 Hχ = 103 Hχ = 105 Hχ = 107 Hχ = 109

Max of |p− pχ|/pref 0.61 0.13 0.007 9× 10−5 9× 10−7 -
Total number of iterations 766 605 600 612 673 601

Total CPU time (s) 4.118× 105 3.26× 105 3.22× 105 3.29× 105 3.61× 105 3.99× 105

Table 3: The maximum gap between micro- and macro-variables and the computational cost
for several values of Hχ (unit MPa). The maximum value of cumulative plastic strain, re-
garded as a reference value, is pref = 0.19 obtained for rθ/L = 0.314. Simulations of a cylin-
der torsion, meshed with 18000 C3D20R elements (P2P1-type element and 252389 DOFs
for the micromorphic model, P2P1P1-type elements and 272245 DOFs for the Lagrange
multiplier based approach). Material parameters: R0 = 300 MPa, A = 10 N, H = 0 MPa.

Micromorphic
Lagrange multiplier

Hχ = 103 Hχ = 105 Hχ = 107

Max of |p− pχ|/pref 2.64× 10−2 8.26× 10−4 9.1× 10−6 -
Total number of iterations 749 719 1395 700

Total CPU time (s) 7.61× 104 7.3× 104 1.53× 105 1.03× 105

Table 4: The maximum gap between micro- and macro-variables and the computational
cost for several values of Hχ (unit MPa). The maximum value of cumulative plastic strain,
regarded as a reference value, is pref = 0.65 obtained for uy = 1/12 mm (level 4). Simulations
are performed using the rectangular plate under tension meshed with 60000 C2D8R elements.
P2P1-type element and 422503 DOFs for the micromorphic model, P2P1P1-type elements
and 483004 DOFs for the Lagrange multiplier based approach. Material parameters R0 =
100 MPa, H = −20 MPa, A = 10000 N. The plate geometry 400× 600 mm.

decreases by a ratio of 4, 18 and 77 consecutively. This means that the isotropic hardening
Hχ(p−pχ) induced by the enhanced model increases rapidly with Hχ for smaller values of Hχ

and tends to saturate for larger values of Hχ. The computational cost of simulations using
different Hχ remains almost the same. Indeed, for the same number of loading increments,725

the total number of iterations of Newton-algorithm required to resolve the global problem is
relatively constant for Hχ = 103, 105, 107 MPa. Conversely, when Hχ is either significantly
smaller or larger than elasticity moduli, the simulation requires higher number of iterations
to converge.

On the other hand, the approach based on Lagrange multipliers enforces weakly the730

equality of local and non-local variables. Meanwhile, this cannot be achieved without nu-
merical difficulties. The augmented Lagrangian term, which is similar to the micromorphic
contribution in the free energy potential is known to provide more coercivity, hence atten-
uate the oscillations of plastic fields [25, 52]. For a given value of µχ in Eq. (58), a finer
mesh leads to a smoother profile of the Laplacian term ∆χ = λ + µχpχ. In other words,735

increasing the discretization reduces the value of µχ required to obtain a smooth profile
of ∆χ. Moreover, the value of an optimal µχ depends also on the intrinsic length. In fact,
larger values of intrinsic length, or, equivalently, parameter A, require a larger value of µχ
to smooth the profile of plastic strain.

Table 4 summarizes the computational performance of micromorphic and Lagrange mul-740

tiplier approaches in case of the plane-strain tension of a plate discussed in Sec. 5.2. A
softening case is studied inducing shear band localization as in Fig. 21a-c, for an isotropic
gradient contribution. For moderate penalty modulus Hχ, the micromorphic approach per-
forms relatively better compared to the Lagrange multiplier approach. This can be explained
mainly by the fact that the Lagrange multiplier based approach involves a larger number of745

DOFs. Meanwhile, in the case of large values of Hχ = 107 MPa, the micromorphic model
requires a larger number of iterations to converge. In the presence of localization, high val-
ues of Hχ are required to obtained small gaps |p − pχ| inside the band. This is associated
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with more numerous iterations for the micromorphic model than in the Lagrange multiplier
based approach. A compromise is to be found on the tolerance for the gap |p−pχ| in various750

situations, noting that a relative gap less than 0.1% may be acceptable and both models
perform similarly in that case.

Parameter Hχ of the micromorphic model can also be viewed as a constitutive parameter
that can be calibrated against experimental data, as illustrated in [82] where both parameters
A and Hχ are identified. The micromorphic model is more flexible regarding experimental755

identification, than the strict strain gradient plasticity model.

6.3 Choice of scalar micromorphic variables

In previous sections, the model based on a micromorphic scalar variable associated with
cumulative plastic strain was discussed. However, it has been shown that this model gives
rise to several issues:760

- The radius of elastic domain is shown to depend on the gap between cumulative plastic
strain p and the microplastic variable pχ, or equivalently, on the Laplacian of the micro-
morphic variable according to Eq. (40). When p is smaller than pχ, a material softening
occurs as illustrated in the core of a beam under bending. But when the generalized stress
a = −Hχ(p− pχ) tends to be larger than the radius given by the classical model (initial765

yield stress R0 and isotropic hardening), a conceptual problem arises. This problem is
more acute in case of time-independent plasticity where consistency condition needs to
be satisfied.

- Another conceptual problem of some gradient plasticity formulations has been pointed
out in [54]. Since scalar variables generally contain no information on the direction of the770

plastic flow, an arbitrary small perturbation in the boundary conditions can determine
the direction of the plastic deformation in many scalar-based gradient formulations.
Accordingly, the solution remains unstable w.r.t. boundary conditions. This problem
arises in the case of the model with cumulative plastic strain. Meanwhile, a scalar model
developed in [55] has been shown to overcome this conceptual problem. An extension of775

this model to finite strain was presented in 2.5.
- The cumulative plastic strain is by definition a non-saturating variable and can only

increase. Moreover, its gradient may then also become higher and higher, as illustrated
in Sec. 3. Indeed, the gap between p and pχ becomes more significant. This will induce a
higher value of isotropic hardening. For cyclic loading, this issue becomes more crucial.780

One could enforce the equality between p and pχ by setting Hχ to large values. Nev-
ertheless, the term Hχ|p − pχ| increases with Hχ, i.e. the induced isotropic hardening
(or softening according to the sign of p − pχ) increases. The physical relevance of this
unbounded cyclic hardening is questionable, see the discussion in [78].

In the following, the main results obtained for the model proposed in Sec. 2.5 are pre-785

sented. Note that the resulting back-stress X∼ m
in Eq. (50) is indeterminate at zero plastic

strain. This particular case is regularized numerically as follows. At each iteration, X∼ m
is

computed as

X∼ m
=
Hχ

3Jp

(
B∼
p − 1∼

)
B∼
p

Bpeq + ε
(Bpeq − χ) (69)

where ε is a small real number taken as ε = 10−6 in the following simulations. Fig. 23
depicts the stress-strain curves obtained for a cyclic glide loading with confined plasticity.790

This test was considered in Sec. 3.1 for the gradient of cumulative plastic strain model.
The results given by classical and two micromorphic models based on the cumulative plastic
strain p and the equivalent plastic strain Bpeq are compared. The classical case is that of an
elastic perfectly plastic solid. The model based on Bpeq leads to kinematic hardening with
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a strong Bauschinger effect. Since the back-stress X∼ m
depends only on the plastic strain795

tensor, its components remain bounded from one cycle to another. In contrast, the model
with p induces an isotropic hardening that grows and grows over cycles. It can be noted that
the slopes of stress-strain curves after yielding, during the first cycle (F 12 ∈[0,0.1]), given
by both micromorphic models overlap. That is to say that both models are equivalent for
monotonic loading, in particular for one-dimensional problems. Differences arise in the next800

cycles.
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Fig. 23: Cyclic simple glide with confined plasticity for two micromorphic variables associated
with p and Bpeq.

Now consider the case of the bending example investigated in Sec. 4.1. A cyclic loading
is applied and monitored by the displacement uy at the top part of the foil (see Fig. 8). Fig.
24 depicts the bending moment vs. curvature curves for the two models based on cumulative
and equivalent plastic strain, respectively. Contrary to the model relying upon cumulative805

plastic strain that leads to isotropic overall hardening, the Bpeq-model induces kinematic
hardening.

Recall that the formulation of this model in the intermediate configuration will result in
a supplementary back-stress X∼

b. In case of cyclic loading with moderate imposed strains,

X∼
b remains negligible since it is a second order contribution. In contrast, the model with810

cumulative plastic strain induces a significant value of X∼
b for the same loading case (not

shown here).
Although this model is based on the gradient of a scalar field variable Bpeq, it takes

into account the direction of the plastic strain, making the solution stable with respect
to the boundary conditions. Indeed, the back-stress X∼ m

resulting from the higher-order
term is a function of the direction of the plastic strain tensor. In order to illustrate that,
consider a von Mises viscoplastic model. For instance, a Norton-type viscoplastic potential is

Ω =
K

n+ 1

〈
f

K

〉n
whereK and n are material parameters. Using the model with cumulative

plastic strain, the flow rule and the yield criterion are given by

L∼
p =

∂Ω

∂M∼
=
∂Ω

∂f

∂f(M∼ )

∂M∼
=

3

2

M∼
′

J(M∼ )

〈
f

K

〉n
(70)

f(M∼ ) = [M∼ ]eq −R0 −R(p) (71)
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Fig. 24: Bending moment vs. curvature curves for a foil under cyclic loading for two mi-
cromorphic variables associated with cumulative plastic variable p and equivalent plastic
strain Bpeq. Quadratic Lagrangian formulation of the gradient term. Micromorphic parame-
ters A = 200 N, Hχ = 104 MPa.

where the von Mises equivalent stress is [�]eq =

√
3

2
�∼′ : �∼′ and �∼′ is the deviatoric part of

�∼. It has been shown that the yield stress σY = R0 +R may vanish in some situations, e.g.
strong strain gradients. The deviatoric Mandel stress may also vanish (or Cauchy stress σ∼)
so that the flow rule in Eq. (70) cannot provide the direction of plastic flow L∼

p. In contrast,
the flow rule and the yield criterion for the model with Bpeq write

L∼
p =

∂Ω

∂M∼
=
∂Ω

∂f

∂f(M∼ )

∂(M∼ −X∼ m
)

=
3

2

M∼
′ −X∼ m

J(M∼ −X∼ )

〈
f

K

〉n
(72)

f(M∼ ) = [M∼ −X∼ m
]eq −R0 −R(p) (73)

In the case of vanishing yield stress σY , satisfaction of the yield criterion means that (M∼
′−

X∼ m
) 6= 0. Therefore, the flow direction is always defined by Eq. (72).

6.4 Limitations of the model due to negative yield radius and remedies815

As shown in the previous examples, the model based on the cumulative plastic strain may
induce negative yield radius in the presence of high positive values of the Laplacian ∆0pχ. A
remedy has been proposed in the viscoplastic micromorphic model in [53] by substituting the
yield radius by zero whenever it is negative, i.e. substituteR0+R(p) in Eq. (51) by its positive
part 〈R0 +R(p)〉. Meanwhile, this remedy is not effective in the case of time-independent820

plasticity considered in the present work. When the radius of elastic domain is set to zero,
the equivalent stress must vanish as well. Numerically, the performed simulations diverge
when the radius of the yield surface tends to be negative with or without this modification.
For viscoplastic models, due to overstress, the radius can be set to zero while the stress
does not vanish. Nevertheless, by doing so the classical model is retrieved insofar as gradient825

terms are inactive.
The model relying upon equivalent plastic strain Bpeq can be a plausible alternative. The

hardening induced by this model manifests itself as a back-stress that can be either positive
or negative. For instance, in bending and torsion examples shown previously, the components
of the back-stress X∼ m

go abruptly from large positive values to large negative values across830

the neutral axis (see Fig. 25). However, a drawback of the model is the indeterminacy of
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the back-stress X∼ m
when the plastic strain vanishes which may lead to some numerical

difficulties. A regularized formulation was used here, see Eq. (69).
These examples show that the proposed remedies are still not completely satisfactory.

Two other formulations are possible to overcome these difficulties. The first one is based on835

the gradient of tensor variables, gradient plasticity [43, 56, 57] or micromorphic plasticity
[43, 53]. The second one is based on the use of saturating variables, like hardening variables,
as mentioned in [20] or bounded variables like phase fields [83]. This remains to be explored
in future works.
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Fig. 25: Back-stress plotted at the cross section x = 0 for the bending example in section
4.1. Material parameters R0 = 100 MPa, H = 0, A = 2000 N, Hχ = 104 MPa. Results
obtained for κ = 0.0348 mm−1.

7 Conclusions840

The major outcomes of the present work can be stated as follows:

1. A generic approach for micromorphic strain gradient plasticity at finite strains was pre-
sented. The finite element implementation is detailed with a particular focus on scalar
micromorphic variables. Models were assessed for a variety of benchmarks involving
monotonic and cyclic loading conditions.845

2. Two main features of micromorphic elastoplastic models are emphasized. First, size ef-
fects can be predicted by varying two additional material parameters (A and Hχ con-
trarily to Aifantis-like models with only one parameter referred to as intrinsic length).
Second, the same models allow regularizing finite element simulations of plastic strain
localization by canceling the spurious mesh-dependency linked to classical continua with-850

out intrinsic length.
3. Three finite strain formulations are discussed based on quadratic functions of the gra-

dient terms w.r.t. either Eulerian, Lagrangian or intermediate configurations. Eulerian
and Lagrangian formulations of the gradient of cumulative plastic strain enhance clas-
sical elastoplastic models by a supplementary size-dependent isotropic hardening. The855

formulation defined in the intermediate configuration leads to both isotropic and kine-
matic size-dependent hardening. The supplementary back-stress is a second-order con-
tribution that vanishes within the small strain limit. Significant differences between the
formulations are therefore observed under cyclic loading. Decision on the best framework
eventually remains material-dependent.860
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4. The choice of the micromorphic variable and free energy potentials leads to a wide range
of constitutive models. Indeed, the model based on the cumulative plastic strain is shown
to induce a size-dependent isotropic hardening whereas the model with equivalent plastic
strain results in a size-dependent kinematic hardening. For the sake of demonstration,
only quadratic potentials w.r.t. gradient terms were investigated. More general gradient865

contributions such as power laws can be implemented [36].
5. The model based on cumulative plastic strain leads to a material softening and possibly

vanishing or negative yield radius in regions where the plastic strain profile is non-smooth.
This feature is related to possible divergence of the integration scheme. To overcome this
limitation, an alternative model relying upon gradient of equivalent plastic strain was870

suggested. Meanwhile, the indeterminate back-stress at zero plastic strain may lead to
numerical difficulties under cyclic loading and in regions where the plastic strain vanishes
(in the neutral axis in torsion and bending).

6. Numerical comparison between micromorphic approach and Lagrange-multiplier based
strain gradient plasticity was carried out. The computational cost of both approaches is875

shown to be similar. Meanwhile, in the case of applications that involve some instabilities
like strain localization modes, the micromorphic approach may perform poorly for very
large penalty moduli Hχ since the model becomes stiffer. On the other hand, such large
values may not be necessary to obtain satisfactory accordance between micro and macro-
variables. A drawback of the presented FE implementation for the Lagrange-multiplier880

model is that continuity of the Lagrange multiplier λ is enforced by the chosen shape
function although this is a too strong requirement, as discussed in Appendix B.3.7.
Discontinuous Galerkin methods could be used to overcome this limitation.

The choice of the micromorphic variable was shown to play a key role in the present work
which was however limited to plasticity. The present work will be completed in the future885

by studying other scalar variables, e.g. a saturating variable [84, 85] and the equivalent total
strain proposed in [44]. Moreover, further investigations on micromorphic models accounting
for tensor micromorphic variables [14, 20, 86] will be carried out. Dissipative contributions of
gradient terms should also be considered following [3, 43] and [36, 72, 87, 88]. In the two first
latter references, the higher order gradients are decomposed into elastic and plastic parts890

in the same way as conventional strain measures. In the remaining references, the higher
order stresses are decomposed into reversible and dissipative contributions. Enhancements
of damage models for simulation of crack initiation and propagation have been proposed
recently based on the micromorphic approach, see [89–92]. The micromorphic approach
can also be useful to ease numerical implementation of phase field models as demonstrated895

recently for twinning plasticity in [93]. Note finally that the micromorphic approach is also
suitable for explicit finite element simulation schemes used in metal forming as recently
shown in [16, 94].

Appendix

A Consistent tangent matrices in the numerical implementation900

The derivation of the consistent tangent matrix for a time-independent plastic model is detailed in this first
appendix. For the sake of brevity, only the model with a micromorphic variable associated with cumulative
plastic strain is detailed in the following.
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The global resolution algorithm requires the following partial derivatives:

∂∆VOUT
∂∆VIN

=



∂∆P∼
∂∆F∼

∂∆P∼
∂∆χ

∂∆P∼
∂∆K

∂∆a

∂∆F∼

∂∆a

∂∆χ

∂∆a

∂∆K
∂∆b

∂∆F∼

∂∆b

∂∆χ

∂∆b

∂∆K

 =

J(σ∼F∼
−T )⊗ F∼

−T − J(σ∼⊗
¯

1∼) : (F∼
−T ⊗̄F∼

−1) 0 0

0 Hχ 0
0 0 A∼

 (74)

905

∂∆VOUT
∂∆Vint

=



∂∆P∼
∂∆F∼

e

∂∆P∼
∂∆p

∂∆a

∂∆F∼
e

∂∆a

∂∆p
∂∆b

∂∆F∼
e

∂∆b

∂∆p

 =


∂∆P∼
∂∆σ∼

:
∂∆σ∼
∂∆F∼

e 0

0 −Hχ
0 0

 (75)

with

∂∆P∼
∂∆σ∼

= J 1∼⊗̄F∼
−1 (76)

∂∆σ∼
∂∆F∼

e = −
1

Je
(F∼

eΠ∼
eF∼

eT )⊗ F∼
e−T +

1

Je
1∼⊗̄(F∼

eΠ∼
e) +

1

2Je

(
F∼
e⊗̄F∼

e
)

:
∂Π∼

e

∂E∼
e :

(
1∼⊗

¯
F∼
eT + F∼

eT ⊗̄1∼

)
(77)

+
1

Je
((F∼

eΠ∼
e)⊗̄1∼) : (1∼⊗

¯
1∼)

∂∆R
∂∆VIN

=


∂Re
∂∆F∼

∂Re
∂∆χ

∂Re
∂∆K

∂Rp
∂∆F∼

∂Rp
∂∆χ

∂Rp
∂∆K

 =

[
−1∼⊗̄(F∼

−1F∼
e)T + (∆F∼⊗̄F∼

eT ) : (F∼
−1⊗̄F∼

−T ) 0 0
0 1 0

]
(78)

At Gauss point level, constitutive equations are integrated using a θ-method [63]. The values of all integrated
variables evaluated at an intermediate time designated by θ ∈ [0, 1] are

Vt+θ∆tint = Vtint + θ∆Vint (79)

The set of equations (57) can be gathered in the following form

R(Vt+θ∆tint ,∆Vint) = 0 (80)

Since Eq. (80) is highly nonlinear, it is usually solved by means of a Newton method which requires the910

calculation of the Jacobian matrix

∂∆R
∂∆Vint

=


∂Re
∂∆F∼

e

∂Re
∂∆p

∂Rp
∂∆F∼

e

∂Rp
∂∆p

 =

1
≈
− θL∼⊗̄1∼ + θ∆pN∼ + θ∆p

∂N∼
∂M∼

∂M∼
∂F∼

e F∼
eN∼

θN∼ :
∂M∼
∂F∼

e −
θ

Hχ

∂R

∂p

 (81)

where N∼ =
∂f

∂M∼
is the normal to the yield surface. The value θ = 1 (implicit integration) is used in the

present work for rate-independent plasticity.

B Analytical solution for confined plasticity under shear

Consider the boundary value problem of Fig. 1a and introduced in Sec. 3.1. The strip is 2h-wide and infinite915

in the y-direction (invariant solution in this direction). In the case of a hardening plate (i.e., H ≥ 0), the
microplastic variable pχ is set to zero at x = ±h (Dirichlet higher order boundary conditions). In the case
of a softening plate (i.e., H < 0), pχ is free at x = ±h far from the localization zone (Neumann higher order
conditions). The first balance equation reads

div σ∼ = 0 (82)

which yields920

σ12,2 = 0 and σ12,1 = 0 (83)
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Therefore, σ12 = τ , taken positive without loss of generality, is uniform in the plate. The second balance
equation is

div b = a (84)

where the constitutive equations for generalized stresses are given by

a = −Hχ(p− pχ), b = A∇pχ (85)

The differential equation governing the microplastic variable pχ reads

∆pχ −
Hχ

A
(pχ − p) = 0 (86)

The yield function is given by925

f(σ∼, p) = σeq − (R0 +Hp+Hχ (p− pχ)) = 0 (87)

with σeq =
√

3 τ is the von Mises stress. By combining Eqs. (86) and (87), the following partial differential
equation for pχ is obtained

∆pχ −
HHχ

A(H +Hχ)
pχ +

Hχ

A(H +Hχ)
(σeq −R0) = 0 (88)

Three different cases can be distinguished: perfect plasticity (H = 0), hardening (H > 0) and softening
(H < 0) behavior.

B.1 Case 1: perfect plasticity (H = 0)930

In this case, the equation (88) reduces to

∆pχ +
1

A
(σeq −R0) = 0 (89)

whose solution is

pχ(x) = −
√

3τ −R0

2A
x2 + C1x+ C2 (90)

where C1 and C2 are integration constants to be determined from boundary conditions:

pχ(x = ±h) = 0 =⇒ C1 = 0 and C2 =

√
3τ −R0

2A
h2 (91)

Finally, the fields of micromorphic deformation and cumulative plastic strain are

pχ(x) = −
√

3τ −R0

2A
(x2 − h2) (92)

p(x) = pχ(x) +

√
3τ −R0

Hχ
(93)

Further, the expression of the uniform stress τ in the plate is

τ = 2µεe12 =
µ

h

∫ h

−h
(ε12 − εp12)dx = µγ −

√
3µ

2h

∫ h

−h
p(x)dx (94)

Using Eq. (93), Eq. (94) reduces to

τ =

γ +
R0√

3

(
3

Hχ
+
h2

A

)
1

µ
+

3

Hχ
+
h2

A

(95)

The parabolic profiles p(x) et pχ(x) are illustrated by Fig. 26 and used for the validation of the FE im-935

plementation of the model. It is apparent in Fig. 26a that the value Hχ = 105 MPa ensures a very small
difference |p − pχ|. It follows that the presented solution is almost identical to the solution of the same
problem using the Aifantis strain gradient plasticity model. Increasing the parameter A flattens the profiles
indicating that plastic deformation is more difficult to develop and higher stresses are reached. The limit
Hχ →∞ in Eq. (95) provides the shear stress level for the Aifantis model:940

τ =
µ

A+ µh2

(
Aγ +R0h

2/
√

3
)

(96)

The limit A → ∞ shows that deformation is then purely elastic: τ = µγ. Plastic strain gradient would be
too high to develop. In contrast, setting A = 0 provides the classical elastic-perfectly plastic solution. The
previous formula also reveals the apparent hardening modulus depending on A and the width h.



38 M. Abatour & al.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

-0.4 -0.2  0  0.2  0.4

 C
um

ul
at

iv
e 

pl
as

ti
c 

st
ra

in
 p

, p
c

x/2h

Hc = 105 MPa , A = 104 N , H = 0 MPa

pc: analytical
pc: numerical

p: analytical
p: numerical

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

-0.4 -0.2  0  0.2  0.4

C
um

ul
at

iv
e 

pl
as

ti
c 

st
ra

in
 p

x/2h

Hc = 105 MPa  ,  H = 0 MPa

A=102 N
A=103 N
A=104 N
A=105 N

(b)

Fig. 26: (a) Analytic vs. numerical fields of cumulative plastic strain p and micromorphic
variable pχ for confined simple glide; (b) distribution of cumulative plastic strain for different
values of the generalized modulus A. The profiles are given for the prescribed overall shear
value γ = 0.2.

B.2 Case 2: H > 0 (hardening)

For a strictly positive linear hardening modulus, the solution of Eq. (88) reads945

pχ(x) = C3 cosh(ωx) + C4 sinh(ωx) +
σeq −R0

H
(97)

where

ω2 =
HHχ

A(H +Hχ)
(98)

This formula defines the inverse characteristic length ω as a function of the plastic hardening modulus and
higher order parameters. The integration constants C3 and C4 are obtained by applying boundary conditions:

pχ(x = ±h) = 0 =⇒ C3 = −
σeq −R0

H cosh(wh)
and C4 = 0 (99)

It follows that950

pχ(x) =

√
3τ −R0

H

(
1−

cosh(ωx)

cosh(ωh)

)
(100)

and

p(x) = pχ(x) +

√
3τ −R0

H +Hχ

cosh(ωx)

cosh(ωh)
=

√
3τ −R0

H

(
1−

Hχ

H +Hχ

cosh(ωx)

cosh(ωh)

)
(101)

The value of τ is given by

τ =
γ +R0Zh
1

µ
+
√

3Zh

(102)

where Zh =

√
3

H

(
1−

√
AHχ

H(H +Hχ)

tanh(ωh)

h

)
These results are illustrated by Fig. 27. A clear difference

|p− pχ| is visible in Fig. 27a for a low value of the penalty modulus Hχ = 103 MPa. This difference almost
vanished in Fig. 27b when Hχ is sufficiently high. This indicates again that the gradient plasticity model955

by [66] is a limit case of the micromorphic model as Hχ tends to infinity. The hyperbolic profiles can be
recognized in Fig. 27c and 27d. Low values of the higher order modulus A lead to flat distribution of plastic
strain where high curvatures are reached for high values of A.

B.3 Shear localization solution in micromorphic plasticity (Case 3: H < 0)

The development of a shear localization band in a homogeneous matrix strip is studied. The strip has a960

thickness of 2h in the x–direction and is infinite in the y–direction of the 2D shear plane. The stress state is
homogeneous with

σ∼ = τ(e x ⊗ e y + e y ⊗ e x)
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Fig. 27: The distribution of cumulative plastic strain for confined simple glide for various
values of A and Hχ. Material parameters: R0 = 20 MPa, H = 1500 MPa. The profiles are
given for the prescribed overall shear value γ = 0.2 .

The localization band of finite width 2xc < 2h is entirely contained in the material strip. It is assumed that
no plastic flow takes place outside the localization band so that the following zones can be defined:

– −h ≤ x ≤ −xc: elastic domain, labeled with “-” superscript;965

– |x| ≤ xc: plastic domain, without any label;
– xc ≤ x ≤ h: elastic domain, labeled with “+” superscript.

Periodicity boundary conditions are applied at the boundaries x = ±h. Solutions are derived for the micro-
morphic plasticity model in the small deformation framework, using the standard von Mises plasticity yield
function and softening modulus H < 0. The limit case of the Aifantis strain gradient plasticity model is also970

obtained. The cumulative plastic strain field p(x) and the plastic microstrain pχ(x) are functions of the sole
variable x. The displacement field takes the following form:

ux = γy, uy = u(x) (103)

where γ̄ is the applied mean glide amount and u(x) is the unknown displacement fluctuation. The shear
strain component is

ε12 =
1

2
(γ + u′) = εe12 + εp12 = εe12 +

√
3

2
p (104)

where u′(x) = du/dx.975

The material is described by a linear hardening law with initial yield stress R0 and negative hardening
modulus H < 0.

B.3.1 Solution in the elastic domain

In the elastic domain, the micro–plastic strain p±χ (x) is the solution of the following differential equation:

p±χ
′′ − ω2

χp
±
χ = 0 with ωχ =

√
Hχ

A
(105)
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This equation admits solutions of exponential type with wave number ωχ. For symmetry reasons, assuming980

localization at the center of the plastic zone, the plastic microstrain and higher order stress bx = Ap′χ(x)
are respectively even and odd functions. Since bx is periodic, it must vanish at the boundary (flat profile of
microstrain):

p−χ
′(−h) = p+χ

′(h) = 0 (106)

It follows that
p−χ (x) = α− cosh(ωχ(h+ x)), p+χ (x) = α+ cosh(ωχ(h− x)) (107)

where α± are integration constants to be determined from boundary conditions.985

B.3.2 Solution in the plastic domain

The yield conditions reads

√
3τ = R0 +Hp−Ap′′χ = R0 +Hpχ −

A(H +Hχ)

Hχ
p′′χ (108)

As a consequence of equilibrium, the shear stress τ is uniform. Due to the linear softening law H < 0, the
previous equation admits harmonic solutions with the wave number

ωχp =

√
|H|Hχ

A(H +Hχ)
(109)

assuming H+Hχ > 0. This defines the inverse intrinsic length ωχp in the plastic zone. The plastic microstrain990

profile takes the form

pχ(x) =

√
3τ −R0

H
+ C cos(ωχpx) (110)

The plastic strain is obtained from the plastic microstrain field by the following equation, valid for |x| ≤ xc:

p = pχ −
A

Hχ
p′′χ =

√
3τ −R0

H
+ C

Hχ

H +Hχ
cos(ωχpx) =

√
3τ −R0

H
+ C(1−

ω2
χp

ω2
χ

) cos(ωχpx) (111)

The definition of the location xc is given by

p(±xc) = 0 =

√
3τ −R0

H
+ C

Hχ

H +Hχ
cos(ωχpxc) (112)

Four unknowns remain: α+, α−, C, xc to be determined from left-over continuity requirements.995

B.3.3 Continuity conditions

The interface conditions to be enforced are the following

– Continuity of microstrain at x = xc: pχ(xc) = p+χ (xc)

α+ cosh(ωχ(h− xc)) =

√
3τ −R0

H
+ C cos(ωχpxc) (113)

– Continuity of microstrain at x = −xc: pχ(xc) = p−χ (−xc)

α− cosh(ωχ(h− xc)) =

√
3τ −R0

H
+ C cos(ωχpxc) (114)

It follows from the two previous equations that1000

α+ = α− = α (115)

– Continuity of the higher order stress component at xc: bx(xc) = b+x (xc) =⇒ p′χ(xc) = p+χ
′(xc)

α+ωχ sinh(ωχ(h− xc)) = Cωχp sin(ωχpxc) (116)

– Continuity of the higher order stress component at −xc:
bx(−xc) = b−x (−xc) =⇒ p′χ(−xc) = p−χ ′(−xc)
This condition turns out to be automatically fulfilled once the result (115) is taken into account.

Only three unknowns remain, namely α,C, xc, which are determined from the three equations (112), (113)1005

and (116).
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B.3.4 Transcendental equation for the plastic zone boundary

The equation to be solved for xc is obtained by computing the ratio of Eq. (116) by (113):

tanh(ωχ(h− xc)) =
ωχp

ωχ

C sin(ωχpxc)
√
3τ−R0
H

+ C cos(ωχpxc)

=
ωχp

ωχ

C cos(ωχpxc)
√
3τ−R0
H

+ C cos(ωχpxc)
tan(ωχpxc)

=
ωχp

ωχ

H +Hχ

H
tan(ωχpxc) (117)

after elimination of C cos(ωχpxc) term by means of (112).
The location xc is therefore a zero of the function1010

f(y) = tanh(ωχ(h− y))−
ωχp

ωχ

(
1 +

Hχ

H

)
tan(ωχpy) (118)

which results in the announced transcendental equation.
Once xc is determined, the constant C and α are computed from (112) and (116):

C =
(R0 −

√
3τ)(H +Hχ)

HHχ cos(ωχpxc)
, α = C

ωχp sin(ωχpxc)

ωχ sin(ωχ(h− xc))
(119)

It remains to derive the relation between γ̄ and τ . This is done by means of the elasticity law:

τ

µ
= γ̄ + u′ −

√
3p (120)

Integration of this equation over the interval [−h, h], after accounting for the periodicity of u, provides the
relation between shear stress and applied shear strain:1015

τ

µ
= γ̄ −

1

h

(√
3τ −R0

H
xc −

√
3hp̄

)
(121)

where the average plastic strain is

p̄ =
1

2h

∫ xc

−xc
p(x)dx

=
1

h

(√
3τ −R0

H
xc + C(1−

ω2
χp

ω2
χ

) sin(ωχpxc)

)

=

√
3τ −R0

hH

(
xc −

tan(ωχpxc)

ωχp

)
(122)

Finally

γ̄ =
τ

µ
+
√

3

√
3τ −R0

hH

(
xc −

tan(ωχpxc)

ωχp

)
(123)

The problem can therefore be solved for each given value of the shear stress τ . The corresponding applied
shear is computed from Eq. (123). Conversely, for prescribed shear γ̄, the unknowns τ and xc are determined
by solving the nonlinear system (118) an (123).1020

B.3.5 Limit case: strain gradient plasticity

The solution is straightforwardly found in the case of Aifantis strain gradient plasticity, either directly from
the strain gradient plasticity equations or as a limit case of the previous micromorphic solution. The plastic
field p(x) is the solution of the yield condition

√
3τ = R0 +Hp−Ap′′ (124)

in the whole plastic domain |x| ≤ xc. The negative hardening modulus H < 0 is responsible for the local-1025

ization phenomenon. A harmonic solution with wave number

ωp =

√
|H|
A

= lim
Hχ→∞

ωχp (125)
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Half-strip width h = 5 mm
Prescribed shear strain γ̄ = 0.2
Young’s modulus E = 78000 MPa
Poisson ratio ν = 0.3
Initial yield stress R0 = 20 MPa
Softening modulus H = −20 MPa
Strain gradient modulus A = 5 N
Micromorphic penalty modulus Hχ = 100 MPa

Table 5: Geometrical, loading and material parameters for the simulation of shear localiza-
tion in a strip.

is found. It is the limit of the micromorphic wave number (109) by increasing the penalty on the difference
between the cumulative plastic strain p and the plastic microstrain pχ. The boundary of the plastic zone is
defined by the condition

p(xc) = 0 =⇒ xc =
π

ωp
(126)

Finally, the localization band can be described by the following sinus branch:1030

p(x) =

√
3τ −R0

H
(1 + cos(ωpx)) (127)

with maximum plastic strain 2(
√

3τ − R0)/H at x = 0. Using the Hooke law (120) and periodicity of
displacement, the relation between shear stress and shear strain is obtained:

τ

(
1

µ
+

3

H

xc

h

)
= γ̄ +

√
3R0

H

xc

h
(128)

This relation is also obtained from the micromorphic solution (123) in the limit Hχ → ∞, which leads to
tan(ωχpxc)→ 0.

B.3.6 Example and discussion of multiple solutions1035

The previous solutions are illustrated in a specific case characterized by the parameters given in Table 5.
The analytical solutions are compared to finite element simulations based on the micromorphic plasticity
model at small deformations. The finite element simulation is illustrated by the deformed states of the strip
and plastic microstrain fields of Fig. 28.

The limit case of strain gradient plasticity is illustrated by Fig. 29 where the analytical solution is1040

compared to the FE simulations using the micromorphic model with the penalty parameter Hχ = 105 MPa.
The same excellent agreement is observed using the Lagrange multiplier based model.

Fig. 30 shows that the transcendental equation f(x) = 0, see Eq. (118), admits three solutions for xc in
the interval [0, h], namely xc ' 1.198, 2.604, 4.012 mm.

Fig. 31 shows perfect agreement between the analytical and FE solutions, for the lowest value of xc.1045

The regularity of the pχ(x) profile is clearly visible with vanishing tangents around x = ±2 mm. In contrast,
the p(x) function is not differentiable at ±xc and reaches higher peak value than the smoother microplastic
strain pχ(x).

Fig. 32 and 33 show the solutions obtained for the other possible values of xc. They correspond to the
existence of 2 or 3 coexisting bands. However these solutions cannot be accepted because it is apparent that1050

the cumulative plastic strain variable takes negative values at some places, which is forbidden. This means
that these solutions must be reconsidered by taking possible elastic unloading into account. This explains
why these two or three-branch solutions are not found in the FE analysis. Note also that the number of
finite width localization bands is limited by the size 2h of the strip element.

B.3.7 Regularity of the Laplacian term1055

It is instructive to analyze the profiles of the Laplacian of the plastic and microplastic variables since it plays
a fundamental role in the modeling approach. In the strain gradient plasticity limit case, the function p(x)
and its first derivative are continuous at x = xc, as discussed in Sec. B.3.3 and illustrated in Fig. 29. In
contrast, the second derivative

p′′(x) = −
√

3τ −R0

H
cos(ωpx) (129)
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x

y

0 0.60.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Fig. 28: Finite element simulation of shear localization in a micromorphic strip. Deformed
states γ̄ = 0.; 0.05; 0.1; 0.15; 0.2, from top to bottom, respectively. The fields of plastic mi-
crostrain pχ are also given. The parameters of the simulation are given in Table 5.
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Fig. 29: Strain gradient plasticity solution of the shear localization problem with parameters
listed in Table 5.

is expected to experience a discontinuity at x = xc. The discontinuity takes the value1060

[[p′′(xc)]] =

√
3τ −R0

H
ω2
p since cos(ωpxc) = −1 (130)

With the parameters given in Table 5, the jump takes the value 1.47 mm−2. This is clearly demonstrated
by Fig. 34.
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Fig. 30: Roots of the transcendental equation f(x) = 0 given by Eq. (118), with parameters
listed in Table 5.
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Fig. 31: Comparison between analytical and FE solutions of the shear localization problem
for the micromorphic plasticity model and the smallest positive solution of the transcendental
equation, with parameters listed in Table 5.

According to the micromorphic model, pχ(x) and p′χ(x) are continuous functions at x = xc. The second
derivative is computed as

p′′χ(x) = −Cω2
χp cos(ωχpx) (|x| < xc)

p+χ
′′(x) = αω2

χ cosh(ωχ(h− x)) (xc < x < h)

[[p′′χ(xc)]] = αω2
χ cosh(ωχ(h− xc)) + C cos(ωχpxc)ω

2
χp = 0

The last result is obtained after consideration of Eq. (113) and (119). The Laplacian of pχ is therefore also1065

continuous at xc. This is a consequence of the second balance law (84) of the micromorphic model and
constitutive laws for the generalized stresses a and b . The latter equation results in PDE (86) which implies
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Fig. 32: Analytic solution of the shear localization problem using the second smallest positive
value of xc, with parameters listed in Table 5.
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Fig. 33: Analytic solution of the shear localization problem using the third smallest positive
value of xc, with parameters listed in Table 5.

the continuity of the Laplacian ∆pχ under the condition that p is continuous as it is the case in the present
example. The Laplacian is therefore continuous as soon as p − pχ is. This does not hold for the Laplacian
of p(x). This is illustrated by Fig. 34 where the micromorphic response is compared to the constrained case.1070

Note that xc = 1.198 mm in the micromorphic case, which is smaller than xc = 1.571 mm found in the limit
case of strain gradient plasticity. This ranking is also apparent in Fig. 34.

Note that in the constrained strain gradient plasticity model, the Lagrange multiplier λ is directly
proportional to the Laplace term. Its FE discretization with continuous shape functions is not compatible
with the existence of discontinuities of the Laplacian. This may result in local oscillations around x = xc1075

depending on the mesh size, see the discussion in [25].
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B.3.8 Convergence of various energies to the strain gradient plasticity case

The free energy potential adopted in the considered example for the micromorphic model is

ρψ(ε∼
e, p, pχ,∇pχ) =

1

2
ε∼
e : C

≈
: ε∼
e +

1

2
Hp2 + ρψχ(p, pχ,∇pχ) (131)

where C
≈

denotes the fourth order tensor of elasticity. The micromorphic part of the free energy is

ρψχ(p, pχ,∇pχ) =
1

2
Hχ(p− pχ)2 +

1

2
A∇pχ ·∇pχ (132)

In contrast, the Aifantis strain gradient plasticity model can be described by the following free energy1080

potential

ρψ(ε∼
e, p,∇p) =

1

2
ε∼
e : C

≈
: ε∼
e +

1

2
Hp2 + ρψ∇(∇p) (133)

The plastic strain gradient part of the free energy is

ρψ∇(∇p) =
1

2
A∇p ·∇p (134)

It is instructive to study the convergence of the micromorphic energy contribution ψχ towards the gradient
energy ψ∇ in the limit Hχ →∞, in the particular case of shear localization.

The profiles of the various contributions to the free energy of the micromorphic model are drawn in Fig.1085

35 for two values of the penalty modulus: Hχ = 100 MPa and Hχ = 1000 MPa. In the more constrained
case (Hχ = 1000 MPa), the gradient energy ψ∇ is found to almost coincide with the micromorphic energy
ψχ, the penalty contribution Hχ(p− pχ)2/2 being negligible.

For the lower value Hχ = 100 MPa, the energy densities ψ∇ and ψχ differ significantly. This is due, on
the one hand, to the non–negligible contribution of the Hχ(p−pχ)2/2 term, and, on the other hand, to high
values of the gradient micromorphic contribution

ρψχ∇(∇pχ) =
1

2
∇pχ ·∇pχ

compared to ψ∇.
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band formation and propagation. Continuum Mechanics and Thermodynamics, 27(1):83–104, January
2015. doi: 10.1007/s00161-013-0331-8.



Toward robust scalar-based gradient plasticity modeling and simulation at finite deformations 47

p′′χ(x) FE
p′′χ(x) analytic
p′′(x) Aifantis

x (mm)
420-2-4

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

Fig. 34: Profiles of the Laplacian of plastic strain p′′(x) in the limit case of strain gradient
plasticity (Aifantis model) and p′′χ(x) in the micromorphic case, with parameters given in
Table 5. Analytic and FE results are compared.

ρψ∇
ρψχ

1/2Hχ(p− pχ)
2

ρψχ
∇

x (mm)
21.510.50-0.5-1-1.5-2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

ρψ∇
ρψχ

1/2Hχ(p− pχ)
2

ρψχ
∇

x (mm)
21.510.50-0.5-1-1.5-2

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Fig. 35: Various energy profiles in the shear localization zone. The predictions of the mi-
cromorphic model for two values of the penalty modulus (Hχ = 100 MPa on the left,
Hχ = 1000 MPa on the right) are compared to the strain gradient plasticity solution. The
other parameters are taken from Table 5.

10. A. S. Botta, W. S. Venturini, and A. Benallal. BEM applied to damage models emphasizing localization1115

and associated regularization techniques. Engineering Analysis with Boundary Elements, 29(8):814–827,
August 2005. doi: 10.1016/j.enganabound.2005.04.006.

11. R. de Borst, J. Pamin, and M. G. D. Geers. On coupled gradient-dependent plasticity and damage
theories with a view to localization analysis. European Journal of Mechanics - A/Solids, 18(6):939–962,
November 1999. doi: 10.1016/S0997-7538(99)00114-X.1120



48 M. Abatour & al.

12. R. H. J. Peerlings, R. de Borst, W. a. M. Brekelmans, and J. H. P. De Vree. Gradient enhanced
damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering, 39
(19):3391–3403, 1996. doi: 10.1002/(SICI)1097-0207(19961015)39:19〈3391::AID-NME7〉3.0.CO;2-D.

13. A. Needleman. Material rate dependence and mesh sensitivity in localization problems. Computer
Methods in Applied Mechanics and Engineering, 67(1):69–85, March 1988. doi: 10.1016/0045-7825(88)1125

90069-2.
14. K. Saanouni and M. Hamed. Micromorphic approach for finite gradient-elastoplasticity fully coupled

with ductile damage: Formulation and computational aspects. International Journal of Solids and
Structures, 50(14):2289–2309, July 2013. doi: 10.1016/j.ijsolstr.2013.03.027.

15. V. Davaze, N. Vallino, B. Langrand, J. Besson, and S. Feld-Payet. A non-local damage approach1130

compatible with dynamic explicit simulations and parallel computing. International Journal of Solids
and Structures, 228:110999, 2021. doi: 10.1016/j.ijsolstr.2021.02.010.

16. R. Russo, V. Phalke, D. Croizet, M. Ziane, S. Forest, F.A. Girot Mata, H.J. Chang, and A. Roos.
Regularization of shear banding and prediction of size effects in manufacturing operations: A mi-
cromorphic plasticity explicit scheme. International Journal of Material Forming, 15:21, 2022. doi:1135

10.1007/s12289-022-01657-9.
17. A. C. Eringen and E. S. Suhubi. Nonlinear theory of simple micro-elastic solids–I. International Journal

of Engineering Science, 2(2):189–203, May 1964. doi: 10.1016/0020-7225(64)90004-7.
18. E. S. Suhubi and A. C. Eringen. Nonlinear theory of micro-elastic solids—II. International Journal of

Engineering Science, 2(4):389–404, October 1964. doi: 10.1016/0020-7225(64)90017-5.1140

19. P. Germain. The method of virtual power in continuum mechanics. part 2: microstructure. SIAM
Journal on Applied Mathematics, 25(3):556–575, November 1973. doi: 10.1137/0125053. Publisher:
Society for Industrial and Applied Mathematics.

20. S. Forest. Micromorphic approach for gradient elasticity, viscoplasticity, and damage. Journal of
Engineering Mechanics, 135(3):117–131, March 2009. doi: 10.1061/(ASCE)0733-9399(2009)135:3(117).1145

21. B. Kiefer, T. Waffenschmidt, L. Sprave, and A. Menzel. A gradient-enhanced damage model coupled
to plasticity-multi-surface formulation and algorithmic concepts. International Journal of Damage
Mechanics, 27:253–295, 2018. doi: 10.1177/1056789516676306.
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