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We introduce the theoretical framework from geometric optimal control for a control system modeled by the Generalized Lotka-Volterra (GLV) equation, motivated by restoring the gut microbiota infected by Clostridium difficile combining antibiotic treatment and fecal injection. We consider both permanent control and sampled-data control related to the medical protocols.

INTRODUCTION

Complex microbial communities controlled by a combination of continuous controls associated to probiotics and bacteriostatic agents and impulsive controls corresponding to transplantation and bactericides can be modeled by a generalized Lotka-Volterra (GLV) model [START_REF] Angulo | A theoretical framework for controlling complex microbial communities[END_REF].

In this frame, our study is motivated by the original works described in [START_REF] Jones | Navigation and control of outcomes in a generalized Lotka-Volterra model of the microbiome[END_REF] and based on the experimental model from [START_REF] Stein | Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota[END_REF] to treat the Clostridium Difficile Infection (CDI) of the gut microbiota using the medical combination of taking antibiotics followed by a fecal injection. The system is modeled by a GLV equation with eleven interacting species and the parameters are reported in Table C1 excerpted from [START_REF] Jones | Navigation and control of outcomes in a generalized Lotka-Volterra model of the microbiome[END_REF].

The originality of our study is to set the problem in a neat geometric optimal control framework to use the techniques of this area, see for instance [START_REF] Jurdjevic | Geometric Control Theory[END_REF][START_REF] Sussmann | Nonlinear Controllability and Optimal Control[END_REF] as a general references to be applied to the specific controlled equation and the objective being to minimize the C. difficile population.

The GLV equation is interpreted as a model of interaction of different equilibria where the optimal problem is analyzed with geometric optimal control techniques based on (intrinsic) Lie algebraic computations to derive robust control schemes in the permanent case. It is completed by sampled-data optimal control techniques, taking into account digital restrictions on the controls related to medical constraints. [START_REF] Angulo | A theoretical framework for controlling complex microbial communities[END_REF]. (right) Model with 2 centers and a saddle displaying an unstable domain related to separatrices.

A pedestrian presentation of the controlled model

The historical model of Lotka-Volterra [START_REF] Volterra | Leçons sur la théorie mathématique de la lutte pour la vie[END_REF][START_REF] Lotka | Elements of mathematical biology[END_REF] starts by describing the interaction of two populations of prey-predator denoted respectively by 𝑥, 𝑦 and the evolution of the two species is described by the system

ẋ = 𝑥(𝛼 -𝛽𝑦), ẏ = 𝑦(𝛿𝑥 -𝛾), (1) 
where 𝛼, 𝛽, 𝛿, 𝛾 are positive parameters and 𝑥, 𝑦 ∈ ℝ + .

Such dynamics admits two equilibrium points:

𝜃 1 = (0, 0) and Ω = (𝛾∕𝛿, 𝛼∕𝛽) and a first integral 𝑉 (𝑥, 𝑦) = 𝛽𝑦 + 𝛿𝑥 -𝛼 log 𝑦 -𝛿 log 𝑥.

Since every trajectory evolves on the level sets of 𝑉 , one deduces that Ω is a center, that is every trajectory is periodic, for each initial condition in the physical quadrant. Behaviors of the solutions are represented on Fig. 1 (left).

The second step in our analysis is to use the historical model to construct a 2𝑑-topological model to describe the evolution of the dynamics related to the interaction between two centers. This leads to construct a 2𝑑-model, with a schematic representation in Fig. 1 (right). The important point of the construction is to introduce in the domain a saddle point with separatrices and an unstability domain.

A 2𝑑-realization leads to the 2𝑑-GLV generalization of (1):

ẋ = 𝑥(𝑟 1 + 𝑎 11 𝑥 + 𝑎 12 𝑦) ẏ = 𝑦(𝑟 2 + 𝑎 21 𝑥 + 𝑎 22 𝑦), (2) 
which is precisely the reduced model described in [START_REF] Jones | Navigation and control of outcomes in a generalized Lotka-Volterra model of the microbiome[END_REF] to control the CDI.

Following [START_REF] Volterra | Leçons sur la théorie mathématique de la lutte pour la vie[END_REF] this leads to introduce the GLV-model whose aim is to describe using a quadratic dynamics, interaction between equilibria in arbitrary dimension. We proceed as follows.

Let 𝑥 = (𝑥 1 , 𝑥 2 , … , 𝑥 𝑁 ) ∈ ℝ 𝑁 + , the dynamics is

ẋ = (diag 𝑥) (𝐴𝑥 + 𝑟) , ( 3 
)
where 𝐴 is the interaction matrix.

In the regular case it can admit up to 2 𝑁 equilibria, which can be easily computed recursively using the rule:

• Interior equilibrium: 𝑥 = -𝐴 -1 𝑟, which is called persistent.

• Boundary equilibrium: 𝑥 𝑖 = 0 and we obtain a system with the same representation as (3) of size 𝑁 -1 and we compute the equilibria by induction.

Stein et al. model [START_REF] Stein | Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota[END_REF] describes the C. difficile infection with 𝑁 = 11 and the variable 𝑥 1 represents the C. difficile population.

Control schemes can be introduced in the model as follows.

• Antibiotic treatment. We denote by 𝑌 (𝑥) the linear dynamics: 𝑌 (𝑥) = (𝜀 1 𝑥 1 , … , 𝜀 𝑁 𝑥 𝑁 ) ⊺ , where 𝜀 𝑖 ≤ 0, 𝑖 = 1, … , 𝑁 denotes the sensitivity of the 𝑥 𝑖 variable to the antibiotic, so that the controlled dynamics takes the form: d𝑥 d𝑡 (𝑡) = 𝑋(𝑥(𝑡)) + 𝑢(𝑡)𝑌 (𝑥(𝑡)), 𝑢 ∈ [0, 1],

where 𝑋(𝑥) = (diag 𝑥) (𝐴𝑥 + 𝑟) is the GLV-equation and the various parameters are identified in [START_REF] Stein | Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota[END_REF] and reported in Table C1, while 𝑌 (𝑥) = diag 𝑥 ( 𝜀 1 , … , 𝜀 𝑁 ) ⊺ .

The control 𝑢(⋅) valued in [0, 1] describes the dosing regimen represented by a piecewise constant mapping.

One can use log-coordinates: 𝑥 = 𝑒 𝑦 so that the dynamics takes the form ẏ = (𝐴 𝑒 𝑦 + 𝑟) + 𝑢 𝜖, where 𝜖 = (𝜀 1 , … , 𝜀 𝑁 ) ⊺ is a constant vector.

• Probiotic agents. They are associated to a linear vector field: (𝜀 ′ 1 𝑥 1 , … , 𝜀 ′ 𝑁 𝑥 𝑁 ) ⊺ , with 𝜀 ′ 𝑖 ≥ 0 versus 𝜀 𝑖 ≤ 0 for an antibiotic agent.

The second type of controls are impulsive controls corresponding to a Dirac at time 𝑡 1 , with height 𝜆 given by 𝜆𝛿(𝑡 -𝑡 1 ) in a vector direction 𝑣. Such Dirac is the limit of piecewise constant control: lim 𝑛→∞ 𝑢 = 𝑛 on [𝑡 1 , 𝑡 1 + 𝑡∕𝑛] of the control system: d𝑥 d𝑡 (𝑡) = 𝑋(𝑥(𝑡)) + 𝑢(𝑡)𝑌 ′ (𝑥(𝑡)), 𝑢 ∈ ℝ with 𝑌 ′ (𝑥) = 𝑣 is constant.

Hence this leads to modify instantaneously the state variable 𝑥 → 𝑥 + 𝜆𝑣. Such a control action can be applied at discrete times of intervention  = (𝑡 1 , 𝑡 2 , … ) and are invasive treatment, which can be:

• fecal injection, if 𝜆 > 0

• bactericide, if 𝜆 < 0.

In the protocol presented in [START_REF] Jones | Navigation and control of outcomes in a generalized Lotka-Volterra model of the microbiome[END_REF], it consists into: antibiotic treatment starting at time 𝑡 = 0 for an healthy mouse, followed by C. difficile infection and a single fecal injection.

This leads to analyze the control system:

ẋ = 𝑋(𝑥) + 𝑢𝑌 (𝑥), 𝑢 ∈ [0, 1], (5) 
where 𝑢 is associated to antibiotic administration, using either:

• a permanent control 𝑢(⋅) taken as a measurable mapping which in practice is approximated by a piecewise constant mapping.

• or a sampled-data control. In this case, during the therapy period one has a fixed number of medical interventions defined by:

the control 𝑢 is piecewise constant and defined by a fixed sequence of constant controls 𝑢 𝑖 on [𝑡 𝑖 , 𝑡 𝑖+1 ], 𝑡 0 = 0,

𝑡 𝑖 -𝑡 𝑖-1 ≥ 𝐼 𝑚 > 0, 𝑖 = 1, … , 𝑘.
We shall focus the minimization of the C. difficile infection, which leads to a Mayer problem • OCP1: min 𝑢(⋅) 𝑥 1 (𝑡 𝑓 ), 𝑡 𝑓 being the time duration of the therapy, and a dual formulation:

• OCP2: min 𝑢(⋅) 𝑡, with a target 𝑥 1 = 𝑑 , 𝑑 being a fixed nonnegative constant.

The above problem in the permanent and digital case can be analyzed using optimal control direct and indirect methods.

Indirect methods are based on the Maximum Principle stated for the permanent case [START_REF] Lee | Foundations of Optimal Control Theory[END_REF][START_REF] Pontryagin | The mathematical theory of optimal processes[END_REF] or for the sampled-data control case [START_REF] Bourdin | Optimal sampled-data control, and generalizations on time scales[END_REF].

FIGURE 2

Schematic representation of the construction of the synthesis in a neighbourhood 𝑈 of a point 𝑃 of the terminal manifold 𝑥 1 = 𝑑 with a switching locus 𝑊 and a cut point at 𝑥 0 belonging to the separating locus 𝐿.

Permanent case: Maximum Principle.

We shall consider the control system

ẋ = 𝑋(𝑥) + 𝑢 𝑌 (𝑥), |𝑢| ≤ 1
and the problem of reaching in minimum time 𝑡 * the target 𝑵 ∶ 𝑥 1 = 𝑑 (with in practice some additional constraint related to stability property).

Introducing the Hamiltonian lift of the system defines the pseudo (or non maximized) Hamiltonian

𝐻(𝑧, 𝑢) = 𝑝 ⋅ (𝑋(𝑥) + 𝑢 𝑌 (𝑥))
where 𝑧 = (𝑞, 𝑝), 𝑝 ∈ ℝ 𝑁 ⧵ {0} (adjoint vector), the Maximum Principle tells us that candidates as minimizers are solutions of the dynamics

ẋ = 𝜕𝐻 𝜕𝑝 , ṗ = - 𝜕𝐻 𝜕𝑞 , 𝐻(𝑧, 𝑢) = max 𝑣∈[0,1] 𝐻(𝑧, 𝑣), (6) 
where 𝑝 satisfies at the final time 𝑡 * the transversality condition:

𝑝(𝑡 * ) ⟂ 𝑇 𝑥(𝑡 * ) 𝑵
and moreover 𝑀(𝑧) = max 𝑣∈[0,1] 𝐻(𝑧, 𝑣) is a nonnegative constant.

The aim of geometric optimal control is to construct the time minimal synthesis: 𝑢 * (𝑥 0 ) for every initial condition 𝑥 0 (see Fig. 2). This amounts to compute:

• the switching locus 𝑊 , where the optimal control is discontinuous,

• the separating locus 𝐿, where two minimizers intersect,

• the cut locus 𝐶, where a control ceases to be minimizing.

There is a lot of results coming from a series of article [START_REF] Bonnard | Classification générique de synthèses temps minimales avec cible de codimension un et applications[END_REF][START_REF] Launay | The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two[END_REF] to compute explicit semi-algebraic approximations of switching, separating and cut loci in a tubular neighborhood of 𝑵 using Lie algebraic computations only, and suitable in our analysis. It will serve to construct in fine a decomposition of ℝ 𝑁 into bands 𝑑 ≤ 𝑥 𝑖 ≤ 𝑑 +𝜀 to patch the different local syntheses to construct suboptimal policies to transfer the system from an infected point to an healthy point (see Fig. 3). Clearly in this analysis the behaviors of the system near forced equilibria localized on the set , where 𝑋 and 𝑌 are collinear, is crucial. This set contains the (free) equilibria of the GLV-dynamics. The key point of the model is that the collinear set can be computed using linear computations only.

Sampled-data case.

The optimal control problem can be interpreted as a finite dimensional optimization problem and solved in this context. Adapted numerical choice is to use a MPC method, but non linearity comes from the dynamics. Convergence is related to the regularity properties of the time minimal value function analyzed using geometric optimal control analysis in the permanent case. Strong pathologies can occur in relation with accessibility properties. This will be discussed in details and this is the core of this article. 

The organization of the article

The article is organized in three sections.

In Section 2 we introduce the controlled Generalized Lotka-Volterra equation associated to the problem of reducing C. difficile infection. We present the techniques from geometric optimal control to be applied to the analysis in relation with accessibility property of the system. In this context singular trajectories are defined as singularities of the extremity mapping.

In Section 3, the optimal control problem aiming to reduce C. difficile infection is analyzed using indirect methods (maximum principles) in both permanent and non permanent cases, to derive ncessary optimality conditions. Such conditions are used in the permanent case to the geometric classification of the regular syntheses near a terminal manifold of codimension one. They can be glued together to construct global syntheses in our study.

In Section 4, the techniques are applied to the controlled Lotka-Volterra model. First we concentrate on the 2𝑑-case. The geometric study is showed to be related to the interaction between the collinearity and the singularity loci, which reduces in the model to two straight-lines. Numerical results are presented combining direct and model predictive control methods.

Computations are extended to the 3𝑑-case, determining the singular trajectories and they are classified according to their time optimality status. This is applied to the May-Leonard model [START_REF] May | Nonlinear aspects of competition between three species[END_REF].

CONTROLLED GLV-MODEL AND GEOMETRIC OPTIMAL CONTROL

Controlled GLV-equation

Definitions

The C. difficile infected GLV-equation is the dynamics described by:

ẋ = (diag 𝑥) (𝐴𝑥 + 𝑟) = 𝑁 ∑ 𝑖=1
𝑥 𝑖 (𝐴𝑥 + 𝑟) 𝑖 𝑒 𝑖 [START_REF] Bonnard | Feedback Classification and Optimal Control with Applications to the Controlled Lotka-Volterra Model[END_REF] with 𝑒 𝑖 is the ith vector of the canonical basis of The dynamics is called regular if 𝐴 is invertible and we denote by 𝑥 𝑖 the infected persistent equilibrium point 𝑥 𝑒 = -𝐴 -1 𝑟.

ℝ 𝑁 , 𝑥 = ( 𝑥 1 , 𝑥 2 , … , 𝑥 𝑁 ) ∈ ℝ 𝑁 + ,
Making 𝑥 1 = 0 in [START_REF] Bonnard | Feedback Classification and Optimal Control with Applications to the Controlled Lotka-Volterra Model[END_REF], this defines a restricted healthy dynamics given by ̇x = x ( Ã𝑥 + r) ,

where x = ( 𝑥 2 , … , 𝑥 𝑁 ) ∈ ℝ 𝑁-1 + .
In the regular case, the dynamics can admit up to 2 𝑁 equilibria, which can be easily computed by recurrence making 𝑥 𝑖 = 0 in [START_REF] Bonnard | Feedback Classification and Optimal Control with Applications to the Controlled Lotka-Volterra Model[END_REF].

Since [START_REF] Bonnard | Feedback Classification and Optimal Control with Applications to the Controlled Lotka-Volterra Model[END_REF] is polynomic, asymptotic behaviors can be determined using the standard Poincaré compactification with the embedding of (7) into the hyperplane (𝑥, 𝑧 = 1) of ℝ 𝑁+1 to define:

ẋ = (diag 𝑥) (𝐴𝑥 + 𝑟𝑧) ż = 0,
where the right-member has been homogeneized to define an homogeneous quadratic vector of ℝ 𝑁+1 , which can be projected on the 𝑁-sphere 𝑆 𝑁 .

Each equilibrium can be classified according to their 𝐿(linear)-stability status associated to the linearized system [START_REF] Lefschetz | Differential equations: geometric theory[END_REF].

Our study is related to the interaction of the computable 𝑘-equilibria of the dynamics and one can construct a polynomic system denoted 𝑃 2 in a domain 𝑈 centered at 𝑥 𝑒 with the 𝑘-equilibria defined by the 𝑘-interacting equilibria of the original system and preserving their 𝐿-stability. Such polynomial system leads to introduce the dynamics

ẋ = 𝑃 2 (𝑥),
which can be extended on the whole ℝ 𝑁 . Again it can be compactified and the equilibria distinct from 𝑥 𝑒 are at the infinity.

Antibiotic action

In this article, we shall mainly restrict to the case of a single antibiotic treatment and a final fecal injection to fit to the protocol therapy described in [START_REF] Jones | Navigation and control of outcomes in a generalized Lotka-Volterra model of the microbiome[END_REF]. At time 𝑡 = 0, antibiotic treatment can be either administrated at different dosing regimens: constant dosing regimen, a pulsed dosed regimen or a tapered dosing regimens. The control system takes the form:

ẋ = 𝑋(𝑥) + 𝑢 𝑌 (𝑥) , with 𝑋 = (diag 𝑥) (𝐴𝑥 + 𝑏) and 𝑌 (𝑥) = (diag 𝑥) ( 𝜀 1 , … , 𝜀 𝑁 ) 𝑇
, where 𝜀 𝑖 are the sensitivity coefficients.

The control 𝑢(𝑡) describes the dosing regimen, a single pulse corresponds to a Dirac, with height 𝜆 as a limit when 𝑛 → +∞

𝑢(𝑡) = 𝑛 𝜆 over [ 0, 1∕𝑛 ] or a constant regimen with 𝑢(𝑡) = 𝑚.
This leads to consider a general control system of the form:

ẋ = 𝑋(𝑥) + 𝑢 𝑌 (𝑥) , 𝑢 ∈ [0, +∞[ .
Note that using probiotics means to reverse the antibiotics actions using 𝜀 𝑖 → -𝜀 𝑖 , and the parameters 𝜀 𝑖 being related to the choice of antibiotics or probiotics.

Fecal injection

In the protocol described in [START_REF] Jones | Navigation and control of outcomes in a generalized Lotka-Volterra model of the microbiome[END_REF], after a preliminary administration of antibiotic to an uninfected individual, C. difficile is inoculated to jump to an infected state and a final single fecal injection is administrated.

Hence, this leads to consider the time minimal control problem for the single-input control system:

ẋ = 𝑋(𝑥) + 𝑢 𝑌 (𝑥) , 𝑢 ∈ [0, 𝑚] ,
where the terminal target is the manifold {𝑥 1 = 𝑑}. In the protocol, a constant antibiotic injection has the effect of shifting the equilibria of the free motion, and the final fecal injection has no effect on the 𝑥 1 -population but is related to enter in a stability domain in the terminal manifold. Hence, one can restrict our analysis to the antibiotic treatment either in the permanent case or in the control-data frame.

Controllability and feedback linearization

Preliminaries

In this section, the system ẋ = 𝑋(𝑥) + 𝑢 𝑌 (𝑥), 𝑢 ∈ [0, 1], is denoted by 𝐹 (𝑥, 𝑢) and the control 𝑢 is extended to the whole ℝ and is shortly written as (𝑋, 𝑌 ). Clearly, the existence of singular trajectories is an obstruction to feedback linearization, see [START_REF] Angulo | A theoretical framework for controlling complex microbial communities[END_REF] for the applications to microbial communities.

Computations of singular trajectories.

One uses the system (8) computations being neat with the iterated Poisson brackets

{𝐻 𝑋 , 𝐻 𝑌 } = d ⃗ 𝐻 𝑋 ( 𝐻 𝑌 ) = 𝐻 [𝑋,𝑌 ] .
From ( 8), one has 𝐻 𝑌 = 0 and deriving twice with respect to time one gets

𝐻 𝑌 (𝑧(𝑡)) = {𝐻 𝑌 , 𝐻 𝑋 }(𝑧(𝑡)) = 0, {{𝐻 𝑌 , 𝐻 𝑋 }, 𝐻 𝑋 }(𝑧(𝑡)) + 𝑢(𝑡) {{𝐻 𝑌 , 𝐻 𝑋 }, 𝐻 𝑌 }(𝑧(𝑡)) = 0 . ( 9 
)
The singular control denoted 𝑢 𝑠 associated to the extremal lift 𝑡  → 𝑧(𝑡) = (𝑥(𝑡), 𝑝(𝑡)) is called of minimal order 2 if the following regularity condition is satisfied

{{𝐻 𝑌 , 𝐻 𝑋 }, 𝐻 𝑌 }(𝑧) = 𝑝 ⋅ [[𝑌 , 𝑋], 𝑌 ](𝑥) ≠ 0 , along the extremal 𝑡  → (𝑝(𝑡), 𝑥(𝑡)).
Otherwise from [START_REF] Bourdin | Optimal sampled-data control, and generalizations on time scales[END_REF], one gets:

{{{𝐻 𝑌 , 𝐻 𝑋 }, 𝐻 𝑋 }, 𝐻 𝑋 }(𝑧) + 𝑢 {{{𝐻 𝑌 , 𝐻 𝑋 }, 𝐻 𝑋 }, 𝐻 𝑌 }(𝑧) = 0 , {{{𝐻 𝑌 , 𝐻 𝑋 }, 𝐻 𝑌 }, 𝐻 𝑋 }(𝑧) + 𝑢 {{{𝐻 𝑌 , 𝐻 𝑋 }, 𝐻 𝑌 }, 𝐻 𝑌 }(𝑧) = 0 , ( 10 
)
and if again 𝑢(⋅) can be deduced from the two previous linear equations, the corresponding control 𝑢 𝑠 is called of order 3. One can iterate the computation to deduce singular arcs at any order.

One application to controllability which generalizes the standard controllability result by linearization from [START_REF] Lee | Foundations of Optimal Control Theory[END_REF] is the following.

Theorem 1. Let (𝑥, 𝑢) be a control trajectory pair on [0, 𝑇 ] and assume that (𝑥, 𝑢) is not singular. Then the image of the extremity mapping at 𝑢(⋅) is open that is there exists an open set 𝑊 , centered at 𝑥(𝑇 ) = 𝐸 𝑥(0),𝑇 (𝑢) such that 𝑊 ⊂ 𝐴 + (𝑥 0 , 𝑇 ) (provided the control 𝑢 is strictly feasible).

Remark 1. The previous results can be applied to our study with some care to deal with feasible controls. Indeed, in practice, one has a constraint 𝑢 ∈ [0, 1]. Hence, this leads to consider only controls such that 𝑢 is strictly admissible, that is 0 < 𝑢 < 1. If 𝑢 = 0 or 𝑢 = 1, 𝑢 is said saturating the control constraints.

A GEOMETRIC APPROACH TO OPTIMAL CONTROL: THE PERMANENT VERSUS

DIGITAL CASE

Notations

In this section, we use the notation ẋ = 𝐹 (𝑥) + 𝑢 𝐺(𝑥), |𝑢| ≤ 1, so that, the cone 𝐶 of admissible directions is generated by

𝐹 ± 𝐺, that is 𝑋 = 𝐹 -𝐺, 𝑌 = 2 𝐺.

Maximum Principle

Permanent case

First of all, we must introduce the notations and definitions related to the Maximum Principle. Consider the control system

ẋ = 𝐹 + 𝑢𝐺, |𝑢| ≤ 1. Denote by 𝐻 = 𝐻 𝐹 + 𝑢𝐻 𝐺 the Hamiltonian lift with 𝐻 𝐹 (𝑧) = 𝑝 ⋅ 𝐹 (𝑥), 𝐻 𝐺 = 𝑝 ⋅ 𝐺(𝑥), with 𝑥 ∈ 𝑀 ⋍ ℝ 𝑁 .
Let 𝑵 be a terminal manifold and consider the time minimal control problem, with terminal manifold 𝑵. The Maximum Principle [START_REF] Lee | Foundations of Optimal Control Theory[END_REF] tells us that if (𝑥, 𝑢) is a time minimal trajectory on [0, 𝑇 ] then there exists 𝑝(⋅) non zero such that the triplet (𝑥, 𝑝, 𝑢) is solution of the Hamiltonian dynamics:

ẋ = 𝜕𝐻 𝜕𝑝 , ṗ = - 𝜕𝐻 𝜕𝑥 , 𝐻(𝑥, 𝑝, 𝑢) = max |𝑣|≤1 𝐻(𝑥, 𝑝, 𝑣) = 𝑀(𝑥, 𝑝) . ( 11 
)
Moreover, the maximal Hamiltonian 𝑀 is a nonnegative constant 𝑀 = -𝑝 0 ≥ 0 and at the final time 𝑇 the pair (𝑥, 𝑝) satisfies the transversality condition:

𝑝(𝑇 ) ⟂ 𝑇 * 𝑥(𝑡) 𝑵 . ( 12 
)
Definition 4. A triplet (𝑥, 𝑝, 𝑢) solution ( 11) is called extremal and a 𝑥-projection of an extremal is called a geodesic. Denoting 𝑧 = (𝑥, 𝑝) the symplectic coordinates, an extremal is called regular if 𝑢(𝑡) = 𝑠𝑖𝑔𝑛 𝐻 𝐺 (𝑧(𝑡)) a.e. and singular if 𝐻 𝐺 (𝑧(𝑡)) = 0

identically. An extremal is called exceptional if the maximized Hamiltonian 𝑀 is zero. A BC-extremal is an extremal satisfying the transversality condition [START_REF] Jones | Navigation and control of outcomes in a generalized Lotka-Volterra model of the microbiome[END_REF]. A switching time is a time such that the extremal control is discontinuous and a BC-extremal is a regular extremal such that the number of switches on [0, 𝑇 ] is finite. We denote respectively by 𝜎 + , 𝜎 -, 𝜎 𝑠 , bang arcs associated to 𝑢 = +1, 𝑢 = -1 or 𝑢 = 𝑢 𝑠 singular and 𝜎 1 𝜎 2 is the concatenation of the two arcs 𝜎 1 , 𝜎 2 .

Definition 5.

Taking an open set 𝑉 of 𝑀, the problem (restricted to 𝑉 ) is called geodesically complete if, for each pair 𝑥 0 , 𝑥 1 ∈ 𝑉 there exists a time minimizing geodesics joining 𝑥 0 to 𝑥 1 . Fixing the target to 𝑵, a time minimal synthesis is a (discontinuous)

feedback 𝑥  → 𝑢 * (𝑥) so that the solution of d𝑥 d𝑡 = 𝑋(𝑥) + 𝑢 * (𝑥)𝑌 (𝑥) is well defined and 𝑢 * (𝑥) is the optimal solution to steer 𝑥 to the target 𝑵, in minimum time.

Definition 6. Let (𝑧, 𝑢 𝑠 ) be a reference singular extremal of order 2, so that 𝑢 𝑠 is defined by [START_REF] Bourdin | Optimal sampled-data control, and generalizations on time scales[END_REF]. The associated singular trajectory (𝑥, 𝑢 𝑠 ) is called strict if 𝑝 is unique up to a scalar. In the strict case, singular extremals are said to be hyperbolic if

𝐻 𝐹 (𝑧) {{𝐻 𝐺 , 𝐻 𝐹 }, 𝐻 𝐺 }(𝑧) > 0, elliptic if 𝐻 𝐹 (𝑧) {{𝐻 𝐺 , 𝐻 𝐹 }, 𝐻 𝐺 }(𝑧) < 0.
Note that in the exceptional case, since 𝑀 = 0, both 𝑝 and -𝑝 can be taken as adjoint vector.

One has the high order Maximum Principle [START_REF] Krener | The high order maximal principle and its application to singular extremals[END_REF].

Proposition 4. Let (𝑧(⋅) = (𝑥(⋅), 𝑝(⋅)) be a singular extremal on [0, 𝑇 ] and associated to a control which is strictly feasible. Then a necessary time minimizing condition is the generalized Legendre-Clebsch condition

𝜕 𝜕𝑢 d 2 d𝑡 2 𝜕𝐻 𝜕𝑢 |𝑧(𝑡) = {{ 𝐻 𝐺 , 𝐻 𝐹 } , 𝐻 𝐺 } (𝑧(𝑡)) ≥ 0.
If the inequality is strict it is called the strong generalized Legendre-Clebsch condition.

Remark 2. Reversing the previous inequality leads to a necessary time maximizing condition.

Small time classification of regular extremals

One recalls the following result [START_REF] Kupka | Geometric theory of extremals in optimal control problems. I. The fold and Maxwell case[END_REF].

Definition 7. Recall that 𝜎 + (respectively 𝜎 -) denotes a bang arc with constant control 𝑢 = 1 (respectively 𝑢 = -1) and 𝜎 𝑠 a feasible singular arc. We denote by 𝜎 1 𝜎 2 the arc 𝜎 1 followed by 𝜎 2 . The surface Σ ∶ 𝐻 𝐺 (𝑧) = 0 is called the switching surface

and let Σ ′ ⊂ Σ given by 𝐻 𝐺 (𝑧) = 𝐻 [𝐺,𝐹 ] (𝑧) = 0. Let 𝑧(⋅) = (𝑥(⋅), 𝑝(⋅)) be a reference curve on [0, 𝑇 ]. We note Φ(𝑡) = 𝐻 𝐺 (𝑧(𝑡))
the switching function, coding the switching times.

Deriving twice Φ with respect to time, one gets:

Φ(𝑡) = {𝐻 𝐺 , 𝐻 𝐹 } (𝑧(𝑡))
and

Φ(𝑡) = {{𝐻 𝐺 , 𝐻 𝐹 }, 𝐻 𝐹 } (𝑧(𝑡)) + 𝑢(𝑡){{𝐻 𝐺 , 𝐻 𝐹 }, 𝐻 𝐺 } (𝑧(𝑡)) . ( 13 
)
Lemma 1. Assume that 𝑡 is an ordinary switching time that is Φ(𝑡) = 0 and Φ(𝑡) ≠ 0. Then, near 𝑧(𝑡), every extremal projects

onto 𝜎 + 𝜎 -if Φ(𝑡) < 0 and 𝜎 -𝜎 + if Φ(𝑡) > 0.
The situation is more complex for contact of order 2 with Σ.

Definition 8. The case Φ(𝑡) = Φ(𝑡) = 0 and Φ(𝑡) ≠ 0 for both 𝑢 = ±1 in ( 13) is called the fold case and hence 𝑧(𝑡) ∈ Σ ′ .

Assume that Σ ′ is a regular surface of codimension two. We have three cases:

• parabolic case: Φ+ (𝑡) Φ-(𝑡) > 0;

• hyperbolic case: Φ+ (𝑡) > 0 and Φ-(𝑡) < 0;

• elliptic case: Φ+ (𝑡) < 0 and Φ-(𝑡) > 0.

where Φ𝜀 , 𝜀 ∈ {-1, 1} is given by ( 13) with 𝑢 = 𝜀.

Denote by 𝑢 𝑠 (⋅) the singular control of order 2 defined by [START_REF] Bourdin | Optimal sampled-data control, and generalizations on time scales[END_REF], 𝑧(⋅) = (𝜎 𝑠 , ⋅), we assume that the regularity con-

dition {{𝐻 𝐺 , 𝐻 𝐹 }, 𝐻 𝐺 }(𝑧(𝑡)) ≠ 0 holds. The arc 𝜎 𝑠 is hyperbolic if 𝐻 𝐹 (𝑧(𝑡)) {{𝐻 𝐺 , 𝐻 𝐹 }, 𝐻 𝐺 }(𝑧(𝑡)) > 0, elliptic if 𝐻 𝐹 (𝑧(𝑡)) {{𝐻 𝐺 , 𝐻 𝐹 }, 𝐻 𝐺 }(𝑧(𝑡)) < 0.
In the parabolic case, it can be absent or not feasible, that is,

|𝑢 𝑠 (𝑡)| > 1.
We have the following result.

Proposition 5. In the neighborhood of 𝑧(𝑡), every extremal projects onto:

• in the parabolic case: 𝜎 + 𝜎 -𝜎 + or 𝜎 -𝜎 + 𝜎 -;

• in the hyperbolic case: 𝜎 ± 𝜎 𝑠 𝜎 ± ;

• in the elliptic case, every extremal is bang-bang but the number of switches is not uniformly bounded.

Classification of the regular syntheses near the terminal manifold using singularity theory

This is the main technical tool of this article, we use the techniques to classify generically the time minimal synthesis [START_REF] Bonnard | Classification générique de synthèses temps minimales avec cible de codimension un et applications[END_REF][START_REF] Launay | The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two[END_REF] near the terminal manifold. Before introducing the results, we present the following properties.

The role of the transversality condition

Let 𝑥 0 ∈ 𝑵 and identify locally 𝑥 0 to 0 and 𝑵 to the plane 𝑥 1 = 0, which divides the space into two neighborhood 𝑈 + and 𝑈 - of 0 contained respectively in 𝑥 1 > 0 and 𝑥 1 < 0. The cones of admissible directions is given by the convex cone 𝐶 generated {𝐹 ± 𝐺}, which is strict except in the collinear case. The normal to 𝑵 can be taken as 𝑛 = (1, 0, … , 0) 𝑇 . Clearly, in the generic case, the time minimal policy for small time amounts to maximize the 𝑛 ⋅ ẋ = ẋ1 among the set of all admissible controls, which is precisely the transversality condition. Non generic case occurs when no information is obtained from this condition.

The problem can be classified into the flat and non flat case. The flat case being when 𝐺 is everywhere tangent to 𝑵.

Concepts of regular synthesis

Take a terminal point 𝑥 0 identified to 0 and let 𝑈 be a small open neighborhood of 0. The terminal manifold 𝑵 can be locally defined as 𝑵 = 𝑓 -1 (0), where 𝑓 is a submersion from 𝑈 onto a neighborhood of 0 in ℝ. The set of triples (𝐹 , 𝐺, 𝑓 )

is endowed with the ℂ ∞ -Whitney topology and we denote by 𝑗 𝑛 𝐹 (𝑥 0 ) (resp. 𝑗 𝑛 𝐺(𝑥 0 ), 𝑗 𝑛 𝑓 (𝑥 0 )) the 𝑛-jet of 𝐹 (resp. 𝐺, 𝑓 ) obtained by taking the Taylor expansion at 𝑥 0 . We say that the triplet (𝐹 , 𝐺, 𝑓 ) has at 𝑥 0 a singularity of codimension 𝑖 if

( 𝑗 𝑛 𝐹 (𝑥 0 ), 𝑗 𝑛 𝐺(𝑥 0 ), 𝑗 𝑛 𝑓 (𝑥 0 ) ) ∈ Σ 𝑖 , a semialgebraic submanifold of codimension 𝑖 in the jet space.
The references [START_REF] Bonnard | Classification générique de synthèses temps minimales avec cible de codimension un et applications[END_REF][START_REF] Launay | The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two[END_REF] classify up to codimension ≤ 2 the local time minimal syntheses in a neighborhood 𝑈 of 𝑵 by estimating up to any order the switching and cut loci.

Actually, the optimal control 𝑢 * not always define on the whole set 𝑈 since, for some 𝑥 ∈ 𝑈 the target 𝑵 is not accessible.

This can be shown to be related to the exceptional case. It can also happen that 𝑢 * is not uniquely defined. The set of such points is called the splitting locus and is denoted by 𝐿.

If 𝑢 * (𝑥) exists and is unique, in the regular case |𝑢 * (𝑥)| = 1 and 𝑈 can be partitioned into 𝑈 + where 𝑢 * (𝑥) = 1 and 𝑈 -where

𝑢 * (𝑥) = -1.
In our work, we can compute the subanalytic surface 𝑆 separating 𝑈 + from 𝑈 -and its structure of three kinds.

• Switching surface: closure of the set points where 𝑢 * is regular but not continuous, denoted by 𝑊 # (# ∈ {+, -, 𝑠}) where at a switching point the control is taken right-continuous by convention.

• Cut locus: if 𝜎 is a minimizing curve, it will be defined on an interval [𝑇 , 0], with 𝑇 < 0, integrating backwards from the final point on 𝑵 and the cut-locus is the closure of the set of cut points where the trajectory loses its optimality status. It is denoted by 𝐶 and contains the splitting locus.

• Singular locus: it is foliated by optimal singular arcs and denoted by Γ 𝑠 . Recall that if 𝑢 𝑠 ∈ ]-1, +1[ the singular trajectory

𝜎 𝑠 is strictly feasible, if 𝑢 𝑠 ∈ {-1, +1} it is saturated.
To simplify the estimates of the previous strata, one use semi-normal forms for the restricted actions of the feedback group related to local diffeomorphisms 𝜑 preserving 0 and exchange of 𝑢 into -𝑢, so that one can identified 𝜎 + to 𝜎 -in the classification.

Description of the local syntheses

Next we present a dictionary of syntheses describing the classification of syntheses up to the codimension one. They are represented as 2𝑑-pictures, thanks to the existence in those small codimension case to the 𝐶 0 -foliations of the syntheses in invariant planes. One distinguishes between the flat case (see Figures 91011) and non flat case (see Figures 45678).

A much more complete dictionary can be found in [START_REF] Bonnard | Classification générique de synthèses temps minimales avec cible de codimension un et applications[END_REF][START_REF] Launay | The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two[END_REF], in particular to deal with generic 3𝑑-systems, where more complicated phenomenon can occur due to non-existence of foliations by 2𝑑-planes. Estimates of the strata are given related to the jet spaces of the triples (𝑋, 𝑌 , 𝑓 ) at 𝑥 0 = 0. The semi-algebraic sets Σ 𝑖 are described and the syntheses can be described using Lie algebraic computations only. Applications to our specific problem can be given by gluing such syntheses, see [START_REF] Bonnard | Optimal Control of the Controlled Lotka-Volterra Equations with Applications -The Permanent Case[END_REF].

The digital case versus the permanent case

In the digital case, we divide [0, 𝑇 ] into 0 = 𝑡 0 < 𝑡 

) -𝑡 𝑛-1 ≥ 𝐼 𝑚 holds.
Each admissible perturbation provides a tangent solution of the linear differential equation:

ẇ(𝑡) = ( 𝜕𝐹 𝜕𝑥 + 𝑢 𝛿 𝜕𝐺 𝜕𝑥 ) ( 𝑥 𝛿 (𝑡) ) ⋅ 𝑤(𝑡), (14) 
where (𝑥 𝛿 , 𝑢 𝛿 ) denotes the control trajectory pair on [0, 𝑇 ] given by 𝛿.

If 𝜑 denotes the Mayer cost to be maximized, from optimality one gets for every admissible perturbation. Taking the limit as 𝜀 → 0 + , one obtains the condition 𝜕𝜑 𝜕𝑥

𝜑 ( 𝑥 𝛿 (𝑡) ) -𝜑 ( 𝑥 δ (𝑡) ) ≥ 0 , 𝑊 - 𝑵 𝜎 + 𝜎 - 𝜎 + 𝐶 𝑵 𝜎 - 𝜎 + FIGURE 7 
( 𝑥 𝛿 (𝑇 ) ) ⋅ 𝑤(𝑇 ) ≥ 0.
We introduce the adjoint equation

ṗ(𝑡) = -𝑝(𝑡) ( 𝜕𝐹 𝜕𝑥 + 𝑢 𝛿 𝜕𝐺 𝜕𝑥 ) ( 𝑥 𝛿 (𝑡) ) ,
where 𝑝(⋅) is written as a row-vector with terminal condition In particular, for 𝐿 ∞ -perturbations one gets.

𝑝(𝑇 ) = - 𝜕𝜑 𝜕𝑥 ( 𝑥 𝛿 (𝑇 ) ) . 𝑊 - 𝑵 𝜎 + 𝜎 - 𝜎 + 𝐶 𝑵 𝜎 - 𝜎 + FIGURE 10 
Proposition 6. In the sampled-data case, with fixed interpulses, one gets the necessary optimality condition

𝑡 𝑖+1 ∫ 𝑡 𝑖 ( 𝑝(𝑠)𝐺(𝑥 𝛿 (𝑡)) ) 𝛿𝑢 𝑖 ≤ 0 ,
for each admissible variation 𝛿𝑢 𝑖 .

Similarly, one can derive the necessary conditions with free sampling times.

This leads to the so-called (indirect) Pontryagin type necessary optimality conditions for the sampled-data case. The numerical implementation of such condition is difficult and this requires to a more direct treatment.

Optimal sampled-data control and model predictive control (MPC) algorithm

In the optimal sampled-data control frame, the problem leads to consider a finite dimensional problem of the form:

min 𝛿 𝐽 (𝑥 0 , 𝛿) ,
where 𝑥 0 is the initial condition and 𝛿 = ( 𝑡 1 , … , 𝑡 𝑛 , 𝑢 0 , … , 𝑢 𝑛-1 ) represents the finite dimensional set of controls associated to the choice of time sampling and control amplitudes of each sampling and constraints are given by the interpulses constraints

𝑡 𝑖 -𝑡 𝑖-1 ≥ 𝐼 𝑚 and each 𝑢 𝑖 ∈ [0, 1].
The direct approach amounts to apply an optimization algorithm to search for the optimum. In our study, it will be coupled with the following MPC approach.

MPC algorithm.

One starts with the initial state 𝑥 0 at time 𝑡 0 which practically can be estimated by x0 . We fix an horizon of length 𝑘 and we apply the optimization algorithm over the subset of admissible controls  of ℝ 2𝑘 . This routine leads to compute the optimization sequences 

𝛿 * 𝑘 = ( 𝑡 * 1 , … , 𝑡 * 𝑘 , 𝑢 * 0 , … , 𝑢 * 𝑘-1

COMPUTATIONS AND PRELIMINARY RESULTS ON THE GENERALIZED

LOTKA-VOLTERRA MODEL

We start with the control system (4) with either an antibiotic or a probiotic agent. Using dimensionless coordinates, 𝑥 𝑖 ← 𝑥 𝑖 ∕𝑥 * 𝑖 , 𝑖 = 1, 2 where 𝑥 * 𝑖 are the coordinates of the persistent equilibrium, the persistent equilibrium is normalized to (1, 1) and substituting 𝜖 to 𝜌 = (𝜌 1 , 𝜌 2 ) ⊺ according to 𝜌 = -𝐴 -1 𝜖 leads to the system:

ẋ = diag 𝑥 𝐴 (𝑥 -𝟏 -𝑢𝜌)
with 𝟏 = (1, 1) ⊺ . Therefore the vector fields used in this section resulting from this normalization are :

𝑋 = diag 𝑥 𝐴 (𝑥 -𝟏) , 𝑌 = -diag 𝑥 𝐴 𝜌.

Geometric analysis in the 2𝑑-case

Equilibria and the collinear set

The collinear set  is one of the main feedback invariant related to the computations of free equilibria with no treatment 𝑢 = 0 and forced equilibria with maximal dosing 𝑢 = 1. This set is the one dimensional algebraic variety projection on the state-space of the set

 = {(𝑥, 𝑢) ∈ ℝ 2 × ℝ, ∃𝑢 such that 𝑋(𝑥) + 𝑢 𝑌 (𝑥) = 0}. ( 15 
)
Moreover the control 𝑢 has to be feasible : 𝑢 ∈ [0, 1]. This projection is also given by the determinantal variety: det(𝑋(𝑥), 𝑌 (𝑥)) = 0:

𝑥 1 𝑥 2 det 𝐴 ( 𝜌 1 (𝑥 2 -1) -𝜌 2 (𝑥 1 -1) ) = 0,
and it consists of the half-line  ∶ 𝑥 2 = 1 + 𝜌 2 ∕𝜌 1 (𝑥 1 -1) in the positive orthant 𝑥 1 , 𝑥 2 ≥ 0. The control along  such that 𝑋(𝑥) + 𝑢 𝑒 (𝑥) 𝑌 (𝑥) = 0 is given by 𝑢 𝑒 (𝑥) = (𝑥 1 -1)∕𝜌 

Singular locus in the 2𝑑-case

Singular trajectories are located on the set

 ∶ det([𝑌 , 𝑋](𝑥), 𝑌 (𝑥)) = 0,
which is given by:

 ∶ 𝑥 1 𝑥 2 det 𝐴 ( 𝜌 1 𝑥 2 ( 𝜌 1 𝑎 21 + 𝜌 2 𝑎 22 ) -𝜌 2 𝑥 1 ( 𝜌 1 𝑎 11 + 𝜌 2 𝑎 12 )) ,
and corresponds to the half-line

𝑥 2 = 𝑥 1 𝜌 2 ( 𝜌 1 𝑎 11 + 𝜌 2 𝑎 12 ) ∕ ( 𝜌 1 ( 𝜌 1 𝑎 21 + 𝜌 2 𝑎 22 ))
in the positive orthant.

The intersection of  and  is therefore:

𝑥 𝑠𝑒 = ( (𝜌 1 -𝜌 2 ) ( 𝜌 1 𝑎 21 + 𝜌 2 𝑎 22 ) 𝜌 2 ( 𝜌 1 𝑎 11 -𝜌 1 𝑎 21 + 𝜌 2 𝑎 12 -𝜌 2 𝑎 22 ) , (𝜌 1 -𝜌 2 ) ( 𝜌 1 𝑎 11 + 𝜌 2 𝑎 12 ) 𝜌 1 ( 𝜌 1 𝑎 11 -𝜌 1 𝑎 21 + 𝜌 2 𝑎 12 -𝜌 2 𝑎 22 ) ) . ( 17 
)
Now we investigate the existence of a singular control in the optimal policy near the point 𝑥 𝑠𝑒 ) . On , we have 𝛼 = 0, 𝑝 ⋅ 𝑌 = 0 and from ( 18) the strong generalized Legendre-Clebsch condition yields

0 < 𝑝 ⋅ [[𝑌 , 𝑋], 𝑌 ] = 𝑝 ⋅ (𝑌 ⋅ ∇𝛼)𝑋,
which is equivalent to 𝑌 ⋅ ∇𝛼 > 0 (we oriented 𝑝 such that 𝑝 ⋅ 𝑋 ≥ 0). Geometrically this means that 𝑌 has to point in the region where 𝛼 > 0.

Computation in the higher dimensional cases

Classification of singular trajectories

In the 𝑁 ≥ 3 dimensional case the classification of singular trajectories is a very rich problem as illustrated by the 3d-case that we present next.

Let (𝑋, 𝑌 ) be a pair of vector fields and we introduce the following determinants :

• 𝐷 𝑋,𝑌 = det(𝑌 , [𝑌 , 𝑋], [[𝑌 , 𝑋], 𝑌 ]), • 𝐷 ′ 𝑋,𝑌 = det(𝑌 , [𝑌 , 𝑋], [[𝑌 , 𝑋], 𝑋]),
• 𝐷 ′′ 𝑋,𝑌 = det(𝑌 , [𝑌 , 𝑋], 𝑋).

Proposition 8. The singular trajectories of order 2 are defined by the dynamics:

ẋ = 𝑋 𝑠 (𝑥) = 𝑋(𝑥) - 𝐷 ′ (𝑥) 𝐷(𝑥) 𝑌 (𝑥) on ℝ 3 .
Proof. In the 3d-case, the adjoint vector 𝑝 can be eliminated using the relations:

𝑝 ⋅ 𝑌 (𝑥) = 𝑝 ⋅ [𝑌 , 𝑋](𝑥) = 𝑝 ⋅ ( [[𝑌 , 𝑋] , 𝑋] (𝑥) + 𝑢 𝑠 [[𝑌 , 𝑋] , 𝑌 ] (𝑥) ) ,
where 𝑢 𝑠 is the singular control. Hence it is given by the feedback: 𝑢 𝑠 = -𝐷 ′ (𝑥) 𝐷(𝑥) .

Proposition 9. In dimension ) 𝐷 ′′ 𝑋,𝑌 (𝜙 -1 (𝑥)), 𝐷 𝑋+𝛼𝑌 ,𝛽𝑌 (𝑥) = 𝛽 4 𝐷 𝑋,𝑌 (𝑥),

𝐷 ′ 𝑋+𝛼𝑌 ,𝛽𝑌 (𝑥) = 𝛽 3 𝐷 ′ 𝑋,𝑌 (𝑥), 𝐷 ′′ 𝑋+𝛼𝑌 ,𝛽𝑌 (𝑥) = 𝛽 2 𝐷 ′′ 𝑋,𝑌 (𝑥).
Hence 𝜆 1 is a covariant.

Moreover we have:

Corollary 1. The sets 𝐷 ′′ = 0 , 𝐷𝐷 ′′ > 0 and 𝐷𝐷 ′′ < 0, foliated respectively by exceptional, hyperbolic and elliptic singular arcs, are invariant for the solutions of ẋ = 𝑋 𝑠 (𝑥).

Proof. We use the relation

(𝑢 ∧ 𝑣) ⋅ 𝑤 = det(𝑢, 𝑣, 𝑤)
to deduce

(𝑌 ∧ [𝑌 , 𝑋]) ⋅ 𝑋 = det(𝑌 , [𝑌 , 𝑋], 𝑋) (𝑌 ∧ [𝑌 , 𝑋]) ⋅ 𝑌 = det(𝑌 , [𝑌 , 𝑋], 𝑌 )
to classify singular trajectories with the strong generalized Clebsch condition

(𝑝 ⋅ 𝑋(𝑥))(𝑝 ⋅ [[𝑌 , 𝑋] , 𝑋] (𝑥)) > 0 with 𝑝 ⋅ 𝑌 (𝑥) = 𝑝 ⋅ [𝑌 , 𝑋] (𝑥) = 0.
This gives the determinantal conditions.

Computations for the GLV-model.

In the 3-dimensional GLV-model, the expressions of 𝐷, 𝐷 ′ , 𝐷 ′′ in the original coordinates are:

𝐷(𝑥)∕𝑥 1 𝑥 2 𝑥 3 = ( 𝜀 2 1 𝑥 1 𝑎 21 + 𝜀 1 ( 𝜀 2 ( 𝑥 2 𝑎 22 -𝑥 1 𝑎 11 ) + 𝜀 3 𝑥 3 𝑎 23 ) -𝜀 2 ( 𝜀 2 𝑥 2 𝑎 12 + 𝜀 3 𝑥 3 𝑎 13 )) ( 𝜀 2 1 𝑥 1 𝑎 31 + 𝜀 2 2 𝑥 2 𝑎 32 + 𝜀 2 3 𝑥 3 𝑎 33 ) + ( 𝜀 2 1 𝑥 1 𝑎 11 + 𝜀 2 2 𝑥 2 𝑎 12 + 𝜀 2 3 𝑥 3 𝑎 13 ) ( 𝜀 2 2 𝑥 2 𝑎 32 + 𝜀 3 𝜀 2 ( 𝑥 3 𝑎 33 -𝑥 2 𝑎 22 )
-𝜀 

+ 𝑥 3 𝑎 23 + 𝑟 2 )) -𝜀 3 𝑥 3 ( 𝑎 13 ( 𝑥 1 ( 𝑎 31 -𝑎 11 ) + 𝑥 2 𝑎 32 + 𝑟 3 ) -𝑥 2 𝑎 12 𝑎 23 ) ) - ( 𝜀 2 1 ( -𝑥 1 ) 𝑎 31 + 𝜀 1 ( 𝜀 3 ( 𝑥 1 𝑎 11 -𝑥 3 𝑎 33 ) -𝜀 2 𝑥 2 𝑎 32 ) + 𝜀 3 ( 𝜀 2 𝑥 2 𝑎 12 + 𝜀 3 𝑥 3 𝑎 13 )) ( 𝜀 1 𝑥 1 ( 𝑥 3 𝑎 23 𝑎 31 -𝑎 21 ( 𝑥 3 𝑎 13 + 𝑥 2 ( 𝑎 12 -𝑎 22 ) + 𝑟 1 )) + 𝜀 2 𝑥 2 ( -𝑟 2 𝑎 22 + 𝑥 1 𝑎 21 ( 𝑎 12 -𝑎 22 ) + 𝑥 3 𝑎 23 ( 𝑎 32 -𝑎 22 ) ) + 𝜀 3 𝑥 3 ( 𝑥 1 𝑎 13 𝑎 21 -𝑎 23 ( 𝑥 1 𝑎 31 + 𝑥 2 ( 𝑎 32 -𝑎 22 ) + 𝑟 3 )) ) , 𝐷 ′′ (𝑥)∕𝑥 1 𝑥 2 𝑥 3 = ( -𝜀 2 1 𝑥 1 𝑎 21 + 𝜀 1 ( 𝜀 2 ( 𝑥 1 𝑎 11 -𝑥 2 𝑎 22 ) -𝜀 3 𝑥 3 𝑎 23 ) + 𝜀 2 ( 𝜀 2 𝑥 2 𝑎 12 + 𝜀 3 𝑥 3 𝑎 13 )) ( 𝑥 1 𝑎 31 + 𝑥 2 𝑎 32 + 𝑥 3 𝑎 33 + 𝑟 3 ) + ( -𝜀 2 2 𝑥 2 𝑎 32 + 𝜀 3 𝜀 2 ( 𝑥 2 𝑎 22 -𝑥 3 𝑎 33 ) + 𝜀 2 3 𝑥 3 𝑎 23 + 𝜀 1 𝑥 1 ( 𝜀 3 𝑎 21 -𝜀 2 𝑎 31 )) ( 𝑥 1 𝑎 11 + 𝑥 2 𝑎 12 + 𝑥 3 𝑎 13 + 𝑟 1 ) + ( 𝜀 2 1 𝑥 1 𝑎 31 + 𝜀 1 ( 𝜀 2 𝑥 2 𝑎 32 + 𝜀 3 ( 𝑥 3 𝑎 33 -𝑥 1 𝑎 11 )) -𝜀 3 ( 𝜀 2 𝑥 2 𝑎 12 + 𝜀 3 𝑥 3 𝑎 13 ) ) ( 𝑥 1 𝑎 21 + 𝑥 2 𝑎 22 + 𝑥 3 𝑎 23 + 𝑟 2 ) .

Numerical methods

We consider the controlled system ẋ = 𝑋 + 𝑢 𝑌 , 𝑋 = diag 𝑥 𝐴 (𝑥 -𝟏) , 𝑌 = -diag 𝑥 𝐴 𝜌. The aim is to reach in minimum time an healthy region defined by 𝑵(𝑥) ≤ 0 and the formulation of this class of problems is

(𝑃 ) min 𝑢(⋅) 𝑵(𝑥(𝑇 )) ẋ(𝑡) = 𝑋(𝑥(𝑡)) + 𝑢(𝑡) 𝑌 (𝑥(𝑡)), 𝑢(𝑡) ∈ [0, 1], 𝑎.𝑒. 𝑡 ∈ [0, 𝑇 ] 𝑥(0) = 𝑥 0 (given).
We provide numerical results from a standard direct approach via the Bocop software (see https://www.bocop.org/) and an intuitive model predictive control method described hereafter.

Direct method

It is usually a quite robust method with respect to the initialization, easy to implement but the method does not exploit the geometric properties of the problem, which give the structure of the optimal control. The method goes as follows. Discretizing the state and the control spaces for (𝑃 ), we obtain a nonlinear finite optimization problems where the derivatives are computed using automatic differentiation and the optimization variables are the values of the control at each time step. Then a primal dual interior point algorithm is used to solve this optimization problem.

Model predictive control method

While the direct method discretizes the problem on the whole interval of time, which may be inefficient, a model predictive control (MPC) method solves iteratively finite dimensional optimization problems of smaller sizes i.e. on a reduced time interval.

In terms of the problem (𝑃 ), we consider an iterative variable 𝑥 𝑐 , standing for the current state of the system and initialized to 𝑥 0 . We solve iteratively optimal control problems of the form

(𝑃 ′ ) min 𝑢 1 ,…,𝑢 ℎ ∈[0,1] 𝑵(𝑥(𝑡 ℎ )) ẋ(𝑡) = 𝑋(𝑥(𝑡)) + 𝑢 𝑖 𝑌 (𝑥(𝑡)), 𝑡 ∈ [𝑡 𝑖 , 𝑡 𝑖+1 ], 𝑖 = 0, … , ℎ -1 𝑥(0) = 𝑥 𝑐
where ℎ is the horizon and 0 = 𝑡 0 < 𝑡 1 < ⋯ < 𝑡 ℎ are given fixed times.

Therefore the main steps of our MPC algorithm are:

1. Initialization :

• horizon : 𝑡 ℎ ,

• Number of controls on [0, 𝑡 ℎ ] : ℎ,

• outer time step : 𝛿 ≪ 𝑡 ℎ ,

• current state state 𝑥 𝑐 = 𝑥 0 ,

• ℎ optimization variable : 𝑢 = (𝑢 1 , … , 𝑢 ℎ ),

• threshold 𝜂 > 0. This algorithm is implemented in the WOLFRAM LANGUAGE : inside the conditional loop, solutions of (𝑃 ′ ) are computed with the routine FINDMINIMUM based on an interior point method and the point 𝑥(𝛿; 𝑥 𝑐 , 𝑢 1 ) is computed with the routine NDSOLVEVALUE based on an explicit Runge-Kutta scheme.

Iterations : While 𝑵(𝑥

Two dimensional case

In this case, the geometric computations were presented in Section 4.1. We make further normalization to obtain the following geometric picture:

• the persistent equilibrium located at (1, 1) is a node,

• the collinearity locus  intersects the singular locus  at 𝑥 𝑒𝑠 (given by ( 17)),

• the singular control is admissible at 𝑥 𝑒𝑠 and the strong generalized Legendre-Clebsch condition is satisfied in a halfneighborhood of 𝑥 𝑒𝑠 , • singular trajectories go toward 𝑥 𝑒𝑠 for positive times,

• the boundary of the healthy region 𝑵(𝑥) ≤ 0 is the parabola of equation

ℎ ( 𝑃 .(𝑥 -𝑥 𝑆 ) ) = 0, (19) 
where

ℎ(𝑥 1 , 𝑥 2 ) = 𝑥 2 -𝑥 2 1 , 𝑃 = ( 𝜇 𝜈 -1 𝜈𝜇 ) with 𝜇 = 𝜌 2( 𝜌 1 𝑎 11 +𝜌 2 𝑎 12) 𝜌 1( 𝜌 1 𝑎 21 +𝜌 2 𝑎 22)
and 𝜈 ∈ ℝ, 𝑥 𝑆 ∈ ℝ 2 are parameters precised below.

We examine two instances of the problem (𝑃 ) by choosing the values of the parameters thanks to Proposition 7.

Example 1. In this example, 𝐴 =

( - 6 1 -2 -1 ) 
, 𝜌 1 = -4∕5, 𝜌 2 = -1∕2 and the persistent equilibrium is an attracting focus. The parabola 𝑵 is defined by [START_REF] Lee | Foundations of Optimal Control Theory[END_REF] with 𝜈 = -1∕20 and 𝑥 𝑆 is the point  ∩ {𝑥 1 = 0.8} and 𝑥 0 is chosen so that 𝑵 can be reached with bang and singular arcs, see Fig. 13. Note that we do not expect the optimal trajectory to cross the collinearity set .

The direct method gives a bang-singular-bang solution depicted in Fig. 13. In the same figure, the model predictive control trajectory with an horizon 𝑡 ℎ = 1, ℎ = 4 seems to faced with a "singular behavior" as in the permanent case.

Example 2. We take 𝐴 = ( -13 18 12 -20

)
, 𝜌 1 = -11∕20, 𝜌 2 = 7∕10 and the persistent equilibrium is an attracting node.

(a) in this example, we take 𝑥 0 = (3∕2, 1∕5) and 𝑵 is the parabola [START_REF] Lee | Foundations of Optimal Control Theory[END_REF] defined by 𝜈 = 1∕6, 𝑥 𝑆 is the point  ∩ {𝑥 1 = 0.5} translated by (0.1, 0). 𝑵 is accessible from 𝑥 0 with bang and singular arcs and we do not expect the collinearity set to play any role, see Fig. 14 (left). The trajectories for both methods differ significantly from each other: the direct method gives a bang-bang-singular-bang solution while the MPC trajectory with ℎ = 4 reaches 𝑵 with a bang arc followed by an arc with intermediate control values.

(b) Here we choose 𝑥 0 = (3∕2, 1∕5) and 𝑵 is the parabola [START_REF] Lee | Foundations of Optimal Control Theory[END_REF] defined by 𝜈 = 1∕6, 𝑥 𝑆 is the point  ∩ {𝑥 1 = 0.5} translated by (-0.1, 0). In this case the optimal trajectory necessarily crosses the collinearity and singular loci, see Fig. the policy from the direct method has again the bang-bang-singular-bang structure, the MPC method with 𝑡 ℎ = 1, ℎ = 4 does not reach 𝑵 and terminates on the collinearity locus . This is expected since the horizon ℎ of the MPC method is intricately related to the local controllability of the system. Below , the system can move in the direction of positive 𝑥 1 (since 𝑋 points in this direction and det(𝑋, 𝑌 ) > 0), while on 𝐶 we need global policy to reach 𝑵, that is a larger horizon has to be chosen otherwise the system stays on a forced equilibrium.

Three dimensional case and the May and Leonard model

Uncontrolled dynamics

We begin by recalling the qualitative properties of the May and Leonard example (see also [START_REF] May | Nonlinear aspects of competition between three species[END_REF] and Appendix B):

ẋ = diag 𝑥 (𝟏 -𝐴𝑥), (20) 
where

𝑥 = (𝑥 1 , 𝑥 2 , 𝑥 3 ) ⊺ , 𝟏 = (1, 1, 1) ⊺ and 𝐴 = ⎛ ⎜ ⎜ ⎝ 1 𝛼 𝛽 𝛽 1 𝛼 𝛼 𝛽 1 ⎞ ⎟ ⎟ ⎠ , 𝛼 > 0, 𝛽 > 0.
Contrary to the two dimensional case where the Poincaré-Bendixon applies, the analysis of the long term dynamics for three dimensional systems is intricate. Yet, one striking properties is the existence of a unique two dimensional Lipschitz manifold, called carrying simplex, containing all limit sets of (20) in the competitive case.

In the case where 𝛼 + 𝛽 > 2 and 𝛼 < 1, the interior equilibrium 𝑥 𝑒𝑠 = 𝜅 𝟏, 𝜅 = 1∕(1 + 𝛼 + 𝛽) is unstable and the trajectories are getting closer and closer the three lines {𝑥 1 + 𝑥 2 + 𝑥 3 = 1} ∩ {𝑥 𝑖 = 0}, 𝑖 = 1, 2, 3, see Fig. 15. Biologically speaking this means that a limit cycle among the three species can be produced.

Stratification of the terminal manifold

The plane  ∶ 𝑥 + 𝑦 + 𝑧 = 3𝜅 is the tangent plane of the carrying simplex at 𝑥 𝑒𝑠 . Write Our objective here is to determine the local optimal policy to reach 𝑵 in minimum time.

𝑃 = ⎛ ⎜ ⎜ ⎝ 1 -1 1 0 2 1 -1 -1 1 ⎞ ⎟ ⎟ ⎠
An extremal 𝑧(.) = (𝑥(.), 𝑝(.)) arriving at time 𝑡 = 0 at 𝑥(0) ∈ 𝑵 is associated to the adjoint vector 𝑝(0) = ∇𝑔(𝑃 (𝑥 -𝑥 𝑒𝑠 )) |𝑥=𝑥(0) . We consider the case 𝑥 𝑒𝑠 ∈ Σ 1 ∩ Σ 2 , fulfilled when 𝜀 1 = -𝜀 2 -𝜀 3 and this forces 𝑥 𝑒𝑠 ∈  0 ∩  1 , where Σ 1 , Σ 2 ,  0 ,  1 are the strata: (ii) if 𝑝(0) ⋅ 𝐹 (𝑥(0)) and 𝑝(0) ⋅ (𝐹 + 𝐺)(𝑥(0)) have opposite signs then there is only one 𝑢 ∈ {0, 1} that reaches 𝑵 (see Fig.

 0 ∶= 𝑵 ∩ {𝑝(0) ⋅ 𝐹 (𝑥) = 0} = 𝑵 ∩ { 3𝑠 2 ( 𝛼 2 + 𝛼(2𝛽 -3) + (𝛽 -3)𝛽 -1 ) + 𝑤 2 ( 𝛼 2 + 𝛼(2𝛽 -7) + (𝛽 -7)𝛽 + 1 ) + 6𝑠𝑤(𝛼 -𝛽) + 𝑜(|(𝑤, 𝑠)| 2 ) = 0 }  1 ∶= 𝑵 ∩ {𝑝(0) ⋅ (𝐹 (𝑥) + 𝐺(𝑥)) = 0} = 𝑵 ∩ { 𝜀 2 (3𝑠(𝛼 + 𝛽) -𝑤(𝛼 + 𝛽 -2)) -2𝜀 3 𝑤(𝛼 + 𝛽 -2) + 𝑜(|(𝑤, 𝑠)|) = 0 } Σ 1 ∶= 𝑵 ∩ {𝑝(0) ⋅ 𝐺(𝑥) = 0} = 𝑵 ∩ { 𝜀 2 ( 𝑠 ( 𝛼 + 𝛽 𝛼 + 𝛽 + 1 - 1 3 𝑤(3𝑤 + 4) ) + 𝑤 ( 1 𝛼 + 𝛽 + 1 + 𝑤 2 + 𝑤 - 1 3 
) -𝑠 3 + 𝑠 2 (𝑤 -1) ) + 2 3 𝜀 3 𝑤 ( 3 𝛼 + 𝛽 + 1 + 𝑠(3𝑠 -4) + 3𝑤 2 -1 ) = 0 } Σ 2 ∶= 𝑵 ∩ {𝑝(0) ⋅ [𝐺, 𝐹 ](𝑥) = 0} = 𝑵 ∩ { 𝜀 2 ( 𝑤 ( 𝛼 

(left)).

The situation 𝑥(0) ∈ Σ 1 ⧵ Σ 2 may occur and in this case, the transversality condition yields 𝑢(0) = (1 + sign 𝑝(0) ⋅ [𝐺, 𝐹 ](𝑥(0))) ∕2. Figure 16 summarizes the stratification and details the time minimal control reaching 𝑵 for the parameters 𝛼 = 0.5, 𝛽 = 2, 𝜀 1 = 0, 𝜀 2 = -1.

For higher codimensional cases the local time optimal policy can also be determined using the dictionary of syntheses presented in Section 3.4 and the method described in [START_REF] Launay | The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two[END_REF]. In our example, the case 𝑥(0) = 𝑥 𝑒𝑠 highlights such higher codimensional case and was analyzed in [START_REF] Bonnard | Feedback Classification and Optimal Control with Applications to the Controlled Lotka-Volterra Model[END_REF].

Direct and Model predictive control methods

The previous paragraph was devoted to determine local optimal policies -near the terminal surface 𝑵. To compute global time optimal policies, we run both direct and MPC methods for the May and Leonard model with the following parameters : 𝛼 = 0.5, 𝛽 = 2, 𝜀 1 = 0, 𝜀 2 = -1, 𝜀 3 = 1, 𝑥 0 = (0.2, 0.25, 0.35) and the terminal surface is the paraboloïd 𝑵 introduced in the previous paragraph. 

CONCLUSION

In this article we have presented mainly the techniques from geometric control theory to analyze reduction of the infection of a gut microbiote by a pathogenic agent using a controlled Lotka-Volterra model in dimension 𝑁 = 11, which can admit up to 2 11 = 2048 interacting equilibria.

In the optimal control context the problem can be analyzed combining indirect or direct schemes in the permanent or sampled-data control frame both aspects are complementary. They were applied to the 2𝑑-case but can be generalized to the 𝑁-dimensional case, the limit being the computational complexity.

The problem illustrates the role of two feedback invariants, which are the collinearity and the singular loci to determine the optimal solution.

In the 2𝑑-case, each locus is a straight-line but in higher dimension the problem boils down to analyze the singular locus, which is foliated by singular trajectories and captures the nonlinearity of the model in the optimal control frame. Such a study has to be made in parallel with the geometry of the free dynamics introduced by Lotka-Volterra to model different interactions of the species defining cooperative or non cooperative interactions.

Hence a challenge in the control problem is to extend the study from the 2𝑑 to the 3𝑑 case. This leads to classify the singular dynamics and compute optimal solutions, combining geometric study with direct and indirect numerical methods. In this context the innovation of this article is to set the Lie algebraic frame in relation with robustness of the computations with respect to model uncertainties. A first step in this direction are the preliminary computations in the May-Leonard model.

In this article we restrict mainly to a single antibiotic or probiotic treatment. However the sampled-data control frame allows to treat a medical protocol combining different treatments with a dynamics described by: 

d𝑥 d𝑡 =
𝐸 𝑥 0 ,𝑇 ∶ 𝑢 ∈   → 𝑥(𝑇 , 𝑥 0 , 𝑢) ,
where we assume that the response is defined on the whole [0, 𝑇 ] and the extremity mapping is the map

𝐸 𝑥 0 ∶ 𝑢 ∈   → 𝑥(⋅, 𝑥 0 , 𝑢) .
In our accessibility study we can restrict to the set of piecewise constant mappings valued in 𝑈 . Hence this leads to introduce the polysystem 𝐷 = {𝐹 (𝑥, 𝑢) ; 𝑢 ∈ 𝑈 }. We denote by 𝑆(𝐷) the pseudo-semigroup generated by {exp 𝑡𝐹 ; 𝐹 ∈ 𝐷 , 𝑡 > 0} and 𝐺(𝐷) the pseudogroup generated by 𝑆(𝐷). Proposition 12. Let 𝐷 be a polysystem and assume the following:

Taking 𝑥 0 , 𝑥 1 we say that 𝑥 1 is accessible to 𝑥 0 in time 𝑇 if there exists 𝑡 1 , … , 𝑡 𝑘 > 0 such that 𝑥 1 = 𝜑 ( 𝑡 1 , … , 𝑡 𝑘 ) = ( exp 𝑡 𝑘 𝐹 𝑘 • … • exp 𝑡 1 𝐹 1 ) (𝑥 0 ), 𝑡 𝑖 > 0, 𝑡 1 + 𝑡 2 + … + 𝑡 𝑘 = 𝑇
1. for every 𝑥 ∈ 𝑀, 𝑟𝑎𝑛𝑘 𝐷 𝐿.𝐴. (𝑥) = dim 𝑀;

2. every vector field 𝐹 ∈ 𝐷 is Poisson stable.

Then the system is controllable.

Outline of the proof. See [START_REF] Lobry | Controllability of nonlinear systems on compact manifolds[END_REF] for the details. Taking 𝑥, 𝑦 ∈ 𝑀, using Chow-Rashevskii's theorem one can write:

𝑦 = exp 𝑡 𝑘 𝐹 𝑘 • … • exp 𝑡 1 𝐹 1 (𝑥),
where 𝑡 1 , … , 𝑡 𝑘 are positive or negative.

In the previous sequence, each element of the form exp 𝑠𝐹 with 𝑠 < 0 can be nearby replaced by an arc exp 𝑠 ′ 𝐹 , 𝑠 ′ > 0 using the Poisson stability property of 𝐹 . The proof follows using Proposition 11.

Next we present another approach to the accessibility problem [START_REF] Jurdjevic | Geometric Control Theory[END_REF], which can be applied to polynomic systems due to the work of [START_REF] Kunita | On the Controllability of Nonlinear Systems with Applications to Polynomial Systems[END_REF]. 

B COMPETITIVE LOTKA VOLTERRA SYSTEMS

In this appendix we use the reference [START_REF] Baigent | Geometry of carrying simplices of 3-species competitive Lotka-Volterra systems[END_REF].

Definition 15. A competitive Lotka-Volterra system between 𝑛-species is given by

d𝑥 𝑖 𝑑𝑡 = 𝑥 𝑖 (𝑟 𝑖 - ∑ 𝑗=1,…,𝑛 𝑎 𝑖𝑗 𝑥 𝑗 ),
where 𝑎 𝑖𝑗 > 0, 𝑟 𝑖 > 0. We restrict the solutions to the non-negative cone 𝐶 = ℝ 𝑛 + . The origin 𝑂 is a repeller.

A special case of interest is the assymetric May-Leonard system which takes the form The cone 𝐶 contains an unique two-dimensional, compact invariant Lipschitz manifold called the carrying simplex denoted Σ which corresponds to the boundary of the basin of repulsion of the origin and attract every orbits except the origin. More generally the dynamics in the carrying simplex can be studied. The interior equilibrium 𝐸 can be normalized to (1, 1, 1) taking the normalization 𝑟 = ∑ 𝑗 𝑎 𝑖𝑗 . See [START_REF] Hofbauer | Multiple limit cycles for three dimensional Lotka-Volterra equations[END_REF] for the details of the dynamics, in particular for the number of limit cycles in the carrying simplex, in relation with the 16th Hilbert problem.

C MODEL PARAMETERS

The following tables give the parameters for the CDI model presented in [START_REF] Stein | Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota[END_REF].
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 3 FIGURE 3 Schematic representation of a path between two open sets 𝑈 1 and 𝑈 2 on which the synthesis have been determined.
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  𝑐 ) > 𝜂 𝑢 ← min(𝑃 ′ ) 𝑥 𝑐 ← 𝑥(𝛿; 𝑥 𝑐 , 𝑢 1 ) : solution of ẋ(𝑡) = 𝑋(𝑥(𝑡)) + 𝑢 1 𝑌 (𝑥(𝑡)) at time 𝑡 = 𝛿 starting at 𝑥 𝑐 at time 0.
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 13 FIGURE[START_REF] Jurdjevic | Geometric Control Theory[END_REF] Geometric picture corresponding to Example 1. (left) The trajectory 𝑥 0 = (7∕5, 8∕5) obtained with a direct method is bang-singular-bang (continuous line) and the MPC trajectory (dashed line) seems to reproduce the singular behavior. (right) Time evolution of the control for the direct and MPC methods.
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 514 FIGURE 14 Geometric picture corresponding to Example b (a) (left) and Example b (b) (right) together with the trajectories obtained from the direct and MPC methods.
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 15 FIGURE 15 Trajectories of the May and Leonard system (20) which become recurrently closer to the orange dashed triangle.
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 223 𝛼(𝛽 + 7) -𝛽(2𝛽 + 1) )+ 3𝑠(𝛼(𝛼 + 𝛽 + 3) + 3𝛽 + 1) + 𝑤 )+ 𝜀 3 ((𝛼 + 𝛽)(3𝑠(𝛼 -𝛽) -𝑤(𝛼 + 𝛽 + 8)) + 2𝑤) + 𝑜(|(𝑤, 𝑠)| 2 ) = 0 } and 𝑥 𝑒𝑠 is an isolated point in  0 . Moreover, since 𝑝(0) ⋅ 𝐺(𝑥 𝑒𝑠 ) = 𝑝(0) ⋅ [𝐺, 𝐹 ] (𝑥 𝑒𝑠 ) = 𝑝(0) ⋅ [[𝐺, 𝐹 ] , 𝐹 ] (𝑥 𝑒𝑠 ) = 0 and 𝑝(0) ⋅ [[𝐺, 𝐹 ] , 𝐺] (𝑥 𝑒𝑠 ) = 2 ( 𝜀 2 𝜀 3 𝜀 2 + 𝜀 2 ∕(𝛼 + 𝛽 + 1) > 0,𝑥 𝑒𝑠 is a singular point of the singular dynamics.For 𝑥(0) ∈ 𝑵 ⧵ Σ 1 , a simple rule to determine the bang control 𝑢(0) ∈ {0, 1} reaching 𝑵 is given by the relative position of 𝐹 and 𝐹 + 𝐺 with respect to 𝑵:(i) if 𝑝(0) ⋅ 𝐹 (𝑥(0)) and 𝑝(0) ⋅ (𝐹 + 𝐺)(𝑥(0)) have the same sign then 𝑢(0) = (1 + sign 𝑝(0) ⋅ 𝐺(𝑥(0))) ∕2 (see Fig.

17

 17 

FIGURE 16 FIGURE 17

 1617 FIGURE 16 Stratification of the terminal manifold 𝑵. The wavy white region corresponds to the case where 𝑝(0) ⋅ 𝐹 (𝑥(0)) and 𝑝(0) ⋅ (𝐹 + 𝐺)(𝑥(0)) have opposite signs. In the other region the value of the control reaching a point 𝑥(0) ∈ 𝑵 ⧵ Σ 1 is 𝑢(0) = (1 + sign 𝑝(0) ⋅ 𝐺(𝑥(0))) ∕2.

FIGURE 18

 18 FIGURE[START_REF] Lefschetz | Differential equations: geometric theory[END_REF] Time evolution of the states trajectories (left) and controls (right) for both direct (continuous lines) and MPC (dashed lines) methods reaching in minimum time the paraboloïd 𝑵 for the May and Leonard system. The direct solution has bang-singular-bang structure while the MPC policy is "bang-singular".

Definition 14 .Proposition 13 .Remark 3 .Application 2 .

 141332 Let 𝐷, 𝐷 ′ be polysystems satisfying the 𝑟𝑎𝑛𝑘 condition dim 𝐷 𝐿.𝐴. (𝑥) = dim 𝐷 ′ 𝐿.𝐴. (𝑥) = dim 𝑀 , ∀𝑥. They are called equivalent if, for every 𝑥 ∈ 𝑀, 𝑆(𝐷)(𝑥) = 𝑆(𝐷 ′ )(𝑥). The union of all polysystems 𝐷 ′ equivalent to 𝐷 is called the saturated of 𝐷 and is denoted by sat 𝐷. Next, we present the set of operations to compute the saturated of 𝐷. Let 𝐷 be a polysystem. Then: 1. If 𝐹 , 𝐺 ∈ 𝐷, then the convex cone generated by 𝐹 and 𝐺 belongs to 𝑠𝑎𝑡 𝐷; 2. Let 𝐹 ∈ 𝐷 and assume that 𝐹 is Poisson stable, then -𝐹 ∈ sat 𝐷; 3. If ±𝐹 , ±𝐺 ∈ 𝐷, then ± [𝐹 , 𝐺] ∈ sat 𝐷; 4. The normalizer 𝑁(𝐷) is the set of diffeomorphisms 𝜑 on 𝑀 such that, for every 𝑥 ∈ 𝑀, 𝜑(𝑥) and 𝜑 -1 (𝑥) belongs to 𝑆(𝐷)(𝑥). One has: (a) If 𝜑 ∈ 𝑁(𝐷) and 𝐹 ∈ 𝐷 then 𝜑 * 𝐹 ∈ sat 𝐷; (b) If ±𝐹 ∈ 𝐷 and 𝐺 ∈ 𝐷 then for 𝜑 𝜆 = exp 𝜆 𝐹 ∈ sat 𝐷, we have 𝜑 𝜆 * 𝐺 ∈ sat 𝐷, for every 𝜆. Remarks on the properties of Proposition 13: • Property 2. comes from Proposition 12; • Property 3. is a reformulation of Theorem 2; • the concept of normalizer introduced in Property 4. is an important tool in the construction of sat 𝐷, in particular in relation with the 𝑎𝑑-formula of Proposition 10. Accessibility properties of the pair 𝐷 = {𝐹 , 𝐺}, 𝐹 = 𝐴𝑒 𝑦 + 𝑟, 𝐺 = ( 𝜀 1 , … , 𝜀 𝑁 ) 𝑇 can be analyzed using the previous techniques in relation with the analysis of the controlled GLV-equation. Nevertheless, a negative controllability result is the following.

d𝑥 1 𝑑𝑡 = 𝑥 1 ( 1 - 2 𝑑𝑡 = 𝑥 2 ( 1 -

 111221 𝑥 1 -𝑎 12 𝑥 2 -𝑎 13 𝑥 3 ), d𝑥 𝑥 2 -𝑎 21 𝑥 1 -𝑎 23 𝑥 3 ), d𝑥 3 𝑑𝑡 = 𝑥 3 (1 -𝑥 3 -𝑎 31 𝑥 1 -𝑎 32 𝑥 2 )

  

  𝑁 + the invariant domain 𝑥 𝑖 > 0, M+ the union of the 𝑀 + with its boundary. Moreover, the dynamics (7) can be extended to the whole Euclidean set ℝ 𝑁 . Using log-coordinates 𝑥 = 𝑒 𝑦 , we denote by 𝑀 the log-image of 𝑀 + .

where 𝑥 1 represents the C. difficile population and x = ( 𝑥 2 , … , 𝑥 𝑁 ) ∈ ℝ 𝑁-1 + describes the healthy agents. The matrix 𝐴 = ( 𝑎 𝑖𝑗 ) is the matrix of interaction, where 𝑎 𝑖𝑗 represents the birth or death rate of the 𝑖-agent with respect to the 𝑗-agent and 𝑟 represents the birth or death rate of the 𝑖-agent without interaction. Note that the healthy agents can be ordered as 𝑥 2 < 𝑥 3 < … < 𝑥 𝑁 according to the coefficients 𝑎 𝑖𝑗 . We denote by 𝑀 + = ℝ

  Next, we introduce the concept of singular trajectories with crucial properties, see[START_REF] Bonnard | The role of singular trajectories in control theory[END_REF] for more details. Recall that 𝐸 𝑥 0 ,𝑇 denotes the extremity mapping where the set  of controls is endowed with the 𝐿 ∞ ([0, 𝑇 ]) norm (see Appendix A). ∶= 𝑝 ⋅ 𝐹 (𝑥, 𝑢) and 𝐻 𝑌 = 𝑝 ⋅ 𝑌 (𝑥) are the Hamiltonian lifts. Singular trajectories are feedback invariant that is 𝐺 𝑓 acts on the set of singular trajectories by change of coordinates only (lifting a diffeomorphism 𝜑 into a Mathieu symplectomorphism). The system 𝐹 (𝑥, 𝑢) is called feedback linearizable if for the action of the pseudo-group 𝐺 𝑓 it is equivalent to the time-invariant controllable linear system ẋ = 𝐴𝑥 + 𝐵𝑢, where 𝐴, 𝐵 are constant matrix. The system 𝐹 (𝑥, 𝑢) = 𝑋 + 𝑢𝑌 is feedback linearizable near a point 𝑥 0 ∈ 𝑀 if and only if 1. the matrix {𝑌 (𝑥 0 ), ad 𝑋 ⋅ 𝑌 (𝑥 0 ), … , ad 𝑛-1 𝑋 ⋅ 𝑌 (𝑥 0 )} has rank 𝑛 = dim 𝑀 at 𝑥 0 ; 2. the distribution 𝐷 = span {𝑌 , ad 𝑋 ⋅ 𝑌 , … , ad 𝑛-2 𝑋 ⋅ 𝑌 } is involutive, that is, [𝐷, 𝐷] ⊂ 𝐷 near 𝑥 0 .

	Definition 1. Let (𝑥, 𝑢) be a control trajectory pair defined on [0, 𝑇 ], the linearized system along the reference pair (𝑥, 𝑢) is the
	time dependent variational linear system				
	δ 𝑥 = 𝐴(𝑡)𝛿𝑥 + 𝐵(𝑡)𝛿𝑢 with 𝐴(𝑡) =	𝜕𝐹 𝜕𝑥	(𝑥(𝑡), 𝑢(𝑡)) , 𝐵(𝑡) =	𝜕𝐹 𝜕𝑢	(𝑥(𝑡), 𝑢(𝑡)) .
	Definition 2. A control trajectory pair (𝑥, 𝑢) is singular on [0, 𝑇 ] if the Fréchet derivative of the extremity mapping is not of
	maximal rank: 𝑛 = dim 𝑀.				
	One has the following proposition.				
	Proposition 1. The Fréchet derivative of the extremity mapping at (𝑥, 𝑢) solution of the linearized system:
		⎧	δ 𝑥(𝑡) = 𝐴(𝑡)𝛿𝑥(𝑡) + 𝐵(𝑡)𝛿𝑣(𝑡)
		⎪			
		⎨ ⎪ 𝛿𝑥(0) = 0 ,		
		⎩			
	and the pair (𝑥, 𝑢) is singular if and only if there exists a non zero adjoint vector 𝑝 on [0, 𝑇 ] such that 𝑡 → 𝑥(𝑡) is the projection
	of the solution of the Hamiltonian system:				
	⎧ ⎪ ⎨ ⎪	ẋ = 𝜕𝑢 = 𝐻 𝑌 = 0 , 𝜕𝐻 𝐹 𝜕𝑝 (𝑥, 𝑝, 𝑢) , ṗ = -𝜕𝐻 𝐹	𝜕𝐻 𝐹 𝜕𝑥 (𝑥, 𝑝, 𝑢) ,	(8)
	⎩				
	where 𝐻 𝐹 Proposition 2. Definition 3. One has the following proposition [11, p.165].			
	Proposition 3.				

The feedback pseudo-group is denoted by 𝐺 𝑓 and is the set of triplets (𝜑, 𝛼, 𝛽), where 𝜑 is a local diffeomorphism, 𝑢 = 𝛼(𝑥) + 𝛽(𝑥)𝑣, 𝛽 ≠ 0 is a feedback and acts on (𝑋, 𝑌 ) according to the action (𝑋, 𝑌 )  → (𝜑 * (𝑋 + 𝛼𝑌 ) , 𝜑 * 𝛽𝑌 ).

  Non flat case. Generic ordinary switching point. Non flat case. Generic hyperbolic case. Non flat case. Generic elliptic case.• 𝐿 1 -admissible perturbations t𝑖 ∈ ℝ of 𝑡 𝑖 if there exists ε > 0 such that
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		FIGURE 6 ( 𝑡 𝑖 + 𝜀 t𝑖	)	-𝑡 𝑖-1 ≥ 𝐼 𝑚 and 𝑡 𝑖+1 -	( 𝑡 𝑖 + 𝜀 t𝑖	)	≥ 𝐼 𝑚 for

1 < … < 𝑡 𝑛 < 𝑇 and on each subinterval [𝑡 𝑖 , 𝑡 𝑖+1 ] the control is a constant 𝑢 𝑖 , |𝑢 𝑖 | ≤ 1. The digital aspect is the interpulse constraint 𝑡 𝑖+1 -𝑡 𝑖 ≥ 𝐼 𝑚 with fixed 𝐼 𝑚 ≥ 0. Hence, such control is represented by a sequence 𝛿 = ( 𝑢 0 , … , 𝑢 𝑛 , 𝑡 1 , … , 𝑡 𝑛 ) . Assume that 𝛿 is optimal. The set of admissible perturbations δ = ( ū0 , … , ū𝑛 , t1 , … , t𝑛 ) decomposes into: • 𝐿 ∞ -admissible perturbations if there exists, for each 𝑖 = 0, … , 𝑛, ε > 0 such that 𝑢 𝑖 + 𝜀 ū𝑖 ∈ [-1, +1] for all 0 ≤ 𝜀 ≤ ε. all 0 ≤ 𝜀 ≤ ε, for 𝑖 = 1, … , 𝑛 -1 while for 𝑖 = 𝑛 only ( 𝑡 𝑛 + 𝜀 t𝑛

  𝐼 𝑚 and we apply to the dynamics (𝑡 * 1 , 𝑢 * 1 ) to get at time 𝑡 * 1 the response 𝑥 * (𝑡 * 1 ). We iterate the construction replacing 𝑡 0 by 𝑡 * 1 and 𝑥 0

	) 𝑖-1 ≥ by 𝑥 * (𝑡 * , 𝑡 * 𝑖 -𝑡 * 1 ) (see Fig. 12).
	Initial point 𝑥 0
	and horizon 𝑘
	min 𝛿 𝐽 (𝑥 0 , 𝛿)
	𝑥 0 ← 𝑥 * (𝑡 * 1 ) 𝑡 0 ← 𝑡 *
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[START_REF] Jones | Navigation and control of outcomes in a generalized Lotka-Volterra model of the microbiome[END_REF] 

MPC algorithm with horizon of length 𝑘.

  At a point 𝑥 𝑒 = (𝑥 1𝑒 , 𝑥 2𝑒 ) ∈  associated to the control 𝑢 𝑒 , the Jacobian matrix 𝑎[START_REF] May | Nonlinear aspects of competition between three species[END_REF] (𝜌 1 -𝜌 2 ) + 𝑥 1𝑒 (𝜌 1 𝑎 11 + 𝜌 2 𝑎 22 ). Assume 𝜌 1 , 𝜌 2 > -1 and introduce 𝛼 = 1 + 𝜌 1 , 𝛽 = 1 + 𝜌 2 . The forced equilibrium 𝑥 1 𝑒 is in the positive orthant and • if det 𝐴 < 0 and 𝑎 11 ≠ -𝑎 22 , 𝛼𝑎 11 ≠ -𝛽𝑎 22 then 𝑥 0 𝑒 and 𝑥 1 𝑒 are saddle points.

			𝐽 =	𝜕 𝜕𝑥	(𝑋(𝑥) + 𝑢 𝑌 (𝑥)) |𝑥=𝑥 𝑒 (𝑥),𝑢=𝑢 𝑒 (𝑥)	(16)
	has the two eigenvalues	( 𝜆 ±	) 𝜆 2 + 4 det 𝐴𝜌 1 𝑥 1𝑒 (𝜌 2 (1 -𝑥 1𝑒 ) -𝜌 1 ) √	∕2𝜌 1 ,
	where 𝜆 = The persistent equilibrium point 𝑥 0 𝑒 = (1, 1) has eigenvalues
		(𝑎 11 + 𝑎 22 )∕2 ±	√ (𝑎 11 + 𝑎 22 ) 2 -4 det 𝐴 ∕2
	and the forced equilibrium point 𝑥 1 𝑒 = (1 + 𝜌 1 , 1 + 𝜌 2 ) associated to 𝑢 𝑒 = 1 has eigenvalues
	((1 + 𝜌 1 )𝑎 11 + (1 + 𝜌 2 )𝑎 22 )∕2 ±	√	((1 + 𝜌 1 )𝑎 11 + (1 + 𝜌 2 )𝑎 22 ) 2 -4(1 + 𝜌 1 )(1 + 𝜌 2 ) det 𝐴 ∕2.
	We obtain the following Proposition:			
	Proposition 7.			

1 ∈ [0, 1]. • if det 𝐴 > 0, then 𝑥 0 𝑒 and 𝑥 1 𝑒 are either nodes or spiral points. More precisely, if moreover -𝑎 11 𝑎 22 ≥ 2 det 𝐴, then 𝑥 0 𝑒 and 𝑥 1 𝑒 are both nodes.

-

𝑎 11 = -𝑎 22 , then 𝑥 0 𝑒 is a center. If moreover 𝜌 1 = 𝜌 2 , then 𝑥 1 𝑒 is a center. -𝑎 11 𝑎 22 ≤ 2 det 𝐴, (𝛼 2 + 𝛽 2 )(1 -𝑎 11 𝑎 22 ∕ det 𝐴) -2𝛼𝛽 < 0, then if 𝑥 0 𝑒 is a focus, then 𝑥 1 𝑒 is a focus.

Proof. The forced equilibrium 𝑥 1 𝑒 = (𝛼, 𝛽) is in the positive orthant. If det 𝐴 < 0, the statement is clear. If det 𝐴 > 0 and 𝑎 11 𝑎 22 ≥ 2 det 𝐴 then (𝑎 11 + 𝑎 22 ) 2 -4 det 𝐴 ≥ 0 and denoting 𝑚 = min(𝛼, 𝛽), we have: (𝛼𝑎 11 + 𝛽𝑎 22 ) 2 -4 det 𝐴𝛼𝛽 ≥ 𝑚 2 (𝑎 2 11 + 𝑎 2 22 + 2𝑎 11 𝑎 22 𝛽𝛼∕𝑚 2 -4 det 𝐴𝛽𝛼𝑚 2 ≥ 2𝑚 2 (1 -𝛽𝛼∕𝑚 2 )(2 det 𝐴 -𝑎 11 𝑎 22 ) ≥ 0, and 𝑥 1 𝑒 is a node. The last item follows from (𝛼𝑎 11 + 𝛽𝑎 22 ) 2 -4 det 𝐴𝛼𝛽 ≤ (𝛼 2 + 𝛽 2 )(𝑥 2 + 𝑦 2 ) -4 det 𝐴𝛼𝛽 ≤ 2 det 𝐴((𝛼 2 + 𝛽 2 )(1 -𝑎 11 𝑎 22 ∕ det 𝐴) -2𝛼𝛽) ≤ 0.

  Two necessary conditions are (i) the singular control is admissible i.e. 𝑢 𝑠 ∈ [0, 1] and (ii) the strong generalized Legendre-𝑎 12 + 𝑎 21 + 𝑎 22 𝜌 1 𝑎 11 -𝜌 1 𝑎 21 + 𝜌 2 𝑎 12 -𝜌 2 𝑎 22 and the value of 𝑢 𝑠 at 𝑥 𝑠𝑒 is 𝑢 𝑠 (𝑥 𝑠𝑒 ) = -𝜌 1 𝜌 2 𝑎 11 + 𝜌 1 ( 𝜌 1 𝑎 21 + 𝜌 2 𝑎 22 ) -𝑎 12 𝜌 2 2 𝜌 1 𝜌 2 ( 𝜌 1 𝑎 11 -𝜌 1 𝑎 21 + 𝜌 2 𝑎 12 -𝜌 2 𝑎 22

	Clebsch condition is satisfied.							
	The singular control denoted 𝑢 𝑠 is computed using					
		𝑝 ⋅	( [[𝑌 , 𝑋] , 𝑋] (𝑥) + 𝑢 𝑠 [[𝑌 , 𝑋] , 𝑌 ] (𝑥) )	= 0
	and since 𝑝 is also orthogonal to 𝑌 (𝑥) on , we obtain for 𝑥 ∈  ⧵ {𝑥 𝑠𝑒 }		
	𝑢 𝑠 = -	det(𝑌 , [[𝑌 , 𝑋], 𝑋]) det(𝑌 , [[𝑌 , 𝑋], 𝑌 ]])	= -	𝑋 ⋅ ∇𝛼 𝑌 ⋅ ∇𝛼	=	𝑥 1 𝜌 1	( 𝜌 1 𝑎 21 + 𝜌 2 𝑎 12 ( 𝜌 1 𝑎 21 + 𝜌 2 𝑎 22	) ) +	-𝑎 11 -

. Outside the set , (𝑋, 𝑌 ) is a frame and we write

[𝑌 , 𝑋](𝑥) = 𝛼(𝑥)𝑋(𝑥) + 𝛽(𝑥)𝑌 (𝑥),

where

𝛼(𝑥) = det([𝑌 , 𝑋], 𝑌 )(𝑥) det(𝑋, 𝑌 )(𝑥) = 𝜌 1 𝑥 2 ( 𝜌 1 𝑎 21 + 𝜌 2 𝑎 22 ) -𝜌 2 𝑥 1 ( 𝜌 1 𝑎 11 + 𝜌 2 𝑎 12 ) 𝜌 1 (𝑥 2 -1) -𝜌 2 (𝑥 1 -1) , 𝛽(𝑥) = det(𝑋, [𝑌 , 𝑋])(𝑥) det(𝑋, 𝑌 )(𝑥) .

Using this decomposition to compute Lie brackets of length 3 we obtain

[[𝑌 , 𝑋], 𝑌 ] = [𝛼𝑋, 𝑌 ] + [𝛽𝑌 , 𝑌 ] = 𝑋∇𝛼 ⊺ 𝑌 + 𝛼[𝑋, 𝑌 ] + 𝑌 ∇𝛽 ⊺ 𝑌 = (-𝛼 2 + 𝑌 ⋅ ∇𝛼)𝑋 + (-𝛼𝛽 + 𝑌 ⋅ ∇𝛽)𝑌

(18)

and [[𝑌 , 𝑋], 𝑋] = [𝛼𝑋, 𝑋] + [𝛽𝑌 , 𝑋] = (𝑋 ⋅ ∇𝛼 + 𝛼𝛽)𝑋 + (𝑋 ⋅ ∇𝛽 + 𝛽 2 )𝑌 .

  3, the feedback group acts as change of coordinates only and 𝜆 1 ∶ (𝑋, 𝑌 )  → 𝑋 𝑠 (𝑥) = 𝑋(𝑥) -

		𝐷 𝜙 * 𝑋,𝜙 * 𝑌 (𝑥) = det	(	𝜕𝜙 𝜕𝑥	)	𝐷 𝑋,𝑌 (𝜙 -1 (𝑥)),	𝐷	′ 𝜙 * 𝑋,𝜙 * 𝑌 (𝑥) = det	(	𝜕𝜙 𝜕𝑥	)	𝐷	′ 𝑋,𝑌 (𝜙 -1 (𝑥)),
	Proof. Direct computations give us:	𝐷	′′ 𝜙 * 𝑋,𝜙 * 𝑌 (𝑥) = det	(	𝜕𝜙 𝜕𝑥				
	𝐷 ′ (𝑥) 𝐷(𝑥) 𝑌 (𝑥) is a covariant i.e. the following diagram is commutative:			
			(𝑋, 𝑌 )			𝜆 1	𝑋 𝑠		
			𝐺 𝑓					↺	𝐺 𝑓	.	
			(𝑋 ′ , 𝑌 ′ )			𝑋 ′ 𝑠		

  2 3 𝑥 3 𝑎 23 + 𝜀 1 𝑥 1

														( 𝜀 2 𝑎 31 -𝜀 3 𝑎 21	) )	-	( 𝜀 2 1 𝑥 1 𝑎 21 + 𝜀 2 2 𝑥 2 𝑎 22 + 𝜀 2 3 𝑥 3 𝑎 23	)
														( 𝜀 2 1 𝑥 1 𝑎 31 + 𝜀 1	( 𝜀 2 𝑥 2 𝑎 32 + 𝜀 3	( 𝑥 3 𝑎 33 -𝑥 1 𝑎 11	))	-𝜀 3	( 𝜀 2 𝑥 2 𝑎 12 + 𝜀 3 𝑥 3 𝑎 13	))	,
	𝐷 ′ (𝑥)∕𝑥 1 𝑥 2 𝑥 3 =	( -𝜀 2 1 𝑥 1 𝑎 21 + 𝜀 1	( 𝜀 2	( 𝑥 1 𝑎 11 -𝑥 2 𝑎 22	)	-𝜀 3 𝑥 3 𝑎 23	)	+ 𝜀 2	( 𝜀 2 𝑥 2 𝑎 12 + 𝜀 3 𝑥 3 𝑎 13	))
			( 𝜀 2 𝑥 2	( 𝑥 1 𝑎 12 𝑎 31 -𝑎 32	( 𝑥 1 𝑎 21 + 𝑥 3	( 𝑎 23 -𝑎 33	)	+ 𝑟 2	))	-𝜀 1 𝑥 1	( 𝑟 1 𝑎 31 + 𝑥 3	( 𝑎 13 -𝑎 33	)	𝑎 31
			+ 𝑥 2	( 𝑎 12 𝑎 31 -𝑎 21 𝑎 32	))	+ 𝜀 3 𝑥 3	( -𝑟 3 𝑎 33 + 𝑥 1 𝑎 31	( 𝑎 13 -𝑎 33	)	+ 𝑥 2 𝑎 32	( 𝑎 23 -𝑎 33	)) )
					+	( 𝜀 2 2	( -𝑥 2	)	𝑎 32 + 𝜀 3 𝜀 2	( 𝑥 2 𝑎 22 -𝑥 3 𝑎 33	)	+ 𝜀 2 3 𝑥 3 𝑎 23 + 𝜀 1 𝑥 1	( 𝜀 3 𝑎 21 -𝜀 2 𝑎 31	))
	(	-𝜀 1 𝑥 1	( 𝑟 1 𝑎 11 + 𝑥 2 𝑎 12	( 𝑎 11 -𝑎 21	)	+ 𝑥 3 𝑎 13	( 𝑎 11 -𝑎 31	))	+ 𝜀 2 𝑥 2	( 𝑥 3 𝑎 13 𝑎 32 -𝑎 12	( 𝑥 1	( 𝑎 21 -𝑎 11	)

  How to cite this article: B. Bonnard, J. Rouot, C. Silva, (2022), Geometric Optimal Control of the generalized Lotka-Volterra model of the Intestinal Microbiome, Optimal Control Applications and Methods, 2022. We shall denote by 𝑀 a 𝐶 𝜔 -manifold of dimension 𝑁 connected and second countable which can be identified to ℝ 𝑁 and 𝑉 (𝑀) is the set of 𝐶 𝜔 -vector field on 𝑀. If 𝐹 , 𝐺 ∈ 𝑉 (𝑀), the Lie bracket is computed with the convention If 𝐹 ∈ 𝑉 (𝑀), we denote by 𝑥(𝑡, 𝑥 0 ) the maximal solution on 𝐽 of the Cauchy problem: d𝑥 d𝑡 = 𝐹 (𝑥), 𝑥(0) = 𝑥 0 . We denote by {exp 𝑡𝐹 ; 𝑡 ∈ 𝐽 } the (pseudo) one parameter group defined by (exp 𝑡𝐹 ) (𝑥 0 ) = 𝑥(𝑡, 𝑥 0 ). Consider a control system of the form d𝑥 d𝑡 = 𝐹 (𝑥, 𝑢), where 𝑢 ∈  and  denotes the set of admissible controls which consists into the set of measurable mappings valued in the fixed control domain 𝑈 . Taking 𝑢 ∈ 𝐿 ∞ [0, 𝑇 ], the fixed time extremity mapping is the map

	APPENDIX				
	A A RECAP OF ACCESSIBILITY RESULTS COMING FROM GEOMETRIC CONTROL
	Definition 9. [𝐹 , 𝐺] (𝑥) =	𝜕𝐹 𝜕𝑥	(𝑥)𝐺(𝑥) -	𝜕𝐺 𝜕𝑥	(𝑥)𝐹 (𝑥) .
	𝑋(𝑥(𝑡)) +	∑	𝑢 𝑖 (𝑡) 𝑌 𝑖 (𝑥(𝑡)) +		∑	𝑢 ′ 𝑖 (𝑡) 𝑌 ′ 𝑖 (𝑥(𝑡)).
		antibiotic,			transplantation,
		probiotic			bactericide
	Additionally, it leads to compute the control as a closed loop control.	

  . Denote by ad 𝐹 ⋅ 𝐺 = [𝐹 , 𝐺] and 𝜑 𝑡 = exp 𝑡𝐹 we have the ad-formulae 𝜑 𝑡 * 𝐺 = ∑ and the series is converging for 𝑡 small enough.Given two vector fields, an important computational problem is introduced next. Let 𝐷 = {𝐹 } be a polysystem. We denote by 𝐷 𝐿.𝐴. the Lie algebra generated by 𝐷 computed recursively using iterated Lie brackets:𝐷 1 = span 𝐷 , 𝐷 2 = span {𝐷 1 + [𝐷 1 , 𝐷 1 ]} … , 𝐷 𝑘 = span{𝐷 𝑘-1 + If 𝑥 ∈ 𝑀,we introduce the following sequences of integers: 𝑛 𝑘 (𝑥) = dim 𝐷 𝑘 (𝑥). Let the derived Lie algebra given by Given two vectors fields 𝐹 , 𝐺, a Hall basis is a minimal set of generators of the free Lie algebra generated by 𝐹 and 𝐺. Let 𝑥 ∈ 𝑀, a frame of minimal lengths is a set of iterated Lie brackets with full rank equals to dim 𝑀 at 𝑥 and where the sum of length of the iterated generators is minimal. 𝐺, 𝐹 𝐺, 𝐹 2 𝐺, 𝐹 𝐺 2 , 𝐹 3 𝐺, 𝐹 2 𝐺 2 , 𝐹 𝐺 3 , 𝐹 4 𝐺, 𝐹 3 𝐺 2 , 𝐹 4 𝐺, 𝐹 3 𝐺 2 , 𝐹 2 𝐺 𝐹 𝐺, 𝐹 𝐺 𝐹 𝐺 2 , 𝐹 2 𝐺 3 , 𝐹 𝐺 4 . In particular, this gives controllability result for a symmetric polysystem 𝐷, that is if 𝐹 ∈ 𝐷, -𝐹 ∈ 𝐷. But the following weaker result is true [25] and we present Krener's proof. Let 𝐷 be a polysystem such that dim 𝐷 𝐿.𝐴. (𝑥) = dim 𝑀 for each 𝑥 ∈ 𝑀. Then for every neighborhood 𝑉 of 𝑥, there exists a non empty open set 𝑈 contained in 𝑉 ∩ 𝐴 + (𝑥) (or 𝐴 -(𝑥)). . Let 𝑥 ∈ 𝑀, if dim 𝑀 ≥ 1, then there exists 𝐹 1 ∈ 𝐷 such that 𝐹 1 (𝑥) ≠ 0. Consider the integral curve If dim 𝑀 ≥ 2, then there exists in every neighborhood 𝑉 of 𝑥, a point 𝑦 ∈ 𝑀 such that 𝑦 = exp 𝑡 1 𝐹 1 , 𝑡 1 > 0, and a vector field 𝐹 2 ∈ 𝐷 such that 𝐹 1 and 𝐹 2 are not collinear at 𝑦. Consider the mapping If dim 𝑀 ≥ 3, one can iterate the construction at a point of the image for 𝑡 1 , 𝑡 2 > 0. In Chow-Rashevskii's theorem, the semi-group action is extended to the group action, which amounts to use non-feasible controls for each leg exp 𝑡 𝑖 𝐹 𝑖 if 𝑡 𝑖 < 0, 𝑖 = 1, … , 𝑁. But a simple approach to obtain controllability is to replace each of such leg joining 𝑥 to 𝑦 by a leg of the form exp 𝑡 ′ 𝑖 𝐹 ′ 𝑖 , with 𝑡 ′ 𝑖 > 0. This leads to the following. Definition 13. Let 𝐹 ∈ 𝑉 (𝑀). The point 𝑥 0 ∈ 𝑀 is said Poisson stable if for every 𝑇 > 0 and every neighborhood 𝑉 of 𝑥 0 there exist 𝑡 1 , 𝑡 2 ≥ 𝑇 such that exp 𝑡 1 𝐹 (𝑥 0 ) ∈ 𝑉 and exp -𝑡 2 𝐹 (𝑥 0 ) ∈ 𝑉 . The vector field 𝐹 is called Poisson stable if the set of Poisson stable points is dense in 𝑀.

											𝑘≥0	𝑡 𝑘 𝑘!	ad 𝑘 𝐹 (𝐺)
	Definition 11. [	𝐷 1 , 𝐷 𝑘-1	] } ,
	and									
											𝐷 𝐿.𝐴. = ∪ 𝑘≥1 𝐷 𝑘 .
	[ 𝐷 𝐿.𝐴. , 𝐷 𝐿.𝐴.	]	and denote 𝐷 0 𝐿.𝐴. the Lie algebra:	
				{ 𝑝						
				∑						
	𝐹 1 , … , 𝐹 𝑛 such that 𝜑	( 𝑡 1 , … , 𝑡 𝑛	)	=	( exp 𝑡 1 𝐹 1	)	• …	( exp 𝑡 𝑛 𝐹 𝑛	)	(𝑥) is a local diffeomorphism at 0.
	2. 𝜑 * [𝐹 , 𝐺] = [𝜑 * 𝐹 , 𝜑 * 𝐺] . 3. The Baker-Campbell-Hausdorff formula is: Proposition 11. Proof𝛼 1 ∶ 𝑡  →	( exp 𝑡 𝐹 1	)	(𝑥) .
							𝛼 2 ∶	( 𝑡 1 , 𝑡 2	)	 →	( exp 𝑡 2 𝐹 2	)	•	( exp 𝑡 1 𝐹 1	)	(𝑥) .

and 𝑥 1 is normally accessible to 𝑥 0 in time 𝑇 if additionally 𝜑 is a submersion. We denote by 𝐴 + (𝑥 0 , 𝑇 ) the set of accessible points in time 𝑇 and 𝐴 + (𝑥 0 ) = ∪ 𝑇 >0 𝐴 + (𝑥 0 , 𝑇 ) the accessibility set.

Reversing time, one can define similarly the sets 𝐴 -(𝑥 0 , 𝑇 ), 𝐴 -(𝑥 0 ) of points which can be steered to 𝑥 0 . The polysystem 𝐷 is controllable in time 𝑇 if for each 𝑥 0 , 𝐴 + (𝑥 0 , 𝑇 ) = 𝑀 and controllable if, for each 𝑥 0 , 𝐴 + (𝑥 0 ) = 𝑀.

One has the following lemma. Lemma 2. 𝐴 + (𝑥 0 ) = 𝑆(𝐷)(𝑥 0 ) (orbits of the pseudo-semigroup 𝑆(𝐷)) and the system is controllable if 𝑆(𝐷) acts transitively on 𝑀. Definition 10. The polysystem 𝐷 is called weakly controllable if for each 𝑥 0 , 𝐺(𝐷)(𝑥 0 ) = 𝑀. This leads to the Chow-Rashevskii theorem that we formulate next.

Proposition 10. Let 𝐹 , 𝐺 ∈ 𝑉 (𝑀) and 𝜑 ∈ dif f(𝑀). Denote 𝜑 * 𝐹 the image of 𝐹 defined by 𝜑 * 𝐹 ∶= d𝜑 ( 𝐹 •𝜑 -1 )

. We have:

1. The one parameter pseudo-group of 𝐺 = 𝜑 * 𝐹 is given by

exp 𝑡𝐺 = 𝜑• exp 𝑡𝐹 •𝜑 -1 . exp 𝑠𝐹 • exp 𝑡𝐺 = exp 𝜉 (𝐹 , 𝐺)

where 𝜉 (𝐹 , 𝐺) belongs to the Lie algebra generated by {𝐹 , 𝐺} with:

𝜉 (𝐹 , 𝐺) = 𝑠𝐹 + 𝑡𝐺 + 𝑠 𝑡 2 [

𝐹 , 𝐺] + 𝑠 𝑡 2 12 [[𝐹 , 𝐺] , 𝐺] -𝑠 2 𝑡 12 [[𝐹 , 𝐺] , 𝐹 ] -𝑠 2 𝑡 2 24 [𝐹 , [𝐺, [𝐹 , 𝐺]]] + … , the series being converging for 𝑠, 𝑡 small enough. 4𝑖=1 𝜆 𝑖 𝐹 𝑖 + 𝐺 ; 𝑝 ∈ ℕ , 𝜆 𝑖 ∈ ℝ , 𝑝 ∑ 𝑖=1 𝜆 𝑖 = 0 , 𝐹 𝑖 ∈ 𝐷 , 𝐺 ∈ [ 𝐷 𝐿.𝐴. , 𝐷 𝐿.𝐴. ]

} .

Definition 12.

In particular, the following results are useful in our computations. Lemma 3. Denote in short by 𝐹 𝐺 the Lie bracket [𝐹 , 𝐺]. If 𝐷 = {𝐹 , 𝐺} every Lie bracket of lengths smaller than 5 can be computed with the following 14 Lie products: 𝐹 , Application 1. Using log-coordinates one can compute, up to length 5, iterated Lie brackets of the polysystem 𝐷 = {𝐹 , 𝐺} with 𝐹 = 𝐴𝑒 𝑦 + 𝑟, 𝐺 = ( 𝜀 1 , … , 𝜀 𝑁 ) 𝑇 . Theorem 2 (Chow-Rashevskii). Let 𝐷 be a 𝐶 𝜔 -polysystem on 𝑀. Assume that for each 𝑥 ∈ 𝑀, dim 𝐷 𝐿.𝐴. (𝑥) = dim 𝑀. Then we have, for each 𝑥 ∈ 𝑀: 𝐺(𝐷)(𝑥) = 𝐺 ( 𝐷 𝐿.𝐴. (𝑥) ) = 𝑀 .

Proof. The semi-constructive proof is to use Baker-Campbell-Hausdorff formula to construct a frame of iterated Lie brackets

  Proposition 14. Consider on ℝ 2 ∖{0} the pair of linear vectors fields {𝐴 1 𝑥, 𝐴 2 𝑥} and assume that 𝐴 1 , 𝐴 2 are hyperbolic, that is, 𝐴 𝑖 ∼), 𝜆 1 𝜆 2 < 0. Then accessibility can be characterized by the intertwining of the stable and unstable directions.Proof. Let 𝑎 > 0 and 𝑎 ′ < 0 denote the eigenvalues of 𝐴 and 𝑏 > 0 and 𝑏 ′ < 0 the eigenvalues of 𝐵. Clearly dim{𝐴𝑥, 𝐵𝑥} 𝐿.𝐴. = ℝ 2 ⧵ {0} if and only if 𝐴 and 𝐵 have no common eigenvalues.Let 𝑀 1 denote one intersection of the eigenspace of 𝑎 with the unit circle and, using the positive orientation starting from 𝑀 1 , denote 𝑀 2 , 𝑀 3 , 𝑀 4 the first intersection with the unit circle of the eigenspaces associated respectively to 𝑎 ′ , 𝑏 and 𝑏 ′ .Then the only controllable polysystems {𝐴𝑥, 𝐵𝑥} on ℝ 2 ⧵ {0} are associated to (𝑀 1 , 𝑀 2 , 𝑀 3 , 𝑀 4 ) or (𝑀 1 , 𝑀 4 , 𝑀 3 , 𝑀 2 ). This is clear since controllable pairs are such that for every 𝑥 ∈ ℝ 2 ⧵ {0} there exists a periodic path surrounding 0 of the form:exp 𝑡 1 𝑋 1 • … • exp𝑡 𝑘 𝑋 𝑘 (𝑥), with 𝑡 𝑖 > 0 and 𝑋 𝑖 in the polysystem {𝐴𝑥, 𝐵𝑥}. Let the polysystem {𝐴𝑥, 𝐵𝑥 + 𝑏}, where 𝐴 and 𝐵 are hyperbolic and 𝑏 is non zero. Then it is controllable on ℝ 2 if {𝐴𝑥, 𝐵𝑥} is controllable on ℝ 2 ⧵ {0}.

	( 𝜆 1 0
	0 𝜆 2
	Corollary 2.

Abbreviations: GLV, Generalized Lotka-Volterra; C. difficile: Clostridium difficile; CDI : Clostridium Difficile Infection
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