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Abstract In this paper we present an application of

the variational approach, introduced by Quartapelle &

Napolitano (1983) and developed further by Protas et

al. (2000), which requires only the velocity fields and

its derivatives to determine forces acting on a body.

First, the approach is presented and adapted to our

3D test problem. The obtained expression for the hy-

drodynamic force involves a harmonic function η whose

determination is also presented. Then, numerical flow

fields obtained with LES are used in order to evaluate

the influence of different parameters on the forces and

to offer a validation of the proposed approach. This al-

lows us to assess the accuracy of the method and its

advantages.

Next, a comparison of the proposed variational ap-

proach with the momentum equation approach presented

by David et al. (2009) is discussed. The momentum

equation approach offers a non-intrusive method to de-

termine forces, but requires the pressure field around

the object. On the other hand, the variational approach

requires the determination of the vorticity field on the

surface of the wing, which is not always trivial to ob-

tain with sufficient accuracy, but the computation of

the pressure field can be avoided. This paper aims to

compare both methods in a practical setting and show

their relative advantages and sensitivities to different
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parameters for a 3D numerical/experimental study of a

flow field around a NACA0015 airfoil. To the best of our

knowledge, this is the first application of the variational

approach in an experimental setting.
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1 Introduction

Non-intrusive determination of aerodynamic forces ex-

perienced by a body has become an important topic

of research in the last years. Low Reynolds number

flows that involve weak forces, such as flows around

nano-air vehicles (NAVs), may benefit from the use of

non-intrusive methods to obtain reliable results. Direct
measurements of forces are not always feasible and it is

particularly difficult to obtain the correlation between

forces and vortex structures (Jardin et al., 2009).

Unal et al. (1997) introduced the first non-intrusive

method discussed in this paper which derives unsteady

forces from velocity fields by the application of the mo-

mentum equation to a control volume around the body.

This method allows for the determination of steady

(Van Oudheusden et al., 2006) and unsteady (Kurtulus

et al., 2007) aerodynamic forces. Moreover, David et

al. (2009) developed some practical applications of this

approach for numerical and experimental data in 2D.

Nevertheless, the momentum equation approach has its

drawbacks, such as the presence of terms involving pres-

sure which have to be evaluated on the boundaries of

the control volume (for 3D flows, this requires pressure

fields available at the boundary surfaces) or the sensi-

tivity to the chosen control volume. This motivates the

development of alternative non-intrusive methods that

would not suffer from these drawbacks.
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Another family of methods of force determination

relies on the impulse equation initially developed by

Lin & Rockwell (1996) and then extended to control

volumes by Noca et al. (1997, 1999). A recent account

of this method was presented by Lighthill (1986). The

impulse approach allows for the calculation of the force

using expressions based on the velocity and vorticity

fields only. Comparison between the two approaches

showed a good agreement of the results (Noca et al.,

1997, 1999). Nevertheless, the impulse method is sensi-

tive to the noise, affecting the vorticity evaluation as it

has been shown recently by (Limacher et al., 2020).

With the same objective of eliminating the need to

compute pressure when determining forces, Protas et

al. (2000) assessed the effectiveness of the variational

approach initially proposed by Quartapelle & Napoli-

tano (1983) on 2D numerical data and showed good

accuracy of results for flows at a low Reynolds num-

ber. Various aspects of the variational approach were

developed by Chang (1992); Howe (1995); Chang and

Lei (1996); Chang, Su, and Lei (1998); Pan and Chew

(2002). In this paper, we revisit the variational ap-

proach and extend it to 3D flows in realistic settings

and at high Reynolds numbers. In addition, the influ-

ence of key parameters such as the spatial resolution

and the size of the integration domain on the accuracy

of the computed forces will be carefully assessed us-

ing a numerical database. Then, a comparison between

the variational and the momentum equation approaches

will be presented based on both numerical and exper-

imental data, leading to a concluding discussion. To

the best of our knowledge, this is the first investigation

where the variational approach is used to determine the

hydrodynamic force based on experimental flow mea-

surements.

2 Methods of force determination

2.1 Momentum equation approach

Practical application of the momentum equation ap-

proach is possible thanks to the determination of the ve-

locity and acceleration fields using Time-Resolved Par-

ticle Image Velocimetry (TR-PIV). This approach pro-

vides the following integral expression for the instanta-

neous force ~F (t) on the body

~F (t) = −ρ
∫∫∫

Ω

∂~V

∂t
dΩ− ρ

∫∫
Γ1

(
~V · ~n

)(
~V − ~Vs

)
dσ

−
∫∫
Γ1

p~n dσ +

∫∫
Γ1

τ · ~n dσ,

(1)

where ~n is the normal vector to the control surface Γ1

as shown in Figure 1, ρ is the fluid density, ~V is the

fluid velocity field, ~Vs is the velocity of the boundary of

the control volume and

τ = µ

[
~∇~V + ~∇

(
~V
)t]

(2)

is the viscous stress tensor.

Fig. 1: Schematic of the problem set-up involving an object
(a wing) with boundary Γ0 placed in a flow with a free-stream
velocity U∞. The control volume and its outer boundary are
denoted Ω and Γ1, respectively.

The unsteady and convective terms in (1) can be di-

rectly computed from the TR-PIV velocity flow fields.

The third term requires calculation of the pressure along

the control surface, which constitutes the main disad-

vantage of this method. The pressure can be obtained

by spatially integrating the pressure gradient ~∇p which

can be expressed in terms of the velocity field using the

momentum equation

~∇p = −ρD
~V

Dt
+ µ~∇2~V . (3)

Determination of pressure by numerical integration in-

troduces inaccuracies coming from measurement errors

and errors in the integration algorithm, both of which

may render the results unreliable. In particular, while

pressure must be available on the outer boundary Γ1

only of the control volume, cf. equation (1) and Figure

1, which is an area where the velocity field can be mea-

sured relatively accurately, in the process one must eval-

uate second derivatives of the velocity field, cf. (3). Al-

though practical methods for computing pressure from
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the velocity fields have been recently significantly im-

proved (Jeon et al., 2018), approaches to the determi-

nation of forces which do not require the demanding

task of pressure computation will be more efficient.

2.2 Variational approach

Quartapelle & Napolitano (1983) proposed a variational

approach to determine the instantaneous forces without

calculating the pressure. This method is derived by ex-

pressing the pressure contribution to the force entirely

in terms of the the velocity and vorticity fields. By def-

inition, the pressure and viscous contribution to the

force can be written on the body as:

~F = ~FP + ~Fµ = −
∮

Γ0

(
−p~n+ τ · ~n

)
dσ. (4)

Using vector-calculus identities and recognizing that

the velocity field is divergence-free (~∇ · ~V = 0), we

obtain∮
Γ0

(
~∇~V
)t
· ~n dσ =

∫
Ω

~∇
(
~∇ · ~V

)
dΩ = 0, (5)

which allows us to transform expression (4) as follows

(by adding a multiple of (5) to the second term)

(6)

~F =

∮
Γ0

[
p~n− µ

(
~∇~V +

(
~∇~V
)t)
· ~n
]
dσ

=

∮
Γ0

[
p~n− µ

(
~∇~V −

(
~∇~V
)t)
· ~n
]
dσ

=

∮
Γ0

[p~n+ µ (~n× ~ω)] dσ.

Following the idea proposed by Quartapelle & Napoli-

tano (1983), we will consider region Ω which corre-

sponds to a control volume around the object. It is

bounded by two surfaces: Γ0 which coincides with the

surface of the body, and Γ1 which is the outer boundary,

cf. Figure 1. Next, we introduce a harmonic function

ηx which depends only on the geometry of the region

Ω and is defined through the following boundary-value

problem for the Laplace equation

∆ηx = 0 in Ω, (7a)

~n · ~∇ηx = −~ex · ~n at Γ0, (7b)

~n · ~∇ηx = 0 at Γ1, (7c)

where ~ex is the unit vector associated with the X axis.

The function ηx defined above is used for the determi-

nation of the X-component of the force. The functions

ηy and ηz, needed to determine the Y and Z compo-

nents of the force, are defined by problems analogous to

(7), but with the right-hand side of the boundary condi-

tion (7b) replaced with −~ey ·~n and −~ez ·~n, respectively,

where ~ey and ~ez are the unit vectors associated with

the directions Y and Z.

As shown below for the X component of the force,

introduction of the function ηx defined as in (7) allows

us to eliminate the pressure p in terms of velocity in for-

mula (6). First, an expression for the pressure gradient

is obtained from the Navier-Stokes equations, cf. (3),

−~∇p = ρ
∂~V

∂t
+ ρ

(
~V · ~∇

)
~V + µ~∇× ~ω, (8)

where ~ω = ~∇× ~V is the vorticity. It is then projected,

in the sense of the Hilbert space L2(Ω) onto the gra-

dient ~∇ηx, i.e., the terms in equation (8) are multi-

plied by ~∇ηx and then integrated over Ω (Quartapelle

& Napolitano, 1983; Protas et al., 2000). Integrating

by parts, using the incompressibility constraint and the

boundary conditions (7b)–(7c) for ηx, the following ex-

pression is derived for the pressure contribution to the

X-component of the force FPx =
∮

Γ0
(nxp) dσ, where

nx = ~ex · ~n, is derived

(9)

FPx = ρ

∮
Γ0∪Γ1

ηx~n ·

(
∂~V

∂t

)
dσ

+ µ

∮
Γ0∪Γ1

~n ·
(
~ω × ~∇ηx

)
dσ

+ ρ

∫
Ω

~∇ηx ·
[(
~V · ~∇

)
~V
]
dΩ.

Adding the contribution Fµx due to viscous stresses,

equation (4) for the X-component of the force finally

becomes

Fx =ρ

∮
Γ0∪Γ1

ηx~n ·

(
∂~V

∂t

)
dσ + µ

∮
Γ0∪Γ1

~n ·
(
~ω × ~∇ηx

)
dσ

+ ρ

∫
Ω

~∇ηx ·
[(
~V · ~∇

)
~V
]
dΩ + µ

∮
Γ0

~ex (~n× ~ω) dσ

(10)

and analogous expressions are obtained for the compo-

nents Fy and Fz.

The function ηx is defined by problem (7) up to an

arbitrary additive constant. However, as can be easily

verified, the value of this constant does not have any

effect on FPx obtained in (9). Hence, without loss of

generality, this constant can be set such that |ηx|→ 0

as |~x|→ ∞. Then, as can be deduced from the basic

properties of the Laplace equation (7a), at large dis-

tances from the obstacle |~x|→ ∞ its solution and its
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gradient vanish as (Protas et al., 2000)

|ηx| ∼ O
(
c

|~x|

)
,

∣∣∣~∇ηx∣∣∣ ∼ O(( c

|~x|

)2
)

in 2D,

(11a)

|ηx| ∼ O

((
c

|~x|

)2
)
,
∣∣∣~∇ηx∣∣∣ ∼ O(( c

|~x|

)3
)

in 3D,

(11b)

where c is the cord length used here to represent the

characteristic dimension of the object (the same esti-

mates also apply to functions ηy, ηz and their gradi-

ents). For simple obstacle geometries, such as a disk in

2D or a sphere in 3D, the functions ηx, ηy and ηz can be

determined analytically (Protas et al., 2000). For more

complicated geometries, problem (7) needs to be solved

numerically, which is however quite straightforward and

can be done using standard tools (such as the function

solvepde in MATLAB).

As is evident from estimates (11), when the distance

from the outer boundary Γ1 to the obstacle increases,

the relative contributions from the integrals defined on

this boundary to (10) are reduced. In particular, in the

limit when the outer boundary Γ1 is pushed to infinity

such that the control volume Ω coincides with the en-

tire flow domain, the integrals on Γ1 vanish altogether

(Protas et al., 2000).

2.3 Validation against numerical data

In order to validate the proposed variational approach

we use a numerical database obtained with an Improved

Delayed Detached Eddy Simulation (IDDES) based on

the formulation proposed by Shur et al. (2008). The

code StarCCM+ is used to carry out the simulations

based on the k-omega-SST turbulence model. It is a

widely used CFD code and general information about

its validation in flows past airfoils can be found for

example in Götten et al. (2019). A 3D flow around

a rigid NACA0015 airfoil with an 80mm chord and

146mm span is considered. The wing has an angle of

attack of 30 degrees and the upstream velocity is fixed

at U∞=1.25m/s, resulting in a Reynolds number of 105.

The spatial resolution is 1mm in every direction near

the wing and in the near wake, whereas the tempo-

ral resolution is 0.25ms. A hybrid second-order non-

centered scheme is used in the RANS zone, changing to

a centered scheme in the LES zone. In order to mimic

an actual experiment, the velocity field is sampled on

Fig. 2: Location of the two control volumes (represented
by green rectangular boxes) with respect to the wing (rep-
resented by a dark slender object).

two Cartesian grids, cf. Figure 2, one at the wing mid-

span with Z = [0.06, 0.08]m and another one at the

wingtip with Z = [0.13, 0.15]m, where Z is the spanwise

coordinate. The spatial resolution is 1mm and the sam-

pling rate 4000Hz. We refer the reader to Acher (2019)

for further details concerning these computations, in-

cluding validation tests and comparison to experimen-

tal data. We add that these calculations were also used

by Gomit et al. (2018) to analyze the uncertainty of

pressure estimation.

As explained Section 2.2, the functions ηx, ηy and ηz
depend only on the geometry of the body, therefore they

have to be determined for the objects tested. Figure 3

shows these functions in the exterior of the airfoil in

the mid-span control volume considered here. We note

that since the airfoil corresponds to the middle section

of the wing, we have ~ex · ~n = 0 on Γ0 and hence the

function ηz vanishes identically.

Once the functions ηx, ηy and ηz are determined, ap-

plication of equation (10) to obtain the instantaneous

force from the velocity and vorticity fields is in princi-

ple straightforward. However, the second term in equa-

tion (10) requires evaluation of the vorticity at the wing

surface. In situations when the velocity field is sampled

on Cartesian grids with modest resolution which are

not well adapted to represent curved boundaries this

may lead to significant inaccuracies in the evaluation

of the velocity derivatives, and this problem is illus-

trated in Figure 4. To address this issue, an irregular

body-fitted grid around the wing is generated. Then,

the velocity field is interpolated onto this new grid to

obtain considerably more accurate spatial derivatives

at the wing surface. For the spatial derivative in the

direction normal to the wing surface, a non-centered

second-order discretization scheme is used, while for the

spatial derivative in the direction tangent to the wing
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surface, a centered second-order discretization scheme

is used, and these schemes are shown in equations (12)

and (13), respectively.

∂un

∂xi
=
−3uni − uni+2 + 4uni+1

2∆x
+O

(
h2
)
, (12)

∂un

∂xi
=
uni+1 − uni−1

2∆x
+O

(
h2
)
. (13)

The process of interpolating the velocity field from

a Cartesian grid to a boundary-fitted grid in the neigh-

borhood of the wing and the resulting vorticity field

obtained on this grid are shown in Figures 5 and 6,

respectively. Then, equation (10) can be applied us-

ing these velocity and vorticity fields to determine the

force acting on the wing. We note that that the first

term in equation (10) involves a time derivative which is

approximated using 3 consecutive instantaneous fields

sampled at the rate of 4000Hz. The accuracy of the

proposed approach is assessed in the next section.



6 Daniel Dı́az-Arriba et al.

Fig. 3: Harmonic functions ηx, ηy and ηz (top row) and three components of the gradient ~∇ηx (bottom row) in the control
volume at the wing mid-span, cf. Figure 2, characterizing the relative influence of the flow field in the different parts of the
flow domain on the hydrodynamic force.

Fig. 4: The horizontal component of the velocity field on the Cartesian grid (left) and a magnification of the spanwise
component of the corresponding vorticity field (right).

Fig. 5: Schematic showing the interpolation of the velocity field onto a refined boundary-fitted grid around the wing to obtain
a more accurate vorticity field on the surface.
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Fig. 6: The spanwise component of the vorticity field ob-
tained from the velocity field interpolated onto a boundary-
fitted grid in the neighborhood of the wing.

3 Results and comparisons

3.1 Comparison criterion

The results obtained with the momentum equation and

the variational method using different sets of parame-

ters are now compared against the force obtained di-

rectly from the numerical simulations described in Sec-

tion 2.3, which is considered as the reference, in terms

of the following relative errors

εx =
|F ex − Fnx |

Fnx
, εy =

|F ey − Fny |
Fny

, (14)

where the superscripts “e” and “n” refer to the esti-

mated force and its reference value obtained from the

numerical database. Given the required computational

cost, our analysis here is first focused on instantaneous

values of the force components which fluctuate in time

given the unsteady nature of the flow. However, the

magnitude of the errors in the two methods was found

to remain of the same order at a number of different

time instances, such that representative results can be

obtained by considering a single instant of time. We

note that the results presented in Sections 3.2–3.5 are

based on data obtained from the numerical simulations

discussed in Section 2.3 and corresponding to the con-

trol volume at midspan, cf. Figure 2, whereas experi-

mental data obtained in a control volume at the wingtip

is used in Section 3.6. That section will also feature re-

sults for the mean forces.

3.2 Sensitivity to the control volume

The variational formula (10) involves integrals defined

on the outer boundary Γ1 which depend on the values

of the vorticity ~ω and acceleration ∂~V /∂t, the latter of

which may be especially difficult to approximate accu-

rately based on the experimental data. On the other

hand, these integrals also involve rapidly decaying fac-

tors given by the functions ηx and ~∇ηx, cf. Figure 3,

such that it may be expected that the contribution pro-

vided by these integrals to the total force will vanish as

Ω becomes larger and Γ1 is removed further away from

the obstacle. In this section we thus assess the effect of

the size of the control volume Ω on the accuracy of the

forces evaluated using the variational formula (10).

Fig. 7: Different control volumes used as region Ω in the
variational approach.

Table 1: Instantaneous drag and lift forces computed using
the variational formula (10) and the control volumes shown
in black in Figure 7 together with the corresponding errors
and control volume sizes (∆x,∆y) expressed in terms of the
cord length c. Errors considered acceptable are marked in
blue, whereas red corresponds to excessive error levels (this
convention applies to all tables).

Variable Reference B1 B2 B3 B4

Fx(N) 0.520 0.3120 0.7481 0.5357 0.5204

εx 39.95% 43.99% 3.11% 0.17%

Fy(N) 0.760 0.6107 0.9512 0.6466 0.6818

εy 19.62% 25.19% 14.90% 10.27%

∆x 0.9125c 1c 1.4c 1.85c

∆y 0.55c 1c 1.4c 1.85c

In Table 1 we report the instantaneous drag and lift

forces computed using the control volumes of increasing

size expressed in terms of the chord length c, cf. black

rectangles in Figure 7, together with the corresponding

errors. As is evident from this table, as the size of the

control volume increases, the errors in the evaluation
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of the force decrease becoming smaller than 1% for the

drag and about 10% for the lift component.

In order to provide a comprehensive assessment of

the effect of the shape of the control volume and of its

orientation with respect to the obstacle, we computed

the force using additional control volumes shown in blue

in Figure 7. The results are reported in Table 2. We see

that extending the control volume in the longitudinal

direction and progressively moving the lateral bound-

aries away from the body allows us to further reduce

the errors in the evaluation of the drag component (the

effect is negligible for lift which is already determined

quite accurately). This observation can be attributed to

the fact that inaccuracies in the evaluation of the inte-

grals on Γ1 can be mitigated by removing the boundary

of the control volume further away from the obstacle,

such that the contributions of these integrals to the to-

tal force are smaller because of the rapid decay of ηx and
~∇ηx as |~x|→ ∞, cf. (11). However, even for the largest

considered control volumes the distance from the outer

boundary Γ1 to the obstacle was not large enough for

the integrals defined on Γ1 to be neglected.

Table 2: Instantaneous drag and lift forces computed using
the variational formula (10) and the control volumes shown
in blue in Figure 7 together with the corresponding errors
and control volume sizes (∆x,∆y) expressed in terms of the
cord length c. The data in the table corresponds to a different
time instant than the data in Table 1, so the reference values
of the force components are slightly different.

Variable Reference B5 B6 B7

Fx(N) 0.5149 0.4706 0.4914 0.5030

εx 8.67% 4.91% 2.31%

Fy(N) 0.7672 0.7773 0.7761 0.7865

εy 1.32% 1.16% 2.52%

∆x 2.725c 2.725c 2.725c

∆y 1.85c 2.475c 2.875c

3.3 Comparison of the two approaches

A comparison of the results obtained from the varia-

tional method for our unsteady 3D test case with the

well-known momentum equation approach is now pre-

sented. As regards the latter approach, cf. (1), the deriva-

tive terms in the integrand expressions representing the

unsteady, convective and viscous effects are computed

directly from the velocity fields using centered second-

order finite-difference schemes. The third term in (1) re-

quires calculation of the pressure along the control sur-

face Γ1 which can be done by spatially integrating the

pressure gradient ~∇p as described in Jeon et al. (2018).

The different terms in (3) are calculated from the ve-

locity fields using centered second-order finite-difference

schemes. The pressure field is then determined by min-

imizing a functional defined as the difference between

the pressure gradient based on the measurements and

the estimated pressure gradient, which is equivalent to

solving the Poisson equation and provides a more ro-

bust approximation of the pressure field. This field is

generally divided into subdomains based on the am-

plitude of the pressure gradient. The sequential pres-

sure reconstruction is initiated from the outer domain,

where the highest measurement accuracy is expected,

such that a reliable pressure reference can be estab-

lished. The pressure field in the other subdomains is

then computed by imposing Dirichlet boundary condi-

tions deduced from the values of the pressure on the pre-

viously computed outer domains. We refer the reader

to Jeon et al. (2018) and Gomit et al. (2018) for fur-

ther details of this approach as well as for analysis of

its performance and parameter sensitivity.

Table 3 shows that errors obtained with both meth-

ods are of the same order. This means that the choice of

one approach over the other should be based on which is

more suitable for the specific problem at hand, bearing

in mind that for the variational method a sufficiently

accurate vorticity field is required at the surface of the

body, whereas for the momentum equation approach

the computation of the pressure is needed. However,

other aspects such as the sensitivity to spatial resolu-

tion and noise of both methods should also be taken

into account, as discussed in the next section.

Table 3: Instantaneous drag and lift forces based on the vari-
ational formula (10) and the momentum equation (1) using
the control volume B7, cf. Figure 7, together with the corre-
sponding errors.

Variable Variational method (B7) Momentum eq. approach

Fx(N) 0.5030 0.5226

εx 2.31% 1.49%

Fy(N) 0.7865 0.7475

εy 2.52% 2.57%

3.4 Sensitivity to spatial resolution

Since high resolution is not always available in experi-

ments, in this section we study how the accuracy of the

two considered methods depends on this parameter.
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Table 4: Errors in the evaluation of instantaneous forces ob-
tained with the variational and the momentum equation ap-
proach for different spatial resolutions given in terms of grid
spacing.

Resolution Variable
Variational Momentum

method (B7) eq. approach

(1,1,1)mm εx 2.31% 1.49%

(=0.0125c) εy 2.52% 2.57%

(2,2,2)mm εx 26.04% 0.09%

(=0.025c) εy 18.66% 6.44%

(4,4,2)mm εx 25.05% 0.63%

(=0.05c) εy 15.11% 3.16%

Table 4 presents the results obtained for different

spatial resolutions indicating that the variational ap-

proach appears highly sensitive to this parameter. This

can be explained by the presence of a boundary integral

defined on the surface of the obstacle and involving vor-

ticity which cannot be evaluated accurately, unless suf-

ficiently refined resolution is used. On the other hand,

the momentum equation approach demonstrates much

better results with lower spatial resolution.

3.5 Sensitivity to noise

Since all measurements are to various degrees contam-

inated by noise, we now assess how this factor affects

the accuracy of force evaluations. To this end, additive

Gaussian noise is introduced in the numerical veloc-

ity fields used for the determination of the forces. Is is

constructed as a random variable with the probability

density function

Pr (Er) =
1√
2πσ

e−
(Er−µ)2

2σ2 (15)

where µ is the mean value and σ the standard deviation

of the error Er. This noise is generated randomly over

all discrete points in the field, independently of their

position or velocity, and its level is chosen to match

the noise levels typically encountered in PIV measure-

ments. Thus, the noise has zero mean and its stan-

dard deviation is defined in terms of the voxel error

(particle-image displacement) as described by Gomit et

al. (2018). The lowest noise level corresponds to 3σ =

0.05vx and the highest level to 3σ = 0.5vx with several

values in between. In terms of the velocity magnitude,

these values correspond to 3σu = 0.012m.s−1 (1% of

U∞) and 3σu = 0.12m.s−1 (10% of U∞), respectively.

For each value of σ the mean error in the evaluation of

the force is then obtained by averaging over 20 noise

samples and is shown as a function of σ for the two

methods in Figures 8 and 9 for the drag and lift com-

ponent, respectively.

Fig. 8: Error in the evaluation of the drag component with
the two methods as a function of the noise level.

Fig. 9: Error in the evaluation of the lift component with the
two methods as a function of the noise level.

In Figure 8 we see that, interestingly, the drag com-

ponent computed based on the variational approach ap-

pears insensitive to the noise level, in contrast to the

error in the momentum-equation approach which tends

to increase in proportion to the noise level σ. Thus, as

a result, the variational approach offers a more robust

way to compute the drag when large noise is present. On

the other hand, the error in the lift component, cf. Fig-

ure 9, computed with the two approaches increases in

proportion to the noise level and tends to be higher by

a factor of approximately 2 in the case of the variational

approach.

3.6 Application to experimental data

To complete the analysis, both approaches are tested

using experimental data obtained by Acher et al. (2019)

in the same setup and for the same flow configuration

involving a rigid wing with a NACA0015 airfoil as was

studied numerically in Section 2.3. Tomo-PIV measure-

ments provide the flow fields around the wing with a

spatial resolution of 1.6 mm (which is between the in-

termediate and the refined resolutions studied in Table

4) in all three dimensions and sampled over the two
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control volumes shown in Figure 2. A scale at the base

of the wing allowed for a direct measurement of the to-

tal forces experienced by the wing. Although the force

measurements were not simultaneous with the Tomo-

PIV measurements, these results made it possible to

validate the numerical simulations. However, since the

PIV data is acquired in a thin section of the wing whose

contribution to the total forces cannot be determined

experimentally, cf. Figure 2, the relative errors (14) are

still computed with reference to the numerically evalu-

ated force components.

Due to the setup of the experiments, the flow near

the wing surface is not well resolved in the control vol-

ume located at the mid-span of the wing, cf. Figure

10. The reason is that the shadow of the wing obscures

the region under the wing intrados, impeding the ac-

quisition of the velocity field in this area. On the other

hand, the control volume located at the wingtip does

not present this visualization problem and the flow field

can be acquired in that region, cf. Figure 11.

Fig. 10: The experimental velocity field (the horizontal com-
ponent) obtained from Tomo-PIV measurements in the con-
trol volume at the mid-span of the wing, cf. Figure 2.

Fig. 11: The experimental velocity field (the horizontal com-
ponent) obtained from Tomo-PIV measurements in the con-
trol volume at the wingtip, cf. Figure 2.

Fig. 12: The function ηz defined in the control volume at the
wingtip.

Thus, since the flow field in the control volume at

the mid-span of the wing does not make it possible to

determine the vorticity at the wing surface with suf-

ficient accuracy for the application of the variational

method, the control volume at the tip of the wing is

the one used for the force evaluation. However, we no-

tice that the Z-component of the normal vector ~n at

the wing surface Γ0 is no longer zero for this control

volume and therefore the function ηz does not vanish

identically in this case, cf. Figure 12.

Following the same procedure as used for the nu-

merical data in Section 2.3, the vorticity around the

wing is calculated on a body-fitted refined grid and the

functions ηx, ηy and ηz are determined for the new con-

trol volume. Results of the application of the two ap-

proaches are summarized in Table 5 where we observe
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that both approaches produce very similar instanta-

neous values of the force components.

Table 5: Instantaneous drag and lift forces computed based
on the variational formula (10) and the momentum equation
(1) using the experimental data.

Instant Variable
Variational Momentum

method eq. approach

1 Fx(N) 0.1503 0.1699

1 Fy(N) 0.1846 0.1869

2 Fx(N) 0.1196 0.1190

2 Fy(N) 0.2126 0.1854

However, a more realistic view of the performance of

the two methods can be given by computing the mean

forces together with their standard deviations (STD)

instead of just the instantaneous values. Table 6 shows

these results for the drag and lift components obtained

by averaging 120 instantaneous force values sampled

at the rate of 40Hz. The total window of 3 seconds is

short, but nonetheless allows us to detect trends. These

results are compared against the mean and STD values

obtained from the numerical simulations and used as

reference, keeping in mind they also involve certain er-

rors.

Most of the results in Table 6 show an error be-

low 12%, but the one found for the mean drag force

is significantly higher. Errors found in the momentum

equation approach mostly come from noise in the ex-

perimental data. On the other hand, the variational ap-

proach produces slightly better results with errors be-

low 18%. However, in this case the main source of error

appear to be the inaccuracies in the evaluation of the

integrals defined on the outer surface Γ1 whose relative

contributions to the total force diminish as the size of

the control volume increases (cf. Section 2.3) as well as

the limitation due to the spatial resolution. Neverthe-

less, we should also keep in mind that the flow is at a

Reynolds number of 105 and the control volume tested

is at the wingtip, where the three-dimensional effects

are particularly important and larger inaccuracy is ex-

pected. In addition, as is evident from the results pre-

sented in Figures 8 and 9, an error of 15 to 25% can

be expected when taking into account noise in the flow

field.

Table 6: Mean drag and lift forces and their STD values
computed based on the variational formula (10) and the mo-
mentum equation (1) using the experimental data together
with the corresponding errors with respect to the numerical
data.

Variable
Numerical Variational Momentum

reference method eq. approach

Fx(N) 0.1591 0.1315 0.1148

εx 17.34% 27.84%

Fy(N) 0.1996 0.2014 0.1813

εy 0.91% 9.17%

FSTD
x (N) 0.1592 0.1417 0.1514

εSTD
x 10.94% 4.84%

FSTD
y (N) 0.1997 0.2031 0.1971

εSTD
y 1.70% 1.30%

Therefore, in the light of the results discussed in

Section 3.4, cf. Table 4, we can conclude that when ex-

perimental flow fields are used, the spatial resolution

of 1.6mm is sufficient for the variational approach to

provide results that are practically as accurate as the

ones obtained with the momentum equation approach.

Then, if the pressure field around the object is not re-

quired and the vorticity field can be reliably determined

at the object surface, the computational cost to deter-

mine the forces can be significantly reduced with the

variational method. On the other hand, the momen-

tum equation approach remains the best choice when

access to the near-wall fields is limited in experimental

measurements.

4 Conclusions

The variational approach, first proposed by Quartapelle

& Napolitano (1983) and then elaborated by Protas

et al. (2000), was applied to determine the hydrody-

namic force in a 3D unsteady flow computed numeri-

cally and studied experimentally. The main advantage

of this method resides in not requiring the computation

of the pressure field around the object to determine the

forces. However, an accurate vorticity field is needed at

the surface of the body to have reliable results (it was

proved by Protas (2007) that the contribution from the

vorticity at the boundary cannot be in fact eliminated

in this approach). While the variational approach has

been employed before in numerical studies, the present

investigation is to the best of our knowledge its first

application to experimental data.
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The momentum equation approach, another non-

intrusive method to determine forces, was also applied

to our test cases to allow for a performance comparison

between the two techniques. The results in the numer-

ical cases show that both methods are able to obtain

the forces around the tested wing with an error of less

than 3%. Therefore, it is more convenient to apply the

variational method in situations where the position of

the object is known accurately making it possible to

obtain sufficiently accurate vorticity fields at the wing

surface while not requiring the computation of the pres-

sure. On the other hand, when the vorticity at the wing

surface cannot be obtained with enough accuracy, the

momentum equation approach is more suitable and the

pressure will need to be computed.

The sensitivities of the two approaches to the spa-

tial resolution of the measurements and the measure-

ment noise were also assessed. The spatial resolution

has a direct effect on the accuracy of the vorticity field

calculated at the wing surface and we showed that for

lower spatial resolutions the variational approach does

not provide reliable results, while the momentum equa-

tion approach tends to produce results within 10% er-

ror regardless of the resolution. On the other hand, our

results also show that the variational approach can be

less sensitive to noise than the momentum equation ap-

proach.

Finally, we applied both methods to experimental

flow fields obtained in the same conditions as used in

the numerical tests. The results showed that in this

case, for a spatial resolution of 1.6mm, the variational

approach can provide results that are as good as those

obtained with the momentum equation approach.

In summary, both approaches have certain advan-

tages and limitations — the variational approach re-

quires the vorticity field to be available on the surface

of the obstacle, whereas in the approach based on the

momentum equation pressure is needed on the outer

boundary Γ1 of the control volume. While this quan-

tity can in practice be deduced from the velocity fields

measured away from the obstacle in a straightforward

manner, this advantage is offset by the fact that in the

process one must evaluate the second derivatives of the

velocity field, cf. (3); in contrast, only first derivatives

of the velocity field are required in the variational ap-

proach, cf. (10). We thus conclude that, if the pressure

field around the object is not required and the vortic-

ity field can be reliably determined at the surface of

the obstacle, the computational cost to determine the

forces can be significantly reduced with the variational

method. On the other hand, the momentum equation

approach remains the method of choice when the near-

wall field cannot be easily measured in experiments.

There are some open problems related to the vari-

ational approach that will benefit from additional re-

search. One is to understand why the drag and lift com-

ponents computed in this way exhibit different levels of

sensitivity to noise, cf. Figures 8 and 9. Another would

be to develop a systematic approach to find an opti-

mal shape and size of the control volume that would

minimize different errors for a given flow configuration.
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