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Summary

We introduce the theoretical framework from geometric optimal control for a control
system modeled by the Generalized Lotka-Volterra (GLV) equation, motivated by
restoring the gut microbiota infected by Clostridium difficile combining antibiotic
treatment and fecal injection. We consider both permanent control and sampled-data
control related to the medical protocols.
KEYWORDS:
Optimal control in the permanent case, sampled-data control, biomathematics and population dynamics

1 INTRODUCTION

Complex microbial communities controlled by a combination of continuous controls associated to probiotics and bacteriostatic
agents and impulsive controls corresponding to transplantation and bactericides can be modeled by a generalized Lotka-Volterra
(GLV) model [1].
In this frame, our study is motivated by the original works described in [8] and based on the experimental model from [19] to

treat the ClostridiumDifficile Infection (CDI) of the gut microbiota using the medical combination of taking antibiotics followed
by a fecal injection. The system is modeled by a GLV equation with eleven interacting species and the parameters are reported
in Table 1 excerpted from [8].
The originality of our study is to set the problem in a neat geometric optimal control framework to use the techniques of

this area, see for instance [21] as a general reference to be applied to the specific controlled equation and the objective being to
minimize the C. difficile population.
The GLV equation is interpreted as a model of interaction of different equilibria where the optimal problem is analyzed

with geometric optimal control techniques based on (intrinsic) Lie algebraic computations to derive robust control schemes in
the permanent case. It is completed by sampled-data optimal control techniques, taking into account digital restrictions on the
controls related to medical constraints.
First of all we shall make a pedestrian presentation of the problems and techniques.

0Abbreviations: GLV, Generalized Lotka-Volterra; C. difficile: Clostridium difficile; CDI : Clostridium Difficile Infection
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FIGURE 1 Phase portrait of (1).
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FIGURE 2 Separatrices and unstability sector.

1.1 A pedestrian presentation
The historical model of Lotka–Volterra [22, 17] starts by describing the interaction of two populations of prey-predator denoted
respectively by x, y and the evolution of the two species is described by the system

ẋ = x(� − �y),
ẏ = y(�x − 
),

(1)

where �, �, �, 
 are positive parameters and x, y ∈ ℝ+.
Such dynamics admits two equilibrium points:

�1 = (0, 0) and Ω = (
∕�, �∕�)
and a first integral

V (x, y) = �y + �x − � log y − � log x.
Since every trajectories evolves on the level sets of V , one deduces that Ω is a center, that is every trajectory is periodic, for
each initial condition in the physical quadrant. Behaviors of the solutions are represented on Fig.1.
The second step in our analysis is to use the historical model to construct a 2d–topological model to describe the evolution of

the dynamics related to the interaction between two centers. This leads to construct a 2d–model, with a schematic representation
in Fig.2. The important point of the construction is to introduce in the domain a saddle point with separatrices and an unsta-
bility domain (see Fig.2 (left)). Figure 2 (right) describes a confluence between the equilibria to construct a complex equilibria
associated to the classification of non regular singular points, see [14, p. 209].



Bernard Bonnard ET AL. 3

A 2d–realization leads to the 2d–GLV generalization of (1):
ẋ = x(r1 + a11x + a12y)
ẏ = y(r2 + a21x + a22y),

(2)
which is precisely the reduced model described in [8] to control the CDI.
Following [22] this leads to introduce the GLV-model whose aim is to describe using a quadratic dynamics, interaction

between equilibria in arbitrary dimension. We proceed as follows.
Let x = (x1, x2,… , xN ) ∈ ℝN

+ , the dynamics is
ẋ = (diagx) (Ax + r) , (3)

where A is the interaction matrix.
In the regular case it can admit up to 2N equilibria, which can be easily computed recursively using the rule:
• Interior equilibrium: x = −A−1r, which is called persistent.
• Boundary equilibrium: xi = 0 and we obtain a system with the same representation as (3) of sizeN − 1 and we compute

the equilibria by induction.
Note that the model can be compactified using Poincaré’s method identifyingℝN to the hyperplane ofℝN+1 with coordinates

(x, z = 1) and projecting the dynamics on SN to describe the behaviors of the solution at infinity, see [14, p. 201].
Stein et al. model [19] describes the C. difficile infection withN = 11 and the variable x1 represents the C. difficile population.
Control schemes can be introduced in the model as follows.
• Antibiotic treatment. We denote by Y (x) the linear dynamics: Y (x) = ("1x1,… , "NxN )⊺, where "i ≤ 0, i = 1,… , N

denotes the sensitivity of the xi variable to the antibiotic, so that the controlled dynamics takes the form:
dx
dt
(t) = X(x(t)) + u(t)Y (x(t)), u ∈ [0, 1], (4)

where X(x) = (diagx) (Ax + r) is the GLV-equation and the various parameters are identified in [19] and reported in
Table 1, while Y (x) = diagx ("1,… , "N

)⊺.
The control u(⋅) valued in [0, 1] describes the dosing regimen represented by a piecewise constant mapping.
One can use log–coordinates: x = ey so that the dynamics takes the form

ẏ = (Aey + r) + u�,
where � = ("1,… , "N )⊺ is a constant vector.

• Prebiotic agents. They are associated to a linear vector field: ("′1x1,… , "′NxN )
⊺ with "′i ≥ 0 versus "i ≤ 0 for an antibioticagent.

The second type of controls are impulsive controls corresponding to a Dirac at time t1, with height � given by ��(t − t1) in a
vector direction v. Such Dirac is the limit of piecewise constant control: limn→∞ u = n on [t1, t1 + t∕n] of the control system:

dx
dt
(t) = X(x(t)) + u(t)Y ′(x(t)), u ∈ ℝ

with Y ′(x) = v is constant.
This leads to modify instantaneously the state variable x → x + �v. Such a control action can be applied at discrete times of
intervention  = (t1, t2,…) and are invasive treatment, which can be:

• fecal injection if � > 0
• bactericide if � < 0.
In the protocol presented in [8], it consists into: antibiotic treatment starting at time t = 0 for an healthy mouse, followed by

C. difficile infection and a single fecal injection.
This leads to analyze the control system:

ẋ = X(x) + uY (x), u ∈ [0, 1], (5)
where u is associated to antibiotic administration, using either:
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• a permanent control u(⋅) taken as a measurable mapping which in practice is approximated by a piecewise constant
mapping.

• or a sampled-data control. In this case, during the therapy period one has a fixed number of medical interventions defined
by:

– the control u is piecewise constant and defined by a fixed sequence of constant controls ui on [ti, ti+1], i = 1,… , k.
– a fixed finite numbers of Dirac pulses at times (t′1,… , t′k) with heights �′1,… , �′k and associated to fecal injections.

We shall focus on the following optimal control problems having different objectives for the therapy:
• minimize the C. difficile infection, which leads to a Mayer problem

– OCP1: minu(⋅) x1(tf ), tf being the time duration of the therapy,
and a dual formulation:

– OCP2: minu(⋅) t, with a target x1 = d , d being a fixed nonnegative constant.
• Another type of cost functional amounts to minimize a L2-cost averaging infection and drug doses, which takes the form:

– OCP3: minu(⋅) ∫ tf
0

[

(

x1(t) − xd1
)2 + �u2

]

dt where � is a weight.
The above problem in the permanent and digital case can be analyzed using optimal control direct and indirect methods. The

second relies on the Maximum Principle either in the permanent case [18, 15] or in the sampled-data control case [6]. In the
sampled-data control case, MPC methods can be used [23], and convergence analysis can be related to the geometric study of
the permanent case.
Permanent case: Maximum Principle.
We shall consider the control system

ẋ = X(x) + u Y (x), |u| ≤ 1
and the problem of reaching in minimum time t∗ the target N ∶ x1 = d (with in practice some additional constraint related to
stability property).
Introducing the Hamiltonian lift of the system defines the pseudo (or non maximized) Hamiltonian

H(z, u) = p ⋅ (X(x) + u Y (x))

where z = (q, p), p ∈ ℝN ⧵ {0} (adjoint vector), the Maximum Principle tells us that candidates as minimizers are solutions of
the dynamics

ẋ = )H
)p

, ṗ = −)H
)q

,

H(z, u) = max
v∈[0,1]

H(z, v),
(6)

where p satisfies at the final time t∗ the transversality condition:
p(t∗) ⟂ Tx(t∗)N

and moreoverM(z) = maxv∈[0,1] H(z, v) is constant.
The aim of geometric optimal control is to construct the time minimal synthesis: u∗(x0) for every initial condition x0 (see

Fig.3). This amounts to compute:
• the switching locusW , where the optimal control is discontinuous,
• the separating locus L, where two minimizers intersect,
• the cut locus C , where a control ceases to be minimizing.
There is a lot of results coming from a series of article [4, 13] to compute explicit semi-algebraic approximations of switching,

separating and cut loci in a tubular neighborhood of N using Lie algebraic computations only, and suitable in our analysis. It
will serve to construct in fine a decomposition ofℝN into bands d ≤ xi ≤ d+" to patch the different local syntheses to construct
suboptimal policies to transfer the system from an infected point to an healthy point (see Fig.4). Clearly in this analysis the
behaviors of the system near forced equilibria localized on the set  where X and Y are collinear is crucial. This set contains
the (free) equilibria of the GLV-dynamics.
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FIGURE 3 Schematic representation of the construction of the synthesis in a neighbourhood U of a point P of the terminal
manifold x1 = d with a switching locusW and a cut point at x0 belonging to the separating locus.

FIGURE 4 Schematic representation of a path between two open sets U1 and U2 on which the synthesis have been determined.

Sampled-data case.
The optimal control problem can be interpreted as a finite dimensional optimization problem and solved in this context. Adapted
choice is to use a MPC method, but non linearity comes from the dynamics. Convergence is related to the regularity properties
of the time minimal value function analyzed using geometric optimal control analysis in the permanent case. Strong pathologies
can occur in relation with accessibility properties.

1.2 The organization of the article
The article is organized in three sections.
In Section 2 we introduce the controlled Generalized Lotka-Volterra equation associated to the problem of reducing C. difficile

infection. We present the techniques from geometric optimal control to be applied to the analysis in relation with accessibility
property of the system. In this context singular trajectories are defined as singularities of the extremity mapping.
In Section 3, the optimal control problem aiming to reduce C. difficile infection is analyzed using indirect methods (maximum

principles) in both permanent and non permanent cases, to derive ncessary optimality conditions. Such conditions are used in
the permanent case to the geometric classification of the regular syntheses near a terminal manifold of codimension one. They
can be glued together to construct global syntheses in our study.
In Section 4, the techniques are applied to the controlled Lotka–Volterramodel.We concentrate on the 2d–case. The geometric

study is showed to be related to the interaction between the collinearity and the singularity loci, which reduces in the model to
two straight-lines. Numerical results are presented combining direct and model predictive control methods. Computations are
extended to the 3d–case, determining the singular trajectories and they are classified according to their time optimality status.

2 CONTROLLED GLV-MODEL AND GEOMETRIC OPTIMAL CONTROL

2.1 Controlled GLV-equation
2.1.1 Definitions
The C. difficile infected GLV-equation is the dynamics described by:

ẋ = (diag x) (Ax + r) =
N
∑

i=1
xi(Ax + r)i ei (7)
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with ei is the ith vector of the canonical basis ofℝN , x = (

x1, x2,… , xN
)

∈ ℝN
+ , where x1 represents the C. difficile populationand x̃ =

(

x2,… , xN
)

∈ ℝN−1
+ describes the healthy agents. The matrix A =

(

aij
) is the matrix of interaction, where aij

represents the birth or death rate of the i-agent with respect to the j-agent and r represents the birth or death rate of the i-agent
without interaction. Note that the healthy agents can be ordered as x2 < x3 < … < xN according to the coefficients aij . We
denote byM+ = ℝN

+ the invariant domain xi > 0, M̄+ the union of theM+ with its boundary. Moreover, the dynamics (7) can
be extended to the whole Euclidean set ℝN . Using log-coordinates x = ey, we denote byM the log-image ofM+.
The dynamics is called regular if A is invertible and we denote by xi the infected persistent equilibrium point xe = −A−1 r.

Making x1 = 0 in (7), this defines a restricted healthy dynamics given by
̇̃x = x̃

(

Ãx + r̃
)

,

where x̃ = (

x2,… , xN
)

∈ ℝN−1
+ .

In the regular case, the dynamics can admit up to 2N equilibria, which can be easily computed by recurrence making xi = 0
in (7).
Since (7) is polynomic, asymptotic behaviors can be determined using the standard Poincaré compactification with the

embedding of (7) into the hyperplane (x, z = 1) of ℝN+1 to define:
ẋ = (diagx) (Ax + rz)
ż = 0,

where the right-member has been homogeneized to define an homogeneous quadratic vector of ℝN+1, which can be projected
on theN-sphere SN .
Each equilibrium can be classified according to their L(linear)-stability status associated to the linearized system.
Our study is related to the interaction of the k-equilibria of the dynamics and one can construct a polynomic system denoted

P2 in a domainU centered at xe with the k-equilibria defined by the k-interacting equilibria of the original system and preserving
their L-stability. Such polynomial system leads to introduce the dynamics

ẋ = P2(x),

which can be extended on the whole ℝN . Again it can be compactified and the equilibria distinct from xe are at the infinity.

2.1.2 Antibiotic action
In this article, we shall mainly restrict to the case of a single antibiotic treatment and a final fecal injection to fit to the protocol
therapy described in [8]. At time t = 0, antibiotic treatment can be either administrated at different dosing regimens: constant
dosing regimen, a pulsed dosed regimen or a tapered dosing regimens. The control system takes the form:

ẋ = X(x) + u Y (x) ,

with X = (diag x) (Ax + b) and Y (x) = (diag x) ("1,… , "N
)T , where "i are the sensitivity coefficients.

The control u(t) describes the dosing regimen, a single pulse corresponds to a Dirac, with height � as a limit when n → +∞
u(t) = � over [0, 1∕n] or a constant regimen with u(t) = m.
This leads to consider a general control system of the form:

ẋ = X(x) + u Y (x) , u ∈ [0,+∞[ .

Note that using prebiotics means to reverse the antibiotics actions using "i → −"i, and the parameters "i being related to the
choice of antibiotics or prebiotics.

2.1.3 Fecal injection
In the protocol described in [8], after a preliminary administration of antibiotic to an uninfected individual, C. difficile is
inoculated to jump to an infected state and a final single fecal injection is administrated.
Hence, this leads to consider the time minimal control problem for the single-input control system:

ẋ = X(x) + u Y (x) , u ∈ [0, m] ,
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where the terminal target is the manifold {x1 = d}. In the protocol, a constant antibiotic injection has the effect of shifting the
equilibria of the free motion, and the final fecal injection has no effect on the x1-population but is related to enter in a stability
domain in the terminal manifold.

2.2 A recap of accessibility results coming from geometric control
Definition 1. We shall denote byM a C!-manifold of dimension N connected and second countable which can be identified
to ℝN and V (M) is the set of C!-vector field onM . If F ,G ∈ V (M), the Lie bracket is computed with the convention

[F ,G] (x) = )F
)x
(x)G(x) − )G

)x
(x)F (x) .

If F ∈ V (M), we denote by x(t, x0) the maximal solution on J of the Cauchy problem: dx
dt
= F (x), x(0) = x0. We denote by

{exp tF ; t ∈ J} the (pseudo) one parameter group defined by (exp tF ) (x0) = x(t, x0). Consider a control system of the form
dx
dt
= F (x, u), where u ∈  and  denotes the set of admissible controls which consists into the set of measurable mappings

valued in the fixed control domain U . Taking u ∈ L∞ [0, T ], the fixed time extremity mapping is the map
Ex0,T ∶ u ∈  → x(T , x0, u) ,

where we assume that the response is defined on the whole [0, T ] and the extremity mapping is the map
Ex0 ∶ u ∈  → x(⋅, x0, u) .

In our accessibility study we can restrict to the set of piecewise constant mappings valued in U . Hence this leads to introduce
the polysystem D = {F (x, u) ; u ∈ U}. We denote by S(D) the pseudo-semigroup generated by {exp tF ; F ∈ D , t > 0} and
G(D) the pseudogroup generated by S(D).
Taking x0, x1 we say that x1 is accessible to x0 in time T if there exists t1,… , tk > 0 such that x1 = '

(

t1,… , tk
)

=
(

exp tkFk◦… ◦ exp t1F1
)

(x0), ti > 0, t1 + t2 +…+ tk = T and x1 is normally accessible to x0 in time T if additionally ' is a
submersion. We denote by A+(x0, T ) the set of accessible points in time T and A+(x0) = ∪T>0A+(x0, T ) the accessibility set.
Reversing time, one can define similarly the sets A−(x0, T ), A−(x0) of points which can be steered to x0. The polysystem D is
controllable in time T if for each x0, A+(x0, T ) =M and controllable if, for each x0, A+(x0) =M .
One has the following lemma.

Lemma 1. A+(x0) = S(D)(x0) (orbits of the pseudo-semigroup S(D)) and the system is controllable if S(D) acts transitively
onM .
Definition 2. The polysystem D is called weakly controllable if for each x0, G(D)(x0) =M .
This leads to the Chow-Rashevskii theorem that we formulate next.

Proposition 1. Let F ,G ∈ V (M) and ' ∈ diff(M). Denote ' ∗ F the image of F defined by ' ∗ F ∶= d'
(

F◦'−1
). We

have:
1. The one parameter pseudo-group of G = ' ∗ F is given by

exp tG = '◦ exp tF◦'−1 .

2. ' ∗ [F ,G] = [' ∗ F , ' ∗ G] .
3. The Baker-Campbell-Hausdorff formula is:

exp sF◦ exp tG = exp � (F ,G)

where � (F ,G) belongs to the Lie algebra generated by {F ,G} with:
� (F ,G) = sF + tG + s t

2
[F ,G] + s t2

12
[[F ,G] , G] − s2 t

12
[[F ,G] , F ] − s2t2

24
[F , [G, [F ,G]]] +… ,

the series being converging for s, t small enough.
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4. Denote by adF ⋅ G = [F ,G] and 't = exp tF we have the ad-formulae
't ∗ G =

∑

k≥0

tk

k!
adkF (G)

and the series is converging for t small enough.
Given two vector fields, an important computational problem is introduced next.

Definition 3. Let D = {F } be a polysystem. We denote by DL.A. the Lie algebra generated by D computed recursively using
iterated Lie brackets:

D1 = spanD , D2 = span {D1 + [D1, D1]} … , Dk = span{Dk−1 +
[

D1, Dk−1
]

} ,

and
DL.A. = ∪k≥1Dk .

If x ∈ M , we introduce the following sequences of integers: nk(x) = dim Dk(x). Let the derived Lie algebra given by
[

DL.A., DL.A.
] and denote D0

L.A. the Lie algebra:
{ p

∑

i=1
�iF

i + G ; p ∈ ℕ , �i ∈ ℝ ,
p
∑

i=1
�i = 0 , F i ∈ D ,G ∈

[

DL.A., DL.A.
]

}

.

Definition 4. Given two vectors fields F , G, a Hall basis is a minimal set of generators of the free Lie algebra generated by F
and G. Let x ∈ M , a frame of minimal lengths is a set of iterated Lie brackets with full rank equals to dimM at x and where
the sum of length of the iterated generators is minimal.
In particular, the following results are useful in our computations.

Lemma 2. Denote in short by F G the Lie bracket [F ,G]. If D = {F ,G} every Lie bracket of lengths smaller than 5 can be
computed with the following 14Lie products:F ,G,F G,F 2G,F G2,F 3G,F 2G2,F G3,F 4G,F 3G2,F 4G,F 3G2,F 2GF G,
F GF G2, F 2G3, F G4.
Application 1. Using log-coordinates one can compute, up to length 5, iterated Lie brackets of the polysystem

D = {F , G}

with F = Aey + r, G = (

"1,… , "N
)T .

Theorem 1 (Chow-Rashevskii). Let D be a C!-polysystem onM . Assume that for each x ∈M , DL.A.(x) = dim M . Then we
have, for each x ∈M :

G(D)(x) = G
(

DL.A.(x)
)

=M .

Proof. The semi-constructive proof is to use Baker-Campbell-Hausdorff formula to construct a frame of iterated Lie brackets
F1,… , Fn such that '

(

t1,… , tn
)

=
(

exp t1F1
)

◦…
(

exp tnFn
)

(x) is a local diffeomorphism at 0.
In particular, this gives controllability result for a symmetric polysystem D, that is if F ∈ D, −F ∈ D. But the following

weaker result is true [20] and we present Krener’s proof.
Proposition 2. LetD be a polysystem such that dimDL.A.(x) = dim M for each x ∈M . Then for every neighborhood V of x,
there exists a non empty open set U contained in V ∩ A+(x) (or A−(x)).
Proof. Let x ∈M , if dimM ≥ 1, then there exists F1 ∈ D such that F1(x) ≠ 0. Consider the integral curve

�1 ∶ t →
(

exp t F1
)

(x) .

If dim M ≥ 2, then there exists in every neighborhood V of x, a point y ∈M such that y = exp t1F1, t1 > 0, and a vector field
F2 ∈ D such that F1 and F2 are not collinear at y. Consider the mapping

�2 ∶
(

t1, t2
)

→
(

exp t2F2
)

◦
(

exp t1F1
)

(x) .

If dim M ≥ 3, one can iterate the construction at a point of the image for t1, t2 > 0.
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In Chow-Rashevskii’s theorem, the semi-group action is extended to the group action, which amounts to use non-feasible
controls for each leg exp tiFi if ti < 0, i = 1,… , N . But a simple approach to obtain controllability is to replace each of such
leg joining x to y by a leg of the form exp t′iF

′
i , with t′i > 0.This leads to the following.

Definition 5. Let F ∈ V (M). The point x0 ∈ M is said Poisson stable if for every T > 0 and every neighborhood V of x0
there exist t1, t2 ≥ T such that exp t1F (x0) ∈ V and exp −t2F (x0) ∈ V . The vector field F is called Poisson stable if the set of
Poisson stable points is dense inM .
Proposition 3. Let D be a polysystem and assume the following:

1. for every x ∈M , rankDL.A.(x) = dim M ;
2. every vector field F ∈ D is Poisson stable.

Then the system is controllable.
Outline of the proof. See [16] for the details. Taking x, y ∈M , using Chow-Rashevskii’s theorem one can write:

y = exp tkFk◦… ◦ exp t1F1(x),

where t1,… , tk are positive or negative.
In the previous sequence, each element of the form exp sF with s < 0 can be nearby replaced by an arc exp s′F , s′ > 0

using the Poisson stability property of F . The proof follows using Proposition 2.
Next we present another approach to the accessibility problem [9], which can be applied to polynomic systems due to the

work of [11].
Definition 6. Let D, D′ be polysystems satisfying the rank condition dim DL.A.(x) = dim D′

L.A.(x) = dim M ,∀x. They are
called equivalent if, for every x ∈ M , S(D)(x) = S(D′)(x). The union of all polysystems D′ equivalent to D is called the
saturated of D and is denoted by satD.
Next, we present the set of operations to compute the saturated of D.

Proposition 4. Let D be a polysystem. Then:
1. If F , G ∈ D, then the convex cone generated by F and G belongs to satD;
2. Let F ∈ D and assume that F is Poisson stable, then −F ∈ satD;
3. If ±F , ±G ∈ D, then ± [F ,G] ∈ satD;
4. The normalizer N(D) is the set of diffeomorphisms ' on M such that, for every x ∈ M , '(x) and '−1(x) belongs to
S(D)(x). One has:
(a) If ' ∈ N(D) and F ∈ D then ' ∗ F ∈ satD;
(b) If ±F ∈ D and G ∈ D then for '� = exp �F ∈ satD, we have '� ∗ G ∈ satD, for every �.

Remark 1. Remarks on the properties of Proposition 4:
• Property 2. comes from Proposition 3;
• Property 3. is a reformulation of Theorem 1;
• the concept of normalizer introduced in Property 4. is an important tool in the construction of satD, in particular in

relation with the ad-formula of Proposition 1.
Application 2. Accessibility properties of the pair D = {F ,G}, F = Aey + r, G =

(

"1,… , "N
)T can be analyzed using the

previous techniques in relation with the analysis of the controlled GLV-equation. Nevertheless, a negative controllability result
is the following.
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Proposition 5. Consider on ℝ2∖{0} the pair of linear vectors fields {A1x,A2x} and assume that A1, A2 are hyperbolic, that is,
Ai ∼

(

�1 0
0 �2

)

, �1�2 < 0. Then accessibility can be characterized by the intertwining of the stable and unstable directions.

Proof. Let a > 0 and a′ < 0 denote the eigenvalues of A and b > 0 and b′ < 0 the eigenvalues of B. Clearly dim{Ax,Bx}L.A. =
ℝ2 ⧵ {0} if and only if A and B have no common eigenvalues.
Let M1 denote one intersection of the eigenspace of a with the unit circle and, using the positive orientation starting from

M1, denote M2, M3, M4 the first intersection with the unit circle of the eigenspaces associated respectively to a′, b and b′.
Then the only controllable polysystems {Ax,Bx} on ℝ2 ⧵ {0} are associated to (M1,M2,M3,M4) or (M1,M4,M3,M2). This
is clear since controllable pairs are such that for every x ∈ ℝ2 ⧵ {0} there exists a periodic path surrounding 0 of the form:
exp t1X1◦… ◦ exp tkXk(x), with ti > 0 and Xi in the polysystem {Ax,Bx}.
Corollary 1. Let the polysystem {Ax,Bx + b}, where A and B are hyperbolic and b is non zero. Then it is controllable on ℝ2

if {Ax,Bx} is controllable on ℝ2 ⧵ {0}.

2.3 Controllability and feedback linearization
2.3.1 Preliminaries
In this section, the system ẋ = X(x) + u Y (x), u ∈ [0, 1], is denoted by F (x, u) and the control u is extended to the whole
ℝ and is shortly written as (X, Y ). The feedback pseudo-group is denoted by GF and is the set of triplets (', �, �), where
' is a local diffeomorphism, u = �(x) + �(x)v, � ≠ 0 is a feedback and acts on (X, Y ) according to the action (X, Y ) →
(' ∗ (X + �Y ) , ' ∗ �Y ).
Definition 7. Let (x, u) be a control trajectory pair defined on [0, T ], the linearized system along the reference pair (x, u) is the
time dependent variational linear system

̇�x = A(t)�x + B(t)�u with A(t) = )F
)x

(x(t), u(t)) , B(t) = )F
)u

(x(t), u(t)) .

Next, we introduce the concept of singular trajectories with crucial properties, see [3] for more details. Recall that Ex0,T

denotes the extremity mapping where the set  of controls is endowed with the L∞([0, T ]) norm.
Definition 8. A control trajectory pair (x, u) is singular on [0, T ] if the Fréchet derivative of the extremity mapping is not of
maximal rank: n = dim M .
One has the following proposition.

Proposition 6. The Fréchet derivative of the extremity mapping at (x, u) solution of the linearized system:
⎧

⎪

⎨

⎪

⎩

̇�x(t) = A(t)�x(t) + B(t)�v(t)

�x(0) = 0 ,

and the pair (x, u) is singular if and only if there exists a non zero adjoint vector p on [0, T ] such that t → x(t) is the projection
of the solution of the Hamiltonian system:

⎧

⎪

⎨

⎪

⎩

ẋ = )HF

)p
(x, p, u) , ṗ = − )HF

)x
(x, p, u) ,

)HF

)u
= HY = 0 ,

(8)

whereHF ∶= p ⋅ F (x, u) andHY = p ⋅ Y (x) are the Hamiltonian lifts.
Proposition 7. Singular trajectories are feedback invariant that is GF acts on the set of singular trajectories by change of
coordinates only (lifting a diffeomorphism ' into a Matthieu symplectomorphism).
Definition 9. The system F (x, u) is called feedback linearizable if for the action of the pseudo-group GF it is equivalent to the
time-invariant linear system ẋ = Ax + Bu, where A, B are constant matrix.
One has the following proposition [7, p.165].



Bernard Bonnard ET AL. 11

Proposition 8. The system F (x, u) = X + uY is feedback linearizable near a point x0 ∈M if and only if
1. the matrix {Y (x0), adX ⋅ Y (x0),… , adn−1X ⋅ Y (x0)} has rank n = dim M at x0;
2. the distribution D = span {Y , adX ⋅ Y ,… , adn−2X ⋅ Y } is involutive, that is, [D,D] ⊂ D near x0.
Clearly, the existence of singular trajectories is an obstruction to feedback linearization, see [1] for the applications tomicrobial

communities.
Computations of singular trajectories.
One uses the system (8) computations being neat with the iterated Poisson brackets {HX ,HY } = dH⃗X

(

HY
)

= H[X,Y ].
From (8), one hasHY = 0 and deriving twice with respect to time one gets

HY (z(t)) = {HY ,HX}(z(t)) = 0,
{{HY ,HX},HX}(z(t)) + u(t) {{HY ,HX},HY }(z(t)) = 0 .

(9)
The singular control denoted us associated to the extremal lift t → z(t) = (x(t), p(t)) is called of minimal order 2 if the

following regularity condition is satisfied
{{HY ,HX},HY }(z) = p ⋅ [[Y ,X], Y ](x) ≠ 0 ,

along the extremal t → (p(t), x(t)).
Otherwise from (9), one gets:

{{{HY ,HX},HX},HX}(z) + u {{{HY ,HX},HX},HY }(z) = 0 ,
{{{HY ,HX},HY },HX}(z) + u {{{HY ,HX},HY },HY }(z) = 0 ,

(10)
and if again u(⋅) can be deduced from the two previous linear equations, the corresponding control us is called of order 3. One
can iterate the computation to deduce singular arcs at any order.
One application to controllability which generalizes the standard controllability result by linearization from [15] is the

following.
Theorem 2. Let (x, u) be a control trajectory pair on [0, T ] and assume that (x, u) is not singular. Then the image of the extremity
mapping at u(⋅) is open that is there exists an open setW , centered at x(T ) = Ex(0),T (u) such thatW ⊂ A+(x0, T ) (provided the
control u is strictly feasible).
Remark 2. The previous results can be applied to our study with some care to deal with feasible controls. Indeed, in practice,
one has a constraint u ∈ [0, 1]. Hence, this leads to consider only controls such that u is strictly admissible, that is 0 < u < 1. If
u = 0 or u = 1, u is said saturating the control constraints.

3 A GEOMETRIC APPROACH TO OPTIMAL CONTROL: THE PERMANENT VERSUS
DIGITAL CASE

3.1 Notations
In this section, we use the notation ẋ = F (x) + uG(x), |u| ≤ 1, so that, the cone C of admissible directions is generated by
F ± G, that is X = F − G, Y = F + G.

3.2 Maximum Principle
Consider the control system ẋ = F + uG, |u| ≤ 1. Denote by H = HF + uHG the Hamiltonian lift with HF (z) = p ⋅ F (x),
HG = p ⋅G(x), with x ∈M ⋍ ℝN . LetN be a terminal manifold and consider the time minimal control problem, with terminal
manifold N . The Maximum Principle [15] tells us that if (x, u) is a time minimal trajectory on [0, T ] then there exists p(⋅) non
zero such that the triplet (x, p, u) is solution of the Hamiltonian dynamics:

ẋ = )H
)p

, ṗ = −)H
)x

,

H(x, p, u) = max
|v|≤1

H(x, p, v) =M(x, p) .
(11)
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Moreover, the maximal HamiltonianM is a nonnegative constantM = −p0 ≥ 0 and at the final time T the pair (x, p) satisfies
the transversality condition:

p(T ) ⟂ T ∗x(t)N . (12)
Definition 10. A triplet (x, p, u) solution (11) is called extremal and a x-projection of an extremal is called a geodesic. Denoting
z = (x, p) the symplectic coordinates, an extremal is called regular if u(t) = signHG(z(t)) a.e. and singular if HG(z(t)) = 0
identically. An extremal is called exceptional if the maximized HamiltonianM is zero. A BC-extremal is an extremal satisfying
the transversality condition (12). A switching time is a time such that the extremal control is discontinuous and a BC-extremal is
a regular extremal such that the number of switches on [0, T ] is finite. We denote respectively by �+, �−, �s, bang arcs associated
to u = +1, u = −1 or u = us singular and �1 �2 is the concatenation of the two arcs �1, �2.
Definition 11. Taking an open set V of M , the problem (restricted to V ) is called geodesically complete if, for each pair
x0, x1 ∈ V there exists a time minimizing geodesics joining x0 to x1. Fixing the target to N , a time minimal synthesis is a
(discontinuous) feedback x → u∗(x) so that the solution of dx

dt
= X(x) + u∗(x)Y (x) is well defined and u∗(x) is the optimal

solution to steer x to the targetN , in minimum time.
Definition 12. Let (z, us) be a reference singular extremal of order 2, so that us is defined by (9). The associated singular
trajectory (x, us) is called strict if p is unique up to a scalar. In the strict case, singular extremals are said to be hyperbolic if
HF (z) {{HG,HF },HG}(z) > 0, elliptic if HF (z) {{HG,HF },HG}(z) < 0. Note that in the exceptional case, since M = 0,
both p and −p can be taken as adjoint vector.
One has the high order Maximum Principle [10].

Proposition 9. Let (z(⋅) = (x(⋅), p(⋅)) be a singular extremal on [0, T ] and associated to a control which is strictly feasible. Then
a necessary time minimizing condition is the generalized Legendre-Clebsch condition

)
)u
d2

dt2
)H
)u ∣z(t)

=
{{

HG,HF
}

,HG
}

(z(t)) ≥ 0.

If the inequality is strict it is called the strong generalized Legendre-Clebsch condition.
Remark 3. Reversing the previous inequality leads to a necessary time maximizing condition.

3.3 Small time classification of regular extremals
One recalls the following result [12].
Definition 13. Recall that �+ (respectively �−) denotes a bang arc with constant control u = 1 (respectively u = −1) and �s a
feasible singular arc. We denote by �1�2 the arc �1 followed by �2. The surface Σ ∶ HG(z) = 0 is called the switching surface
and let Σ′ ⊂ Σ given byHG(z) = H[G,F ](z) = 0. Let z(⋅) = (x(⋅), p(⋅)) be a reference curve on [0, T ]. We note Φ(t) = HG (z(t))
the switching function, coding the switching times.
Deriving twice Φ with respect to time, one gets:

Φ̇(t) = {HG,HF } (z(t))

and
Φ̈(t) = {{HG,HF },HF } (z(t)) + u(t){{HG,HF },HG} (z(t)) . (13)

Lemma 3. Assume that t is an ordinary switching time that is Φ(t) = 0 and Φ̇(t) ≠ 0. Then, near z(t), every extremal projects
onto �+�− if Φ̇(t) < 0 and �−�+ if Φ̇(t) > 0.
The situation is more complex for contact of order 2 with Σ.

Definition 14. The case Φ(t) = Φ̇(t) = 0 and Φ̈(t) ≠ 0 for both u = ±1 in (13) is called the fold case and hence z(t) ∈ Σ′.
Assume that Σ′ is a regular surface of codimension two. We have three cases:

• parabolic case: Φ̈+(t) Φ̈−(t) > 0;
• hyperbolic case: Φ̈+(t) > 0 and Φ̈−(t) < 0;
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• elliptic case: Φ̈+(t) < 0 and Φ̈−(t) > 0.
where Φ̈", " ∈ {−1, 1} is given by (13) with u = ".
Denote by us(⋅) the singular control of order 2 defined by (9), z(⋅) = (�s, ⋅), we assume that the regularity con-

dition {{HG,HF },HG}(z(t)) ≠ 0 holds. The arc �s is hyperbolic if HF (z(t)) {{HG,HF },HG}(z(t)) > 0, elliptic if
HF (z(t)) {{HG,HF },HG}(z(t)) < 0. In the parabolic case, it can be absent or not feasible, that is, |us(t)| > 1.
We have the following result.

Proposition 10. In the neighborhood of z(t), every extremal projects onto:
• in the parabolic case: �+ �− �+ or �− �+ �−;
• in the hyperbolic case: �± �s �±;
• in the elliptic case, every extremal is bang-bang but the number of switches is not uniformly bounded.

3.4 Classification of the regular syntheses near the terminal manifold using singularity theory
This is the main technical tool of this article, we use the techniques to classify generically the time minimal synthesis[4, 13]
near the terminal manifold. Before introducing the results, we present the following properties.

3.4.1 The role of the transversality condition
Let x0 ∈ N and locally one can identify x0 to 0 andN to the plane x1 = 0, which divides the space into two neighborhood U+
and U− of 0 contained respectively in x1 > 0 and x1 < 0. The cones of admissible directions is given by the convex cone C
generated {F ±G}, which is strict except in the collinear case. The normal toN can be taken as n = (1, 0,… , 0)T . Clearly, in the
generic case, the time minimal policy for small time amounts to maximize the n ⋅ ẋ = ẋ1 among the set of all admissible controls,
which is precisely the transversality condition. Non generic case occurs when no information is obtained from this condition.
In particular we introduce.

Definition 15. The problem can be classified into the flat and non flat case. The flat case being when G is everywhere tangent
to N .

3.4.2 Concepts of regular synthesis
One takes a terminal point x0 identified to 0 and let U be a small open neighborhood of 0. The terminal manifold N can be
locally defined as N = f−1(0), where f is a submersion from U onto a neighborhood of 0 in ℝ. The set of triples (F ,G, f )
is endowed with the ℂ∞–Whitney topology and we denote by jnF (x0) (resp. jnG(x0), jnf (x0)) the n-jet of F (resp. G, f )
obtained by taking the Taylor expansion at x0. We say that the triplet (F ,G, f ) has at x0 a singularity of codimension i if
(

jnF (x0), jnG(x0), jnf (x0)
)

∈ Σi, a semialgebraic submanifold of codimension i in the jet space.
The references [4, 13] classify up to codimension ≤ 2 the local time minimal syntheses in a neighborhood U of N by

estimating up to any order the switching and cut loci.
Actually, the optimal control u∗ not always define on the whole set U since, for some x ∈ U the target N is not accessible.

This can be shown to be related to the exceptional case. It can also happen that u∗ is not uniquely defined. The set of such points
is called the splitting locus and is denoted by L.
If u∗(x) exists and is unique, in the regular case |u∗(x)| = 1 and U can be partitioned into U+ where u∗(x) = 1 and U− where

u∗(x) = −1. In our work, we can compute the subanalytic surface S separating U+ from U− and its structure of three kinds.
• Switching surface: closure of the set points where u∗ is regular but not continuous, denoted byW# (# ∈ {+,−, s}) where

at a switching point the control is taken right-continuous by convention.
• Cut locus: if � is a minimizing curve, it will be defined on an interval [T , 0], with T < 0, integrating backwards from the

final point on N and the cut-locus is the closure of the set of cut points where the trajectory loses its optimality status. It
is denoted by C and contains the splitting locus.
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• Singular locus: it is foliated by optimal singular arcs and denoted by Γs. R ecall that if us ∈ ]−1,+1[ the singular trajectory
�s is strictly feasible, if us ∈ {−1,+1} it is saturated.

To simplify the estimates of the previous strata, one use semi-normal forms for the restricted actions of the feedback group
related to local diffeomorphisms' preserving 0 and exchange of u into−u, so that one can identified �+ to �− in the classification.

3.4.3 Description of the local syntheses
Next we present a dictionary of syntheses describing the classification of syntheses up to the codimension one. They are repre-
sented as 2d–pictures, thanks to the existence in those small codimension case to the C!-foliations of the syntheses in invariant
planes. One distinguishes between the flat case (see Figures 10–12) and non flat case (see Figures 5–9).

C

N

�−

�+
W+

N
�−

�+

FIGURE 5 Non flat case. Generic ordinary switching point.

�−
�−

�−

�s

N

�+
�+

�+

C

N

�−

�+

FIGURE 6 Non flat case. Generic hyperbolic case.

A much more complete dictionary can be found in [4, 13], in particular to deal with generic 3d-systems, where more com-
plicated phenomenon can occur due to non-existence of foliations by 2d–planes. Estimates of the strata are given related to the
jet spaces of the triples (X, Y , f ) at x0 = 0. The semi-algebraic set Σi are described and the syntheses can be described using
Lie algebraic computations only. Applications to our specific problem can be given by gluing such syntheses, see [5].

3.5 The digital case versus the permanent case
In the digital case, we divide [0, T ] into 0 = t0 < t1 <… < tn < T and on each subinterval [ti, ti+1] the control is a constant ui,
|ui| ≤ 1. The digital aspect is the interpulse constraint ti+1 − ti ≥ Im with fixed Im ≥ 0. Hence, such control is represented by
a sequence � = (

u0,… , un, t1,… , tn
). Assume that � is optimal. The set of admissible perturbations �̄ = (

ū0,… , ūn, t̄1,… , t̄n
)

decomposes into:
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C

N

�−

�+

FIGURE 7 Non flat case. Generic elliptic case.

W−

N�+

�−

�+
C

N

�−

�+

FIGURE 8 Non flat case. Generic parabolic case.

FIGURE 9 Non flat case. Generic exceptional case.

• L∞-admissible perturbations if there exists, for each i = 0,… , n, "̄ > 0 such that ui + "ūi ∈ [−1,+1] for all 0 ≤ " ≤ "̄.
• L1-admissible perturbations t̄i ∈ ℝ of ti if there exists "̄ > 0 such that

(

ti + "t̄i
)

− ti−1 ≥ Im and ti+1 −
(

ti + "t̄i
)

≥ Im for
all 0 ≤ " ≤ "̄, for i = 1,… , n − 1 while for i = n only (tn + "t̄n

)

− tn−1 ≥ Im holds.
Each admissible perturbation provides a tangent solution of the linear differential equation:

ẇ(t) =
()F
)x

+ u�
)G
)x

)

(

x�(t)
)

⋅w(t), (14)
where (x� , u�) denotes the control trajectory pair on [0, T ] given by �.
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�−
�−

�−

�s

N

�+
�+

�+

C

N

�−

�+

FIGURE 10 Flat case. Hyperbolic case (left) and elliptic case (right).

W−

N�+

�−

�+ C

N

�−

�+

FIGURE 11 Flat case. Generic parabolic case

N

�+
�−

�−

0 0
�−

�+

N

FIGURE 12 Flat case. Generic exceptional case.

If ' denotes the Mayer cost to be maximized, from optimality one gets
'
(

x�(t)
)

− '
(

x�̄(t)
)

≥ 0 ,

for every admissible perturbation. Taking the limit as "→ 0+, one obtains the condition
)'
)x

(

x�(T )
)

⋅w(T ) ≥ 0 ,

We introduce the adjoint equation
ṗ(t) = −p(t)

()F
)x

+ u�
)G
)x

)

(

x�(t)
)

,

where p(⋅) is written as a row-vector with terminal condition
p(T ) = −

)'
)x

(

x�(T )
)

.
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Observe that for each solution w(t) of the variational equation one has p(t) ⋅w(t) = 0. Moreover, denoting by Φ(⋅, ⋅) the state
transition matrix associated to the linear system (14), one has

w(T ) = Φ(T , s)w(s),
p(s) = p(T ) Φ(T , s)T .

In particular, for L∞-perturbations one gets.
Proposition 11. In the sampled-data case, with fixed interpulses, one gets the necessary optimality condition

ti+1

∫
ti

(

p(s)G(x�(t))
)

�ui ≤ 0 ,

for each admissible variation �ui.
Similarly, one can derive the necessary conditions with free sampling times.
This leads to the so-called (indirect) Pontryagin type necessary optimality conditions for the sampled-data case. The numerical

implementation of such condition is difficult and this requires to a more direct treatment.

3.6 Optimal sampled-data control and model predictive control (MPC) algorithm
In the optimal sampled-data control frame, the problem leads to consider a finite dimensional problem of the form:

min
�
J (x0, �) ,

where x0 is the initial condition and � = (

t1,… , tn, u0,… , un−1
) represents the finite dimensional set of controls associated to

the choice of time sampling and control amplitudes of each sampling and constraints are given by the interpulses constraints
ti − ti−1 ≥ Im and each ui ∈ [0, 1].
The direct approach amounts to apply an optimization algorithm to search for the optimum. In our study, it will be coupled

with the following MPC approach.
MPC algorithm.
One starts with the initial state x0 at time t0 which practically can be estimated by x̂0. We fix an horizon of length k and we
apply the optimization algorithm over the subset of admissible controls  ofℝ2k. This routine leads to compute the optimization
sequences

�∗k =
(

t∗1,… , t∗k, u
∗
0,… , u∗k−1

)

, t∗i − t
∗
i−1 ≥ Im

and we apply to the dynamics (t∗1, u∗1) to get at time t∗1 the response x∗(t∗1). We iterate the construction replacing t0 by t∗1 and x0by x∗(t∗1) (see Fig. 13).

Initial point x0
and horizon k

min� J (x0, �)

x0 ← x∗(t∗1)
t0 ← t∗1

FIGURE 13MPC algorithm with horizon of length k.
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4 COMPUTATIONS AND PRELIMINARY RESULTS ON THE GENERALIZED
LOTKA–VOLTERRA MODEL

We start with the control system (4) with either an antibiotic or a probiotic agent. Using dimensionless coordinates, xi ←
xi∕x∗i , i = 1, 2 where x∗i are the coordinates of the persistent equilibrium, the persistent equilibrium is normalized to (1, 1) and
substituting � to � = (�1, �2)⊺ according to � = −A−1� leads to the system:

ẋ = diagxA (x − 1 − u�)

with 1 = (1, 1)⊺. Therefore the vector fields used in this section resulting from this normalization are :
X = diagxA (x − 1) , Y = −diagxA�.

4.1 Geometric analysis in the 2d–case
4.1.1 Equilibria and the collinear set
The collinear set  is one of the main feedback invariant related to the computations of free equilibria with no treatment u = 0
and forced equilibria with maximal dosing u = 1. This set is the one dimensional algebraic variety projection of the set

 = {(x, u) ∈ ℝ2 ×ℝ, ∃u such that X(x) + u Y (x) = 0}. (15)
Moreover the control u has to be feasible : u ∈ [0, 1]. This projection is also given by the determinantal variety: det(X(x), Y (x)) =
0:

x1x2 det A
(

�1(x2 − 1) − �2(x1 − 1)
)

= 0,
and it consists of the half-line  ∶ x2 = 1 + �2∕�1(x1 − 1) in the positive orthant x1, x2 ≥ 0. The control along  such that
X(x) + ue(x) Y (x) = 0 is given by ue(x) = (x1 − 1)∕�1 ∈ [0, 1].
At a point xe = (x1e, x2e) ∈  associated to the control ue, the Jacobian matrix

J = )
)x
(X(x) + u Y (x))∣x=xe(x),u=ue(x) (16)

has the two eigenvalues
(

� ±
√

�2 + 4 det A�1x1e(�2(1 − x1e) − �1)
)

∕2�1,

where � = a22(�1 − �2) + x1e(�1a11 + �2a22).
The persistent equilibrium point x0e = (1, 1) has eigenvalues

(a11 + a22)∕2 ±
√

(a11 + a22)2 − 4 det A ∕2

and the forced equilibrium point x1e = (1 + �1, 1 + �2) associated to ue = 1 has eigenvalues
((1 + �1)a11 + (1 + �2)a22)∕2 ±

√

((1 + �1)a11 + (1 + �2)a22)2 − 4(1 + �1)(1 + �2) det A ∕2.

We obtain the following Proposition:
Proposition 12. Assume �1, �2 > −1 and introduce � = 1+ �1, � = 1+ �2. The forced equilibrium x1e is in the positive orthantand

• if det A < 0 and a11 ≠ −a22, �a11 ≠ −�a22 then x0e and x1e are saddle points.
• if det A > 0, then x0e and x1e are either nodes or spiral points. More precisely, if moreover

– a11a22 ≥ 2 det A then x0e and x1e are both nodes.
– a11 = −a22 then x0e is a center. If moreover �1 = �2 then x1e is a center.
– a11a22 ≤ 2 det A, (�2 + �2)(1 − a11a22∕ det A) − 2�� < 0, then if x0e is a focus then x1e is a focus.

Proof. The forced equilibrium x1e = (�, �) is in the positive orthant. If det A < 0, the statement is clear. If det A > 0 and
a11a22 ≥ 2 det A then (a11 + a22)2 − 4 det A ≥ 0 and denoting m = min(�, �), we have:

(�a11 + �a22)2 − 4 det A�� ≥ m2(a211 + a
2
22 + 2a11a22��∕m

2 − 4 det A��m2 ≥ 2m2(1 − ��∕m2)(2 det A − a11a22) ≥ 0,
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and x1e is a node. The last item follows from
(�a11 + �a22)2 − 4 det A�� ≤ (�2 + �2)(x2 + y2) − 4 det A�� ≤ 2 det A((�2 + �2)(1 − a11a22∕ det A) − 2��) ≤ 0.

4.1.2 Singular locus in the 2d–case
Singular trajectories are located on the set

Δ ∶ det([Y ,X](x), Y (x)) = 0,
which is given by:

Δ = x1x2 det A
(

�1x2
(

�1a21 + �2a22
)

− �2x1
(

�1a11 + �2a12
))

,
and corresponds to the half-line x2 = x1 �2

(

�1a11 + �2a12
)

∕�1
(

�1a21 + �2a22
) in the positive orthant.

The intersection of  and  is therefore:
xse =

(

(�1 − �2)
(

�1a21 + �2a22
)

�2
(

�1a11 − �1a21 + �2a12 − �2a22
) ,

(�1 − �2)
(

�1a11 + �2a12
)

�1
(

�1a11 − �1a21 + �2a12 − �2a22
)

)

. (17)

Now we investigate the existence of a singular control in the optimal policy near the point xse. Outside the set , (X, Y ) is a
frame and we write

[Y ,X](x) = �(x)X(x) + �(x)Y (x),
where

�(x) =
det([Y ,X], Y )(x)
det(X, Y )(x)

=
�1x2

(

�1a21 + �2a22
)

− �2x1
(

�1a11 + �2a12
)

�1(x2 − 1) − �2(x1 − 1)
, �(x) =

det(X, [Y ,X])(x)
det(X, Y )(x)

.

Using this decomposition to compute Lie brackets of length 3 we obtain
[[Y ,X], Y ] = [�X, Y ] + [�Y , Y ] = X∇�⊺Y + �[X, Y ] + Y∇�⊺Y = (−�2 + Y ⋅ ∇�)X + (−�� + Y ⋅ ∇�)Y (18)

and
[[Y ,X], X] = [�X,X] + [�Y ,X] = (X ⋅ ∇� + ��)X + (X ⋅ ∇� + �2)Y .

Two necessary conditions are (i) the singular control is admissible i.e. us ∈ [0, 1] and (ii) the strong generalized Legendre-
Clebsch condition is satisfied.
The singular control denoted us is computed using

p ⋅
(

[[Y ,X] , X] (x) + us [[Y ,X] , Y ] (x)
)

= 0

and since p is also orthogonal to Y (x) on  , we obtain for x ∈  ⧵ {xse}

us = −
det(Y , [[Y ,X], X])
det(Y , [[Y ,X], Y ]])

= −X ⋅ ∇�
Y ⋅ ∇�

=
x1

(

�1a21 + �2a12
)

�1
(

�1a21 + �2a22
) +

−a11 − a12 + a21 + a22
�1a11 − �1a21 + �2a12 − �2a22

and the value of us at xse is
us(xse) =

−�1�2a11 + �1
(

�1a21 + �2a22
)

− a12�22
�1�2

(

�1a11 − �1a21 + �2a12 − �2a22
) .

On  , we have � = 0, p ⋅ Y = 0 and from (18) the strong generalized Legendre-Clebsch condition yields
0 < p ⋅ [[Y ,X], Y ] = p ⋅ (Y ⋅ ∇�)X,

which is equivalent to Y ⋅∇� > 0 (we oriented p such that p ⋅X ≥ 0). Geometrically this means that Y has to point in the region
where � > 0.

4.1.3 Numerical results on 2d–examples
In this section, we provide numerical results using both direct and model predictive control methods for 2d GLV optimal control
problems.
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We consider the controlled system ẋ = X + u Y , X = diagxA (x − 1) , Y = −diagxA�, for which we described geometric
properties in section 4.1. The healthy region is defined by N(x) ≤ 0, where N(x) = 0 is the cartesian equation of a parabola.
Hence our aim is to solve the optimal control problem of the form

(P )
minu(⋅) N(x(T ))

ẋ(t) = X(x(t)) + u(t) Y (x(t)), u(t) ∈ [0, 1], a.e. t ∈ [0, T ]
x(0) = x0 (given).

We implement two numericalmethods to solve (P ): a direct method and amodel predictive controlmethod described hereafter.
Direct method
It is usually a quite robust method with respect to the initialization, easy to implement but the method does not exploit the
geometric properties of the problem, which give the structure of the optimal control. The method goes as follows. Discretizing
the state and the control spaces for (P ), we obtain a nonlinear finite optimization problems where the derivatives are computed
using automatic differentiation and the optimization variables are the values of the control at each time step. Then a primal dual
interior point algorithm is used to solve this optimization problem.
Model predictive control method
While the direct method discretizes the problem on the whole interval of time, which may be inefficient, a model predictive
control (MPC)method solves iteratively finite dimensional optimization problems of smaller sizes i.e. on a reduced time interval.
In terms of the problem (P ), we consider an iterative variable xc , standing for the current state of the system and initialized to
x0. We solve iteratively – in practice until |N(xc)| is smaller than a small threshold – optimal control problems of the form

(P ′)
minu∈ℝℎ N(x(tℎ))

ẋ(t) = X(x(t)) + ui Y (x(t)), ui ∈ [0, 1], a.e. t ∈ [ti, ti+1], i = 0,… , ℎ − 1
x(0) = xc

where ℎ is the horizon and 0 = t0 <⋯ < tℎ are given fixed times.
To solve (P ′) numerically, we construct an explicit approximation of x(tℎ; u, xc) corresponding to the state response at time tℎ

associated to u = (u1,… , uℎ) and starting at xc at t = 0 using a midpoint discretization scheme for the differential constraint and
we obtain an explicit approximation of the costN(x(tℎ; u, xc)). This approximation – together with its derivatives with respect to
u – is computed offline using symbolic computations and the problem (P ′) becomes a finite dimensional optimization problem
solved by a primal-dual interior point method. Once (P ′) is solved for the current value of xc , we update xc = x(t1; u1, xc) and
we iterate considering the resulting new instance of (P ′).
Construction of the instances of (P )
We consider instances of (P ) satisfying the following conditions:

• the persistent equilibria located at (1, 1) is a node.
• the collinearity locus  intersects the singular locus  at xse (given by (17)).
• the singular control is admissible at xse and the strong generalized Legendre-Clebsch condition is satisfied in a half–

neighborhood of xse,
• singular trajectories goes toward xse for positive times,

and, using Proposition 12, we consider the following examples.
Example 1. We takeA =

(

−6 1
−2 −1

)

, �1 = −4∕5, �2 = −1∕2 and the persistent equilibrium is an attracting focus. The boundary
of the healthy region N(x) = 0 is a parabola of axis  and x0 is chosen so that N can be reached with bang and singular arcs,
see Fig.14. Note that we do not expect the collinearity set  to play any role for the solution. The direct method gives a bang–
singular–bang solution depicted in Fig.14. In the same figure, the model predictive control trajectory with an horizon ℎ = 4
seems to faced with a "singular behavior" as in the permanent case.

Example 2. We take A =
(

−13 18
12 −20

)

, �1 = −11∕20, �2 = 7∕10 and the persistent equilibrium is an attracting node.
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FIGURE 14Geometric picture corresponding to Example 1. (left) The trajectory x0 = (7∕5, 8∕5) obtained with a direct method
is bang–singular–bang and the MPC trajectory seems to reproduce the singular behavior. (right) Time evolution of the control
for the direct and MPC methods.

(a) First we consider x0 = (3∕2, 1∕5) and N is accessible from x0 with bang and singular arcs and we do not expect the
collinearity set to play any role, see Fig.15 (left). The trajectories for both methods differ significantly from each other: the
direct method gives a bang–bang–singular–bang solution while the MPC trajectory with ℎ = 4 reaches N with a bang arc
followed by an arc with intermediate control values.

(b) Here we choose x0 = (3∕2, 1∕5) andN in such way that optimal trajectory necessarily crosses the collinearity and singular
loci, see Fig.15 (right). While the policy from the direct method has again the bang–bang–singular–bang structure, the MPC
method with ℎ = 4 does not reach N and stopped on the collinearity locus . This is expected since the horizon ℎ of the
MPC method is intricately related to the local controllability of the system. Below , the system can move in the direction
of positive x1 (since X points in this direction and det(X, Y ) > 0), while on C we need global policy to reach N , that is a
larger horizon has to be chosen otherwise the system stays on a forced equilibrium.

4.2 Computation in the higher dimensional cases
In theN ≥ 3 dimensional case the classification of singular trajectories is a very rich problem as illustrated by the 3d-case that
we present next.
Let (X, Y ) be a pair of vector fields and we introduce the following determinants :
• DX,Y = det(Y , [Y ,X], [[Y ,X], Y ]),
• D′X,Y = det(Y , [Y ,X], [[Y ,X], X]),
• D′′X,Y = det(Y , [Y ,X], X).

Proposition 13. The singular trajectories of order 2 are defined by the dynamics:
ẋ = Xs(x) = X(x) −

D′(x)
D(x)

Y (x)
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FIGURE 15 Geometric picture corresponding to Example 1 (a) (left) and Example 1 (b) (right) together with the trajectories
obtained from the direct and MPC methods.

on ℝ3.
Proof. In the 3d-case, the adjoint vector p can be eliminated using the relations:

p ⋅ Y (x) = p ⋅ [Y ,X](x) = p ⋅
(

[[Y ,X] , X] (x) + us [[Y ,X] , Y ] (x)
)

,

where us is the singular control. Hence it is given by the feedback: us = −D′(x)
D(x)

.
Proposition 14. In dimension 3, the feedback group acts as change of coordinates only and �1 ∶ (X, Y ) → Xs(x) = X(x) −
D′(x)
D(x)

Y (x) is a covariant i.e. the following diagram is commutative:

(X, Y ) Xs

(X′, Y ′) X′
s

�1

GF GF↺ .

Proof. Direct computations give us:
D�∗X,�∗Y (x) = det

(

)�
)x

)

DX,Y (�−1(x)), D′�∗X,�∗Y (x) = det
(

)�
)x

)

D′X,Y (�−1(x)),
D′′�∗X,�∗Y (x) = det

(

)�
)x

)

D′′X,Y (�−1(x)), DX+�Y ,�Y (x) = �4DX,Y (x),
D′X+�Y ,�Y (x) = �3D′X,Y (x), D′′X+�Y ,�Y (x) = �2D′′X,Y (x).

Hence �1 is a covariant.
Moreover we have:

Corollary 2. The sets D′′ = 0 , DD′′ > 0 and DD′′ < 0, foliated respectively by exceptional, hyperbolic and elliptic singular
arcs, are invariant for the solutions of ẋ = Xs(x).
Proof. We use the relation

(u ∧ v) ⋅w = det(u, v,w)
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to deduce
(Y ∧ [Y ,X]) ⋅X = det(Y , [Y ,X], X)
(Y ∧ [Y ,X]) ⋅ Y = det(Y , [Y ,X], Y )

to classify singular trajectories with the strong generalized Clebsch condition
(p ⋅X(x))(p ⋅ [[Y ,X] , X] (x)) > 0

with p ⋅ Y (x) = p ⋅ [Y ,X] (x) = 0. This gives the determinantal conditions.
Computations for the GLV–model.
In the 3–dimensional GLV–model, the expressions of D,D′, D′′ in the original coordinates are:
D(x)∕x1x2x3 =

(

"21x1a21 + "1
(

"2
(

x2a22 − x1a11
)

+ "3x3a23
)

− "2
(

"2x2a12 + "3x3a13
))

(

"21x1a31 + "
2
2x2a32 + "

2
3x3a33

)

+
(

"21x1a11 + "
2
2x2a12 + "

2
3x3a13

) (

"22x2a32 + "3"2
(

x3a33 − x2a22
)

− "23x3a23 + "1x1
(

"2a31 − "3a21
) )

−
(

"21x1a21 + "
2
2x2a22 + "

2
3x3a23

)

(

"21x1a31 + "1
(

"2x2a32 + "3
(

x3a33 − x1a11
))

− "3
(

"2x2a12 + "3x3a13
))

,

D′(x)∕x1x2x3 =
(

−"21x1 a21 + "1
(

"2
(

x1a11 − x2a22
)

− "3x3a23
)

+ "2
(

"2x2a12 + "3x3a13
))

(

"2x2
(

x1a12a31 − a32
(

x1a21 + x3
(

a23 − a33
)

+ r2
))

− "1x1
(

r1a31 + x3
(

a13 − a33
)

a31
+ x2

(

a12a31 − a21a32
))

+ "3x3
(

−r3a33 + x1a31
(

a13 − a33
)

+ x2a32
(

a23 − a33
)) )

+
(

"22
(

−x2
)

a32 + "3"2
(

x2a22 − x3a33
)

+ "23x3a23 + "1x1
(

"3a21 − "2a31
))

(

− "1x1
(

r1a11 + x2a12
(

a11 − a21
)

+ x3a13
(

a11 − a31
))

+ "2x2
(

x3a13a32 − a12
(

x1
(

a21 − a11
)

+ x3a23 + r2
))

− "3x3
(

a13
(

x1
(

a31 − a11
)

+ x2a32 + r3
)

− x2a12a23
) )

−
(

"21
(

−x1
)

a31 + "1
(

"3
(

x1a11 − x3a33
)

− "2x2a32
)

+ "3
(

"2x2a12 + "3x3a13
))

(

"1x1
(

x3a23a31 − a21
(

x3a13 + x2
(

a12 − a22
)

+ r1
))

+ "2x2
(

− r2a22 + x1a21
(

a12 − a22
)

+ x3a23
(

a32 − a22
) )

+ "3x3
(

x1a13a21 − a23
(

x1a31 + x2
(

a32 − a22
)

+ r3
)) )

,

D′′(x)∕x1x2x3 =
(

−"21x1a21 + "1
(

"2
(

x1a11 − x2a22
)

− "3x3a23
)

+ "2
(

"2x2a12 + "3x3a13
))

(

x1a31 + x2a32 + x3a33 + r3
)

+
(

− "22x2a32 + "3"2
(

x2a22 − x3a33
)

+ "23x3a23 + "1x1
(

"3a21
− "2a31

)) (

x1a11 + x2a12 + x3a13 + r1
)

+
(

"21x1a31 + "1
(

"2x2a32 + "3
(

x3a33 − x1a11
))

− "3
(

"2x2a12 + "3x3a13
) ) (

x1a21 + x2a22 + x3a23 + r2
)

.

4.3 Generalization of the computations of the collinearity locus  and construction of a normal
form in log–coordinates
4.3.1 Computation of  in theN-dimensional case
Given a pair (X, Y ) the associated classification programs is the following:

• Step 1. In the N-dimensional case again,  is an algebraic curve projection of ̃ ∶ ∃ue, X(x) = −ue Y (x), which gives
N-equations depending uponN + 1 variables (x, ue).

• Step 2. Take xe ∈ , then there exists ue ∈ ℝ such that X(xe) + ue Y (xe) = 0, so that x = xe is a forced equilibrium,
where again they formed a segment if "1 ≠ 0, with extreme points corresponding to u = 0: free equilibrium and u = +1:
maximal dosing equilibrium.
The linear dynamics at a points xe is characterized by the Jacobian matrix:

J = )
)y

(

X(y) + ueY
)

∣y=log xe

and the spectrum of J is Σ(J ) = (

�1,… , �N
) with associated generalized eigenspaces E�i , i = 1,… , N .

The linear stability of the forced equilibria is determined by this classification, according to linear Lyapunov stability.
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• Step 3. From the control point of view, we have three cases:
– ue ∉ [0, 1]: ue is not feasible,
– ue ∈]0, 1[: ue is strictly feasible,
– ue = 0 or ue = 1: ue is feasible but saturates with no dose or maximal dose.

One can discuss the linear accessibility properties of the pair (J , b) where b = Y (xe):
• Kalman condition: rank

[

b, Jb,… , JN−1b
]

= N and the singular point xe is regular.
• If rank [b, Jb,… , JN−1b

]

= N − k < N , the singular point xe is a singular trajectory associated to us = ue and k is the
codimension of the singularity. Note that generically one has k = 1.

One can inspect the controllability properties of the pair (J , b) with the control restriction u ∈ [0, 1] to deduce local
accessibility properties of the pair (X, Y ) at (x, u) = (xe, ue).
A linear change of coordinates y = P ỹ transforms X(y) into P −1 (AeP ỹ + r) and one shall construct a linear normal form of

the pair (J ,�).
Step 1. One can find linear coordinates z = (z1, z2)⊺ so that the linear dynamics (J ,�) takes the form

{

ż1 = J11z1 + J12z2 + ub
ż2 = J21z2

where the restriction to the controllable space z2 = 0 is given by the controllable pair (J11, b) with dynamics
ż1 = J11z1 + ub (19)

Step 2. The pair (J11, b) can be set using a linear change of coordinates in the Brunovsky normal form:

J11 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1
−a1 −a2⋯ ⋯ ⋯ −an

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, b =

⎡

⎢

⎢

⎢

⎢

⎣

0
⋮
0
1

⎤

⎥

⎥

⎥

⎥

⎦

,

where the remaining coefficients (a1,… , an) are the coefficients of the characteristic polynomial.
This leads to a normal form for (20) up to change of coordinates only, where the bloc J11 of J is in Brunovsky form.

4.3.2 Construction of a normal form
We use log–coordinates so that X̃(y) = (Aey + r) and Ỹ (y) is the constant vector � = ("1,… , "N ).
Take (ye, ue) a forced equilibrium and let z = (y − ye), v = (u − ue) so that the system (X̃, Ỹ ) takes the form

dz
dt
= J (z) + R(z) + v�, (20)

while v ∈ [−ue, 1−ue] – is the translated control domain – and the vector fieldR(z) is the nonlinear term with jet space of order
≥ 2.
It decomposes into

dz1
dt

= (J11z1 + J12z2) + R1(z) + v�
dz2
dt

= J21z2 + R2(z).

The nonlinear term R = (R1, R2)⊺ contains the information about non trivial singular trajectories. Note also that taking the
equilibrium xe as the equilibrium with no treatment and expanding R at xe up to a given order k gives us a polynomic control
system of the form

dz
dt
= J (z) + P (z) + v�,

which can be studied using Poincaré compactification.
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CONCLUSION

In this article we have presented mainly the techniques from geometric control theory to analyze reduction of the infection of
a gut microbiote by a pathogenic agent using a controlled Lotka–Volterra model in dimension N = 11, which can admit up to
211 = 2048 interacting equilibria.
In the optimal control context the problem can be analyzed combining indirect or direct schemes in the permanent or

sampled–data control frame both aspects are complementary. They were applied to the 2d–case but can be generalized to the
N–dimensional case, the limit being the computational complexity.
The problem illustrates the role of two feedback invariants, which are the collinearity and the singular loci to determine the

optimal solution.
In the 2d–case, each locus is a straight-line but in higher dimension the problem boils down to analyze the singular locus,

which is foliated by singular trajectories and captures the nonlinearity of the model in the optimal control frame. Such a study
has to be made in parallel with the geometry of the free dynamics introduced by Lotka–Volterra to model different interactions
of the species defining cooperative or non cooperative interactions.
Hence a challenge in the control problem is to extend the study from the 2d to the 3d case. This leads to classify the singular

dynamics and compute optimal solutions, combining geometric study with direct and indirect numerical methods. In this context
the innovation of this article is to set the Lie algebraic frame in relation with robustness of the computations with respect to
model uncertainties.

Barnesiella (Bar.) 0.3680 Akkermansia (Akk.) 0.2297
undefined genus of Lachnospiraceae (Und. Lac.) 0.3102 Coprobacillus (Cop.) 0.8300
undefined genus of unclassified Mollicutes (Und. Mol.) 0.4706 Clostridium difficile (C. diff.) 0.3918
unclassified Lachnospiraceae (Uncl. La.) 0.3561 Enterococcus (Ent.) 0.2907
Blautia (Bla.) 0.7089 undefined genus of Enterobacteriaceae (Und. En.) 0.3236
Other 0.5400

Bar. Und. Lac. Uncl. Lac. Other Bla. Und. Mol. Akk. Cop. Und. En. Ent. C. diff.
Bar. -0.205 0.098 0.167 -0.164 -0.143 0.019 -0.515 -0.391 -0.268 0.008 0.346
Und. Lac. 0.062 -0.104 -0.043 -0.154 -0.187 0.027 -0.459 -0.413 -0.196 0.022 0.301
Uncl. Lac. 0.143 -0.192 -0.101 -0.139 -0.165 0.013 -0.504 -0.772 -0.206 -0.006 0.292
Other 0.224 0.138 0.000 -0.831 -0.223 0.220 -0.205 -1.009 -0400 -0.039 0.666
Bla. -0.180 -0.051 0.000 -0.054 -0.708 0.016 -0.507 0.553 0.106 0.224 0.157
Und. Mol. -0.111 -0.037 -0.042 0.041 0.261 -0.422 -0.185 -0.432 -0.264 -0.061 0.164
Akk. -0.126 -0.185 -0.122 0.380 0.400 -0.160 -1.212 1.389 -0.096 0.191 -0.379
Cop. -0.071 0.000 0.080 -0.454 -0.503 0.169 -0.562 -4.350 -0.207 -0.223 0.443
Und. Ent. -0.374 0.278 0.248 -0.168 0.084 0.033 -0.232 -0.395 -0.384 -0.038 0.314
Ent. -0.042 -0.013 0.024 -0.117 -0.328 0.020 0.054 -2.096 0.023 -0.192 0.111
C. diff. -0.037 -0.033 -0.049 -0.090 -0.102 0.032 -0.181 -0.303 -0.007 0.014 -0.055

TABLE 1 (top) Growth rates �i of each microbial population i of the CDI model. (bottom) Interactions between pairwise
microbial populations of the CDI model. Both tables are excerpted from [19].
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