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Abstract: Quantitative phase microscopies (QPMs) enable label-free, non-invasive observation
of living cells in culture, for arbitrarily long periods of time. One of the main benefits of QPMs
compared with fluorescence microscopy is the possibility to measure the dry mass of individual
cells or organelles. While QPM dry mass measurements on neural cells have been reported this
last decade, dry mass measurements on their neurites has been very little addressed. Because
neurites are tenuous objects, they are difficult to precisely characterize and segment using most
QPMs. In this article, we use cross-grating wavefront microscopy (CGM), a high-resolution
wavefront imaging technique, to measure the dry mass of individual neurites of primary neurons
in vitro. CGM is based on the simple association of a cross-grating positioned in front of a
camera, and can detect wavefront distortions smaller than a hydrogen atom (∼0.1 nm). In this
article, an algorithm for dry-mass measurement of neurites from CGM images is detailed and
provided. With objects as small as neurites, we highlight the importance of dealing with the
diffraction rings for proper image segmentation and accurate biomass measurements. The high
precision of the measurements we obtain using CGM and this semi-manual algorithm enabled us
to detect periodic oscillations of neurites never observed before, demonstrating the sufficient
degree of accuracy of CGM to capture the cell dynamics at the single neurite level, with a typical
precision of 2%, i.e., 0.08 pg in most cases, down to a few fg for the smallest objects.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantitative phase microscopies (QPMs) are optical imaging techniques capable of mapping the
phase of a light wave after passing the object plane of a microscope [1]. Most of the applications
of QPMs are related to biology, for the observation of cells in vitro. In this context, the measured
phase image φ reads

φ(x, y) =
2π
λ
(n − n0)h(x, y) (1)

φ(x, y) =
2π
λ
δℓ(x, y) (2)

where h is the thickness profile of the imaged object, n its refractive index (supposed here
to be uniform for the sake of simplicity) and n0 the refractive index of the environment. In
Eq. (2), (n − n0)h has been replaced with δℓ, called the optical path difference (OPD) image, or
equivalently the optical wavefront profile.

QPMs have the great advantage, compared with fluorescence microscopies, to be label-free
and to not require the use of UV-blue light. For these reasons, they are non-invasive, do not suffer
from photobleaching, and can be conducted for arbitrarily long periods of time, without decay
of the signal and without perturbing the imaged cells. Moreover, the quantitative nature of the
measurements provides QPMs with the ability to measure the bio-mass of the imaged cells [2].
Indeed, the refractive index is in direct relation with dry mass density and the total dry mass of
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an imaged object can be calculated by summing all the pixels values δℓij of the OPD image:

δm = ρ0

∫∫
δℓ(x, y)dxdy = ρ0 p2

∑︂
pixels
δℓij (3)

where δm is the dry mass of the entire cell, p the pixel size of the image at the sample plane,
and ρ0 is the dry mass volumetric density. For the sake of simplicity, we consider here that the
background is uniform and set to δℓ = 0. In practice, when the background is non-uniform,
image treatment may be required, as done in Ref. [3]. Equation (3) can be recast using the optical
volume difference δV:

δm = ρ0δV (4)

An interesting physical quantity to deal with is the dry mass areal density δσ (dry mass per
unit area), directly proportional to the OPD image [4]:

δσ = ρ0δℓ (5)

Although the use of ρ0 (a volumetric dry mass density) seems more natural in this context,
the QPM community rather uses the so-called refractive index increment α = ρ−1

0 , as originally
introduced in 1954, leading to expressions such as δm = α−1δV . The α value has been considered
rather constant for biological media, ranging from 0.18 to 0.21 µm3·pg−1. We used in this study
α = 0.18 µm3·pg−1, i.e., ρ0 = 5.5 pg·µm−3 or g·ml−1.

Although the idea of measuring biomass using light dates from 1952 [5], one had to wait
around 50 years for the development of CCD cameras and effective QPMs to observe the first
optical measurements of dry mass at high resolution, independently by Popescu et al. [6] and
Rappaz et al. [7] in 2008 and 2009. Since then, dry mass measurements using QPM have
been reported by several groups for the study of mammalian cells [8,9,3,10,11,12], cancer cells
[4,13,14,15], red blood cells [16], bacteria [17], yeast [18], and neurons [19,20]. More recently,
masses of single molecules were reported using iScat by the group of Kukura, a technique called
mass photometry [21].

Cross-grating wavefront microscopy is a QPM based on the use of a two-dimensional grating
(aka a cross-grating) positioned around 1 mm from the sensor of a camera [22]. This simple
association enables the mapping of the wavefront profile δℓ of a light wave (Eq. (2)). When
implemented on a microscope, this wavefront imaging technique can be used as a QPM technique,
according to Eq. (2) that establishes the equivalence between phase and wavefront profiles [23,24].
Interestingly, because the dry mass directly depends on δℓ, CGM does not require the knowledge
of the illumination wavelength to measure dry masses [3,12,20], unlike the other QPM techniques
based on interferometry, which rather measure φ. Moreover, unlike Shack-Hartmann wavefront
sensing, which has been very rarely used in bio-imaging because of its low spatial resolution [25],
CGM is a wavefront imaging technique that can reach a diffraction-limited spatial resolution. In
2020, the group of Zangle reported the first observation of neural cells using CGM [20]. Using a
home-made Matlab segmentation algorithm, they performed ensemble measurements of the dry
masses of the somas and neurites separately, averaged over the field of view of a microscope.
This work was the occasion to highlight the ability of QPM to follow the developments of cells
in vitro for days, without perturbation or loss of the signal. However, this work only reported
ensemble measurements.

In this article, we report the observation of neural cells in vitro using CGM, and present an
image segmentation method for the precise estimation of the dry mass of individual neurites,
from their birth until they connect. We highlight the importance of taking into account diffraction
rings to achieve quantitative measurements, and the benefit of using CGM over other existing
QPMs for the analysis of such tenuous biological objects. We evidence a precision of 2% on
the dry mass measurements, i.e., around 0.08 pg. As a means to demonstrate the interest of
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conducting experiments at the single cell level, we present the observation of periodic oscillations
of neurite outgrowth, in the pg range.

2. Material and methods

2.1. Cross-grating wavefront microscopy

All the experiments were conducted on a home-made microscope (Fig. 1), endowed with a
60×, 1.25 NA oil immersion objective lens (Olympus UPLFLN60XOI), a 200 mm tube lens
(leading to a 66× total magnification), a Köhler illumination using a mounted LED at 625 nm
(Thorlabs M625L2-C1), and a heating stage (Tokai Hit, WSKMX) maintaining the cells at 37°C
and regulating CO2 at 5%. For CGM measurements, we used a Zyla 5.5 sCMOS camera with a
quadriwave lateral shearing interferometry (QLSI) cross-grating positioned at 0.86 mm from
the camera. The pitch of the grating was Γ = 39 µm, 6 times the camera pixel size p. This
configuration gives a zeta-factor [26] equal to ζ = Γ/2p = 3. Another common value of the
zeta-factor is 4, but higher values of ζ reduce the spatial resolution.
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Fig. 1. (a) Schematic of the experimental setup. (b) Representation of the cross-grating
used in CGM, characterized by a checkerboard pattern of 0 − π phase shifts.

To postprocess the raw images (called interferograms), we used a home-made algorithm that
we detail in Ref. [24], and provide on a github repository [27]. Unlike more common algorithms,
our algorithm does not yield a reduction of the number of pixels of the image by a factor of ζ2.
The number of pixels of the OPD image is the same as the number of pixels of the camera sensor
(2560× 2160), because we perform a demodulation in the Fourier space, instead of an image crop
by a factor of ζ . This common ζ2-reduction in the number of pixels enables faster computation,
and thus faster live acquisition. Note that it does not yield a reduction of the resolution, only
of the image definition, i.e. of the number of pixels (Fig. S4). However, avoiding this image
reduction is a benefit for data visualization, especially on objects as tenuous and small as neurites.
To provide a visual comparison of these low- and high-definition algorithms, Fig. 2 shows the
same image of a neurite processed with both types of algorithms. Figure 2 is also the occasion
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to show that OPD images can be considered as dry mass density images as well, according to
Eq. (5).

Fig. 2. (a) OPD image of a neurite processed with a full-pixel algorithm. (b) OPD image
from the same measurement, processed with the more common pixel-reduction algorithm.
The color bar shows the equivalence between OPD and dry mass density.

2.2. Cell preparation

All procedures were in agreements with the guidelines established by the European Animal Care
and Use Committee (86/609/CEE) and was approved by the local ethics committee (agreement
G13O555). We used primary neural cell cultures from embryonic rat hippocampus. Pregnant
female Wistar rats were obtained from Janvier labs. The plug date of the female rats was marked
E0. All embryos staged at E18 from the female rats were used in the experiments. For cell culture
and observation, we used 35-mm µ-Dishes, high Glass Bottom, 170 µm thick (Ibidi, 81158).
µ-dishes were first incubated for 24 h with a PEI solution (1 ml, 20 µg/ml) and then rinsed 3 times
with mQ water, leading to a PEI coating favouring cell adhesion. 150,000 to 200,000 cells were
plated on the µ-dishes, with 1 ml of culture medium composed of Neurobasal/B27/L-glutamin
with antifungal/antibiotics (Gibco 15240062), and let 1h30min in the incubator at 37°C, 5% CO2,
before being placed on the microscope stage. The cells were gently washed before imaging to
reduce the number of debris commonly found in primary cultures, and to ease the measurements
of dry mass of neurites.

3. Results

3.1. Image processing method for single neurite dry-mass measurement

To measure the dry mass of a single neurite using Eq. (3), the OPD background value has to be
precisely set. Indeed, CGM primarily measures wavefront gradients and the wavefront profile is
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obtained by integration of the gradients, to within a constant. For proper estimation of the dry
mass, this constant has to be set such that the OPD of the background area is zero, defined as
the part of the image where there is no object. However, this background may not be perfectly
uniform, especially for long neurites covering a large part of the field of view, which makes
precise dry mass estimation not as straightforward as what Eq. (3) suggests.

To circumvent this problem, the neurite to be measured was segmented, defining an area S,
and the background value δℓ0 was calculated as the averaged OPD value over a few-pixel thick
boundary (S0) outlining the segmented area:

δℓ0 =
1
S0

∬
S0

δℓ(x, y)dxdy (6)

δV =
∫∫
S

(δℓ(x, y) − δℓ0)dxdy (7)

The complexity of the problem comes down to automatically determine S. There exist many
image segmentation methods but for objects as tenuous as neurites, and surrounded by complex
objects such a soma and debris, it was hard to find an automated algorithm that could approach
human performance. Machine learning (ML) could be an effective method for this task, but ML
algorithms need to be trained on a set of trustful data obtained by more common human-guided
algorithms anyway.

We developed a semi-manual segmentation algorithm based on a magic-wand selection. The
four-step procedure is described in Fig. 3, and the related Matlab code is provided in Suppl.
Mater. and on github [28]. Here is a description of the four steps of the segmentation algorithm
illustrated with a particular neuron image (Fig. 3(a)):

1. Exclusion. The soma and any other unwanted objects at the vicinity of the neurite (like
debris) have to be manually outlined to avoid their inclusion during the integration step
(Fig. 3(b), red area). This step has to be performed mostly for the first image, because all
these objects (soma and debris) usually do not move (or very little) during the acquisition.
Outlining the soma is important to avoid the natural capture of its boundary by the magic
wand, as represented in Fig. 3(d),(e). For most cells, the demarcation between the soma
and the neurite is straightforward to define. However, in some cases, the demarcation with
the soma is less abrupt, or neurites can arise from a lamellipodium (bottom cell of Fig. 4),
making the onset of the neurite less easy to define. In such a case, the exclusion line can
be drawn arbitrarily further along the neurite. Part of the dry mass may be missed, but
any missing constant offset won’t affect measurements of growth dynamics and velocity,
which is what essentially matters.

2. Magic-wand selection. The neurite of interest has to be clicked, ideally on the highest
pixel value (Fig. 3(b), cross marker). Several clicks on several locations on the neurites
may be necessary to properly capture the whole neurite.

3. Adjustment. The magic-wand sensitivity has to be adjusted so that the whole neurite is
properly captured, which defines the initial segmentation area S (Fig. 3(c)).

4. Inflation. The initial area is dilated by a factor of f, ranging typically from 0.5 to 2
(Fig. 3(f),(g),h). The optical volume as a function of f, δV(f ), defined by Eq. (9), normally
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reaches a plateau from f >
∼ 1.3, corresponding to the true value of the dry mass (Fig. 3(i)).

δℓ0(f ) =
1

S0(f )

∬
S0(f)
δℓ(x, y)dxdy (8)

δV(f ) =
∬

S(f )
(δℓ(x, y) − δℓ0(f )) dxdy (9)

This inflation of the area above the apparent outline of the neurites actually captures the
diffraction rings that we barely see in the image and that would not be captured by standard
segmentation algorithms. However, they notably contribute in the total dry mass. To
ascertain that diffraction are actually responsible for this missing dry mass, numerical
simulations have been conducted using IF-DDA [29] and shown in SI (Fig. S6).

5. Plateau selection. To obtain more accurate measurement, the retained value of δV does
not only correspond to one selected value on the plateau, but to the average value over
the plateau. For this purpose, two f values are selected, f1 and f2, such that the dry mass
equals.

δm =
ρ0

f2 − f1

∫
δV(f )df (10)

Above a certain value of f, around f = 2 in Fig. 3(i), the estimated value of δm becomes
unstable due to debris and even tends to diverge due to image noise. One neurite
segmentation (steps 1 to 5) takes around 30 s.

This algorithm has been tested and intensively used by 3 different users. Figure S3 plots
dry mass measurements performed by two different users on the exact same series of data,
demonstrating a very good reproducibility.

The interest of measuring the OV on a plateau of δV(f ), rather than at f = 1, is not only to
obtain a value closer to reality. Note that the true dry mass is anyway biased by the arbitrary
choice of the α coefficient within the range 0.18 to 0.21 µm3·pg−1. The other, and more important,
interest of avoiding f = 1 is rather that the slope of δV(f ) at f = 1 is abrupt, leading to a much
larger variation of the measured OV, and thus of the dry mass. To illustrate this statement, Figure
S2c plots the measured dry masses over 30 successive frames of a neurite of fixed neurons with
the two modalities: at f = 1 and on the plateau. While the standard deviation of the measurement
is 1.3% on the plateau, it is 11% at f = 1.

In Ref. [30], The authors introduce a segmentation algorithm to measure dry masses of red
blood cells from QPM images. To quantify the efficiency of the measurements, they introduced a
metrics, named the segmentation accuracy, defined as “the absolute value of correlation between
segmented RBCs image and reference image, which is manually obtained”. We cannot apply
such a metrics because the segmentations we perform are already obtained semi-manually, i.e.,
they are already visually checked individually. However, our algorithm could be the basis for the
generation of a ground truth for training a deep learning algorithm for neurite segmentation. In
this case, such a metrics could be advantageously used.

3.2. Illustration of the numerical procedure on experimental CGM images

To illustrate the efficiency and the degree of accuracy of the algorithm, Fig. 4 presents dry mass
measurements of neurites stemming from a 15-h long image acquisition, one image per minute,
of two nearby neurons. Figure 4(a) displays the OPD image of the field of view at the end of the
data acquisition, where all the neurites of interest are indicated. The full movie is provided in
Suppl. Mater (Visualization 1 and Fig. S7 for a time lapse of 16 images). Of particular interest
are neurites 1 and 5, which eventually connect, just at the end of the acquisition. Figure 4(b)–(f)
plots both the dry mass and the length of the neurites.

https://doi.org/10.6084/m9.figshare.20369319
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Fig. 3. (a) OPD image of a neuron and its unique neurite. (b) Same OPD image as (a).
The red area corresponds to the manual exclusion of the soma. The cross indicates where
the magic wand was subsequently applied. (c) Area S (orange area) captured by the magic
wand after adjustment of the magic-wand sensitivity. (d) Representation of a magic-wand
application, without soma removal, and (e) corresponding area S captured by the same
magic-wand application. A problem of capture of the soma boundary is evidenced. (f,
g, h) OPD images of the same neurite along with segmented areas S(f ) for 3 values of
the inflation factor f, namely 0.6, 1, and 1.35. (i) Dry mass of the neurite measured as a
function of the inflation factor f, featuring a plateau above f = 1.3. Two dry mass values are
highlighted: δm = 2.44 pg, corresponding to the properly estimated value, and δm = 1.79
pg, an underestimated value corresponding to f = 1, highlighting the importance of inflating
the initial segmented area.

All the neurites are a few pg in mass. Rare are the dry mass measurements reaching such small
values. Common dry mass measurements using QPM rather report values around a few 100s
of pg (mass of eukaryotic cells). The precision of neurite dry mass measurements was 0.08 pg,
calculated as the standard deviation of series of dry mass measurements for which the dry mass
of the neurite was constant (see Fig. S1). The precision of other QPMs is rather in the 1 pg range
[31,32]. CGM recently confirmed its ability to yield highly precise OPD measurements, better
than other conventional QPM technique such as DHM [33]. We recently dedicated an article on
the precision and accuracy of CGM, and demonstrated that the OPD precision can typically reach
0.1 nm, i.e. a fraction of hydrogen atom, corresponding to a precision in δσ of 0.55 fg·µm−1

(Eq. (5)) [26]. This high precision comes from the fact that CGM does not require the use of a
reference arm, like other QPMs based on interferometry measurements for which it makes the
setup highly sensitive to environmental perturbation, such as air flow, mechanical drift, thermal
variation, etc. The common-path configuration also ensures a perfectly flat background. No
image treatment has been performed in our data, except the correction of a tilt on the OPD images.
With CGM, all the optical metrology happens within a distance of around 1 mm, between the
camera sensor and the cross-grating, a volume that can be made particularly solid, robust and
isolated from any perturbation. Thanks to this high precision, we recently could characterize for
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Fig. 4. (a) OPD image of neural cells, corresponding to time t = 14.5 h. The 5 neurites are
indicated and numbered. (b – f) Dry mass and length as a function of time for the 5 neurites
indicated in (a).
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the first time the optical properties of small objects and 1-atom-thick 2D-materials using QPM
[34,35].

In the case of the data presented in Fig. 4, this high precision, along with the magic-wand
algorithm, enabled us to observe fine variations of neurite masses, in the sub-pg range. Most of
the time, the evolution looks chaotic, with succeeding periods of activity, inactivity, regression,
growth. Interestingly, neurite lengths do not necessarily correlate with their dry mass. In many
occasions, neurites thicken without elongation, and reciprocally, change length without mass
increase.

Of particular interest with this set of data is neurite 1, which featured a periodic oscillation
of its dry mass, a behavior that has never been reported in the literature. This behavior is not
systematic, only this neurite shows this effect in this set of data. During these oscillations, the
neurite length also demonstrates an oscillation, correlated with the dry mass, but much weaker.
To determine the oscillation frequency, we conducted a short-time Fourier transform analysis:
from the dry mass profile δm(t) of neurite 1, the baseline δm0(t) is estimated with a low-pass
filter and then subtracted (green line in Fig. 5(a)). This operation is aimed to remove the low
spatial frequencies of the signal that would have masked the signal of interest in Fig. 5(b). Then,
a spectrogram (modulus of the short-time Fourier transform with a Gaussian window of size 4 h)
of this baseline-free signal is computed to provide a time-frequency representation (Fig. 5(b)).
Finally, the ridge of the time-frequency pattern is calculated (red dotted line if Fig. 5(b)) giving
an estimation of the instantaneous frequency of the neurite oscillation as a function of time. We
can see that the oscillation frequencies lie around 1 to 1.5 h−1 at the beginning of the acquisition,
and then splits, or maybe becomes more chaotic from t ≈ 10 h. Let us notice that this time
corresponds to neurite 5 arriving is close proximity to neurite 1 (see Visualization 1 in Suppl.
Info.). We show another event of neurite oscillation in Suppl. Mater (Fig. S5), with the same
period of around 1 h.

Fig. 5. (a) Dry mass of neurite 1 as a function of time δm(t), sampled at 30 h−1 (green
line) and its baseline δm0(t) (black line). Subtraction of these two profiles (yellow line). (b)
Spectrogram (estimated instantaneous frequency of δm as a function of time) calculated
with a time window of 4 h. The dotted red line is the calculated ridge of the image, giving
the estimated frequency of the oscillation as a function of time.

To date, we did not elucidate the origin of this oscillation, although we believe it may be
correlated with the dynamics of actin waves. Because the aim of this article is primarily to
demonstrate the possibility of CGM to investigate single neurites with high precision, and give
the tool to do it, we will leave this question for a future work.

https://doi.org/10.6084/m9.figshare.20369319
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4. Discussion and summary

We show in this article that cross-grating wavefront microscopy (CGM) can be used to monitor
the dynamics of single neurites in vitro, via measurements of dry mass with a sub-pg sensitivity.
For this purpose, we developed a semi-manual segmentation algorithm, suited for neurite
segmentation. Previously reported CGM measurements on neurons only investigated ensemble
measurements of soma and neurite dry masses, an approach that naturally erases any particular
behaviour at the single cell level. We show that imaging such tenuous objects implies two
requirements: First, the neurite segmentation has to take into account the diffraction rings that
are barely visible on the OPD images in order to achieve precise measurements. Second, a highly
sensitive QPM has to be used, the neurite OPD being only around 10 to 20 nm. CGM performs
very well, with its typical noise amplitude of 0.1 nm, and because it yields images with a particular
flat background over the field of view, being insensitive to environmental perturbation, unlike
common QPM technique based on interferometry. CGM is also simple (no modification of the
microscope), cost-effective (only involves the addition of a cross-grating). Moreover, CGM offers
easy fluorescence/phase correlation measurements because it can be easily implemented on any
standard fluorescence microscope. For all these reasons, CGM has the potential for becoming a
major QPM technique in the near future, and in particular in the field of neurobiology.
Funding. Association Nationale de la Recherche et de la Technologie.
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