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SOURIAU’S RELATIVISTIC GENERAL COVARIANT

FORMULATION OF HYPERELASTICITY REVISITED

B. KOLEV AND R. DESMORAT

Abstract. We present and modernize Souriau’s 1958 geometric framework for Relativistic
continuous media, and enlighten the necessary and the ad hoc modeling choices made since,
focusing as much as possible on the Continuum Mechanics point of view. We describe the
general covariant formulation of Hyperelasticity in (Variational) General Relativity, and then
in the particular case of a static spacetime. Different relativistic strain and stress tensors are
formulated and discussed. Finally, we apply Souriau’s formalism to Schwarzschild’s metric, and
recover the Classical Galilean Hyperelasticity with gravity, as the Newton–Cartan infinite light
speed limit of this formulation.
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Introduction

Attempts to formulate Relativistic Elasticity in the General Relativity framework go back to
1916 with the pioneering work of Nordström [68], in Dutch. Since then, several authors have
first aimed at proposing constitutive equations for Relativistic fluids [87, 54, 14, 60] and, then,
at modeling Relativistic continuous media, most often at the astrophysics scale [80, 86, 19, 74,
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2 B. KOLEV AND R. DESMORAT

82, 5, 70, 50, 43, 44, 4, 27, 90, 36, 10], for instance for the modeling of the solid crust of neutron
stars, but also at a local scale [57, 58, 59, 72, 72, 73, 63], for mechanical engineering applications.

This has led Lichnerowicz to define pure matter [54], synonymous of dust, and Souriau to
define perfect matter [80, 81, 82], as a continuous medium which can be described independently
from electromagnetic phenomena. In the present work, we follow Souriau and model perfect
matter with the Gauge Theory mindset [9]. More precisely, we focus on Relativistic hyper-
elastic continuous media. We do not consider the coupling with electromagnetism, nor with
temperature.

The work of Souriau (1958, in French), seems to have been unnoticed by the scientific com-
munity. It is prior to the works of Synge (1959), of DeWitt (1962) and of Rayner (1963) (all
three criticized in the later papers by Bennoun [5] and Carter and Quintana [14]). As we shall
see, Souriau did in fact formulate the correct framework to describe Relativistic Hyperelastic-
ity, first in his long 1958 paper [80], then in his 1964 book [82] (in French still). The modern
geometric picture of the General Relativity framework for elastic media is, up to details that we
shall discuss on the go, derived in [80, 82], and later in [14, 43, 44, 4].

We stick to the chronology introduced by Souriau of the mathematical concepts, the idea being
as often to make the least hypotheses as possible. This is why the introduction of a foliation by
spacelike hypersurfaces —which is not assumed a priori— is only addressed in section 6, and
why the problems of the definition of time and of the formulation of Relativistic Hyperelasticity
in a spacetime is addressed only in section 8. We finally apply Künzle’s methodology [49], to
mathematically recover Classical Galilean Hyperelasticity with gravity, as the Newton–Cartan
infinite light speed limit of the described General Relativity formulation. Our calculations
generalize the ones for relativistic fluids to relativistic solids.

We write this paper mainly with the mechanics —not the astrophysics— point of view. We
seek for the adequacy with the geometric formulation on the body ℬ of three-dimensional
Hyperelasticity (the so-called intrinsic Lagrangian formulation, developed by Noll [65, 67] and
Rougée [75, 77], see also [45, 46]). The notations are chosen to be compatible with both the
ones used classically in Continuum Mechanics of solid materials [51] and the ones considered
in [45, 46].

Outline. The article is organized as follows. In section 1, we introduce the basic concepts of
matter field Ψ, of body World tube 𝒲 , of mass measure 𝜇, and of current of matter P, which are
the starting point of the theory of Relativistic Continuum Mechanics. The normalization of the
later allows to define the rest mass density 𝜌𝑟 and the unit timelike vector U. The section ends
with the definition of the conformation H, the cornerstone of Souriau’s general covariant formu-
lation of Relativistic Hyperelasticity. Matter conservation is formulated in section 2. Definitions
of relativistic strain tensors are provided in section 3. Relativistic Hyperelasticity is formulated
in section 4, in which the Lagrangian formulation of General Relativity is recalled and applied
to this specific constitutive modeling. The stress-energy tensor is introduced in section 5 and
both four-dimensional and three-dimensional relativistic stress tensors are defined. It is only
in section 6 that a spacetime structure is considered, allowing to better connect the preceding
general geometric framework with Classical Continuum Mechanics, and to define the generalized
Lorentz factor 𝛾 (section 7). This factor accounts for the distortion between the unit vector U
(the matter) and the unit normal N to the spacelike hypersurfaces Ω𝑡 (the observer), and allows
for the geometric definition of the relativistic mass density 𝜌. A first formulation of Relativistic
Hyperelasticity in a static spacetime, including the generalization of the Cauchy stress tensor,
is derived in section 8. This framework is detailed in section 9 for the particular case of the
Schwarzschild metric. The Galilean (Newton–Cartan) infinite light speed limit of the theory is
discussed in section 10.

Notations. Given a linear operator 𝐿 : 𝐸 → 𝐹 between two finite dimensional vector spaces,
we denote by 𝐿⋆ : 𝐹 ⋆ → 𝐸⋆, 𝛽 ↦→ 𝛽∘𝐿, its transpose. If moreover, the vector space 𝐸 is equipped
with an inner product 𝑞𝐸 , and 𝐹 , with an inner product 𝑞𝐹 , we can define its adjoint, defined
implicitly by the relation 𝐿 : 𝐹 → 𝐸, ⟨𝐿𝑣,𝑤⟩𝐹 = ⟨𝑣, 𝐿𝑤⟩𝐸 for all 𝑣 ∈ 𝐸 and 𝑤 ∈ 𝐹 . The
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relation between 𝐿⋆ and 𝐿 is thus written as 𝐿 = 𝑞−1
𝐸 𝐿⋆𝑞𝐹 . We denote by S𝑘𝐸 the set of totally

symmetric tensors of order 𝑘 on 𝐸 and by Λ𝑘𝐸 the set of alternate tensors of order 𝑘 on 𝐸.
Now, let ℳ be a differential manifold of dimension 𝑛, we denote by Ω𝑘(ℳ ), the set of

differential 𝑘-forms on ℳ , that is smooth sections of the vector bundle Λ𝑘𝑇 ⋆ℳ . The contraction
𝑖𝑋𝛼, of components (𝑖𝑋𝛼)𝜇1...𝜇𝑘−1

= 𝑋𝜈𝛼𝜈𝜇1...𝜇𝑘−1
, denotes the interior product of a vector field

𝑋 ∈ Vect(ℳ ) with a 𝑘-form 𝛼 ∈ Ω𝑘(ℳ ),

𝑖𝑋𝛼 := 𝛼(𝑋, ·, . . . , ·) ∈ Ω𝑘−1(ℳ ).

If moreover, ℳ is endowed with a Riemannian or pseudo-Riemannian metric 𝑔 (and ℳ is
orientable), we will denote by vol𝑔 ∈ Ω𝑛(ℳ ) the (pseudo-)Riemannian volume form associated
with 𝑔.

Given a 1-form 𝛼 ∈ Ω1(ℳ ), the notation 𝛼♯ := 𝑔−1𝛼 ∈ Vect(ℳ ) stands for 𝛼𝜇 = 𝑔𝜇𝜈𝛼𝜈 .

Conversely, given a vector field 𝑋 ∈ Vect(ℳ ), 𝑋♭ := 𝑔𝑋 ∈ Ω1(ℳ ) stands for 𝑋𝜇 = 𝑔𝜇𝜈𝑋
𝜈 .

When local coordinates are involved on a 4-dimensional manifold, the Greek subscripts or su-
perscripts 𝜇, 𝜈, 𝜌 . . . range from 0 to 3, while the roman ones 𝑖, 𝑗, 𝑘 . . . , or 𝐼, 𝐽,𝐾, . . . range from
1 to 3.

The light speed will be denoted by 𝑐 and we refer to the Galilean three-dimensional Continuum
Mechanics of solids [89, 51, 55] simply as Classical Continuum Mechanics.

1. Matter field, current of matter and conformation

The Universe is assumed to be a four-dimensional orientable manifold ℳ , endowed with an
hyperbolic metric 𝑔, of signature (−,+,+,+). Its pseudo-Riemannian volume form is denoted
by

vol𝑔 ∈ Ω4(ℳ ).

In the present work we limit our study to a (non electromagnetic) continuous particles assembly,
the so-called perfect matter [54]. Its modeling adopted by Souriau in [80, 81, 82] is inspired by
Gauge theory [9], where matter fields are described by sections of an associated bundle, i.e., some
vector bundle constructed using a linear representation of the structural group of the considered
Gauge theory on some given vector space. The specificity and relative simplicity of the present
description of perfect matter is, however, that we assume this linear representation, and thus the
vector bundle, to be trivial. More precisely, we let 𝑉 be a three-dimensional vector space (taken
as R3 in [80]). A perfect matter field (called the particles labelling in [80], and the projection,
noted 𝒫, in [14]) is then a smooth vector valued function

Ψ : ℳ → 𝑉.

Remark 1.1. The notation Ψ for the matter field is on purpose chosen similar to the one for the
wave function in Quantum Mechanics.

Matter is then described by the set of all the material points constitutive of the continu-
ous medium under study in the Universe (for example a mechanical structure). Their labels
constitute a set ℬ ⊂ 𝑉 , assumed to be (in general) a three-dimensional compact orientable
manifold with boundary and called the body. It is further assumed that Ψ is a submersion on
𝒲 = Ψ−1(ℬ): the linear tangent map 𝑇Ψ : 𝑇𝒲 → 𝑇𝑉 is of rank 3 at each point of 𝒲 . Thus,
𝒲 is fibered by the particles World lines Ψ−1(X), X ∈ ℬ, and is called for this reason the body’s
World tube.

The body ℬ is endowed with a volume form 𝜇 ∈ Ω3(ℬ), the mass measure, which carries
the information about the distribution of matter present in 𝒲 [43]. This interpretation is con-
nected with the three-dimensional Classical Continuum Mechanics theory, in which the abstract
manifold ℬ, equipped with the mass measure 𝜇, is in fact the body introduced by Truesdell and
Noll [89, 65, 66, 67].

As we seek for a full consistency with the geometric framework of Classical Continuum Me-
chanics [67, 75, 77, 45], we have to emphasize a slight difference with previous works in astro-
physics concerning the choice of the volume form on ℬ. In [80], 𝑉 is equipped with the canonical
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Figure 1. The World tube 𝒲 = Ψ−1(ℬ) fibered by the particles World lines Ψ−1(X).

3-form vol𝑞 = d𝑋1 ∧ d𝑋2 ∧ d𝑋3 on R3. In [14, 4, 36], the body ℬ is equipped with a volume
form Ω ∈ Ω3(ℬ) which represents the number density of conserved idealized particles (meant
to be identified with the baryon number density in [14]). The three of them are, of course,
proportional to each other on ℬ. As pointed out by Carter and Quintana, the Relativistic
Hyperelasticity theory does not depend on the particular choice of a volume form on ℬ [14].
Our choice, here, of a volume form 𝜇, interpreted as a “mass measure” allows us to recover the
mass densities encountered in Classical Continuum Mechanics, and to assimilate the integral

𝑚 =

∫︁
ℬ
𝜇,

as the total mass of the continuous medium/mechanical structure under study.

Remark 1.2. It is worth mentioning that one takes here a point of view reverse to the one of
Classical Continuum Mechanics of solids [89, 51, 75, 55, 77], in which a configuration is an
embedding 𝑝 : ℬ → ℰ of the body ℬ into the three-dimensional space ℰ , endowed with the
Euclidean metric 𝑞. In the present formalism, the main concept is a mapping Ψ: ℳ → 𝑉 from
the Universe ℳ to the space of labels 𝑉 . A key difference is that, in Classical Continuum
Mechanics, 𝑝 and its tangent map, the so-called deformation gradient

F = 𝑇𝑝 : 𝑇ℬ → 𝑇ℰ

are invertible, whereas here, the matter field Ψ and its tangent map 𝑇Ψ are not.

The pullback by Ψ of the mass measure 𝜇 on the body ℬ

𝜔 := Ψ*𝜇 = (𝜇 ∘ Ψ)(𝑇Ψ·, 𝑇Ψ·, 𝑇Ψ·)
is a 3-form defined on the four-dimensional World tube 𝒲 = Ψ−1(ℬ). Since 𝑇𝑚Ψ is assumed
to be of rank 3 at each point of 𝒲 , there exists a nowhere vanishing vector field P on 𝒲 , such
that

(1.1) 𝜔 = 𝑖Pvol𝑔,

where 𝑖P is the interior product (or contraction) of 𝜔 by P. This vector field P is the current
of matter (it was called vecteur courant de matière in [80]).

Remark 1.3. In 3D Classical Continuum Mechanics, the pushforward of the mass measure 𝜇 by
the embedding 𝑝 : ℬ → ℰ [45], when expressed using the 3D volume form vol𝑞, is represented by
a scalar density 𝜌 (indeed, 𝑝*𝜇 = 𝜌 vol𝑞). In 4D, the pullback of the mass measure 𝜇 by the matter
field Ψ, when expressed using the 4D volume form vol𝑔, is represented by the quadrivector P
(indeed, Ψ*𝜇 = 𝑖Pvol𝑔).
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At each point 𝑚 ∈ 𝒲 , the tangent vector P(𝑚) spans the one-dimensional subspace ker𝑇𝑚Ψ.
Indeed, the equality

𝜇Ψ(𝑚)(𝑇𝑚Ψ.P, 𝑇𝑚Ψ.𝜉1, 𝑇𝑚Ψ.𝜉2) = vol𝑔𝑚(P(𝑚),P(𝑚), 𝜉1, 𝜉2) = 0, ∀𝜉1, 𝜉2 ∈ 𝑇𝑚𝒲 ,

implies

(1.2) 𝑇𝑚Ψ.P(𝑚) = 0,

since 𝑇𝑚Ψ is surjective. To describe perfect matter, Souriau assumes furthermore that P is
timelike, i.e. that

‖P‖2𝑔 = 𝑔(P,P) < 0

on the World tube 𝒲 (we refer to [82] for the other cases, light for instance). Observe that P
defines a time orientation on 𝒲 .

It will be proved as essential to define a unit timelike vector field U collinear to P, and to
write

(1.3) P = 𝜌𝑟U, with ‖U‖2𝑔 = −1.

The function

(1.4) 𝜌𝑟 :=
√︁

−‖P‖2𝑔 ,
defined on the World tube 𝒲 , is then interpreted as the rest mass density [80, 82, 43].

Remark 1.4. In Special Relativity, the vector field 𝑐P is the four-momentum quadrivector.

We will finish this section by defining the conformation, a fundamental concept introduced by
Souriau in 1958. It is the cornerstone of the formulation of Relativistic Hyperelasticity at large
scale, in particular, for the modeling of neutron stars with a solid crust. In recent works, it is
sometimes referred to as strain, but since this term has a slightly different meaning in Classical
Continuum Mechanics, we prefer to keep the initial name given by Souriau. The conformation
is defined as the vector-valued function [80]

(1.5) H : ℳ → S2𝑉, 𝑚 ↦→ H(𝑚) := (𝑇𝑚Ψ) 𝑔−1
𝑚 (𝑇𝑚Ψ)⋆,

where S2𝑉 is the six-dimensional vector space of symmetric contravariant second-order tensors
on 𝑉 . In simpler words, H is a function from the four-dimensional manifold ℳ to the vector
space of 3 × 3 matrices. The hypothesis we made that Ψ is a submersion on 𝒲 , together with
the hypothesis that ker𝑇Ψ is generated by the timelike vector field U implies that H(𝑚) is
positive definite for all 𝑚 ∈ 𝒲 .

Remark 1.5. Since the mapping Ψ : 𝒲 → ℬ is not invertible, the conformation cannot be
considered, stricto sensu, as the pushforward of 𝑔−1, which is not defined. It is thus not, strictly
speaking, a co-metric on ℬ, but a vector-valued function of 𝑚 ∈ 𝒲 with value a symmetric
second-order contravariant tensor in 𝑉 . Note that, if we forget that ℬ is a domain in the vector
space 𝑉 but consider that it is a manifold, then H is interpreted as a tensor field along Ψ with
values in S2𝑇ℬ, in other words, it is a section of the pullback bundle Ψ*(S2𝑇ℬ).

2. Conservation of matter

Since the exterior derivative of the mass measure 𝜇 on the 3-dimensional manifold ℬ vanishes,
d𝜇 = 0, we get the following conservation law.

Lemma 2.1 (Souriau, 1958). We have the following conservation law on the World tube 𝒲

div𝑔 P = 0.

Proof. Let LP be the Lie derivative with respect to P. Then,

LP vol𝑔 = (div𝑔 P) vol𝑔,

but, using Cartan magic formula,

LP vol𝑔 = d 𝑖Pvol𝑔 = dΨ*𝜇 = Ψ*d𝜇 = 0.
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�

Remark 2.2. In Special Relativity, the equation

div𝑔 P = div𝑔(𝜌𝑟U) = 0

recasts as the usual continuity equation of Classical Fluid Dynamics [24, 80, 82], and is inter-
preted as the Relativistic mass conservation. It will be shown, furthermore, in section 10, that
div𝑔 𝑐P = 0 converges towards the classical continuity equation under subsequent hypothesis.

If the body ℬ is endowed with a Riemannian metric 𝛾0, the rest mass density 𝜌𝑟 can be
related to the conformation H, as demonstrated by Souriau in [80], where he chose 𝛾0 := 𝑞, the
canonical Euclidean metric on 𝑉 = R3 (see also [43]). The notation 𝛾0 is chosen for consistency
with the intrinsic geometric framework of three-dimensional Hyperelasticity [67, 75, 77, 45], and
𝛾0 is not necessarily equal to 𝑞, as discussed by several authors [4, 36] (see Appendix E for a
discussion about different choices for 𝛾0).

Lemma 2.3 (Souriau, 1958). Let 𝛾0 be a fixed Riemannian metric on the body ℬ. Then, the
rest mass density 𝜌𝑟 can be expressed as

(2.1) 𝜌𝑟 = (𝜌𝛾0 ∘ Ψ)
√︀

det [H(𝛾0 ∘ Ψ)],

where Ψ is the matter field, H is the conformation, and

𝜌𝛾0 =
𝜇

vol𝛾0

.

Remark 2.4. The function 𝜌𝛾0 is defined on the body ℬ, and interpreted as the mass density
with respect to the Riemannian volume form vol𝛾0 . It is very important to note, for subsequent
applications, that 𝜌𝛾0 is independent of the metric 𝑔 on the Universe ℳ . Moreover, one can check
that the right hand-side of (2.1) does not depend on 𝛾0, as expected. Indeed if we substitute 𝛾1

to 𝛾0 in (2.1), one has 𝜌𝛾1 =
√︁

det(𝛾−1
1 𝛾0) 𝜌𝛾0 , whereas det(H𝛾1) = det(𝛾−1

0 𝛾1) det(H𝛾0), and

thus

(𝜌𝛾0 ∘ Ψ)
√︀

det [H(𝛾0 ∘ Ψ)] = (𝜌𝛾1 ∘ Ψ)
√︀

det [H(𝛾1 ∘ Ψ)].

Proof. Note first that there exists a function 𝜌𝛾0 (a mass density) defined on ℬ such that

𝜇 = 𝜌𝛾0vol𝛾0 .

Thus, by (1.1)–(1.3), we get

𝜔 = 𝜌𝑟 𝑖Uvol𝑔 = Ψ*𝜇 = (𝜌𝛾0 ∘ Ψ)Ψ*vol𝛾0 .

Let 𝑚 ∈ 𝒲 and (𝑒0 = U(𝑚), 𝑒𝑖) be a direct orthonormal basis of 𝑇𝑚ℳ . Then, we have

vol𝑔𝑚(U(𝑚), 𝑒1, 𝑒2, 𝑒3) = 1

and

𝜌𝑟(𝑚) = 𝜌𝑟(𝑚)vol𝑔𝑚(U(𝑚), 𝑒1, 𝑒2, 𝑒3) = 𝜌𝛾0(Ψ(𝑚)) vol𝛾0(Ψ(𝑚))(𝑇𝑚Ψ𝑒1, 𝑇𝑚Ψ𝑒2, 𝑇𝑚Ψ𝑒3).

Observe now that the vector space 𝑇Ψ(𝑚)ℬ is endowed with two Euclidean structures; the first

one, defined by 𝛾0(Ψ(𝑚)) and the second one, defined by H(𝑚)−1. Besides, the restriction of
𝑇𝑚Ψ to the three-dimensional subspace U(𝑚)⊥ (the orthogonal complement of U(𝑚) in 𝑇𝑚ℳ )
is a linear isomorphism and

𝑇𝑚Ψ: (U(𝑚)⊥, 𝑔𝑚) → (𝑇Ψ(𝑚)ℬ,H(𝑚)−1)

is an isometry, by the very definition of the conformation H. Hence, (𝑇𝑚Ψ𝑒1, 𝑇𝑚Ψ𝑒2, 𝑇𝑚Ψ𝑒3)
is a direct orthonormal basis of the Euclidean space (𝑇Ψ(𝑚)ℬ,H(𝑚)−1) and thus

volH(𝑚)−1(𝑇𝑚Ψ𝑒1, 𝑇𝑚Ψ𝑒2, 𝑇𝑚Ψ𝑒3) = 1.
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We have therefore

vol𝛾0(Ψ(𝑚))(𝑇𝑚Ψ𝑒1, 𝑇𝑚Ψ𝑒2, 𝑇𝑚Ψ𝑒3) =
√︀

det [H(𝑚)𝛾0(Ψ(𝑚))] volH(𝑚)−1(𝑇𝑚Ψ𝑒1, 𝑇𝑚Ψ𝑒2, 𝑇𝑚Ψ𝑒3)

=
√︀

det [H(𝑚)𝛾0(Ψ(𝑚))],

and thus

𝜌𝑟(𝑚) = 𝜌𝛾0(Ψ(𝑚))
√︀

det [H(𝑚)𝛾0(Ψ(𝑚))].

�

Remark 2.5. In Classical Continuum Mechanics, the body is often identified with a reference
configuration Ω0 embedded in R3 and endowed with the euclidean metric 𝛾0 = 𝑞. Two mass
densities, 𝜌0 on Ω0 and 𝜌 on the deformed configuration Ω (also embedded in R3), are usually
defined. A classical expression of mass balance is formulated on Ω0 as

(2.2) 𝜌0 = (𝜌 ∘ 𝜑)
√︀

det(𝑞−1C),

where 𝜑 : Ω0 → Ω is the deformation, C := 𝜑*𝑞 is the right Cauchy–Green tensor (defined on
Ω0 as the pullback by the deformation 𝜑 of the Euclidean metric 𝑞). The formal comparison
of (2.1), recast as

𝜌𝛾0 ∘ Ψ = 𝜌𝑟

√︁
det
[︀
(𝛾−1

0 ∘ Ψ)H−1
]︀
,

with (2.2), shows that (2.1) can be interpreted as a Relativistic generalization of the mass con-
servation law for Galilean deformable solids. It also shows that the inverse of the (contravariant)
conformation H plays the role of the (covariant) right Cauchy–Green tensor C.

3. Conformation and strains

The existence of the unit timelike vector field U on the World tube 𝒲 allows to perform the
related orthogonal decompositions of the metric 𝑔 and co-metric 𝑔−1 (see Appendix A),

(3.1) 𝑔 = ℎ−U♭ ⊗U♭, 𝑔−1 = ℎ♯ −U⊗U, on 𝒲 ,

where the tensor fields ℎ (noted 𝐸 in [44]) and ℎ♯ = 𝑔−1ℎ𝑔−1, the spatial part of 𝑔 and 𝑔−1

respectively, are uniquely defined by the conditions

(3.2) ℎU = 0, and ℎ = 𝑔 on U⊥,

where U⊥ is the three-dimensional (necessarily spacelike) orthogonal subbundle to U. Both
ℎ and ℎ♯ have signature (0,+,+,+). These orthogonal decompositions are highlighted at the
beginning of most works on Relativistic Fluids or Solids [24, 54, 14, 44]. We point out, how-
ever, that Souriau did not need to perform them to derive the general covariant formulation of
Relativistic Hyperelasticity [80, 82]. There are two reasons for it. First, the four-dimensional
symmetric second-order tensors ℎ and ℎ♯ are strongly related to the conformation

H = (𝑇Ψ) 𝑔−1(𝑇Ψ)⋆,

by lemma 3.1. Secondly, ℎ and ℎ♯ do not appear naturally in the derivation of a general covariant
formulation of Relativistic Hyperelasticity, contrary to the conformation H (see theorem 4.5).

Lemma 3.1. On the World tube 𝒲 , we have

(3.3) H = (𝑇Ψ)ℎ♯(𝑇Ψ)⋆, and ℎ = (𝑇Ψ)⋆H−1𝑇Ψ.

where ℎ = 𝑔 + U♭ ⊗U♭ and ℎ♯ = 𝑔−1ℎ𝑔−1.

Proof. First, since 𝑇ΨU = 0, the conformation, when restricted to the World tube 𝒲 , recasts
as

H = (𝑇Ψ)
(︁
ℎ♯ −U⊗U

)︁
(𝑇Ψ)⋆ = (𝑇Ψ)ℎ♯(𝑇Ψ)⋆.
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Then, to prove the second equality, remark that the statement is pointwise. Therefore, we can
use an orthonormal basis (𝑒𝜇) of 𝑇𝑚ℳ with 𝑒0 = U(𝑚). In this basis, ℎ𝑚 is represented by the
4 × 4 matrix (︂

0 0
0 𝐼3

)︂
,

where 𝐼3 is the 3 × 3 identity matrix. Now, respectively to this basis and the canonical basis of
R3, the linear map 𝑇𝑚Ψ: 𝑇𝑚ℳ → R3 is represented by the matrix(︀

0 𝑀
)︀
,

where 𝑀 is a 3 × 3 invertible matrix, and its transpose (𝑇𝑚Ψ)⋆ by the matrix(︂
0
𝑀⋆

)︂
.

Thus, we have

H(𝑚) = (𝑇𝑚Ψ) 𝑔−1
𝑚 (𝑇𝑚Ψ)⋆ =

(︀
0 𝑀

)︀(︂−1 0
0 𝐼3

)︂(︂
0
𝑀⋆

)︂
= 𝑀𝑀⋆,

and

(𝑇𝑚Ψ)⋆H(𝑚)−1𝑇𝑚Ψ =

(︂
0
𝑀⋆

)︂
𝑀−⋆𝑀−1

(︀
0 𝑀

)︀
=

(︂
0
𝐼3

)︂(︀
0 𝐼3

)︀
= ℎ𝑚.

�

The definition of a strain in (hyper)elasticity is usually obtained by comparing two metrics.
If the body ℬ is endowed with a fixed Riemannian metric 𝛾0, it can be used to define a strain
tensor in Relativistic Hyperelasticity. A first possibility [14, 58] is to introduce the pullback by
Ψ of 𝛾0, given by

(3.4) ℎ0 := Ψ*𝛾0 = (𝑇Ψ)⋆(𝛾0 ∘ Ψ)𝑇Ψ,

and called a frozen metric in [43, 44] (these authors note it ℎ rather than ℎ0). It is defined on
the World tube 𝒲 and is of signature (0,+,+,+). Conversely, given a quadratic form ℎ0 on
𝒲 with signature (0,+,+,+), the question of when it can be realized as the pullback by Ψ of
a fixed Riemannian metric 𝛾0 on the body, has been investigated by Kijowski and Magli (see
Appendix E).

A possible generalization of the Euler-Almansi strain tensor [14, 58] is then obtained as the
four-dimensional symmetric covariant tensor field,

(3.5) e :=
1

2
(ℎ− ℎ0).

Note that e = 0 for ℎ = ℎ0 and that e is degenerate since eU = 0.

Remark 3.2. As observed by Carter and Quintana [14], since the linear tangent map 𝑇Ψ plays a
role similar to that of the inverse of the tangent map F = 𝑇𝑝 in Classical Continuum Mechanics
(see remark 1.2), the frozen metric ℎ0 plays a role similar to that of the inverse, sometimes called
the finger deformation tensor, of the left Cauchy–Green tensor b := F𝛾−1

0 F⋆.

Other choices for strain tensors similar to the ones of Classical Continuum Mechanics can be
made, for instance the following ones which are simpler and probably more relevant,

(3.6) E :=
1

2

(︀
H−1 −H−1

0

)︀
or ̂︀E := −1

2
log
(︀
HH−1

0

)︀
,

where

(3.7) H0 := 𝛾−1
0 ∘ Ψ.

The first one generalizes the Green–Lagrange strain, whereas the second one generalizes the
logarithmic strain introduced by Becker [3] and Hencky [40] (see [56]). They both vanish when
H−1 = H−1

0 = 𝛾0 ∘Ψ. These strain tensors are three-dimensional second-order tensors. Like the
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conformation, they are not tensor fields on ℬ but vector valued functions defined on the World
tube 𝒲 with values in S2𝑉 .

Note that H0 is related to ℎ0 by

ℎ0 = (𝑇Ψ)⋆H0 (𝑇Ψ)

and that, by lemma 3.1 and definitions (3.4)–(3.5), E is connected to e, defined by (3.5), by

e = (𝑇Ψ)⋆ E (𝑇Ψ) on 𝒲 .

4. Lagrangian formulation

In [80, 82], Souriau has proposed a clear and detailed formulation of Hyperelasticity in the
framework of General Relativity. He called this formulation Variational Relativity (which is
the title of [80]). His approach consists in writing Lagrangians (i.e. functionals depending on
tensorial fields) and looking for critical points of them (Principle of Least, or Stationary, Action).
This formulation is inspired by Gauge Theory [9], which is the main framework of Fields Theory
and Quantum Mechanics and can also be used to formulate General Relativity using variational
principles (see Palatini’s Method [71, 28]).

The starting point is the Hilbert-Einstein functional

(4.1) ℋ (𝑔) =

∫︁
(𝑎𝑅𝑔 + 𝑏) vol𝑔,

defined formally on the set of all Lorentzian metrics on the Universe ℳ . Here, the two constants
𝑎 and 𝑏 are related to the Einstein constant 𝜅 (depending on the Newton constant 𝐺) and the
cosmological constant Λ by

𝜅 =
8𝜋𝐺

𝑐4
=

1

2𝑎
, Λ = − 𝑏

2𝑎
.

As derived first by Hilbert [42], the 𝐿2-gradient of ℋ (for Ebin’s metric [23]) is the symmetric
second order covariant tensor field

(4.2) grad ℋ = 𝑎Ric𝑔 −
1

2
(𝑎𝑅𝑔 + 𝑏)𝑔 =

1

2𝜅
(G𝑔 + Λ𝑔) ,

where Ric𝑔 is the Ricci tensor of the metric 𝑔, 𝑅𝑔 = tr(𝑔−1Ric𝑔) is the scalar curvature, and
G𝑔 is the Einstein tensor, defined by

(4.3) G𝑔 := Ric𝑔 −
1

2
𝑅𝑔 𝑔.

The critical points of ℋ are the solutions of Einstein’s equation in the vacuum (with cosmo-
logical constant)

G𝑔 + Λ𝑔 = 0.

To introduce the effects of matter in this framework, a second functional ℒ matter(𝑔,Ψ), de-
pending on the metric 𝑔 and the matter field Ψ, is added to ℋ to build a new Lagrangian

ℒ (𝑔,Ψ) = ℋ (𝑔) + ℒ matter(𝑔,Ψ).

Following Souriau [80, 82], for Relativistic continua, one assumes that the Lagrangian for perfect
matter ℒ matter(𝑔,Ψ) depends only on the 0-jet of the metric 𝑔 and of the 1-jet of the matter
field Ψ. In other words, it takes the form

(4.4) ℒ matter(𝑔,Ψ) =

∫︁
𝐿0

(︂
𝑔𝜇𝜈 ,Ψ

𝐼 ,
𝜕Ψ𝐼

𝜕𝑥𝜇

)︂
vol𝑔,

where

𝐿0 : (𝛾,𝑣, 𝜏 ) → 𝐿0(𝛾,𝑣, 𝜏 )

is a smooth scalar function which has for arguments a quadratic form 𝛾 (of signature (−,+,+,+))
on R4, a vector 𝑣 ∈ R3 and matrix 𝜏 with 3 raws and 4 columns. The function 𝐿0 is called
the Lagrangian density of the functional ℒ matter, and its evaluation on the fields (𝑔,Ψ), that
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is 𝐿0

(︁
𝑔𝜇𝜈 ,Ψ

𝐼 , 𝜕Ψ
𝐼

𝜕𝑥𝜇

)︁
, will be denoted as 𝐿0(𝑔,Ψ, 𝑇Ψ). Its evaluation at a point 𝑚 ∈ ℳ is then

noted 𝐿0(𝑔𝑚,Ψ(𝑚), 𝑇𝑚Ψ).

Remark 4.1. The Lagrangian density 𝐿0 is noted 𝑝 and called the presence in [80]. It is noted
𝜖 and called the rest frame energy density in [43]. It is noted 𝜌 or 𝜎 in [4].

In order to avoid unnecessary analytical difficulties and since, in practice, we do not require
that Lagrangian densities are integrable over the whole manifold ℳ , usually not compact,
Lagrangian densities are integrated only over relatively compact domains 𝑈 (and furthermore
contained in a local chart). Therefore, we shall write

ℒ𝑈 (𝑔,Ψ) =

∫︁
𝑈
𝐿(𝑔𝑚,Ψ(𝑚), 𝑇𝑚Ψ) vol𝑔,

to emphasize the dependence on 𝑈 . When we just want to express that a Lagrangian ℒ is
defined by the Lagrangian density 𝐿, we simply write

ℒ (𝑔,Ψ) =

∫︁
𝐿(𝑔𝑚,Ψ(𝑚), 𝑇𝑚Ψ) vol𝑔,

omitting the domain of integration.
The main postulate of General Relativity is precisely that Physical laws must be independent

of the choice of coordinates. This principle is known as General Covariance, or invariance by
coordinates change, or invariance by (local) diffeomorphisms. Let us describe this principle in

more precise terms and formulate its consequences. Let 𝜙 : 𝑈 → ̃︀𝑈 be a diffeomorphism between

two open sets 𝑈 and ̃︀𝑈 . Then, the Lagrangian ℒ is invariant by 𝜙 if

(4.5) ℒ𝑈 (𝜙*𝑔, 𝜙*Ψ) = ℒ̃︀𝑈 (𝑔,Ψ),

for every Lorentzian metrics 𝑔 on ℳ , and vector valued functions Ψ : ℳ → 𝑉 . Here, the action
of a (local) diffeomorphism 𝜙 on these field variables is defined by

𝜙*𝑔 = (𝑇𝜙)⋆ (𝑔 ∘ 𝜙)(𝑇𝜙), and 𝜙*Ψ = Ψ ∘ 𝜙.

If the invariance (4.5) holds for every local diffeomorphism 𝜙 : 𝑈 → ̃︀𝑈 , then, ℒ is said to be
general covariant.

Remark 4.2. It is well-known that the Hilbert-Einstein functional ℋ is general covariant. In-
deed,

ℋ𝑈 (𝜙*𝑔) = ℋ̃︀𝑈 (𝑔),

for every diffeomorphism 𝜙 : 𝑈 → ̃︀𝑈 , by virtue of the change of variables formula∫︁
𝑈
𝜙*𝜔 =

∫︁
̃︀𝑈 𝜔,

and because

(𝑎𝑅𝜙*𝑔 + 𝑏) vol𝜙*𝑔 = 𝜙*[(𝑎𝑅𝑔 + 𝑏) vol𝑔].

As shown by Noether [64, 47], a direct consequence of this invariance is the fundamental prop-
erty [25, 91]

div𝑔(G𝑔 + Λ𝑔) = div𝑔 G𝑔 = 0.

Lemma 4.3. If the Lagrangian

ℒ matter(𝑔,Ψ) =

∫︁
𝐿0(𝑔𝑚,Ψ(𝑚), 𝑇𝑚Ψ) vol𝑔

is general covariant, then, its Lagrangian density satisfies

(4.6) 𝐿0(A
⋆𝛾A,𝑣, 𝜏A) = 𝐿0(𝛾,𝑣, 𝜏 ), ∀A ∈ GL(4).
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Proof. Let 𝜙 : 𝑈 → ̃︀𝑈 be a diffeomorphism between two open sets 𝑈 and ̃︀𝑈 and set

𝑓(y) := 𝐿0(𝐴(y)⋆𝑔y𝐴(y),Ψ(y), 𝑇yΨ𝐴(y))

for y ∈ ̃︀𝑈 , where 𝐴(y) = 𝑇𝜙−1(y)𝜙. Then, 𝑇𝑚𝜙 = 𝐴(𝜙(𝑚)), for 𝑚 ∈ 𝑈 and

𝐿0((𝜙
*𝑔)𝑚, (𝜙

*Ψ)(𝑚), 𝑇𝑚(𝜙*Ψ)) = 𝑓(𝜙(𝑚)).

Therefore

ℒ𝑈 (𝜙*𝑔, 𝜙*Ψ) =

∫︁
𝑈
𝑓(𝜙(𝑚))𝜙*vol𝑔 =

∫︁
̃︀𝑈 𝑓(y)vol𝑔,

by the change of variable formula, and the general covariance property leads to

𝑓(y) = 𝐿0(𝐴(y)⋆𝑔y𝐴(y),Ψ(y), 𝑇yΨ𝐴(y)) = 𝐿0(𝑔y,Ψ(y), 𝑇yΨ), ∀y.
Hence, the Lagrangian density is subject to the following invariance

𝐿0(A
⋆𝛾A,𝑣, 𝜏A) = 𝐿0(𝛾,𝑣, 𝜏 ), ∀A ∈ GL(4).

�

Remark 4.4. Since the Lie derivative is the infinitesimal version of the pullback, meaning that

L𝑋 T := [𝜕𝑠𝜙(𝑠)*T]𝑠=0

for every tensor field T and every path of (local) diffeomorphisms 𝜙(𝑠) with

𝜙(0) = id, and [𝜕𝑠𝜙(𝑠)]𝑠=0 = 𝑋,

there is also an almost1 equivalent infinitesimal formulation of general covariance [64], which is
used by several authors (such as in [90]). For instance, in the present case, the general covariance
of the matter Lagrangian ℒ matter

ℒ matter
𝑈 (𝜙*𝑔, 𝜙*Ψ) = ℒ matter̃︀𝑈 (𝑔,Ψ),

for every local diffeomorphism 𝜙 : 𝑈 → ̃︀𝑈 leads to

𝛿ℒ matter
𝑈

𝛿𝑔
.L𝑋 𝑔 +

𝛿ℒ matter
𝑈

𝛿Ψ
.L𝑋 Ψ = 0.

Therefore, its Lagrangian density must satisfy (see [79])

𝜕𝐿0

𝜕𝛾
: (L𝑋 𝑔)𝑚 +

𝜕𝐿0

𝜕𝑣
· (L𝑋 Ψ)(𝑚) +

𝜕𝐿0

𝜕𝜏
: (𝑇𝑚 L𝑋 Ψ) = 0, ∀𝑚.

The following result is essential for the formulation of Relativistic Hyperelasticity and exhibits
the fundamental role played by the conformation. It must be compared to the fact that an elastic
energy in Classical Continuum Mechanics, which is objective (i.e. satisfies the material frame
indifference principle [89]) depends on the deformation 𝜙 only through the right Cauchy–Green
tensor C = 𝜙*𝑞.

Theorem 4.5 (Souriau (1958)). Suppose that the Lagrangian

ℒ matter(𝑔,Ψ) =

∫︁
𝐿0(𝑔𝑚,Ψ(𝑚), 𝑇𝑚Ψ) vol𝑔

is general covariant. Then, its Lagrangian density can be written as

𝐿0(𝑔,Ψ, 𝑇Ψ) = 𝐿(Ψ,H),

for some function 𝐿, where H = (𝑇Ψ) 𝑔−1(𝑇Ψ)⋆ is the conformation.

The proof provided below is simpler and shorter that the original one given by Souriau in [80].
The reason for it is that, in this paper, we consider only perfect matter, in which case the
conformation H is positive definite at each point 𝑚 of the World tube. This is not an hypothesis
which is made in [80].

1indeed equivalent to covariance by diffeomorphisms isotopic to the identity.
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Proof. Consider a smooth Lagrangian density 𝐿0(𝛾,𝑣, 𝜏 ), where 𝛾 is a quadratic form of signa-
ture (−,+,+,+) on R4, 𝑣 ∈ R3 and 𝜏 ∈ ℒ (R4,R3) satisfies 𝜏𝜏 > 0. Suppose moreover that
this Lagrangian density satisfies the following covariance property

𝐿0(A
⋆𝛾A,𝑣, 𝜏A) = 𝐿0(𝛾,𝑣, 𝜏 ), ∀A ∈ GL(4).

First, we can find A ∈ GL(4) such that A⋆𝛾A = 𝜂, where

𝜂 =

(︂
−1 0
0 𝑞

)︂
is the canonical Lorentz inner product. Hence we get

𝐿0(𝛾,𝑣, 𝜏 ) = 𝐿0(𝜂,𝑣, 𝜏1), with 𝜏1 = 𝜏A and A⋆𝛾A = 𝜂.

Now, we introduce the following change of variables 𝜏1 ↦→ (𝑅,H), where

H = 𝜏1𝜂
−1𝜏 ⋆

1 = 𝜏𝛾−1𝜏 ⋆, 𝑅 = 𝑉 −1𝜏1,

and 𝑉 is the positive square root of the positive definite symmetric operator on (R3, 𝑞)

𝜏1𝜏1 = H𝑞 = 𝜏1𝜂
−1𝜏 ⋆

1 𝑞

with 𝑞, the canonical Euclidean metric on R3.
We can check that 𝑅𝑅 = 𝑅𝜂−1𝑅⋆𝑞 = 𝐼3 is a condition which defines a submanifold of the

vector space of linear mappings ℒ (R4,R3), and that 𝜏1 ↦→ (𝑅,H) is a diffeomorphism from the
open set {︀

𝜏1 ∈ ℒ (R4,R3); 𝜏1𝜏1 > 0
}︀

onto the manifold {︀
𝑅 ∈ ℒ (R4,R3); 𝑅𝑅 = 𝐼3

}︀
×
{︀
H ∈ S2(R3); H > 0

}︀
.

Hence, we can find a smooth function 𝐿1(𝑣, 𝑅,H), such that

𝐿0(𝜂,𝑣, 𝜏1) = 𝐿1(𝑣, 𝑅,H),

with the property that

𝐿1(𝑣, 𝑅,H) = 𝐿0(𝜂,𝑣, 𝜏1) = 𝐿0(𝜂,𝑣, 𝜏1𝑄) = 𝐿1(𝑣, 𝑅𝑄,H),

for every Lorentz transformation 𝑄. Next, we can find a Lorentz transformation 𝑄 such that
𝑅𝑄 = 𝑅0 with

𝑅0 =
(︀
0 𝐼3

)︀
,

because 𝑅𝑅 = 𝑅0𝑅0 = 𝐼3. Therefore, we get finally

𝐿0(𝛾,𝑣, 𝜏 ) = 𝐿0(𝜂,𝑣, 𝜏1) = 𝐿1(𝑣, 𝑅,H) = 𝐿1(𝑣, 𝑅0,H),

and 𝐿1(𝑣, 𝑅0,H) is a function 𝐿(𝑣,H), which depends only on 𝑣 and H = 𝜏1𝜂
−1𝜏 ⋆

1 = 𝜏𝛾−1𝜏 ⋆.
�

The following splitting of the Lagrangian density has been introduced by Souriau [80, 82] and
DeWitt [19]:

(4.7) 𝐿(Ψ,H) = 𝜌𝑟𝑐
2 + 𝐸(Ψ,H) = 𝜌𝑟𝑐

2 + 𝜌𝑟𝑒(Ψ,H),

where 𝜌𝑟 is the rest mass density, expressed as

𝜌𝑟 = 𝜌𝛾0(Ψ)
√︀

det [H(𝛾0 ∘ Ψ)],

by lemma 2.3, provided a fixed metric 𝛾0 has been given on the body ℬ and 𝜌𝛾0 = 𝜇/vol𝛾0 .
The contribution 𝜌𝑟𝑐

2 alone (𝐸 = 0) allows for the modeling of perfect (non electromagnetic)
dust. The function 𝐸 (resp. 𝑒) is the internal energy density (resp. the specific internal energy).
It is representative of perfect fluids when its dependency on H is introduced only through the
determinant det [H(𝛾0 ∘ Ψ)]. The additional dependency on Ψ and H through the energy density
𝐸 is more generally representative of Relativistic hyperelastic solids.

We conclude this section by emphasizing that the present formulation of Relativistic Hyper-
elasticity does not require the definition of a time function (which is indeed not a necessity in
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astrophysics) and the associated assumption of a foliation of the World tube 𝒲 by spacelike
hypersurfaces. All we need is to endow the body ℬ with a fixed metric 𝛾0 as in [80, 82, 14].

5. The stress–energy tensor

The stress-energy tensor, also called energy-momentum tensor can be considered as a four-
dimensional generalization of the stress tensor in Classical three-dimensional Continuum Me-
chanics. In General Relativity, it is the source of the curvature of the metric 𝑔 of the Universe.
It is usually defined as the variational derivative of a Lagrangian with respect to the metric 𝑔
[41, 42, 64, 47, 8] and, for this reason, it is thus a symmetric contravariant second-order tensor
field (or a tensor distribution defined on symmetric second-order covariant tensor fields, in more
general situations [83]).

In the present case, the Euler-Lagrange stationary equation 𝛿ℒ = 0 for the Lagrangian

ℒ (𝑔,Ψ) = ℋ (𝑔) + ℒ matter(𝑔,Ψ),

leads in particular to the equation

𝛿ℋ

𝛿𝑔
+
𝛿ℒ matter

𝛿𝑔
= 0,

when only variations of the metric 𝑔 are considered. It recasts as the Einstein field equation

(5.1) G♯
𝑔 + Λ𝑔−1 = 𝜅T,

if G♯
𝑔 = 𝑔−1G𝑔𝑔

−1 is the contravariant form of Einstein’s tensor (4.3), and

T := −2
𝛿ℒ matter

𝛿𝑔
.

is the stress-energy tensor (the source term in Einstein’s equation), which is a symmetric con-
travariant second-order tensor field on the Universe ℳ .

Remark 5.1. Because div𝑔(G♯
𝑔 + Λ𝑔−1) = 0 (see remark 4.2), the stress-energy tensor T satisfies

the conservation law
div𝑔 T = 0.

As observed by Einstein himself [26], “divT = 0, that’s mechanics”. Indeed, this equation
generalizes in 4D (and non flat Universe) the three-dimensional equilibrium equations of Classical
Continuum Mechanics. When a spacetime structure is adopted, the Cauchy stress tensor is
related to the spacelike components of T (see section 8).

The following result provides a general expression for the stress-energy tensor of T in the case
of Relativistic Hyperelasticity (see also [43]).

Theorem 5.2 (Souriau, 1958). Consider the general covariant matter Lagrangian

ℒ matter(𝑔,Ψ) =

∫︁
𝐿 vol𝑔, 𝐿 = 𝜌𝑟𝑐

2 + 𝐸,

with
𝜌𝑟 = 𝜌𝛾0(Ψ)

√︀
det [H(𝛾0 ∘ Ψ)] and 𝐸 = 𝐸(Ψ,H),

and where 𝛾0 is a fixed metric on the body ℬ. Then, its stress-energy tensor has the following
expression

(5.2) T = −2
𝛿ℒ matter

𝛿𝑔
= 𝜌𝑟𝑐

2U⊗U− S,

where

S := 𝐸 𝑔−1 − 2𝑔−1(𝑇Ψ)⋆
𝜕𝐸

𝜕H
(𝑇Ψ)𝑔−1.

is the (four-dimensional) relativistic stress tensor on 𝒲 . Moreover, we have

S ·U♭ = 𝐸U, and T ·U♭ = −𝐿U.
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Remark 5.3 (Bennoun, 1965). Since S · U♭ ̸= 0, the decomposition (5.2) is not an orthogonal
decomposition relative to U (see Appendix A). Writing 𝐸 = 𝜌𝑟𝑒, with 𝑒 = 𝑒(Ψ,H), the specific
internal energy, the stress-energy tensor naturally recasts, using its orthogonal decomposition
relative to U, as

(5.3) T = 𝐿U⊗U−Σ,

where its spatial part

(5.4) Σ := −2𝜌𝑟 𝑔
−1(𝑇Ψ)⋆

𝜕𝑒

𝜕H
(𝑇Ψ)𝑔−1,

is such that

Σ = S + 𝐸U⊗U and Σ ·U♭ = 0,

can also be interpreted as a (four-dimensional) relativistic stress tensor.

Proof. Consider the variation 𝛿𝑔ℒ matter of the Lagrangian ℒ matter with respect to the metric
𝑔. Then, we have

𝛿𝑔ℒ
matter =

∫︁
(𝛿𝑔𝐿) vol𝑔 + 𝐿𝛿𝑔vol𝑔,

with

𝛿𝑔𝐿 = tr

(︂
𝜕𝐿

𝜕H
𝛿𝑔H

)︂
and 𝛿𝑔vol𝑔 =

1

2
tr(𝑔−1𝛿𝑔)vol𝑔.

But

𝛿𝑔H = −(𝑇Ψ)𝑔−1𝛿𝑔 𝑔−1(𝑇Ψ)⋆,

and hence

𝛿𝑔𝐿 = − tr

(︂
𝜕𝐿

𝜕H
(𝑇Ψ)𝑔−1𝛿𝑔 𝑔−1(𝑇Ψ)⋆

)︂
= − tr

(︂
𝑔−1(𝑇Ψ)⋆

𝜕𝐿

𝜕H
(𝑇Ψ)𝑔−1𝛿𝑔

)︂
.

We get thus

𝛿𝑔ℒ
matter = −

∫︁
tr

[︂(︂
𝑔−1(𝑇Ψ)⋆

𝜕𝐿

𝜕H
(𝑇Ψ)𝑔−1 − 1

2
𝐿𝑔−1

)︂
𝛿𝑔

]︂
vol𝑔,

and therefore

T = 2𝑔−1(𝑇Ψ)⋆
𝜕𝐿

𝜕H
𝑇Ψ𝑔−1 − 𝐿𝑔−1.

Now, we have
𝜕𝜌𝑟
𝜕H

=
1

2
𝜌𝑟 H

−1,

and thus

T = 𝜌𝑟𝑐
2 𝑔−1(𝑇Ψ)⋆H−1(𝑇Ψ) 𝑔−1 + 2𝑔−1(𝑇Ψ)⋆

𝜕𝐸

𝜕H
(𝑇Ψ)𝑔−1 − 𝜌𝑟𝑐

2 𝑔−1 − 𝐸 𝑔−1

= 𝜌𝑟𝑐
2
[︀
𝑔−1ℎ𝑔−1 − 𝑔−1

]︀
+ 2𝑔−1(𝑇Ψ)⋆

𝜕𝐸

𝜕H
(𝑇Ψ)𝑔−1 − 𝐸 𝑔−1

= 𝜌𝑟𝑐
2U⊗U + 2𝑔−1(𝑇Ψ)⋆

𝜕𝐸

𝜕H
(𝑇Ψ)𝑔−1 − 𝐸 𝑔−1,

where the second equality is gained by lemma 3.1, and the third one by (3.1). Finally, since

𝑇Ψ.U = 0 and U is a unit timelike vector field, we get S ·U♭ = 𝐸U, and T ·U♭ = −𝐿U. �

Example 5.4 (Relativistic perfect fluid). The stress-energy tensor of a Relativistic perfect fluid,

T = (𝐿+ 𝑃 )U⊗U + 𝑃 𝑔−1, 𝐿 = 𝜌𝑟𝑐
2 + 𝐸,

corresponds to an internal energy density of the form 𝐸 = 𝜌𝑟𝑒(𝜌𝑟), where 𝑃 = 𝜌2𝑟𝑒
′(𝜌𝑟) is the

pressure. Indeed, in that case, we have

𝜕𝑒

𝜕H
= 𝑒′(𝜌𝑟)

𝜕𝜌𝑟
𝜕H

with
𝜕𝜌𝑟
𝜕H

=
1

2
𝜌𝑟 H

−1,
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and thus, by lemma 3.1, we get

(𝑇Ψ)⋆
𝜕𝑒

𝜕H
(𝑇Ψ) =

1

2
𝜌𝑟𝑒

′(𝜌𝑟)(𝑇Ψ)⋆H−1(𝑇Ψ) =
1

2
𝜌𝑟𝑒

′(𝜌𝑟)ℎ.

Therefore

Σ = −2𝜌𝑟 𝑔
−1(𝑇Ψ)⋆

𝜕𝑒

𝜕H
(𝑇Ψ)𝑔−1 = −𝜌2𝑟𝑒′(𝜌𝑟) 𝑔−1ℎ𝑔−1 = −𝑃 (𝑔−1 + U⊗U),

where we have set 𝑃 := 𝜌2𝑟𝑒
′(𝜌𝑟), and we get

S = Σ− 𝐸U⊗U = −(𝐸 + 𝑃 )U⊗U− 𝑃 𝑔−1.

The corresponding stress–energy tensor is thus given by

T = 𝜌𝑟𝑐
2U⊗U− S = 𝐿U⊗U−Σ = (𝜌𝑟𝑐

2 + 𝐸 + 𝑃 )U⊗U + 𝑃 𝑔−1.

Even if the full theory is four-dimensional, the orthogonal decomposition (5.3) of T relative
to U, and the definition (5.4) (i.e., the Relativistic Hyperelasticity law) naturally introduce a
three-dimensional symmetric stress tensor, either covariant,

(5.5) s := −2
𝜕𝑒

𝜕H
,

or, contravariant,

HsH = 2
𝜕𝑒

𝜕H−1
,

since the conformation is invertible (and contravariant). The stress tensors s and HsH are
generalizations of the second Piola–Kirchhoff stress tensor (expressed on a reference configura-
tion Ω0 of Classical Continuum Mechanics) or more precisely here of the Rougée stress tensor
[75, 77] (defined on the body ℬ, see Appendix G). These constitutive equations are the three-
dimensional Relativistic Hyperelasticity laws. They do not depend on the further assumption
of a foliation of the World tube 𝒲 , nor on the consideration of a spacetime.

The underlying question [27, 10] is then how to properly import in General Relativity existing
Classical Continuum Mechanics constitutive laws formulated on the body ℬ [77, 45] (or a
reference configuration Ω0). Indeed, many three-dimensional expressions of energy densities

(5.6) 𝑤 = 𝑤(̂︀𝛾), ̂︀𝛾 := 𝛾−1
0 𝛾, on ℬ

(︁
i.e., 𝑤 = 𝑤(̂︀C), ̂︀C := 𝑞−1C, when ℬ ≡ Ω0

)︁
,

are available in the Classical Continuum Mechanics literature [61, 37, 69, 2, 85, 33]. They
are local function of the mixed tensor ̂︀𝛾 = 𝛾−1

0 𝛾, defined using the reference metric 𝛾0 on ℬ

(equivalently, of the mixed right Cauchy–Green tensor ̂︀C on Ω0), meaning that

𝑤(X) = 𝑤 (̂︀𝛾(X)) , X ∈ ℬ.

The use of such energy densities is then straightforward in the Relativistic framework, if one
sets (using definition (3.7))

(5.7) 𝑒(Ψ,H) = 𝑤
(︀
(𝛾−1

0 ∘ Ψ
)︀
H−1) = 𝑤

(︀
H0H

−1
)︀
.

Using (5.7), we get

(5.8) s = −2
𝜕𝑒

𝜕H
= 2H−1H0

𝜕𝑤

𝜕̂︀𝛾H−1, HsH = 2H0
𝜕𝑤

𝜕̂︀𝛾 ,
so that the stress-energy tensor T and the four-dimensional stress Σ recast finally as

(5.9) T = 𝐿U⊗U−Σ, Σ = 𝜌𝑟 𝑔
−1(𝑇Ψ)⋆ s (𝑇Ψ)𝑔−1.

We refer to Appendix G for the full link —which needs the consideration of a spacetime— with
stresses on the body ℬ.
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6. Universe’s foliation by spacelike hypersurfaces

There is no Mechanics without the proper definition of time and space. To introduce these
concepts in General Relativity, one usually starts by introducing a smooth submersion (a time
function) 𝑡 on the Universe ℳ with a timelike gradient everywhere. Then, spacelike hypersur-
faces are defined as

(6.1) ℰ𝑡 :=
{︀
𝑚 ∈ ℳ ; 𝑡(𝑚) = 𝑡

}︀
,

and one expects the Universe to be foliated by these hypersurfaces [54, 35]. The problem is
that, in general, a global foliation of the Universe might not exist (see [35, Chapter 4]). Anyway,
if such a foliation exists or is given, one will say that the Universe has been endowed with a
spacetime structure or a (3 + 1)-structure as defined in [15, 52, 30, 53, 31, 1, 92, 35].

Fortunately, for our concerns, we do not have to address this problem globally. In the present
paper, we will simply admit that such a foliation exists on a local chart which contains the
body World tube 𝒲 , or a part of it. Indeed, in Mechanical Engineering, the spacetime domain
occupied by a continuous medium/a structure, embedded for example in a laboratory, a building,
a city, a country, a domain of space . . . can be considered as included into such a local chart.

Moreover, since the presence of the studied matter in the laboratory does not affect (much)
the Universe metric 𝑔 compared to the one of Earth (passive matter assumption), we can choose,
among the numerous spacetimes encountered in General Relativity and available in [39, 60, 62],
those describing solutions of Einstein equations in the vacuum. These spacetimes are usually
described using a coordinate system (𝑥𝜇), for which the time function is chosen as

𝑡 =
𝑥0

𝑐
,

and we then define Ω𝑡 as the intersection of the World tube 𝒲 with the spacelike hypersurface
ℰ𝑡,

Ω𝑡 := 𝒲 ∩ ℰ𝑡 = 𝒲 ∩
{︀
𝑥0 = 𝑐𝑡

}︀
.

The three-dimensional hypersurfaces Ω𝑡 of the Universe play the same role as the configurations,
parameterized by time 𝑡, of Classical Continuum Mechanics [89, 65, 66, 55, 6, 84, 29], with the
difference that the later are embedded in the three-dimensional Euclidean space ℰ , not in the
four-dimensional Universe ℳ . This construction is illustrated in Figure 2, where a second time,
𝑡0, and the associated hypersurface Ω𝑡0 (a possible reference configuration) are represented.
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Figure 2. The foliation of the World tube 𝒲 by spacelike hypersurfaces Ω𝑡.
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The canonical embedding of these submanifolds into the Universe ℳ is noted 𝑗𝑡 : Ω𝑡 → ℳ
(rather than 𝜃 as in [39, Chapter 7]). Then, for each 𝑡, the pullback of the matter field Ψ by 𝑗𝑡,

Ψ𝑡 := 𝑗*𝑡 Ψ = Ψ ∘ 𝑗𝑡 : Ω𝑡 → 𝑉,

is just the restriction of Ψ to Ω𝑡, and we have Ψ𝑡(Ω𝑡) = ℬ.

Remark 6.1. We have not made, so far, the assumption that Ψ𝑡 is a diffeomorphism. However,
the tangent map

𝑇xΨ𝑡 : 𝑇xΩ𝑡 → 𝑇Ψ𝑡(x)ℬ

is an isomorphism for each x ∈ Ω𝑡 and each 𝑡, since we have assumed that Ψ is a submersion.
We shall denote the inverse mapping of 𝑇Ψ𝑡 by F(𝑡) and omit, when not necessary, the explicit
dependence on time and write simply F = (𝑇Ψ𝑡)

−1. If we make, furthermore, the stronger
hypothesis that Ψ𝑡 is a diffeomorphism we can set

𝑝(𝑡) = Ψ−1
𝑡 : ℬ → Ω𝑡,

and then F = 𝑇𝑝.

The unit normal to the spacelike hypersurfaces Ω𝑡, proportional to the gradient of the time
function 𝑡, is denoted by the quadrivector N. We have two opposite choices to define such a
unit vector and we define N as [35]

(6.2) N := − grad 𝑡√︁
−
⃦⃦

grad 𝑡
⃦⃦2 ,

where the gradient and the norm are relative to the metric 𝑔. The minus sign is chosen so that
the quadrivector N is future-oriented, meaning that the value of 𝑡 increases along the flow curves
of N. Note that, at each point 𝑚 ∈ ℳ where the spacetime structure is defined, we have the
orthogonal decomposition

𝑇𝑚ℳ = ⟨N(𝑚)⟩ ⊕N(𝑚)⊥,

where, for each 𝑚 ∈ Ω𝑡, the orthogonal subspace N(𝑚)⊥ = 𝑇𝑚Ω𝑡 coincides with the tangent
space at 𝑚 to the spacelike hypersurface Ω𝑡.

An important special case, and the only one used in this paper for our description of Rel-
ativistic Continuum Mechanics of solids, is the one of a static spacetime. Such a spacetime is
induced by a static metric, i.e., a metric 𝑔 for which there exists a timelike Killing vector field
𝑋 (i.e. L𝑋 𝑔 = 0), which is moreover the gradient of a time function 𝑡. There exists then a
coordinate system (𝑥𝜇), with 𝑥0 = 𝑐𝑡 the time coordinate, for which

𝜕𝑔𝜇𝜈
𝜕𝑥0

= 0 and 𝑔0𝑖 = 0.

In that case, we get

grad 𝑡 =
1

𝑐
𝑔00𝜕𝑥0 ,

and the unit normal N is written as

N =
√︀
−𝑔00𝜕𝑥0 .

Examples of static spacetimes are the Minkowski and the Schwarzschild [78] spacetimes.

7. Matter field in a spacetime – Generalized Lorentz factor

Perfect matter in the Universe ℳ is represented by a matter field Ψ. This field generates a
timelike quadrivector P on the World tube 𝒲 , as introduced in section 1, and a unit timelike
quadrivector U = P/𝜌𝑟. Therefore, if a spacetime structure is introduced on the Universe as it
has been explained in section 6, we get a second unit timelike quadrivector N, normal to the
hypersurfaces Ω𝑡, and in general not collinear to U. By changing the sign of the time function 𝑡
if necessary, we can assume, anyway, that both U and N define the same time orientation. This
is characterized by the condition

⟨U,N⟩𝑔 < 0.
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Thus, the quadrivector U can be written uniquely using the orthogonal decomposition

U = U𝑁 + U⊤,

where U𝑁 = −⟨U,N⟩𝑔 N is the normal component of U and U⊤ is the tangential component
to Ω𝑡. Introducing the function (see for instance [34])

(7.1) 𝛾 := −⟨U,N⟩𝑔,
one can write thus,

(7.2) U𝑁 = 𝛾N, and U⊤ =
𝛾

𝑐
𝑢,

where 𝑐 is the light speed, and 𝑢 ∈ N⊥ = 𝑇Ω𝑡.

Remark 7.1. Since we deal with a foliation by hypersurfaces Ω𝑡, rather than just one hypersur-
face, the tangential component U⊤ of a vector field U defined on ℳ (or an open subset of ℳ )
can be simultaneously interpreted as a vector field defined on ℳ but tangential to Ω𝑡 at each
point 𝑚, or as a (time-dependent) vector field on Ω𝑡 (when restricted to Ω𝑡). In our notations,
we do not distinguish between these two interpretations.

The orthogonal decomposition 𝛾N+ 𝛾
𝑐𝑢 of U and the relation 𝑇Ψ.U = 0 deduced from (1.2)

allow to express the three-dimensional velocity 𝑢 on Ω𝑡, as

(7.3) 𝑢 = −𝑐F𝑇Ψ.N, F−1 := 𝑇Ψ𝑡,

where F : 𝑇ℬ → 𝑇Ω𝑡 is defined as the inverse of 𝑇Ψ𝑡, the restriction of 𝑇Ψ to 𝑇Ω𝑡, which is
an invertible linear mapping (remark 6.1). In section 10, the expression (7.3) will allow us to
interpret the Galilean limit of 𝑢 as the three-dimensional Eulerian velocity on Ω𝑡.

Using the fact that ‖U‖2𝑔 = −1, one gets furthermore that

𝛾 =
1√︃

1 −
‖𝑢‖2𝑔
𝑐2

,

and 𝛾 ≥ 1 since 𝑢 is spacelike. This function plays a fundamental role in General Relativity
and its notation is not accidental. In the special case of the Minkowski spacetime, where 𝑔 = 𝜂
is the Minkowski metric, one recovers the traditional Lorentz factor

𝛾 =
1√︁

1 − 𝑢2

𝑐2

,

where 𝑢2 := ‖𝑢‖2𝑞 is the square Euclidean norm of 𝑢. For this reason, we shall call 𝛾 = −⟨U,N⟩𝑔
the generalized Lorentz factor.

Remark 7.2 (Rest frame and observers). The concept of rest frame is well-defined for a particle
in Special Relativity. Its definition for distributed matter in general Relativity is much less
clear. In this paper, we will adopt the following definition. Given a matter field Ψ, a rest frame
will be defined as a spacetime in which U = N, i.e., as a spacetime in which the generalized
Lorentz factor is 𝛾 = 1. For such a spacetime, we will get of course 𝑢 = 0 and the particles
can be considered at rest in it. The corresponding time coordinate will thus be interpreted as
the proper time 𝜏 . More generally and heuristically, we can interpret U as “inducing a splitting
of the tangent bundle 𝑇𝒲 for matter” and N as “inducing an integrable splitting or (3+1)
spacetime for an observer”. The Lorentz factor 𝛾 = −⟨U,N⟩𝑔 is then the “angle” between these
two timelike directions.

Finally, the normal component of the current of matter P = 𝜌𝑟U (definition (1.3)) is then
simply

P𝑁 = 𝛾𝜌𝑟 N = 𝜌N,
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where N is the unit timelike normal to the hypersurfaces Ω𝑡. The function

(7.4) 𝜌 := 𝛾𝜌𝑟,

defined on the World tube 𝒲 , is interpreted as the relativistic mass density. A geometric
interpretation of the restriction of 𝜌 to Ω𝑡 is provided in Appendix D.

8. Relativistic stress tensors and constitutive laws in a spacetime

We assume here that the World tube 𝒲 is foliated by three-dimensional hypersurfaces Ω𝑡,
with unit timelike normal N. Then, it is possible to use the orthogonal decomposition of
each tangent space relative to N to split each tensor field accordingly. These splittings are
referred to as (3+1)-decompositions in the General Relativity literature [1, 92, 35]. Explicit
formulas for second-order tensors are provided in Appendix A. We follow here the calculations
of Souriau [80, 82] for the flat Minkowski spacetime and extend them to any spacetime, thanks
to this (3+1)-decomposition. These calculations generalize the ones given for relativistic fluids
in [35] to relativistic solids. In particular, the orthogonal decomposition of the stress-energy
tensor allows us to introduce relativistic generalizations of the Cauchy stress tensor as 3D
tensors and to recast the 4D Relativistic Hyperelasticity law (theorem 5.2) as a three-dimensional
constitutive equation, relating these 3D stress tensors to the conformation H.

The orthogonal decompositions of 𝑔 and 𝑔−1, relative to the unit timelike vector N (instead
of U as in section 3) are

(8.1) 𝑔 = 𝑔3𝐷 −N♭ ⊗N♭, 𝑔−1 = (𝑔3𝐷)♯ −N⊗N, 𝑔3𝐷N = 0,

where the degenerate quadratic form 𝑔3𝐷 and (𝑔3𝐷)♯ = 𝑔−1𝑔3𝐷𝑔−1 are of signature (0,+,+,+),
by lemma A.2. This decomposition allows, in particular, to recast the conformation as

H = 𝑇Ψ 𝑔−1 (𝑇Ψ)⋆ = 𝑇Ψ((𝑔3𝐷)♯ −N⊗N)(𝑇Ψ)⋆,

with

𝑇Ψ(N⊗N)(𝑇Ψ)⋆ = 𝑇Ψ

(︂
1

𝛾
U− 1

𝑐
𝑢

)︂
⊗
(︂

1

𝛾
U− 1

𝑐
𝑢

)︂
(𝑇Ψ)⋆ = F−1

(︂
1

𝑐2
𝑢⊗ 𝑢

)︂
F−⋆,

since 𝑇Ψ.U = 0, and thus

(8.2) H = F−1

(︂
(𝑔3𝐷)♯ − 1

𝑐2
𝑢⊗ 𝑢

)︂
F−⋆.

When applied to the stress-energy tensor T, the orthogonal decomposition (A.2) leads to

(8.3) T = 𝐸totN⊗N +
1

𝑐
(N⊗ 𝑝 + 𝑝⊗N) + t,

and allows to define the physical components of T in the considered spacetime:

∙ 𝐸tot is the total energy density,
∙ 𝑝 is the momentum density vector field,
∙ and the spatial part t of T is related to the stress field.

The question asked by Souriau is then: How are these quantities related to a three-dimensional
relativistic generalization of the Cauchy stress tensor 𝜎? As shown below, the answer depends
on the choice of the decomposition of the stress-energy tensor (see theorem 5.2 and remark 5.3).
Indeed, we have seen that there are two possible splittings of it:

(1) T = 𝜌𝑟𝑐
2U⊗U− S (considered by Souriau [80, 82] and Synge [86]),

(2) or, T = 𝐿U⊗U−Σ (considered by Eckart [24] and Bennoun [5]).

The orthogonal decompositions (relative to N) of the two four-dimensional stresses S and Σ
interestingly give rise to two possible ways to define a three-dimensional stress tensor 𝜎:

(1) either as the spatial part of S,
(2) or, as the spatial part of Σ.
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First choice: 𝜎𝜎𝜎 is defined as the spatial part of S. Using the fact that S · U♭ = 𝐸U
by theorem 5.2 with U♭ = 𝛾N♭ + 𝛾𝑢♭/𝑐 by (7.2), the orthogonal decomposition of S can be
expressed as

(8.4) S = 𝛼N⊗N + N⊗ 𝑎 + 𝑎⊗N + 𝜎,

where the spatial part of S has been set equal to 𝜎, and

𝑎 =
1

𝑐

(︁
𝜎 · 𝑢♭ − 𝐸𝑢

)︁
, and 𝛼 =

1

𝑐2
𝑢♭ · 𝜎 · 𝑢♭ − 𝐸

(︃
1 +

‖𝑢‖2
𝑐2

)︃
.

The associated orthogonal decomposition of the stress-energy tensor T = 𝜌𝑟𝑐
2U⊗U−S is then⎧⎪⎨⎪⎩

𝐸tot = 𝛾𝜌𝑐2 + 𝐸
(︁

1 + 1
𝑐2
‖𝑢‖2

)︁
− 1

𝑐2
𝑢♭ · 𝜎 · 𝑢♭,

𝑝 = (𝛾𝜌𝑐2 + 𝐸)𝑢− 𝜎 · 𝑢♭,

t = 𝛾𝜌𝑢⊗ 𝑢− 𝜎,

where 𝜌 = 𝛾𝜌𝑟 is the relativistic mass density. The three-dimensional stress tensor 𝜎, defined
as the spatial part of

(8.5) S = −2𝜌𝑟 𝑔
−1(𝑇Ψ)⋆

𝜕𝑒

𝜕H
(𝑇Ψ)𝑔−1 − 𝐸U⊗U,

is thus

(8.6) 𝜎 = −2

𝛾
𝜌 (𝑔3𝐷)♯F−⋆ 𝜕𝑒

𝜕H
F−1(𝑔3𝐷)♯ − 𝛾2𝐸

𝑐2
𝑢⊗ 𝑢.

The later equation can be interpreted as a three-dimensional Hyperelasticity law. Introducing
the generalized second Piola–Kirchhoff stress tensor (5.5), we get

𝜎 =
1

𝛾
𝜌 (𝑔3𝐷)♯F−⋆ sF−1(𝑔3𝐷)♯ − 𝛾2𝐸

𝑐2
𝑢⊗ 𝑢, s = −2

𝜕𝑒

𝜕H
.

Second choice: 𝜎𝜎𝜎 is defined as the spatial part of ΣΣΣ. Using this time the fact that
Σ ·U♭ = 0 by remark 5.3, we get the orthogonal decomposition

(8.7) Σ =
1

𝑐2
(𝑢♭ · 𝜎 · 𝑢♭)N⊗N +

1

𝑐

(︁
N⊗ (𝜎 · 𝑢♭) + (𝜎 · 𝑢♭) ⊗N

)︁
+ 𝜎,

where the spatial part of Σ has been set equal to 𝜎. The associated orthogonal decomposition
of the stress-energy tensor T = 𝐿U⊗U−Σ, with 𝐿 = 𝜌𝑟𝑐

2 + 𝐸, is now⎧⎪⎨⎪⎩
𝐸tot = 𝛾2𝐿− 1

𝑐2
𝑢♭ · 𝜎 · 𝑢♭,

𝑝 = 𝛾2𝐿𝑢− 𝜎 · 𝑢♭,

t = 𝛾2

𝑐2
𝐿𝑢⊗ 𝑢− 𝜎,

where, using 𝛾2 = 1 + 𝛾2

𝑐2
‖𝑢‖2,

𝛾2𝐿 = 𝛾𝜌𝑐2 + 𝐸
(︁

1 +
𝛾2

𝑐2
‖𝑢‖2

)︁
.

The three-dimensional stress tensor 𝜎, defined as the spatial part of

(8.8) Σ = −2𝜌𝑟 𝑔
−1(𝑇Ψ)⋆

𝜕𝑒

𝜕H
(𝑇Ψ)𝑔−1.

is then

(8.9) 𝜎 := −2

𝛾
𝜌 (𝑔3𝐷)♯F−⋆ 𝜕𝑒

𝜕H
F−1(𝑔3𝐷)♯,

a relation which can be interpreted as a three-dimensional Hyperelasticity law. Introducing (5.5),
we end up with

(8.10) 𝜎 :=
1

𝛾
𝜌 (𝑔3𝐷)♯F−⋆ sF−1(𝑔3𝐷)♯, s = −2

𝜕𝑒

𝜕H
.
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Conversely, once the three-dimensional generalized Cauchy stress tensor 𝜎 is given (through
a three-dimensional Hyperelasticity law), the four-dimensional stress tensors S and Σ are then
fully determined, either by (8.4) or by (8.7). Even if the full theory is four-dimensional, the Rel-
ativistic Hyperelasticity laws are three-dimensional. Finally, observe also that the difference be-
tween (8.6) and (8.9) is purely relativistic: both of them converge to the same three-dimensional
stress tensor 𝜎 at the Galilean limit 𝑐→ 0 if one assumes lim𝑐→∞(𝐸/𝑐2) = 0.

Remark 8.1. The three-dimensional stress tensor,

𝜏 :=
𝜎

𝜌𝑟
= 𝛾

𝜎

𝜌
, such as 𝜏 = (𝑔3𝐷)♯F−⋆ sF−1(𝑔3𝐷)♯,

is a first Relativistic generalization of the Kirchhoff stress tensor 𝜎/𝜌 of Classical Continuum
Mechanics (see Appendix G for a second generalization relative to the Schwarzschild spacetime).

9. Relativistic Hyperelasticity in Schwarzschild spacetime

In [80, 81, 82], Souriau has provided a full description of Relativistic Hyperelasticity in the
Minkowski spacetime, making implicitly the passive matter hypothesis, meaning that the matter
field Ψ under study is negligible as a source of the gravitation field. Minkowski spacetime is a
flat static spacetime, with no gravitational source, which is described in some coordinate system
(𝑥0 = 𝑐𝑡, 𝑥𝑖) by the constant metric

𝜂 = −(𝑑𝑥0)2 + 𝛿𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 .

Of course, this situation is not fully realistic. However, due to the fact that for any point 𝑚0 of
the Universe, it is always possible to find a chart around 𝑚0 in which the Christoffel symbols
vanish at 𝑚0, we can assume that the Christoffel symbols are almost zero around this point.
This situation exactly corresponds to a free fall (like inside an orbital station), it approximately
corresponds to mechanical situations on Earth surface for which gravity can be neglected or not
taken into account.

Our goal here is to extend Souriau’s results on Relativistic Hyperelasticity by taking into
account gravity. These results will be used in the next section to formulate classical Galilean
Hyperelasticity with gravity (or Newton–Cartan theory of Continuum Mechanics [11, 12, 13]).
To do so, rather than using the Minkowski spacetime, we shall assume here that the continuous
medium/the structure considered is embedded in the Schwarzschild spacetime [78, 60, 62] (see
Appendix B). Therefore, we neglect the influence of the matter under study (passive matter
hypothesis) as a source of the gravity field. The exterior Schwarzschild metric is a static solution
𝑔 of Einstein equation G𝑔 = 0 in the vacuum (with vanishing cosmological constant Λ = 0).
It is representative of the gravity field around a spherical and nonrotating planet (or a star or
a black hole) of mass 𝑀 and radius 𝑟0, such as the Earth. In this model, the rotation of the
celestial body as a potential source of the gravitation field has been neglected. An alternative
would have been to choose the Kerr metric [62] rather than the Schwarzschild metric, another
possible choice which we did not make. A practical consequence of this choice is that the frame
deduced from the coordinate system in which is described the Schwarzschild metric corresponds
to one pointing at fixed stars (the Earth is assumed to be nonrotating).

In the so-called Cartesian isotropic coordinates (see Appendix B), the Schwarzschild metric
has for expression

𝑔 = −
(︂
𝑟 − 𝑟s
𝑟 + 𝑟s

)︂2

𝑐2d𝑡2 +
(︁

1 +
𝑟s
𝑟

)︁4
𝛿𝑖𝑗𝑥

𝑖𝑥𝑗 , 𝑟 :=
√︁
𝛿𝑖𝑗𝑥𝑖𝑥𝑗 ,

with 𝑟 = 0 at the center of the planet and 𝑟 ≈ 𝑟0 on its surface. The reduced Schwarzschild
radius

𝑟s =
1

4
𝑟s =

𝐺𝑀

2𝑐2

depends on the gravitational constant 𝐺, the mass 𝑀 of the celestial body, and the light speed
𝑐. It is much smaller than the radius 𝑟0 of the planet [60] (𝑟s ≈ 2 mm for the Earth).
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Introducing the lapse function [1]

𝒩 :=
1√︁

−‖grad𝑔 𝑥0‖2
=

1√︀
−𝑔00

=
√−𝑔00 =

1 − 𝑟s/𝑟

1 + 𝑟s/𝑟
,

the metric can be written as

(9.1) 𝑔 = −𝒩 2𝑐2d𝑡2 + 𝑔3𝐷,

where 𝑔3𝐷 is the spatial (conformal) metric,

(9.2) 𝑔3𝐷 = 𝑘𝑞, 𝑘 =
(︁

1 +
𝑟s
𝑟

)︁4
𝑞 = 𝛿𝑖𝑗d𝑥

𝑖d𝑥𝑗 .

The unit normal N, defined by (6.2), to the three-dimensional spatial hypersurfaces Ω𝑡 is simply

(9.3) N =
1

𝒩
𝜕𝑥0 =

1

𝑐𝒩
𝜕𝑡.

Remark 9.1. The flat Minkowski spacetime (Special Relativity) is simply the limiting massless
case 𝑀 = 0 and thus 𝑟s = 𝑟s = 0. It is a special case of this more general framework.

The Schwarzschild metric is not flat. The non-vanishing symmetric Christoffel symbols, in
the Cartesian isotropic coordinate systems (𝑥𝜇) and (𝑡, 𝑥𝑖), can easily be recovered using the
usual formula (C.3) since 𝑔3𝐷 = 𝑘(𝑟)𝑞 is conformal (see also [62]). They are written as

Γ𝑡
𝑡𝑖 = Γ0

0𝑖 = (d ln 𝒩 )𝑖 = 2
𝑟s
𝑟2

1

(1 − 𝑟2s /𝑟
2)
𝛿𝑖𝑘
𝑥𝑘

𝑟
,

Γ𝑖
𝑡𝑡 = 𝑐2Γ𝑖

00 = 𝑐2
𝒩

𝑘
(grad 𝒩 )𝑖 = 2𝑐2

𝑟s
𝑟2

(1 − 𝑟s/𝑟)

(1 + 𝑟s/𝑟)7
𝑥𝑖

𝑟
,

Γ𝑖
𝑗𝑗 = −1

2
(grad ln 𝑘)𝑖 = 2

𝑟s
𝑟2

1

(1 + 𝑟s/𝑟)

𝑥𝑖

𝑟
, for 𝑖 ̸= 𝑗,

Γ𝑗
𝑗𝑖 =

1

2
(d ln 𝑘)𝑖 = −2

𝑟s
𝑟2

1

(1 + 𝑟s/𝑟)
𝛿𝑖𝑘
𝑥𝑘

𝑟
, for 𝑖 = 𝑗 and 𝑖 ̸= 𝑗.

(9.4)

with no sum on 𝑗, and where, for a function 𝑓 , grad 𝑓 = 𝑞−1d𝑓 is the gradient relative to the
Euclidean metric 𝑞 = (𝛿𝑖𝑗). The related divergence operators are detailed in Appendix C.

In the following, we particularize the relations established in section 8 for the special case of
the Schwarzschild spacetime when expressed in Cartesian isotropic coordinates.

∙ The three-dimensional velocity 𝑢 defined by (7.3) is then given by

(9.5) 𝑢 = − 1

𝒩
F
𝜕Ψ

𝜕𝑡
,

where F = 𝑇Ψ−1
𝑡 was introduced in (7.3).

∙ The generalized Lorentz factor (7.1) has then for expression

(9.6) 𝛾 =
1√︁

1 − 𝑘𝑢2

𝑐2

,

where 𝑢2 := ‖𝑢‖2𝑞 is the Euclidean squared norm and 𝑘 =
(︀
1 + 𝑟s

𝑟

)︀4
.

∙ The conformation (8.2) reduces to

(9.7) H = F−1

(︂
1

𝑘
𝑞−1 − 1

𝑐2
𝑢⊗ 𝑢

)︂
F−⋆.

∙ For the two choices of a three-dimensional stress 𝜎 introduced in section 8, where 𝜌 = 𝛾𝜌𝑟
is the relativistic mass density, we get, in the coordinate system (𝑡, 𝑥𝑖),

(9.8) T =

⎛⎜⎝ 1

𝑐2𝒩 2
𝐸tot

1

𝑐2𝒩
𝑝⋆

1

𝑐2𝒩
𝑝 s

⎞⎟⎠
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(1) When the stress tensor 𝜎 is defined as the spatial part of S:

(9.9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐸tot = 𝛾𝜌𝑐2 + 𝐸

(︁
1 + 𝑘𝑢2

𝑐2

)︁
− 1

𝑐2
𝑢♭ · 𝜎 · 𝑢♭,

𝑝 = (𝛾𝜌𝑐2 + 𝐸)𝑢− 𝜎 · 𝑢♭,

t = 𝛾𝜌𝑢⊗ 𝑢− 𝜎,

𝜎 = − 2
𝛾𝑘2

𝜌 𝑞−1F−⋆ 𝜕𝑒
𝜕HF−1𝑞−1 − 𝛾2𝐸

𝑐2
𝑢⊗ 𝑢.

(2) When the stress tensor 𝜎 is defined as the spatial part of Σ:

(9.10)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐸tot = 𝛾𝜌𝑐2 + 𝐸
(︁

1 + 𝑘𝛾2𝑢
2

𝑐2

)︁
− 1

𝑐2
𝑢♭ · 𝜎 · 𝑢♭,

𝑝 =
(︁
𝛾𝜌𝑐2 + 𝐸

(︁
1 + 𝑘𝛾2𝑢

2

𝑐2

)︁)︁
𝑢− 𝜎 · 𝑢♭,

t =
(︁
𝛾𝜌+ 1

𝑐2
𝐸
(︁

1 + 𝑘𝛾2𝑢
2

𝑐2

)︁)︁
𝑢⊗ 𝑢− 𝜎,

𝜎 = − 2
𝛾𝑘2

𝜌 𝑞−1F−⋆ 𝜕𝑒
𝜕HF−1𝑞−1.

Remark 9.2. The above expressions generalize Souriau’s 1958–1964 results when gravity is taken
into account. Note that in (9.9), in the special case 𝑘 = 1 (Special Relativity), there is a
contribution 𝐸𝑢2/𝑐2 in the expression of 𝐸tot. This term is however missing in [80, p. 153] but
this typo was corrected in [82, p. 376].

The full description of Relativistic Hyperelasticity must be completed by writing balance laws
for the four-momentum quadrivector and the stress-energy tensor. They are written as

div𝑔 P = 0,(9.11)

div𝑔 T = 0,(9.12)

where P is the current of matter and T is the stress-energy tensor. Using explicit formulas for
these divergence operators provided in Appendix C, where we use here the Cartesian isotropic
coordinates system (𝑡, 𝑥𝑖), we obtain the following equations.

∙ The conservation law (9.11) for the current of matter

(9.13) P = 𝜌𝑟U =
𝜌

𝑐𝒩
𝜕𝑡 +

1

𝑐
𝜌𝑢,

leads (after multiplication by 𝑐) and according to (C.4), to

(9.14) div𝑔 𝑐P =
1

𝒩

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖) + (Γ𝑗

𝑗𝑖 + Γ𝑡
𝑡𝑖)𝜌𝑢

𝑖 = 0,

or, in a more intrinsic form

div𝑔 𝑐P =
1

𝒩

𝜕𝜌

𝜕𝑡
+ div𝑔3𝐷(𝜌𝑢) + 𝜌𝑢 · d ln 𝒩 = 0.

∙ The conservation law (9.12) for the stress-energy tensor T, expressed in components by (9.8),
has for time component, according to (C.5)

(9.15) (div𝑔 T)𝑡 =
1

𝑐2𝒩 2

𝜕𝐸tot

𝜕𝑡
+

1

𝑐2𝒩

𝜕𝑝𝑖

𝜕𝑥𝑖
+

(︂
Γ𝑗
𝑗𝑖 + 3Γ𝑡

𝑡𝑖 −
𝜕ln 𝒩

𝜕𝑥𝑖

)︂
𝑝𝑖

𝑐2𝒩
= 0,

or, in a more intrinsic form

(div𝑔 T)𝑡 =
1

𝑐2𝒩 2

𝜕𝐸tot

𝜕𝑡
+

1

𝑐2𝒩
div𝑔3𝐷 𝑝 + 2

𝑝

𝑐2𝒩
· d ln 𝒩 = 0,

and for spatial component, according to (C.7)

(9.16) (div𝑔 T)𝑖 =
1

𝑐2𝒩

𝜕𝑝𝑖

𝜕𝑡
+
𝜕𝑠𝑖𝑗

𝜕𝑥𝑗
+ (Γ𝑘

𝑘𝑗 + Γ0
0𝑗)𝑠

𝑖𝑗 + Γ𝑖
𝑗𝑘𝑠

𝑗𝑘 + Γ𝑖
𝑡𝑡

𝐸tot

𝑐2𝒩 2
= 0,

or, in a more intrinsic form

(div𝑔 T)⊤ =
1

𝑐2𝒩

𝜕𝑝

𝜕𝑡
+ div𝑔3𝐷 s + s · d ln 𝒩 + 𝐸tot grad𝑔3𝐷ln 𝒩 = 0,

where grad𝑔3𝐷ln 𝒩 = 1
𝑘𝑞

−1d ln 𝒩 .
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10. The Galilean limit of Relativistic Hyperelasticity

Soon after Einstein’s formulation of the theory of General Relativity (1915), Cartan intro-
duced, in a series of papers [11, 12, 13], a general covariant formulation of Newtonian gravity,
today called Newton-Cartan theory of gravitation. It can be obtained as the limit of Lorentzian
spacetimes whose light cones open up to hyperplanes at each tangent space [49]. It allows to
recast the equations of energy and momentum balance of Classical Continuum Mechanics in a
four-dimensional general covariant form, similar to the relativistic equation div𝑔 T = 0, provided
the specific internal energy and the energy flux are suitably interpreted. This 4D general covari-
ant formalism [88, 48, 20, 22, 38, 21, 17], derived from General Relativity, is also useful to better
understand the foundations of Classical Continuum Mechanics and avoid ad hoc assumptions in
its formulation.

A Galilean structure on a four-dimensional manifold ℳ is a pair (g, 𝜃), where g is a symmetric
second-order contravariant tensor of signature (0,+,+,+) (the classical spatial metric) and 𝜃
is a one-form which spans the kernel of g (the clock). This means that g𝜃 = 0 and that 𝜃
vanishes nowhere. The one-form 𝜃 defines a distribution of hyperplanes 𝐸𝑚 := ker 𝜃𝑚, each of
them, carrying an Euclidean metric induced by g. The Galilean structure is called integrable
if 𝜃 is closed. In that case, 𝜃 defines a time function 𝑡 satisfying d𝑡 = 𝜃 (at least locally)
and a foliation by hypersurfaces, ℰ𝑡 := 𝑡−1(𝑡), tangent to the distribution (𝐸𝑚), and which are
moreover Riemannian manifolds.

A covariant derivative ∇ on ℳ is said to be Galilean if it is symmetric (torsion-less) and
satisfies moreover

∇g = 0 and ∇𝜃 = 0.

Such a covariant derivative exists only if the Galilean structure (g, 𝜃) is integrable (since ∇𝜃 = 0
implies d𝜃 = 0 for a symmetric covariant derivative). Note, however, that contrary to the
canonical covariant derivative of a Riemannian (or pseudo-Riemannian) manifold, a Galilean
covariant derivative is not uniquely defined.

In practice, a Galilean structure (g, 𝜃) is obtained as a limit of a one-parameter family of

smooth Lorentz metrics
𝜆
𝑔, such that

𝜆
𝑔−1 = g + 𝜆𝜅 +𝑂(𝜆2),

with g of signature (0,+,+,+), and 𝜃 is a generator of the kernel of g [16, 48]. Note that 𝜃 can
be fixed uniquely up to a sign by the normalization 𝜅(𝜃, 𝜃) = −1. It has been shown in [49]
that, provided that d𝜃 = 0 (a condition which is always satisfied by static spacetimes such as the
Minkowski or the Schwarzschild spacetimes), the one-parameter family of Riemannian covariant
derivatives ∇𝜆 converges then to a symmetric covariant derivative ∇NC which is compatible with
the Galilean structure (g, 𝜃).

Recall moreover, that, on a Riemannian or pseudo-Riemannian manifold, the Riemann tensor
R (defined in components by 𝑅𝛼𝛽𝛾𝛿 = 𝑔𝛼𝜌𝑅

𝜌
𝛽𝛾𝛿) has the additional symmetry

𝑅𝛼𝛽𝛾𝛿 = 𝑅𝛾𝛿𝛼𝛽,

and that, uprising the first and third indices, we obtain the following identity

𝑔𝛾𝜆𝑅𝛼
𝛽𝜆𝛿 = 𝑔𝛼𝜆𝑅𝛾

𝛿𝜆𝛽.

Therefore, when a Galilean covariant derivative is obtained as a limit of (pseudo-)Riemannian
covariant derivatives, it must satisfies the additional property

(10.1) g𝛾𝜆𝑅𝛼
𝛽𝜆𝛿 = g𝛼𝜆𝑅𝛾

𝛿𝜆𝛽

and is then called a Newtonian covariant derivative.
Applying this procedure to the Schwarzschild metric (9.1),

𝜆
𝑔 = −𝒩 2𝑐2d𝑡2 + 𝑘 𝑞,
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with 𝜆 := 1/𝑐2, we get

(10.2) 𝒩 = 1 − 1

𝑐2
𝐺𝑀

𝑟
+𝑂(1/𝑐4), 𝑘 = 1 +

2

𝑐2
𝐺𝑀

𝑟
+𝑂(1/𝑐4),

and

(10.3)
𝜆
𝑔−1 = 𝑞−1 − 1

𝑐2

(︂
(𝜕𝑡)

2 + 2
𝐺𝑀

𝑟
𝑞−1

)︂
+𝑂(1/𝑐4),

where 𝑞−1 = (𝜕𝑥1)2 + (𝜕𝑥2)2 + (𝜕𝑥3)2. Observe also that we have,

(10.4) vol𝜆
𝑔

= 𝑐𝑓 d𝑡 ∧ vol𝑞, where 𝑓 = 𝒩 𝑘
3
2 = 1 +

2

𝑐2
𝐺𝑀

𝑟
+𝑂(1/𝑐4),

for the Riemannian volume form associated with the metric
𝜆
𝑔. Note that vol𝜆

𝑔
diverges as 𝑐→ ∞.

We obtain thus the following Galilean structure,

g = 𝑞−1, 𝜅 = −(𝜕𝑡)
2 − 2

𝐺𝑀

𝑟
𝑞−1, 𝜃 = d𝑡,

where the normalisation condition 𝜅(𝜃, 𝜃) = −1 has been used. This structure is of course
integrable, and the time function is the same, in either the relativistic context or the Galilean
one. Therefore, the foliation by the hypersurfaces Ω𝑡 is common to both structures. Note
however that by (9.3), the relativistic normal N𝜆 to these hypersurfaces converges towards 0 as
𝑐→ ∞.

An immediate consequence of (10.3) is the fact that the conformation
𝜆

H defined by (1.5) has
a limit when 𝑐→ ∞. Indeed,

(10.5) H̄ := lim
𝑐→∞

𝜆

H = F−1𝑞−1F−⋆.

Remark 10.1. Observe the similarity between the (limit) conformation H̄ and the inverse C−1

of right Cauchy–Green tensor C := F⋆𝑞F in Classical Continuum Mechanics. However, H̄ is
not exactly C−1 because it is a function from the World tube 𝒲 to S2𝑇ℬ (see remark 1.5),
while C−1 is a tensor field on ℬ.

Concerning the Riemannian covariant derivative ∇𝜆 of
𝜆
𝑔, the expansion of its non vanishing

Christoffel symbols is easily deduced from (9.4) and recalling that 𝑟s = 𝐺𝑀/2𝑐2. We get

Γ𝑖
𝑡𝑡 = 2𝑐2

𝑟s
𝑟2

(1 − 𝑟s/𝑟)

(1 + 𝑟s/𝑟)7
𝑥𝑖

𝑟
= −g𝑖 − 1

𝑐2
4𝐺𝑀

𝑟2
g𝑖 +𝑂(1/𝑐4),

Γ𝑡
𝑡𝑖 = 2

𝑟s
𝑟2

1

(1 − 𝑟2s /𝑟
2)
𝛿𝑖𝑘
𝑥𝑘

𝑟
= − 1

𝑐2
𝛿𝑖𝑘g𝑘 +𝑂(1/𝑐4),

Γ𝑖
𝑗𝑗 = 2

𝑟s
𝑟2

1

(1 + 𝑟s/𝑟)

𝑥𝑖

𝑟
= − 1

𝑐2
g𝑖 +𝑂(1/𝑐4), for 𝑖 ̸= 𝑗,

Γ𝑗
𝑗𝑖 = −2

𝑟s
𝑟2

1

(1 + 𝑟s/𝑟)
𝛿𝑖𝑘
𝑥𝑘

𝑟
=

1

𝑐2
𝛿𝑖𝑘g𝑘 +𝑂(1/𝑐4), for 𝑖 = 𝑗 and 𝑖 ̸= 𝑗.

(10.6)

with no sum on 𝑗, and where g is the Newtonian (centripetal) gravity field,

(10.7) g := −𝐺𝑀
𝑟2

𝑥𝑖

𝑟
𝜕𝑥𝑖 ,

with 𝐺𝑀
𝑟2

≈ 𝐺𝑀
𝑟20

= 9.8 m/s2 on Earth surface. We deduce therefore that the Christoffel symbols

of the Newton–Cartan limit ∇NC are all vanishing except

(10.8) Γ𝑖
𝑡𝑡 = −g𝑖.

Remark 10.2 (Weak gravity). The approximations (10.6) at large 𝑐 coincide in fact with those
corresponding to so-called weak gravity (see [18]), valid for the Earth, and more generally for a
planet or a star (any object whose radius is smaller than its Schwarzschild radius being called a
black hole).
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The divergence of a quadrivector P, relative to the Newtonian covariant derivative ∇NC, is
given by

(10.9) divNC P =
𝜕𝑃 𝑡

𝜕𝑡
+
𝜕𝑃 𝑗

𝜕𝑥𝑗
.

It corresponds to the zero order terms in the expansions in 𝜆 = 1/𝑐2 of the divergence
𝜆

divP

relative to the Schwarzschild metric
𝜆
𝑔 given by (C.4), since we have

Γ𝑗
𝑗𝑖 + Γ𝑡

𝑡𝑖 =
2

𝑐2
𝛿𝑖𝑘g𝑘 +𝑂(1/𝑐4).

We get therefore

(10.10)
𝜆

divP = divNC P +
2

𝑐2
g ·P⊤ +𝑂(1/𝑐4),

where P⊤ is the spatial part of the quadrivector P.
The divergence of a symmetric second-order contravariant tensor T is given by

(10.11) (divNC T)𝑡 =
𝜕𝑇 𝑡𝑡

𝜕𝑡
+
𝜕𝑇 𝑡𝑗

𝜕𝑥𝑗
, (divNC T)𝑖 =

𝜕𝑇 𝑖𝑡

𝜕𝑡
+
𝜕𝑇 𝑖𝑗

𝜕𝑥𝑗
− g𝑖𝑇 𝑡𝑡.

Indeed, by (C.5), and since by (9.4),

(10.12)
3∑︁

𝑗=1

Γ𝑗
𝑗𝑖 + 3Γ𝑡

𝑡𝑖 = 3
(︁

d ln(𝒩
√
𝑘)
)︁
𝑖

= 𝑂(1/𝑐4),

we obtain

(10.13) (
𝜆

divT)𝑡 = (divNC T)𝑡 +𝑂(1/𝑐4),

whereas (C.6), combined with the fact that all involved Christoffel’s symbols are 𝑂(1/𝑐2), but

Γ𝑖
𝑡𝑡 = −g𝑖 +𝑂(1/𝑐2),

ends up to

(
𝜆

divT)𝑖 =
𝜕𝑇 𝑖𝑡

𝜕𝑡
+
𝜕𝑇 𝑖𝑗

𝜕𝑥𝑗
− g𝑖𝑇 𝑡𝑡 +𝑂(1/𝑐2) = (divNC T)𝑖 +𝑂(1/𝑐2).

The current of matter (1.1)
𝜆

P for the metric
𝜆
𝑔 is defined implicitly by

𝑖P𝜆vol𝜆
𝑔

= 𝜔 = Ψ*𝜇,

where the 3-form 𝜔 does not depend on the light speed 𝑐 (the matter field Ψ and the mass
measure 𝜇 do not depend on 𝑐, which is only introduced through the metrics). By (10.4), we
get thus

𝑐𝑓 𝑖P𝜆 d𝑡 ∧ vol𝑞 = 𝑖𝑐𝑓P𝜆 d𝑡 ∧ vol𝑞 = 𝜔 = Ψ*𝜇,

from which it is seen that 𝑐𝑓
𝜆

P is independent of 𝑐, and is therefore equal to its Newtonian limit
(𝑐P)0 defined by 𝑖(𝑐P)0 d𝑡 ∧ vol𝑞 = 𝜔 (since 𝑓 → 1 as 𝑐→ ∞). Setting

(10.14) 𝑐
𝜆

P =
𝜆
𝜌 𝜕𝑡 +

𝜆
𝜌

𝜆
𝑢, (𝑐P)0 = 𝜌 𝜕𝑡 + 𝜌 �̄�,

defines the mass density
𝜆
𝜌 and the velocity

𝜆
𝑢, as well as their Newtonian limits 𝜌 and �̄�. The

equality 𝑐𝑓P𝜆 = (𝑐P)0 leads to
𝜆
𝜌 =

1

𝑓
𝜌,

𝜆
𝑢 = �̄�.

and allows us to expand the mass density as

𝜆
𝜌 = 𝜌− 2

𝑐2
𝐺𝑀

𝑟
𝜌+𝑂(1/𝑐4).
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We have therefore

lim
𝑐→∞

𝜆
𝜌 = 𝜌, lim

𝑐→∞
𝜆
𝑢 = �̄�,

and

lim
𝑐→∞

𝛾 = lim
𝑐→∞

1√︁
1 − 𝑘𝑢2

𝑐2

= 1,

since the generalized Lorentz factor (9.6) has the classical expansion

𝛾 = 1 +
1

2

�̄�2

𝑐2
+𝑂(1/𝑐4).

Using (9.13), we see that (
𝜆
𝜌,

𝜆
𝑢) are connected to (𝜌,𝑢) by

𝜆
𝜌 =

𝜌

𝒩
,

𝜆
𝑢 = 𝒩 𝑢,

𝜆
𝜌

𝜆
𝑢 = 𝜌𝑢,

when the so-called relativistic mass density 𝜌 and velocity 𝑢 are defined by the orthogonal
decomposition

𝑐
𝜆

P = 𝜌𝑐
𝜆

N + 𝜌𝑢.

By (9.5), we deduce that the Newtonian limit of the three-dimensional velocity 𝑢 =
𝜆
𝑢/𝒩 is

lim
𝑐→∞

𝑢 = �̄� = −F
𝜕Ψ

𝜕𝑡
.

Remark 10.3. In Classical Continuum Mechanics, the Eulerian velocity is defined as the vector
field on the deformed configuration given by 𝜕𝑡𝑝 ∘ 𝑝−1, where 𝑝 is the embedding of the body
ℬ into the Euclidean space, and where 𝑉 := 𝜕𝑡𝑝 is the Lagrangian velocity. If we assume,
furthermore, that Ψ𝑡 is a diffeomorphism and we set 𝑝 = Ψ−1

𝑡 (see remark 6.1), the vector field
�̄� recasts as

�̄� = −F 𝜕𝑡Ψ = 𝜕𝑡Ψ
−1
𝑡 ∘ Ψ𝑡 = 𝜕𝑡𝑝 ∘ 𝑝−1,

and we recognize �̄� as the Eulerian velocity of Classical Continuum Mechanics.

The stress-energy tensor
𝜆

T := T has for expression, in the coordinate system (𝑡, 𝑥𝑖),

(10.15)
𝜆

T =

⎛⎜⎝ 1

𝑐2𝒩

𝜆

𝐸tot
1

𝑐2𝒩

𝜆
𝑝⋆

1

𝑐2𝒩

𝜆
𝑝

𝜆
s

⎞⎟⎠ where

⎧⎪⎪⎨⎪⎪⎩
𝜆

𝐸tot := 𝐸tot/𝒩 ,
𝜆
𝑝 := 𝑝,
𝜆
s := s.

To determine its limit, observe that the energy density
𝜆

𝐸tot, the linear momentum
𝜆
𝑝 and the

spatial part
𝜆
s behave as

𝜆

𝐸tot

𝑐2
=

𝜆
𝜌+

1

𝑐2

(︂
𝐸 +

1

2
𝜌𝑢2

)︂
+𝑂(1/𝑐4),(10.16)

𝜆
𝑝

𝑐2
=

𝜆
𝜌

𝜆
𝑢 +

1

𝑐2

(︂(︂
𝐸 +

1

2
𝜌𝑢2

)︂
𝑢− 𝜎 · 𝑢♭

)︂
+𝑂(1/𝑐4),(10.17)

𝜆
s =

𝜆
𝜌

𝜆
𝑢⊗ 𝜆

𝑢− 𝜎 +𝑂(1/𝑐2),(10.18)

where we have used indifferently either (9.9) or (9.10), and we have assumed that the internal
energy density 𝐸 (function of H) is 𝑜(1/𝑐2) (see also the discussion in [81]). In that case, the
quantities 1

2𝜌𝑢
2, 𝐸 and 𝜎 converge respectively to 1

2𝜌 �̄�
2, �̄� and �̄�. Therefore, in the coordinate

system (𝑡, 𝑥𝑖), the stress-energy tensor
𝜆

T converges to the Newtonian limit

(10.19) T̄ = lim
𝑐→∞

T𝜆 =

(︂
𝜌 𝜌 �̄�⋆

𝜌 �̄� 𝜌 �̄�⊗ �̄�− �̄�

)︂
.
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We now discuss the limits of the balance laws. First, by (10.10) and (10.14), we get

𝜆

div(𝑐
𝜆

P) =
𝜕

𝜆
𝜌

𝜕𝑡
+ div(

𝜆
𝜌

𝜆
𝑢) +

2

𝑐2
g · 𝜆

𝜌
𝜆
𝑢 +𝑂(1/𝑐4) = 0,

where div is the canonical divergence in R3, and which can be recast as

(10.20)
𝜕

𝜆
𝜌

𝜕𝑡
+ div(

𝜆
𝜌

𝜆
𝑢) = − 2

𝑐2
g · 𝜌 𝜆

𝑢 +𝑂(1/𝑐4).

It converges to

divNC(𝑐P)0 =
𝜕𝜌

𝜕𝑡
+ div(𝜌 �̄�) = 0.

One recovers thus the usual expression of mass conservation in Classical Continuum Mechanics
(omitting the bars),

(10.21)
𝜕𝜌

𝜕𝑡
+ div(𝜌𝑢) = 0,

for the Euclidean metric 𝑞.

Then, the relativistic conservation law
𝜆

divT𝜆 = 0 converges to the equation divNC T̄ = 0,
with (by (10.11))

(divNC T̄)𝑡 =
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌 �̄�𝑗), and (divNC T̄)𝑖 =

𝜕

𝜕𝑡
(𝜌 �̄�𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌 �̄�𝑖�̄�𝑗 − �̄�𝑖𝑗) − 𝜌 g𝑖,

so that
𝜕𝜌

𝜕𝑡
+ div(𝜌 �̄�) = 0,

𝜕

𝜕𝑡
(𝜌 �̄�) + div (𝜌 �̄�⊗ �̄�− �̄�) − 𝜌g = 0.

The first equation is (again) recognized as the mass conservation (10.21) and the second one
as the linear momentum balance of Classical Continuum Mechanics, with gravity g (omitting
the bars),

𝜕

𝜕𝑡
(𝜌𝑢) + div (𝜌𝑢⊗ 𝑢− 𝜎) − 𝜌g = 0.

By using the mass conservation law, the later can be recast as the classical expression,

(10.22) 𝜌

(︂
𝜕𝑢

𝜕𝑡
+ ∇𝑢𝑢

)︂
= div𝜎 + 𝜌g,

where ∇ is the covariant derivative for the Euclidean metric 𝑞.
It is furthermore possible to recover the so-called local form of energy balance of Classical

Continuum Mechanics, as a term of order 𝑂(1/𝑐2) in the expansion of a combination of both
𝜆

div(𝑐
𝜆

P) = 0 and (
𝜆

divT𝜆)𝑡 = 0 (see for instance [80] for the case of the flat Minkowski spacetime
or [35] for relativistic fluids in the case of weak gravity or [49] for general discussions about this
balance law).

The balance law (9.15) expresses the vanishing of the time component (div𝑔 T)𝑡 = (
𝜆

div
𝜆

T)𝑡 = 0

in which here T =
𝜆

T is given by (10.15). Since
𝜆

𝐸tot = 𝐸tot/𝒩 and
𝜆
𝑝 = 𝑝, it recasts as

(div𝑔 T)𝑡 = (
𝜆

div
𝜆

T)𝑡 =
1

𝒩

⎡⎣ 𝜕
𝜕𝑡

(︁ 𝜆

𝐸tot

𝑐2

)︁
+ div

(︁ 𝜆
𝑝

𝑐2

)︁
+

1

𝑐2
𝜆
𝑝 ·
(︁

3 d ln(𝒩
√
𝑘) − d ln 𝒩

)︁⎤⎦ = 0,

where div is the divergence relative to the three-dimensional Euclidean metric 𝑞. We have
introduced the 1-form (10.12)

3 d ln(𝒩
√
𝑘) :=

(︁ 3∑︁
𝑗=1

Γ𝑗
𝑗𝑖 + 3Γ𝑡

𝑡𝑖

)︁
d𝑥𝑖 = 𝑂(1/𝑐4),
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which is of order 𝑂(1/𝑐4),
𝜆
𝑝 which is of order 𝑂(𝑐2) and

d ln 𝒩 = − 1

𝑐2
𝑞g +𝑂(1/𝑐4).

By (10.2), we get

(10.23) 𝒩 (
𝜆

div
𝜆

T)𝑡 =
𝜕

𝜕𝑡

(︁ 𝜆

𝐸tot

𝑐2

)︁
+ div

(︁ 𝜆
𝑝

𝑐2

)︁
+

1

𝑐2

(︁ 𝜆
𝑝

𝑐2
· g
)︁

+𝑂(1/𝑐4) = 0.

Subtracting (10.20) from (10.23) and using (10.16) and (10.17), we get now

1

𝑐2

{︂
𝜕

𝜕𝑡

[︁(︁
𝐸 +

1

2
𝜌𝑢2

)︁
𝑢− 𝜎 · 𝑢♭

]︁
+ div

[︁(︁
𝐸 +

1

2
𝜌𝑢2

)︁
𝑢− 𝜎 · 𝑢♭

]︁
+ 𝜌g · 𝑢

}︂
− 2

𝑐2
𝜌g · 𝑢 +𝑂(1/𝑐4) = 0,

and thus
𝜕

𝜕𝑡

(︁
𝐸 +

1

2
𝜌𝑢2

)︁
+ div

(︂(︁
𝐸 +

1

2
𝜌𝑢2

)︁
𝑢− 𝜎 · 𝑢♭

)︂
− 𝜌g · 𝑢 = 𝑂(1/𝑐2).

Passing to the limit 𝑐→ ∞, we obtain therefore

𝜕

𝜕𝑡

(︁
�̄� +

1

2
𝜌�̄�2

)︁
+ div

(︂(︁
�̄� +

1

2
𝜌 �̄�2

)︁
�̄�− �̄� · �̄�♭

)︂
− 𝜌g · �̄� = 0.

Using (10.22), we furthermore have (omitting the bars, with ∇ still the covariant derivative for
the Euclidean metric 𝑞),

div
(︀
𝜎 · 𝑢♭

)︀
= 𝑢 · div𝜎 + 𝜎 : d =

1

2
𝜌

(︂
𝜕𝑢2

𝜕𝑡
+ ∇𝑢𝑢

2

)︂
+ 𝜎 : d− 𝜌g · 𝑢,

since 𝜎 is symmetric, and where

d :=
1

2

(︁
∇𝑢♭ + (∇𝑢♭)⋆

)︁
,

is the classical strain rate tensor. We end up with the standard expression of internal energy
balance in Classical Continuum Mechanics [55, 51],

𝜌

(︂
𝜕𝑒

𝜕𝑡
+ ∇𝑢𝑒

)︂
= 𝜎 : d,

with no heat transfer, and where 𝑒 := 𝐸/𝜌 is the specific internal energy.

11. Conclusion

We have revisited Souriau’s variational formulation of Relativistic Hyperelasticity. This the-
ory was derived in 1958 with the mindset of Gauge theory: the perfect matter field Ψ is somehow
similar to the wave function 𝜓 in Quantum Mechanics, but at a macroscopic scale and without
the same interpretation. The role of the three-dimensional body ℬ, which labels the material
points constitutive of the continuous medium under study in the Universe, has been emphasized:
it is common to the Relativistic Hyperelasticity theory and to the three-dimensional Classical
Continuum Mechanics theory. The body ℬ is naturally distinguished from a reference config-
uration Ω𝑡0 in the present Relativistic framework, since ℬ is embedded into the (non-physical)
vector space 𝑉 , whereas Ω𝑡0 is a spacelike submanifold of the Universe ℳ . In both the Classical
and Relativistic frameworks, the body ℬ is endowed with a volume form, the mass measure 𝜇,
and a fixed Riemannian metric 𝛾0. Since this is shared by both theories, we have tried to make
a parallel, when possible, and to point out the differences. Our point of view is mainly oriented
towards mechanics, rather than astrophysics.

The fundamental observation of Souriau is that the formulation of general covariant consti-
tutive equations for perfect matter involve the metric 𝑔 only through the conformation, defined
by

H = (𝑇Ψ)𝑔−1(𝑇Ψ)⋆.
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It is a non degenerate contravariant three-dimensional tensor valued function which plays the role
of strain, or more precisely of the inverse of the right Cauchy–Green tensor C. The connections
between H, the four-dimensional degenerate metric ℎ = 𝑔 + U♭ ⊗U♭ and the four-dimensional
degenerate co-metric ℎ♯ = 𝑔−1 + U⊗U (considered by Carter and Quintana [14], for instance)
are given by lemma 3.1,

H = (𝑇Ψ)ℎ♯(𝑇Ψ)⋆, ℎ = (𝑇Ψ)⋆H−1𝑇Ψ.

Thanks to these formulas, all the definitions of a strain tensor can be expressed using a compar-
ison between the inverse of the conformation H−1 and H−1

0 := 𝛾0 ∘ Ψ, where 𝛾0 is a reference
metric on the body ℬ. Among these definitions, we mention

E :=
1

2

(︀
H−1 −H−1

0

)︀
and ̂︀E := −1

2
log
(︀
HH−1

0

)︀
.

The links between the different metrics and strain tensors encountered in the literature, either
defined on the World tube 𝒲 , or on the body ℬ, have been clarified (in section 3, Appendix D
and Appendix F).

In the framework of Variational General Relativity, the stress-energy tensor T derives from
a general covariant Lagrangian (theorem 5.2 and remark 5.3) and its decompositions allow for
the rigorous formulation of stress tensors,

∙ first, four-dimensional, such as S or Σ (with a preference for Eckart–Bennoun defini-
tion (8.8)),

∙ and, then, three-dimensional, such as the generalized second Piola–Kirchhoff stress ten-
sor s, which is always defined by (5.5), and the generalized Cauchy stress tensor 𝜎,
which definition requires the introduction of a spacetime (with a preference for our def-
inition (8.9)).

The full Relativistic Hyperelasticity theory is four-dimensional, but its constitutive laws are
essentially three-dimensional and very similar to the ones of Classical Continuum Mechanics,
a feature which has been used in [27] and [10]. We have formalized it in section 8 and in
Appendix G.

By considering the Schwarzschild spacetime (instead of the flat Minkowski spacetime like
Souriau did), we have been able to take into account gravity. Following, this time, Künzle [49],
we have recovered the Newton-Cartan formulation of Hyperelasticity in Galilean Relativity, as
the limit 𝑐→ ∞ of our relativistic formulation in Schwarzschild spacetime.

Appendix A. Orthogonal decomposition of four-dimensional 2nd-order tensors

We detail in this Appendix the orthogonal decomposition of second-order tensor fields relative
to a unit timelike quadrivector W. This means that we split these tensor fields according to the
orthogonal decomposition

𝑇𝑚ℳ = ⟨W(𝑚)⟩ ⊕W(𝑚)⊥,

where W(𝑚)⊥ is the orthogonal complement of the one-dimensional timelike subspace ⟨W(𝑚)⟩,
and thus necessarily spacelike.

∙ For a symmetric covariant second-order tensor field K:

(A.1) K = 𝛼W♭ ⊗W♭ + W♭ ⊗ 𝛽 + 𝛽 ⊗W♭ + k,

where
(1) 𝛼 := W ·T ·W is a function,

(2) 𝛽 := −(K ·W + 𝛼W♭) is a covector field orthogonal to W♭,

(3) k := K−𝛼W♭⊗W♭−W♭⊗𝑎−𝑎⊗W♭ satisfies k ·W = 0 and is the spatial part
of K.

∙ For a symmetric contravariant second-order tensor field T:

(A.2) T = 𝛼W ⊗W + W ⊗ 𝑎 + 𝑎⊗W + t,

where
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(1) 𝛼 := W♭ ·T ·W♭ is a function,

(2) 𝑎 := −(T ·W♭ + 𝛼W) is a vector field orthogonal to N,

(3) t := T − 𝛼W ⊗W −W ⊗ 𝑎 − 𝑎 ⊗W satisfies t ·W♭ = 0 and is the spatial part
of T.

Example A.1. For K = 𝑔, the four-dimensional metric on ℳ , we get

𝑔 = 𝑘 −W♭ ⊗W♭,

where 𝑘 is determined by 𝑘 ·W = 0 and 𝑘 = 𝑔 on W⊥. For T = 𝑔−1, the co-metric, we get

𝑔−1 = 𝑘♯ −W ⊗W,

where 𝑘♯ = 𝑔−1𝑘𝑔−1.

The following result (see [24] or [54, page 6]) is a consequence of Sylvester’s law of inertia.

Lemma A.2. Let 𝑘 be the spatial part of the metric 𝑔 in the orthogonal decomposition relative
to a unit timelike quadrivector W. Then, 𝑘 is positive definite. In particular, the signature of 𝑘
is (0,+,+,+).

Appendix B. Schwarzschild spacetime

According to Birkhoff’s theorem [7, 39], the only spherically symmetric solution of Einstein’s
equation in the vacuum with vanishing cosmological constant is the exterior Schwarzschild met-
ric. It is a static metric which describes the gravity field outside from a (spherical, nonrotating)
massive planet —or a star or a blackhole— of mass 𝑀 [78, 60] and is written as

𝑔 = −
(︂

1 − 2𝐺𝑀

𝑐2𝑟

)︂
𝑐2d𝑡2 +

(︂
1 − 2𝐺𝑀

𝑐2𝑟

)︂−1

d𝑟2 + 𝑟2
(︀
d𝜃2 + sin2 𝜃 d𝜙2

)︀
, 𝑟 > 𝑟s =

2𝐺𝑀

𝑐2
,

where 𝐺 is the gravitational constant, 𝜃 is the colatitude (angle from North pole), 𝜙 is the
longitude, and 𝑟s is the Schwarzschild radius. The surface of the planet (or star) is at radius
𝑟 = 𝑟0 much larger than 𝑟s. The coordinate transformation,

𝑟 =
1

4

(︁
2𝑟 − 𝑟s + 2

√︀
𝑟(𝑟 − 𝑟s)

)︁
,

allows first to express the Schwarzschild metric into the so-called isotropic coordinates expres-
sion [60, p. 840]

𝑔 = −
(︂

1 − 𝑟s/𝑟

1 + 𝑟s/𝑟

)︂2

𝑐2d𝑡2 +
(︁

1 +
𝑟s
𝑟

)︁4 [︀
d𝑟2 + 𝑟2

(︀
d𝜃2 + sin2 𝜃 d𝜙2

)︀]︀
, 𝑟 > 𝑟s =

𝑟s
4
,

and, then, to put it in the Cartesian isotropic coordinates expression (with 𝑟 :=
√︀
𝛿𝑖𝑗𝑥𝑖𝑥𝑗 , null

at the center of the planet/star),

𝑔 = −
(︂

1 − 𝑟s/𝑟

1 + 𝑟s/𝑟

)︂2

d𝑥0
2

+
(︁

1 +
𝑟s
𝑟

)︁4 [︁
d𝑥1

2
+ d𝑥2

2
+ d𝑥3

2
]︁
, 𝑟 > 𝑟s =

𝑟s
4
,

where we have set 𝑥0 = 𝑐𝑡.

Appendix C. Divergences in a static spacetime

For an arbitrary metric 𝑔 and in an arbitrary coordinate system (𝑥𝜇), the divergence of a
quadrivector P and of a second-order contravariant tensor T are given by

div𝑔 P = 𝜕𝜇𝑃
𝜇 + Γ𝜈

𝜈𝜇𝑃
𝜇,(C.1)

(div𝑔 T)𝜇 = 𝜕𝜈𝑇
𝜇𝜈 + Γ𝜌

𝜌𝜈𝑇
𝜇𝜈 + Γ𝜇

𝜈𝜌𝑇
𝜌𝜈 ,(C.2)

where Γ𝜆
𝜇𝜈 are the Christoffel symbols of the metric 𝑔, given by the standard formula

(C.3) Γ𝜆
𝜇𝜈 =

1

2
𝑔𝜆𝜎

(︂
𝜕𝑔𝜎𝜇
𝜕𝑥𝜈

+
𝜕𝑔𝜎𝜈
𝜕𝑥𝜇

− 𝜕𝑔𝜇𝜈
𝜕𝑥𝜎

)︂
.
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Suppose now that 𝑔 is a static metric and that the coordinate system (𝑥𝜇) is chosen such that

𝜕𝑔𝜇𝜈
𝜕𝑥0

= 0 and 𝑔0𝑖 = 0,

meaning that the Universe metric 𝑔 does not depend on 𝑥0 and that it is related to the spatial
metric 𝑔3𝐷 by

𝑔 = 𝑔00(d𝑥
0)2 + 𝑔3𝐷, where 𝑔3𝐷 = 𝑔𝑖𝑗d𝑥

𝑖d𝑥𝑗 .

Then,

(1) Γ0
00 = Γ0

𝑖𝑗 = Γ𝑖
𝑗0 = 0,

(2) the Christoffel symbols Γ̄𝑖
𝑗𝑘 of the 3D spatial metric 𝑔3𝐷 = (𝑔𝑖𝑗) are equal to the spatial

Christoffel symbols Γ𝑖
𝑗𝑘 of the 4D metric 𝑔,

Γ̄𝑖
𝑗𝑘 = Γ𝑖

𝑗𝑘,

(3) and, moreover

Γ𝑖
00 = (grad𝑔3𝐷√−𝑔00)𝑖, and Γ0

0𝑖 = (d ln
√−𝑔00)𝑖,

where grad𝑔3𝐷𝑓 := (𝑔3𝐷)♯d𝑓 , when 𝑓 is independent of 𝑥0.
We get therefore

div𝑔 P =
𝜕𝑃 0

𝜕𝑥0
+
𝜕𝑃 𝑖

𝜕𝑥𝑖
+
(︁

Γ𝑗
𝑗𝑖 + Γ0

0𝑖

)︁
𝑃 𝑖

=
𝜕𝑃 0

𝜕𝑥0
+ div𝑔3𝐷 P⊤ + P⊤ · d ln

√−𝑔00,
(C.4)

where we have set P⊤ := 𝑃 𝑖𝜕𝑥𝑖.
Setting now, in the coordinate system (𝑥𝜇),

T =

(︂
𝑇 00 𝑎⋆

𝑎 t

)︂
,

where 𝑎 := 𝑇 0𝑖𝜕𝑥𝑖 and t := 𝑇 𝑖𝑗𝜕𝑥𝑖𝜕𝑥𝑗 , we have

(div𝑔 T)0 =
𝜕𝑇 00

𝜕𝑥0
+
𝜕𝑎𝑖

𝜕𝑥𝑖
+ (Γ𝑗

𝑗𝑖 + 3Γ0
0𝑖)𝑎

𝑖

=
𝜕𝑇 00

𝜕𝑥0
+ div𝑔3𝐷 𝑎 + 3𝑎 · d ln

√−𝑔00,
(C.5)

and

(C.6) (div𝑔 T)𝑖 =
𝜕𝑎𝑖

𝜕𝑥0
+
𝜕t𝑖𝑗

𝜕𝑥𝑗
+ (Γ𝑘

𝑘𝑗 + Γ0
0𝑗)t

𝑖𝑗 + Γ𝑖
𝑗𝑘t𝑗𝑘 + Γ𝑖

00𝑇
00,

this last equation being recast more intrinsically as

(C.7) (div𝑔 T)⊤ =
𝜕𝑎

𝜕𝑥0
+ div𝑔3𝐷 t + t · d ln

√−𝑔00 + 𝑇 00 grad𝑔3𝐷√−𝑔00.

Remark C.1. In [92] and more recently in [35, Chapter 4], equations (C.1) and (C.2) are expressed
in an intrinsic manner using the so-called (3 + 1)-orthogonal decomposition of the divergence
operator obtained through the theory of (pseudo-)Riemannian hypersurfaces [32, Chapter 5],
and which is similar to the one used in Thick Shell Theory.

Appendix D. Three-dimensional Riemannian metrics and mass densities

We assume in this Appendix that a time function 𝑡 is given, inducing a spacetime structure
on 𝒲 and we denote by Ω𝑡 the corresponding spacelike hypersurfaces.



SOURIAU’S RELATIVISTIC FORMULATION OF HYPERELASTICITY REVISITED 33

3D Riemannian metrics on the hypersurfaces Ω𝑡. Each three-dimensional manifold Ω𝑡

is endowed with two Riemannian metrics. The first one is just the restriction 𝑗*𝑡 𝑔 of the four-
dimensional Universe metric 𝑔 and coincides with 𝑗*𝑡 𝑔

3𝐷 (since 𝑔3𝐷 is the spatial component of
𝑔 in its orthogonal decomposition (8.1) relative to N, the unit normal to Ω𝑡). The second one

is the restriction 𝑗*𝑡 ℎ of the degenerate metric ℎ = 𝑔 + U♭ ⊗ U♭ (the spatial part of 𝑔 in its
orthogonal decomposition (3.1) relative to U). Note that, unless Ω𝑡 is orthogonal to U, these
two metrics on Ω𝑡 do not match. However, the following lemma allows to relate their respective
Riemannian volume forms vol𝑗*𝑡 𝑔 and vol𝑗*𝑡 ℎ on Ω𝑡.

Lemma D.1. We have

(D.1) vol𝑗*𝑡 ℎ = 𝛾 vol𝑗*𝑡 𝑔 = 𝑗*𝑡 (𝑖Uvol𝑔) , on Ω𝑡.

where 𝛾 = −⟨U,N⟩𝑔 is the generalized Lorentz factor.

Proof. We have first

vol𝑗*𝑡 ℎ =
√︁

det[(𝑗*𝑡 𝑔)−1𝑗*𝑡 ℎ] vol𝑗*𝑡 𝑔.

Let x ∈ Ω𝑡 and let (𝑒𝑖) be an orthonormal basis of 𝑇xΩ𝑡 for the metric 𝑗*𝑡 𝑔. Then,

(𝑒0 = N, 𝑇x𝑗𝑡.𝑒𝑖)

is an orthonormal basis of 𝑇𝑚ℳ for the Lorentzian metric 𝑔, and we will denote by 𝑈𝜇, the
components of U(𝑚) in this basis. Now, using (3.1), and the fact that 𝑇x𝑗𝑡.𝑒0 = 0, 𝑇x𝑗𝑡.𝑒𝑖 = 𝑒𝑖,
we get

[(𝑗*𝑡 𝑔)−1]𝑖𝑗 = 𝛿𝑖𝑗 , [𝑗*𝑡 ℎ]𝑖𝑗 = 𝛿𝑖𝑗 + 𝛿𝑖𝑘𝑈
𝑘𝛿𝑖𝑙𝑈

𝑙.

Hence, we are reduced to calculate the determinant

det[(𝑗*𝑡 𝑔)−1𝑗*𝑡 ℎ] = det(𝐼3 + 𝑈𝑈⋆),

where

𝑈 =

⎛⎝𝑈1

𝑈2

𝑈3

⎞⎠ , and 𝑈⋆ =
(︀
𝑈1 𝑈2 𝑈3

)︀
.

Now the 3 × 3 matrix 𝑈𝑈⋆ has a double eigenvalue 0 and a single eigenvalue 𝑈⋆𝑈 and thus

det (𝐼3 + 𝑈𝑈⋆) = 1 + 𝑈⋆𝑈 = 1 +
∑︁

(𝑈 𝑖)2 = (𝑈0)2,

since

‖U‖2𝑔 = −(𝑈0)2 +
∑︁

(𝑈 𝑖)2 = −1.

Therefore, we get √︁
det[(𝑗*𝑡 𝑔)−1𝑗*𝑡 ℎ] =

√︀
(𝑈0)2 = −⟨U,N⟩𝑔,

because

−⟨U,N⟩𝑔 = 𝑈0,

and ⟨U,N⟩𝑔 is assumed to be negative. Now, we have

vol𝑗*𝑡 𝑔 = 𝑗*𝑡 (𝑖Nvol𝑔),

and thus

vol𝑗*𝑡 ℎ = 𝛾 vol𝑗*𝑡 𝑔 = 𝛾 𝑗*𝑡 (𝑖Nvol𝑔) = 𝑗*𝑡 (𝑖Uvol𝑔).

�
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Geometric interpretation of the relativistic mass density 𝜌. By multiplying (D.1) by
the rest mass density 𝜌𝑟 and using the definition 𝑖Pvol𝑔 = 𝜌𝑟𝑖Uvol𝑔 = Ψ*𝜇, where 𝜇 is the mass
measure on the body ℬ, we get the following equalities on Ω𝑡,

Ψ*
𝑡𝜇 = 𝑗*𝑡 (𝜌𝑟𝑖Uvol𝑔) = 𝜌𝑟𝑗

*
𝑡 (𝑖Uvol𝑔) = 𝜌𝑟𝛾 vol𝑗*𝑡 𝑔,

summarized as
Ψ*

𝑡𝜇 = 𝜌𝑟𝛾 vol𝑗*𝑡 𝑔 = 𝜌 vol𝑗*𝑡 𝑔.

The function (7.4),
𝜌 := 𝛾𝜌𝑟,

defined on the World tube 𝒲 , is interpreted as the relativistic mass density, i.e., the mass
density measured on Ω𝑡, relatively to the 3D metric 𝑗*𝑡 𝑔.

3D Riemannian metrics and mass densities on the body ℬ. If we make the stronger as-
sumption that Ψ𝑡 : Ω𝑡 → ℬ is a diffeomorphism, then, the conformation induces a one-parameter
family 𝛾(𝑡) of three-dimensional Riemannian metrics on the three-dimensional body ℬ

(D.2) 𝛾(𝑡)−1 := H ∘ 𝑗𝑡 ∘ Ψ−1
𝑡 , 𝛾(𝑡) := H−1 ∘ 𝑗𝑡 ∘ Ψ−1

𝑡 .

The metric 𝛾(𝑡) is the true analogue of the right Cauchy–Green tensor C := F⋆𝑞F. Indeed, we
have the identification 𝛾 ≡ C in Classical Continuum Mechanics when the body ℬ is identified
with a reference configuration Ω0 [67, 77, 45]. Note however that in the non-relativistic case, the
metric 𝛾 on ℬ is the pull-back 𝑝*𝑞 of the Euclidean metric 𝑞 on the space ℰ by the embedding
𝑝 : ℬ → ℰ , whereas in (D.2), it is defined using the conformation and a foliation of the World
tube 𝒲 . The following result relates 𝛾(𝑡) with the degenerate quadratic form ℎ defined by (3.1).

Lemma D.2. On Ω𝑡, we have
Ψ*

𝑡𝛾(𝑡) = 𝑗*𝑡 ℎ,

where ℎ = 𝑔 + U♭ ⊗U♭ and 𝑗*𝑡 ℎ = (𝑇𝑗𝑡)
⋆(ℎ ∘ 𝑗𝑡)𝑇𝑗𝑡.

Proof. We have 𝛾(𝑡) := H−1 ∘ 𝑗𝑡 ∘ Ψ−1
𝑡 , and ℎ = (𝑇Ψ)⋆H−1𝑇Ψ by lemma 3.1. Therefore

Ψ*
𝑡𝛾(𝑡) = (𝑇Ψ𝑡)

⋆(𝛾(𝑡) ∘ Ψ𝑡)𝑇Ψ𝑡

= (𝑇Ψ𝑡)
⋆(H−1 ∘ 𝑗𝑡)𝑇Ψ𝑡

= (𝑇𝑗𝑡)
⋆(𝑇Ψ)⋆(H−1 ∘ 𝑗𝑡)𝑇Ψ𝑇𝑗𝑡

= (𝑇𝑗𝑡)
⋆(ℎ ∘ 𝑗𝑡)𝑇𝑗𝑡

= 𝑗*𝑡 ℎ.

�

To the three-dimensional Riemannian metric 𝛾(𝑡) on ℬ is associated a three-dimensional
volume form vol𝛾(𝑡). Since the body ℬ is initially endowed with a mass measure 𝜇 and a fixed
metric 𝛾0 (see section 1), mass conservation can then be expressed on the body exactly as in
the intrinsic Lagrangian formulation of Classical Continuum Mechanics [45], i.e., as

𝜇 = 𝜌𝛾(𝑡)vol𝛾(𝑡) = 𝜌𝛾0vol𝛾0 ,

where 𝜌𝛾(𝑡) and 𝜌𝛾0 are mass densities on ℬ. In the following lemma, we relate 𝜌𝛾(𝑡) with the
rest mass density 𝜌𝑟, defined by (1.4).

Lemma D.3. Let 𝜌𝛾(𝑡) be the mass density on the body ℬ defined implicitly by 𝜇 = 𝜌𝛾(𝑡)vol𝛾(𝑡).
Then, we have,

Ψ*
𝑡𝜌𝛾(𝑡) = 𝑗*𝑡 𝜌𝑟.

Proof. We have Ψ*𝜇 = 𝜌𝑟𝑖Uvol𝑔 by (1.1)–(1.3), and hence

Ψ*
𝑡 (𝜌𝛾(𝑡)vol𝛾(𝑡)) = 𝑗*𝑡 Ψ*(𝜌𝛾(𝑡)vol𝛾(𝑡)) = 𝑗*𝑡 Ψ*𝜇 = 𝑗*𝑡 (𝜌𝑟𝑖Uvol𝑔).

We get therefore
(Ψ*

𝑡𝜌𝛾(𝑡))volΨ*
𝑡𝛾(𝑡)

= (𝑗*𝑡 𝜌𝑟)𝑗
*
𝑡 (𝑖Uvol𝑔),
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but 𝑗*𝑡 (𝑖Uvol𝑔) = vol𝑗*𝑡 ℎ by lemma D.1 and Ψ*
𝑡𝛾(𝑡) = 𝑗*𝑡 ℎ by lemma D.2. We get thus

(Ψ*
𝑡𝜌𝛾(𝑡))vol𝑗*𝑡 ℎ = (𝑗*𝑡 𝜌𝑟)vol𝑗*𝑡 ℎ,

which ends the proof. �

Appendix E. Choice of a reference metric

Reference metric on the body ℬ. There are several choices for a reference metric on the
body ℬ. One possibility is to endow the body with an arbitrary fixed metric 𝛾0 (for example
𝛾0 = 𝑞, the Euclidean metric, in [80, 82]). But when a spacetime and the associated spacelike
hypersurfaces Ω𝑡 are introduced, with in particular the choice of a reference configuration Ω𝑡0 ,
and when the restriction Ψ𝑡0 = 𝑗*𝑡0Ψ of the matter field to Ω𝑡0 is a diffeomorphism, then two
other —mechanistic— possibilities are offered:

(a) either to consider as reference metric on the body ℬ, the Riemannian metric 𝛾(𝑡 = 𝑡0)
at initial time 𝑡0,

𝛾𝑎
0 := 𝛾(𝑡0) = (Ψ𝑡0)*𝑗

*
𝑡0ℎ,

where the second equality is due to lemma D.2,
(b) or to endow the body ℬ with the Riemannian metric

𝛾𝑏
0 := (Ψ𝑡0)*𝑗

*
𝑡0𝑔,

obtained as the pushforward on the body, of the restriction 𝑗*𝑡0𝑔 of the Universe metric
to Ω𝑡0 .

These two reference metrics do not coincide in general. In case (a), the mixed tensor (𝛾𝑎
0 )−1𝛾(𝑡)

is equal to the identity at 𝑡 = 𝑡0. In case (b), which mimics what is done in non relativistic
three-dimensional Hyperelasticity [77, 45], (𝛾𝑏

0)−1𝛾(𝑡0) = (𝛾𝑏
0)−1𝛾𝑎

0 ̸= id in general.
The question of which reference metric is to be prefered is in fact related to the difficult

question of the definition of an associated reference stress-free state (at which 𝜎 = 0). This
question arise naturally when one choose an explicit expression for the specific internal energy
𝑒 (such as Money–Rivlin’s [61], Hart–Smith’s [37], Ogden’s [69], Arruda–Boyce’s [2] or others
[33]). Fortunately for Mechanics, the difference between 𝛾𝑏

0 and 𝛾𝑎
0 is only due to relativistic

effects, since by (7.2) the restriction 𝑗*𝑡0
(︀
U♭ ⊗U♭

)︀
is in 1/𝑐2.

Frozen metric on the World tube 𝒲 . As mentioned in section 3, instead of explicitly
introducing a reference metric 𝛾0 on the body, some authors consider a reference degenerate
quadratic form ℎ0 of signature (0,+,+,+) on the World tube [43, 44], with some additional
properties, leading them to call it a frozen metric. Such a four-dimensional frozen metric is
in fact strongly related to a three-dimensional reference metric on the body ℬ. The following
result provides necessary conditions for a given quadratic form ℎ0 on 𝒲 to be the pullback of a
fixed Riemannian metric 𝛾0 on ℬ by the matter field Ψ.

Lemma E.1 (Kijowski and Magli, 1997). Let ℎ0 be a field of quadratic forms on the World tube
𝒲 . Then, necessary conditions for the existence of a Riemannian metric 𝛾0 on ℬ such that
ℎ0 = Ψ*𝛾0 are

ℎ0U = 0, and LU ℎ0 = 0.

Such a quadratic form is necessarily of signature (0,+,+,+).

Proof. Suppose that ℎ0 = Ψ*𝛾0. Since 𝑇Ψ.U = 0, we get first that

ℎ0U = (𝑇Ψ)⋆(𝛾0 ∘ Ψ)𝑇Ψ.U = 0,

and that ℎ0 is of signature (0,+,+,+), since Ψ is assumed to be a submersion on 𝒲 . Now, let
𝜙𝑡 be the flow of the vector field U. Then, we have

𝜕𝑡
[︀
(Ψ ∘ 𝜙𝑡)(𝑚)

]︀
= 𝑇𝜙𝑡(𝑚)Ψ.U(𝜙𝑡(𝑚)) = 0, ∀𝑡, ∀𝑚 ∈ 𝒲 ,

and thus Ψ ∘ 𝜙𝑡 = Ψ ∘ 𝜙0 = Ψ. Hence, we get

(𝜙𝑡)*ℎ0 = (𝜙𝑡)*Ψ*𝛾0 = (Ψ ∘ 𝜙𝑡)*𝛾0 = Ψ*𝛾0 = ℎ0
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and LU ℎ0 =
[︀
𝜕𝑡(𝜙

𝑡)*ℎ0
]︀
𝑡=0

= 0. �

Appendix F. Three-dimensional strains

When the World tube 𝒲 is foliated by spacelike hypersurfaces Ω𝑡 and when the restriction Ψ𝑡

of the matter field to Ω𝑡 is a diffeomorphism, any of the three following 3D symmetric covariant
tensor fields

H−1 ∘ 𝑗𝑡 (S2𝑉 -vector valued, on Ω𝑡), 𝛾(𝑡) (on ℬ), and 𝑗*𝑡 ℎ (on Ω𝑡),

leads to equivalent formulations of Relativistic Hyperelasticity models. Indeed, these tensor
fields are related to each other by

on ℬ : 𝛾(𝑡) = H−1 ∘ 𝑗𝑡 ∘ Ψ−1
𝑡 = Ψ𝑡* 𝑗

*
𝑡 ℎ,

S2𝑉 -vector valued, on Ω𝑡: H−1 ∘ 𝑗𝑡 = (Ψ𝑡* 𝑗
*
𝑡 ℎ) ∘ Ψ𝑡 = 𝛾(𝑡) ∘ Ψ𝑡,

on Ω𝑡: 𝑗*𝑡 ℎ = (Ψ𝑡)
*𝛾(𝑡) = (Ψ𝑡)

*(H−1 ∘ 𝑗𝑡 ∘ Ψ−1
𝑡 ),

Making use of (3.6), the associated —in fine equivalent— definitions of strain tensors are then
the following

on ℬ :
1

2
(𝛾(𝑡) − 𝛾0) = E ∘ Ψ−1

𝑡 ,
1

2
log
(︀
𝛾−1
0 𝛾(𝑡)

)︀
= ̂︀E ∘ Ψ−1

𝑡 ,

S2𝑉 -vector valued, on Ω𝑡:
1

2

(︀
H−1 −H−1

0

)︀
∘ 𝑗𝑡 = 𝑗*𝑡 E, − 1

2
log
(︀
HH−1

0

)︀
∘ 𝑗𝑡 = 𝑗*𝑡

̂︀E,
on Ω𝑡:

1

2
(𝑗*𝑡 ℎ− 𝑗*𝑡 ℎ0) = 𝑗*𝑡 e,

1

2
log
(︀
(𝑗*𝑡 ℎ0)

−1𝑗*𝑡 ℎ
)︀
,

where ℎ0 = Ψ*𝛾0 is the so-called frozen metric on the World tube 𝒲 , 𝑗*𝑡 ℎ0 = Ψ*
𝑡𝛾0 is its

restriction to Ω𝑡, and H0 = 𝛾−1
0 ∘ Ψ. Note that 𝑡 = 𝑡0 can be set in the above restrictions to

obtain definitions on Ω𝑡0 .

Appendix G. Three-dimensional stresses

Given a spacetime structure on the body World tube 𝒲 and the corresponding orthogo-
nal decomposition relative to N, the normal to the hypersurfaces Ω𝑡, the generalized Cauchy
stress 𝜎, defined here as the spatial part of the four-dimensional stress Σ (remark 5.3), has for
expression (8.10),

𝜎(𝑚) = 𝜌𝑟(𝑚) (𝑔3𝐷𝑚 )♯(𝑇𝑚Ψ)⋆ s(𝑚) (𝑇𝑚Ψ)(𝑔3𝐷𝑚 )♯, 𝑚 ∈ 𝒲 ,

where 𝑔3𝐷 = 𝑔+N♭ ⊗N♭ is the spatial part of 𝑔 (see (8.1)), and s is the covariant stress tensor
defined by (5.8). Since, by its very definition, 𝜎 has values in 𝑇Ω𝑡 ⊗ 𝑇Ω𝑡 because 𝑇Ω𝑡 = N⊥,
the mapping

𝜎(𝑗𝑡(x)) = 𝜌𝑟(𝑗𝑡(x)) (𝑔3𝐷𝑗𝑡(x))
♯(𝑇𝑗𝑡(x)Ψ)⋆ s(𝑗𝑡(x)) (𝑇𝑗𝑡(x)Ψ)(𝑔3𝐷𝑗𝑡(x))

♯.

is a second-order contravariant tensor field on the three-dimensional manifold Ω𝑡.
In the particular case of the Schwarzschild spacetime described in section 9, where, 𝑞 denoting

the Euclidean metric,

𝑔3𝐷 = 𝑘𝑞, and (𝑔3𝐷)♯ = 𝑘−1𝑞−1,

the three-dimensional stress 𝜎 ∘ 𝑗𝑡 is given by

𝜎 ∘ 𝑗𝑡 =
1

𝛾𝑘2
𝜌 𝑞−1(𝑇Ψ𝑡)

⋆ (s ∘ 𝑗𝑡) (𝑇Ψ𝑡)𝑞
−1,

with the abuse of notation (𝜌𝑟/𝑘
2) ∘ 𝑗𝑡 = 𝜌𝑟/𝑘

2 = 𝜌/𝛾𝑘2, and where 𝛾, not to be confused with
the metric 𝛾(𝑡) on the body ℬ, is the generalized Lorentz factor (9.6).

Let us now make the stronger assumption that the restriction Ψ𝑡 = Ψ ∘ 𝑗𝑡 of the matter field
to Ω𝑡 is a diffeomorphism, and set 𝑝 := Ψ−1

𝑡 and F = 𝑇𝑝 = 𝑇Ψ−1
𝑡 , by analogy with Classical
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Continuum Mechanics (remark 6.1). Then, the stress 𝜎 on Ω𝑡 can be recast as the pullback by
Ψ𝑡

(G.1) 𝜎 ∘ 𝑗𝑡 =
1

𝛾𝑘2
𝜌 𝑞−1

(︀
Ψ*

𝑡𝜃
♭
)︀
𝑞−1 =

1

𝛾𝑘2
𝜌 𝑞−1

(︀
𝑝*𝜃

♭
)︀
𝑞−1,

of a covariant stress tensor 𝜃♭, defined on ℬ, and given by

𝜃♭ := s ∘ 𝑗𝑡 ∘ Ψ−1
𝑡 = 𝛾(𝑡)𝜃𝛾(𝑡), 𝜃 := 2𝛾−1

0

𝜕𝑤

𝜕̂︀𝛾 , 𝜕𝑤

𝜕̂︀𝛾 =
𝜕𝑤

𝜕̂︀𝛾 (𝛾−1
0 𝛾(𝑡)).

Indeed, by definition, H ∘ 𝑗𝑡 ∘ Ψ−1
𝑡 = 𝛾(𝑡) and H0 ∘ 𝑗𝑡 ∘ Ψ−1

𝑡 = 𝛾0 ∘ Ψ ∘ 𝑗𝑡 ∘ Ψ−1
𝑡 = 𝛾0.

The contravariant stress tensor 𝜃, defined on the body ℬ, is then recognized as the Rougée
stress tensor introduced in [75, 77, 45] (and which coincides with the second Piola-Kirchhoff stress
tensor when ℬ is identified with a reference configuration Ω0). In that case, the constitutive
equation

𝜃 := 2𝛾−1
0

𝜕𝑤

𝜕̂︀𝛾 = 𝜃(𝛾)

is the formulation of hyperelasticity on the body ℬ (see [76, Chapter XII], [77, Application 1]
and [45, Theorem 3.4]).

The prefactor 1/𝛾𝑘2 in (G.1) combines both gravitational effects (through the conformal factor
𝑘) and relativistic effects (through the generalized Lorentz factor 𝛾). The 3D stress tensor on
Ω𝑡

𝜏 ∘ 𝑗𝑡 := 𝛾𝑘2
𝜎 ∘ 𝑗𝑡
𝜌

, such as 𝜏 ∘ 𝑗𝑡 = 𝑞−1F−⋆
(︀
𝜃♭ ∘ Ψ𝑡

)︀
F−1𝑞−1,

is therefore a second relativistic generalization of the Kirchhoff stress tensor 𝜎/𝜌 of Classical
Continuum Mechanics (see remark 8.1), this time dedicated to the Schwarzschild spacetime.
Recall that for the flat Minkowski metric we have 𝑘 = 1, and that for the Galilean limit, we
have 𝛾 = 1.
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