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Abstract The accidental endogenization of viral elements within eukaryotic genomes can occasionally provide signifi-13

cant evolutionary benefits, giving rise to their long-term retention, that is, to viral domestication. For instance, in some14

endoparasitoid wasps (whose immature stages develop inside their hosts), the membrane-fusion property of viruses has15

been repeatedly domesticated following the ancestral endogenizations of double-stranded DNA viruses. The endoge-16

nized genes provide female wasps with a delivery tool to inject virulence factors that are essential to the developmental17

success of their offspring. Because all known cases of viral domestication involve endoparasitic wasps, we hypothesized18

that this lifestyle, relying on a close interaction between individuals, may have promoted the endogenization and do-19

mestication of viruses. By analyzing the composition of 124 Hymenoptera genomes, spread over the diversity of this20

clade and including free-living, ecto- and endoparasitoid species, we tested this hypothesis. Our analysis first revealed21

that double-stranded DNA viruses, in comparisons with other viral genomic structures (ssDNA, dsRNA, ssRNA), are more22

often integrated (that is, endogenized) and domesticated (that is, retained by selection) than expected from their esti-23

mated abundance in insect viral communities. Secondly, our analysis indicates that the rate at which dsDNA viruses are24

endogenized is higher in endoparasitoids than in ectoparasitoids or free-living hymenopterans, which also translates into25

more frequent events of domestication. Hence, these results are consistent with the hypothesis that the endoparasitoid26

lifestyle has facilitated the endogenization of dsDNA viruses, in turn increasing the opportunities of domestications that27

now play a central role in the biology of many parasitoid lineages.28

29

Introduction30

The recent boom of genome sequencing programs has revealed the abundance of DNA fragments of viral origin within31

eukaryotic genomes. These so-called Endogenous Viral Elements (EVEs) stem from endogenization events that not only32

involve retroviruses as donors (as could be expected from their natural lifecycle) but also viruses that do not typically33

integrate into their host chromosomes [1, 2, 3]. In fact, retroviruses have never been discovered in any insect species,34

but various non-retroviral viruses have been identified as being engaged in viral endogenization events : three families of35

large double-stranded (ds) DNA viruses, at least 22 families of RNA viruses, and three families of single-stranded (ss) DNA36

viruses [4]. Degeneracy and loss is likely the fate of most EVEs, since they do not a priori benefit their hosts. Still, several37

studies have reported that EVEs can be retained by selection, thus becoming domesticated [5]. The functions involved38

include defensive properties against related viruses in mosquitoes [6, 7], against macroparasites in some Lepidoptera39

[8], or modifications in the expression of genes involved in dispersal in aphids [9]. Interestingly, the membrane fusion40
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capacity of viruses, allowing their entry into host cells, has been repeatedly co-opted in threemetazoan clades: mammals,41

viviparous lizards and parasitoid wasps. In placental mammals and viviparous Scincidae lizards, domestication of the42

syncytin protein from retroviruses has allowed the emergence of the placenta, through the development of the syncytium43

(composed of fused cells) involved inmetabolic exchanges between themother and the fetus [10, 11]. A similar fusogenic44

property was repeatedly co-opted by parasitoids belonging to the Hymenoptera order through the endogenization and45

domestication of complex viral machineries deriving from large dsDNA viruses [12, 4]. The numerous retained viral genes46

allow parasitoid wasps to produce virus-like structures (VLS) within their reproductive apparatus. These are injected into47

the parasitoid’s host, together with their eggs, and protect the wasp progeny against the host immune response. This48

protection is achieved thanks to the ability of VLS to deliver wasp virulence factors in the form of genes (in which case49

VLS are called polydnavirus - PDV) or proteins (in which case VLS are called Virus-like particles - VLPs) to host immune50

cells (reviewed in [13, 14]). So far, 5 independent cases of such viral domestication have been detected in parasitoid51

wasps, four of them falling within the Ichneumonoidea superfamily [15, 16, 17, 18] and one in the Cynipoidea superfamily52

[19]. The four cases where the donor virus family has been unequivocally identified point towards dsDNA viruses. More53

specifically, the domesticated EVEs (hereafter, dEVEs) derive from the Nudiviridae family in three cases [15, 17, 18] while54

the forth involves a putativly new viral family denoted "LbFV-like" [19]. Notably, all these domestication events took place55

in endoparasitoids, that is, in species that deposit their eggs inside the hosts, as opposed to ectoparasitoids that lay on56

their surface.57

Beyond these well characterized events of viral domestication in Hymenoptera, additional cases of endogenization58

have been uncovered, in studies that enlarged the taxonomic focus of either the hosts [20, 21, 22] or the viruses that59

were considered [23, 20, 24, 25]. Here, we complement this earlier work by expanding the range of both the hosts and60

viruses under study, and by further analyzing which endogenization cases have been followed by a domestication event.61

To this end, we developed a bioinformatic pipeline to detect endogenization events involving any kinds of viruses62

(DNA/RNA, single-stranded, double-stranded), at the scale of the whole Hymenoptera order. This analysis first allowed us63

to test whether the propensity of viruses to enter Hymenoptera genomes, and to be domesticated, depend on their ge-64

nomic structure (in line with the pattern observed so far, where only dsDNA viruses have been involved in domestication65

events as described above). We then testedwhether the lifestyle of the species (free-living, endoparasitoid, ectoparasitoid)66

correlates with their propensity to integrate and domesticate viruses. Our working hypothesis was that the endopara-67

sitoid lifestyle may be associated with a higher rate of viral endogenization and / or a higher rate of domestication events,68

for two non-exclusive reasons related either to the exposure to new viruses and the adaptive value of the endogenized69

elements.70

First, a higher endogenization rate may simply stem from a higher exposure to viruses. Such an effect could be at play71

in endoparasitoids due to the intimate interaction between the parasitoid egg or larva and the host. In other words, the72

endo-parasitic way of life may facilitate the acquisition of new viruses deriving from the hosts. Notably, this lifestyle may73

also facilitate the maintenance and spread of newly acquired viruses within wasp populations. Indeed, endoparasitoid74

wasps often inject not only eggs but also venomic compounds (typically produced in the venom gland or in calyx cells)75

where viruses can be present and may thus be vertically transmitted [26]). In addition, the confinement of the several76

developing wasps within a single host may facilitate horizontal transmission (e.g. [27]).77

Second, a higher rate of domestication may also contribute to produce a particularly high abundance of EVEs in en-78

doparasitoids. This is expected since these insects are facing the challenge of resisting the host immune system. This79

selective pressure may promote the co-option of viral functions such as the above-mentioned membrane fusion activity,80

that provide a very effective mean to deliver virulence factors.81

Our analysis reveals numerous new instances of endogenization events, some of which are also characterized by sig-82

natures of molecular domestication. We found a clear enrichment in endogenization events deriving from dsDNA viruses83

as compared to those with other genomic structures. While the data did not reveal a significant effect of Hymenoptera84

lifestyles on the acquisition of dsRNA, ssRNA or ssDNA viruses, it supports the hypothesis that genes from dsDNA viruses85

are more often endogenized and domesticated in endoparasitoids than in free-living and ectoparasitoid species.86
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Figure 1. Endogenous Viral Elements and their domestication status in Hymenoptera. Lifestyles are displayed next to species names (blue:
free-living, green: endoparasitoid, yellow: ectoparasitoid, grey: unknown). The number of EVEs and domesticated EVEs (dEVEs) found in each species are
represented respectively by the first and second facet of the horizontal histograms. Colors along these histograms indicate the potential donor viral
families (where blue tones correspond to viral dsDNA viruses, red tones to ssDNA viruses, orange/yellow tones to dsRNA viruses and green tones to ssRNA
genomes). Endogenous Viral elements (EVEs) shared by multiple species and classified within the same event are represented by circles whose size is
proportional to their number; those that are considered as domesticated (dEVEs) are surrounded by a black border. Numbers in the white boxes indicate
to the number of endogenization events inferred. As an example, Megastigmus dorsalis and Megastigmus stigmatizans are ectoparasitoids (yellow) sharing a
common endogenization event (within the Cluster21304) that likely originated from an unclassified dsRNA virus (grey color in circle), and shows no sign of
domestication (no black border around the grey part of the circle). The figure was inspired from the work of [28]. Details on the phylogenetic inference
and time calibration can be found in the MM section; bootstrap information can be found in TableS2; details on lifestyle assignation can be found on the
github repository under the name : Assembly_genome_informations.csv
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Results87

We screened for EVEs 124 Hymenoptera genome assemblies, including 24 ectoparasitoids, 37 endoparasitoids and 6388

free-living species (can be found on the github repository under the name : Assembly_genome_informations.csv). EVEs89

were identified using a sequence-homology approach based on a comprehensive viral protein database. Different confi-90

dence levels (ranging from A to D) were associated with the various EVEs inferred, where the A score indicates a maximal91

confidence. This confidence index is based upon sequencing depth combined with information on the genomic environ-92

ment of the candidate loci, that is, the presence of eukaryotic genes and/or transposable elements (as detailed in the MM93

section). By default, the four categories are included in the analysis, but unless otherwise stated statistical tests based94

on the A category only led to the same conclusions (see (FigureS13-7 for more details). Our analysis further included an95

inference of the phylogenetic relationships among homologous EVEs, that was used to map endogenization events on96

the Hymenoptera species tree. Finally, inferences of domestication events relied upon signatures of purifying selection97

in the integrated genes (based on dN/dS estimates) and/or on expression data.98

An important objective of our analysis is to detect and enumerate not only endogenous viral elements (EVEs) but also99

endogenization events that can explain the presence of these EVEs. Indeed, an EVE denotes a single gene of viral origin100

in a single species. Several neighboring EVEs in a genome may result from the endogenization of a single viral genome,101

and homologous EVEs shared by several closely related species may further stem from a single ancestral endogenization102

events. This distinction is critical when it comes to examining the effect of various factors on the probability of integrating103

EVEs, which implies counting events rather than EVEs. As an example, consider the Leptopilina case [19], involving 13 EVEs104

shared by 3 closely related species. In this wasp genus, based on previous findings, we expect the 39 EVEs to be grouped105

into a single endogenization event. Our pipeline appropriately detected 36 EVEs (out of 39) and correctly aggregated106

them into a single endogenization event mapped on the branch leading to the Leptopilina genus. Furthermore, because107

some of the genes involved are inferred as domesticated, this event is appropriately classified as a domestication event108

(see Figure 1 and Figure S14 for more canonical examples). In total, the pipeline correctly detected 88.4% (152/172) of the109

EVEs involved in our four "positive controls", previously described as mediating the protection of young wasps against110

their host immune system. Among them, 71.82% were inferred as being domesticated. Out of the 152 positive controls111

EVEs, 147 were grouped into 4 independent endogenization events, as was expected. The remaining 5 genes had peculiar112

histories that led our pipeline to infer two additional spurious events (Table S1). All detailed results regarding EVEs and113

dEVEs can be found on the github repository under the name : All_EVEs_dEVEs_informations.txt.114

Endogenizations involve all viral genomic structures115

A total of 1261 convincing EVEs have been inferred in the whole dataset (TableS2,Figure1). These translate into 367116

endogenization events, the majority of which involved ssRNA and dsDNA viruses (41% and 35%, respectively) (TableS2).117

Among the 124 species under study, 113 were involved in at least one endogenization event, with a maximum of 14118

events per species and a median of 3 (Figure1). Most of the events (331) are specific to a single species and have thus119

likely taken place relatively recently, while the remaining 9% are shared by at least two closely related species (TableS2,120

Figure1). To assess the validity of the procedure used to aggregate multiple EVEs into a single ancestral endogenization121

event, we assessed whether EVEs inferred as homologous shared a common genomic environment. We thus tested for122

the presence of homologous loci in different species around the EVEs that had been aggregated (using blastn searches123

between the corresponding scaffolds (see details in Materials and methods). Among the 36 endogenization events that124

involved at least two species, 31 were found to carry more homologous loci around the insertion sites than expected125

by chance (see details in Materials and methods). Notably, the majority of endogenization events involved a single EVE126

(a single gene) and only 12 (all from dsDNA viruses), involved the concomitant integration of more than 4 viral genes127

(Figure2-C).128

A total of 40 different viral clades (usually families) were inferred as putative donors. Most of them (34) are known to129

infect insects (Figure2-B) and these account for the majority of the endogenization events. However, we found 36 EVEs130

(24 endogenization events), including 20 high-confidence ones (A-ranked), that derived from 6 viral families not previ-131

ously reported to infect insects (Phycodnaviridae, Herpesviridae, Caulimoviridae, Asfaviridae, Bornaviridae and Mypoviridae).132

However, in those cases, the true viral donors may belong to unknown clades that do infect insects. Indeed, although the133

homology with viral proteins was convincing (median e-value was 9.4095e-12 [min = 9.212e-129, max = 3.305e-08]), the134

average percentage identity was relatively low (38% [min = 23.2%, max = 79.1%], suggesting that these loci may originate135

from unknown viruses that are only distantly related to these 6 viral families.136
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Double-stranded DNA viruses are over-represented in endogenization events137

Most of the endogenization events recorded involve ssRNA and dsDNA viruses. But do these proportions simply mirror138

the diversity and respective abundances of the different kinds of viruses encountered by insects? The analysis summa-139

rized in (Figure2-A) (see details in Materials and methods) indicates this is not the case. More specifically, it shows that140

dsDNA viruses are more frequently endogenized than expected on the basis of their representation in the databases,141

while ssRNA viruses are under-represented (�2 = 213.36 and 221.38, respectively, for endogenization events and domes-142

tication events, d.f. = 3, both p-value < 2.2e-16). Notably, this result is not purely driven by the presence in our data set143

of the four positive controls (previously described cases of viral domestication, that all involve dsDNA viruses as donors).144

Finally, among endogenization events involving ssRNA viruses, we found an over-representation of negative stranded145

ssRNA compared to their relative abundance in public databases (72.2% compared to 32.6% in the databases, �2=145.87,146

d.f.=1, p-value < 2.2e-16; see supplemental information for a discussion).147
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Figure 3. Endogenization and domestication of dsDNA viruses are most prevalent in endoparasitoid species. A: Distribution of viral endogenization
events (Event) and B of domestication events (dEVEs) across Hymenoptera lifestyles. Crosses indicate the expected proportion of events based associated
with the different lifestyles, on the respective frequencies in our database (ectoparasitoid = 24/124, endoparasitoid = 37/124, free-living = 63/124). The
p-values are the results of Fisher’s tests comparing the observed and expected distributions. Numbers inside the bars indicate the absolute numbers of
events inferred. The ancestral states of the nodes, in terms of lifestyle, were inferred in a Bayesian analysis (see details in Materials and methods)

.

Endogenizations of dsDNA viruses are more frequent in endoparasitoid species149

Next, we sought to characterize the factors that could explain the patterns of endogenization events inferred (Figure1). To150

this end, for each virus genomic structure, we assessed whether endogenization events were evenly distributed among151

the three wasp lifestyles, taking into account their respective frequencies in the dataset. No significant departure from152

the null hypothesis was detected for endogenization involving ssDNA, dsRNA or ssRNA viruses (Fisher exact test p-values153

BH corrected > 0.05). On the contrary, we detected a highly significant enrichment of dsDNA viruses endogenization154

events in endoparasitoid species, and conversely a deficiency in free-living and ectoparasitoid species (corrected p-value155

= 7.8e-04, Figure 3-A).156

To further test the apparent correlation between Hymenoptera lifestyle and the rate of endogenization events, we157

inferred ancestral lifestyles along the phylogeny using a Bayesian model (see details in Materials and methods). We then158

constructed a generalized linear model where the dependent variable is the number of endogenization events inferred159

on each branch, while branch length and lifestyle are the explanatory variables (see details in Materials and methods).160

Branch length was included as an additive effect to remove the expected effect of time on the number of endogenization161

events, thus allowing the decomposition of the remaining variance according to the lifestyle (free-living, ectoparasitoid162

or endoparasitoid).163
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We first tested whether the rate of endogenization events deriving from any virus (that is, regardless of their genomic164

structures) was structured by lifestyles, and found no significant effect (Figure S5-A left side). We then split the dataset165

according to the genomic structure of the donor viruses. For RNA or ssDNA virus, the analysis did not reveal evidence of166

a correlation between wasps’ lifestyles and the rate of endogenization events (for details, see supplemental information,167

FigureS5-G,I K). On the contrary, in the case of dsDNA viruses, we found a highly significant effect of the wasp lifestyle:168

endogenization rates appear to be 2.43 times higher in endoparasitoids than in free-living species (89% CI [1.53-3.41], Fig-169

ure4-A). The corresponding probability of direction (pd, an index representing the confidence in the direction of an effect)170

was equal to 99.9%. In contrast, ectoparasitoids did not differ from free-living species (Figure4-A). Accordingly, more than171

98% of theMCMC iterations led to a higher coefficient value for endoparasitoids than for ectoparasitoids (so-called PMCMC172

in Figure4-A). This effect was consistently found using high confidence scaffolds only (A-ranked scaffolds, FigureS5-C right173

side). We also carried out the same analysis without the 4 domestication cases previously mentioned in the literature174

(because including them in our data set could have skewed the results) and reached the same conclusion (FigureS5-E175

right and left sides). Overall, these results show that dsDNA viruses are more often endogenized in endoparasitoids than176

in free-living and ectoparasitoid species.177

Domestications of dsDNA viruses are most prevalent in endoparasitoid species178

We then investigated whether lifestyles may explain the abundance of domestication events. A simple Fisher’s exact test179

approach revealed an enrichment in endoparasitoid species of domestication events involving dsDNA viruses (corrected180

p-value = 1.8e-03), whereas no deviation from the null hypothesis was detected for the other viral genomic structures181

(Figure 3-B).182

We built upon the generalized linear models described above, in a Bayesian framework, to test whether lifestyle could183

also be a factor explaining the propensity of Hymenoptera to domesticate (and not simply endogenize) viral genes (see184

details in Materials and methods). We found that, domestication of dsDNA viruses are 3.68 times more abundant in185

endoparasitoids than in with free-living species (89% CI [1.72-6.17], pd =99.9%, Figure4-B). This effect was also detected186

when only high confidence candidates were considered (FigureS5-D right side), or if we removed the four known cases187

of domestication (FigureS5-F left and right side). In other viral categories, no convincing effect of the wasp lifestyle was188

detected (all pd<99%) (Figure S5-H J) with the only exception higher rate of domestication of ssRNA viruses in free-living189

than in ectoparasitoid species (Figure S5-L)190

Two non mutually exclusive hypotheses may be envisaged to explain the high frequency of dsDNA viruses domestica-191

tion in endoparasitoids. First, it may simply stem from the higher rate of endogenization outlined above: a higher rate of192

entry would overall translate into a higher rate of domestication. Second, it may result more specifically from differences193

in the rate at which viral elements are domesticated after being endogenized. To disentangle these hypotheses, we built194

a binomial logistic regression model in a Bayesian framework, focusing on events involving dsDNA viruses, and specify-195

ing the number of domesticated events relative to the total number of endogenization events inferred. By controlling for196

the endogenization input (the denominator), these binomial models make it possible to test whether the probability of197

domestication after endogenization of dsDNA viruses is correlated with the lifestyle.198

Based on this analysis, the probability that an endogenization event will lead to a domestication event is not signifi-199

cantly different between endoparasitoids and freeliving species (FigureS10-A, pd=89.18%). However, the probability of do-200

mestication was found to be significantly higher in endoparasitoids than in ectoparasitoids (FigureS10-A, PMCMC=99.81%).201

The same trend was observed if we focused on high confidence scaffolds and/or if we removed the controls from the202

dataset (FigureS10-B,C D, pd < 86%).203

Together, these findings show that the endoparasitoid lifestyle is associated with an increased rate of dsDNA viruses204

endogenization. Endoparasitoids are also characterized by an elevated frequency of domestication events that does not205

appear to be explained by an elevated rate of post-endogenization domestication.206

New remarkable cases of endogenization and domestication207

Here, we describe in more details specific cases identified by our pipeline. We found a massive entry of genes from ds-208

DNA viruses in an undescribed species belonging to the Campopleginae subfamily ("Campopleginae sp" in Figure 1). In209

Ophioniformes (a clade that includes Campopleginae), two lineages have previously been shown to hosts domesticated210

viruses (the Campopleginae species Hyposoter didymator [29], and the Banchinae species Glypta fumiferanae [30]). It has211

been advocated that these so-called ichnoviruses viruses found in Hyposoter didymator and Glypta fumiferanae may de-212
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Figure 4. Endogenization and domestication of dsDNA viruses are more frequent in endoparasitoid species. Violin plots represent the posterior
distribution of the coefficients obtained under the different GLM models (after exponential transformation to obtain a rate relative to free-living species).
The coefficients are derived from 1000 independent GLM models, where 1000 probable scenarios of ancestral states at nodes were sampled randomly
among the MCMCM iterations (see details in Materials and methods). Branches from nodes older than 160 million years were removed from the dataset.
The %pd is the probability of direction and indicates the proportion of the posterior distribution where the coefficients have the same sign as the median
coefficient. PMCMCM indicates the proportion of MCMC iterations where the coefficient obtained for endoparasitoid species is higher than for
ectoparasitoid species. All statistical summaries of the Bayesian GLM models can be found on the github repository under the name :
Lifestyle_statistical_analysis_results.xlsx.
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rive from the same endogenization event [30]. In our unknown Campopleginae species, we identified homologs of 35213

out of the 40 ichnovirus genes present in the genome of H. didymator (so-called IVSPER genes, [16]). Those genes show214

conserved synteny in the two species (Figure S11), strongly suggesting that they derive from the same endogenization215

event. However, our analysis did not identify viral homologs in the two Ophioninae and Cremastinae sufamilies, that216

are internal to the clade including Campopleginae and Banchinae wasps. This result argues against the view of a single217

event at the root of Ophioniformes, and thus supports the alternative view [31] that the so-called IVSPER genes in the218

Campopleginae and Banchinae subfamilies stem from independent events, despite their striking structural similarities.219

(see FigureS12 for illustration). We found no trace of the previously suggested remnants of ichnoviruses in the related220

species Venturia canescens, although the clear presence of nudiviral genes in this species was confirmed [17].221
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Figure 5. Phylogenetic relationships among endogenized and "free-living" dsDNA viruses. Specifically, this figure shows the relationships between
Naldaviricetes double-stranded DNA viruses and EVEs from hymenopteran species, where at least 3 endogenization events were found. This tree was
computed using maximum likelihood in Iqtree (v2) from a 38,293 long protein alignment based on the concatenation of 142 viral genes. Confidence scores
(aLRT%/ultra-bootstrap support%) are shown at each node. The scale bar indicates the average number of amino acid substitutions per site. Previously
known EVEs are in white, those from the present study in orange, and leaves inferred as free-living viruses are in red. All the best partitioned models can
be found on the github repository under the name : dsDNA_phylogeny_best_ML_partitions.nxs. All free-living dsDNA viruses used in this phylogeny were
obtained from published complete viral genomes. More details on the phylogenetic inference can be found in methods.

We found 5 new cases of endogenization involving multiple EVEs from dsDNA viruses belonging to Nudiviridae, LbFV-223

like and AmFV-like families.224
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Two of them involve parasitoid species, i.e. Platygaster orseoliae and an Aprostocetus species. For Aprostocetus, we225

detected 6 EVEs related to nudiviruses branching between the Chalcidoidea and the Diaprioidea superfamilies (Fig. S4).226

Among these EVEs we found four with an annotation : lef-4, Ac68/pif-6, GrBNV_gp19/60/61-like proteins, and a rep-like227

protein, none of them showing sign of domestication since no RNAseq, nore dN/dS analysis was possible. The P. orseoliae228

case involve the recently characterized putative family of filamentous viruses [32]. The free-living LbFV virus is the only229

representative of this putative family and has been identified as a source of adaptive genes in Leptopilina wasps that par-230

asitize Drosophila flies, with 13 virally-derived genes involved in the production of VLPs protecting the wasp’s eggs from231

encapsulation [19]. In P. orseoliae, 15 genes homologous to LbFV were detected (out of 108 ORFs in the LbFV genome;232

median E-value = 9.39e-21 [min = 2.617e-76, max = 4.225e-08], Figure S8-A). Among these 15 genes, 5 were also endog-233

enized in Leptopilina species (named LbFV_ORF58:DNApol, LbFV_ORF78, LbFV_ORF60:LCAT, LbFV_ORF107 LbFV_ORF85)234

[19]. Assuming the ancestral donor virus contained the same 108 genes as LbFV, the number of shared genes in these two235

independent domestication events is higher than expected by chance (one-sided binomial test: x = 5, n = 15, p = 13/108,236

p= 0.02682), suggesting that similar functions could have been retained in both lineages (see additional information in237

supplemental information). Notably, we also found within the P. orseoliae assembly a new "free-living" virus among scaf-238

folds noted as F or X, related to LbFV, that we propose to call PoFV (Platygaster orseoliae filamentous virus) (see fig. 5 and239

supplemental information for details). This virus is the closest relative to the EVEs found in P. orseoliae and is composed240

of 136 ORFs FigureS8-B). Using this putative whole genome viral sequence to search for homologous genes in the P. orse-241

oliae genome, we were able to detect a total of 139 convincing EVEs (corresponding to 89/136 PoFV ORFs). 44/89 of these242

EVEs presented signs of domestication using paralogs, with dN/dS significantly lower than 1 (see details in supplemental243

information). Although functional studies are clearly needed to confirm that these virus-derived genes are involved in244

the production of VLPs as in Leptopilina [19], we see Platygaster orseoliae endogenous viral elements (PoEFVs) as good245

candidates for viral domestication, which could possibly be involved in counteracting the immune system of its dipteran246

host (from the Cecidomyiidae family [33]). To our knowledge, this is the first report of a massive viral endogenization and247

putative domestication within the Platygastroidea superfamily.248

The other three cases involved ant species : Harpegnathos saltator (EsEFV) (12EVEs/6dEVEs), Pseudomyrmex gracilis249

(PgEFV) (9EVEs/1dEVE), Aphaenogaster picea (ApEFV) (7EVEs). These endogenized elements are related to a poorly char-250

acterized family of filamentous viruses denoted AmFV [34, 35]. In H. saltator, 9 genes deriving from an AmFV-like virus251

were detected (including 3 genes that have been previously identified by [23]). Intriguingly, all these 135 genes show nu-252

merous paralogs within the genomes (FigureS7 FigureS4), with 22 copies for AmFV_0062 (pif-1), 18 for AmFV_0102 (pif-2),253

51 for AmFV_0090 (pif-3), 24 for AmFV_0044 (integrase), 13 for AmFV_0079 (p74), 5 for AmFV_0047 (RNA polymerase), 19254

for AmFV_0126 (Unknown), 23 for AmFV_0168 (Unknown) and 7 for AmFV_0154 (Unknown). Most paralogs were found255

in scaffolds exceeding the expected size for any virus sequence (min = 23,726bp, mean = 326,262bp, max = 2,693,376bp).256

In addition, all scaffolds do include transposable elements and eukaryotic genes making them undoubtedly endogenized.257

Accordingly, our pipeline attributed the highest confidence index A for 104 of them (out of 135). The P.gracilis genome258

revealed 9 EVEs, including homologs of pif-1, pif-3, RNA polymerase, ac81, integrase and odv-e56 (FigureS4). Notably, one of259

the 9 EVEs (AmFV_059, of unknown function) shows both a dN/dS < 1 (mean= 0.1747, p-value 5.877e-02), and a very high260

TPM value (362836 TPM from whole body tissues). Finally, in A. picea, 7 EVEs were detected, including homologs of pif-1,261

pif-3, integrase, odv-e56 and p74 (Figure S7. No raw reads data were available for this species, precluding coverage-based262

inferences). Since there were neither orthologs or paralogs for these genes to compute dN/dS analyses, nor transcrip-263

tomic data, it was not possible to infer their domestication status. At this stage it is thus not possible to conclude as to264

the functions of these genes in H. saltator, P. gracilis and A. picea, but this surely deserves further attention.265

Discussion266

All kinds of viruses can integrate arthropod genomes, although the mechanisms underlying these phenomena remain267

unclear [1, 4]. Prior to the present analysis, 28 viral families had been described as involved in endogenization in arthro-268

pods [4]. Our study of Hymenopteran genomes further revealed the ubiquity of this phenomenon, with at least 40 viral269

families (or family-like clades) involved. Of the 1,261 EVEs found, the average identity with the closest known viral proteins270

was 36.32% [min = 15.7%, max = 99.1%]. This large overall divergence does not exclude the possibility that some of the271

integrations are recent, because free-living descendants of the true donors may be unknown or extinct [36].272

In the following section, we will first discuss why double-stranded DNA viruses, in comparisons with other viral ge-273

nomic structures (ssDNA, dsRNA, ssRNA), are more often endogenized than expected from their estimated abundance in274
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insect viral communities. Wewill then discuss hypotheses that could explain the patternwe find regarding a higher rate of275

endogenization of dsDNA viruses among endoparasitoid wasps compared to ectoparasitoids or free-living hymenopter-276

ans, which also translates into more frequent events of domestications.277

278

279

dsDNA viruses are more frequently involved in endogenization than expected by chance280

Despite the observations that all viral genomic structures can be involved in endogenization, we clearly identified dif-281

ferences in their propensity to do so. Based on a comparison between the respective proportions of the various viral282

categories in the inferred endogenization events and in public databases, we found that dsDNA viruses are much more283

represented than expected, while ssRNA viruses are under-represented (Figure 2-A). We acknowledge that current knowl-284

edge on the actual diversity of free-living viruses (as approximated through the NCBI taxonomy database) remains incom-285

plete, but the strength of the effect reported heremakes this conclusion rather robust to variations in the null distribution.286

On the basis of current knowledge, RNA viruses, and in particular ssRNA viruses, appear to bemuchmore diversified and287

prevalent than DNA viruses in insects. We note that viral-metagenomic studies often focus either on DNA or RNA viruses,288

and as such do not provide an accurate and unbiased picture of the extent viral diversity. To gain insights on this topic, we289

may thus focus on model systems where long-lasting research efforts have likely produced a more reliable picture. The290

Honeybee Apis mellifera is probably the most studied of all Hymenopteran species. In honeybees, the great majority of291

known viruses belongs to the RNA world [37], with very few exceptions [35]. Similarly, until 2015, only RNA viruses were292

known to infect the fruit fly Drosophila melanogaster, despite the extensive research conducted on this model system [38].293

A very limited set of DNA viruses has now been described from this species [39] but clearly, RNA viruses dominate the294

Drosophila viral community, both in terms of diversity and prevalence. In support of this view, recent studies revealed the295

very elevated absolute diversity of RNA viruses. For instance, a survey of 600 insect transcriptomes recovered more than296

1,213 RNA viruses belonging to 40 different families. Although, obviously, this study does not inform on the diversity of297

DNA viruses, it shows that the RNA virome of insects is both prevalent (e.g.in this study, 15% of all insects were infected298

by a single Mononegales-like virus) and extremely diversified [40]. Actually, this view appears to hold at the larger scale299

of eukaryotes [41]. Taking into account this patent abundance of ssRNA viruses in insects, our study indicates they are by300

far less frequently endogenized than their dsDNA counterparts in hymenopterans. Notably, a similar trend was recently301

reported in a study including a diverse set of eukaryotes [24].302

Most of the major endogenization events characterized so far in hymenopterans involve dsDNA viruses from the303

Nudiviridae family [21, 18, 17, 42, 43, 44, 4]. Our study further confirms that this viral family represents a major source304

of exogenous and sometimes adaptive genes for Hymenoptera. Indeed, 28 new independent endogenization events in-305

volve this family, among which 9 are shared by at least two related species (Figure 2-B, Figure1). The major contribution306

of nudiviruses to endogenization may be explained by their wide host range in arthropods [45]. Their nuclear replica-307

tion constitutes another plausible explanatory factor [46], since it may facilitate contact with host DNA. In addition, their308

tropism for gonads may favor the endogenization in germinal cells [47]. In fact, nuclear replication is a feature shared309

by nearly all families of dsDNA viruses found in our analysis : Baculoviridae, Iridoviridae, Phycodnaviridae, Nimaviridae310

Caulimoviridae, Herpesviridae, Asfaviridae (at early times) [48, 49, 50, 51, 52], Apis-filamentous-like [53] and LbFV-like fami-311

lies [54] (the Poxviridae viruses, that replicate in the cytoplasm, are thus the only exception). In contrast, most RNA viruses312

replicate in the cytoplasm. Nuclear replication may thus constitute a general explanation for the elevated propensity of313

DNA viruses to endogenization. Additionally, we may expect that a DNA molecule, rather than an RNA molecule, is more314

likely to integrate the insect genome, because the latter requires reverse transcription before possible endogenization.315

The Poxviridae case indicates that cytoplasmic replication does not necessarily impede endogenization. These viruses316

do not require nuclear localization to propagate [55, 48] and were nevertheless found to be involved in many endoge-317

nization events (n=28) (as found in another paper within ant genomes [23]) , especially from entomopoxviruses (18) with318

four cases of EVEs shared between several closely related species (Figure 2-B).319

320

321

Factors behind variations in endogenization and domestication rates322

Several recent studies have uncovered abundant EVEs in insect genomes [23, 20, 56], with huge variation in abundance323

between species. For instance, in their analysis based on 48 arthropod genomes, Ter Horst A et al., 2019 found that the324

number of EVEs ranged between 0 and 502. Although insect genome size and assembly quality may partly explain this325
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variation [4], the underlying biological factors are generally unknown. In this study, we tested the hypothesis that the326

insect lifestyle may influence both the integration and domesticating rates. We used a Bayesian approach to reconstruct327

ancestral states throughout the phylogeny of Hymenoptera, thus accounting for uncertainty, and found that endopar-328

asitoidism, in comparison with other lifestyles, tends to promote dsDNA viral endogenization. Notably, this conclusion329

was not the artefactual consequence of differences in genome assembly quality. In fact, the quality of genome assem-330

blies was correlated with the lifestyle in our data set, but the genomes of endoparasitoid species were generally less well331

assembled than those of free-living species. If anything, this difference should reduce the power for detecting endog-332

enization events in endoparasitoids, where our analysis detected an excess of such events. Our estimate of the effect333

sizes (with 2.43 times more endogenization events in endoparasitoids than in free-living species) should thus be seen as334

conservative. Why do endoparasitoid wasps tend to undergo more endogenization than others? We initially had in mind335

two non-exclusive hypotheses that remain plausible explanations for the observed pattern. First, endoparasitoids may336

be more intensively exposed to viruses. In addition, or alternatively, endoparasitoids may have a higher propensity to337

endogenize and retain viral genes.338

Several factors come in support of the first hypothesis. Endoparasitoid larvae grow by definition inside their host’s339

body, and such a close interaction implies that any endoparasitoid individual will also be interacting with its host’s viruses.340

Accordingly, the best studied cases of viral domestication in wasps involve nudiviruses, that are known to replicate in their341

caterpillar hosts [57, 17, 42]. Another putatively important factor is the presence of virus in the venoms that parasitoids342

inject into hosts together with their eggs. These are known to protect the offspring against the host’s immune response,343

and to manipulate the host physiology [58] but this feature could favor the subsequent spread of viruses in wasp popula-344

tions: by colonizing the venom-producing tissues (venom gland or calyx, depending on the species biology) viruses may345

secure an effective pseudo-vertical transmission and thus maintain themselves efficiently in wasp populations. Numer-346

ous endoparasitoid viruses benefit from such pseudo-vertical transmission [54, 59], including some whose relatives have347

been endogenized and domesticated by endoparasitoids [19]. The presence of viruses within venoms may also facilitate348

horizontal transmission between conspecifics in the case of superparasitism, as observed in the Drosophila parasitoid349

Leptopilina boulardi [27]. Although this effect may also be at play for some ecto-parasitoid species [60], we expect it to350

be more pronounced for endo-parasitoid species since they have a closer interaction from the inside of their hosts. Gen-351

erally, endoparasitoids may thus carry a higher load of non-integrated viruses than other hymenopterans. However, if352

this effect is at play, we expect to have an "endoparasitoid" effect for all viruses, whatever their genomic structure. For353

instance, we would expect such an effect to be detected for ssRNA viruses which are involved in the greatest number of354

endogenization events (Figure2-A). This was not the case since only dsDNA viruses were more frequently endogenized in355

endoparasitoids. Thus, we argue that this hypothesis is unlikely to explain the observed pattern.356

The second hypothesis posits that endoparasitoids are more frequently selected for retaining virally-derived genes357

than ectoparasitoid or free-living hymenopterans. In our analysis, domestication events are most frequently observed358

in endoparasitoids (over 3 times more frequently than in other hymenopterans). Obviously, this may be at least partly359

explained by the higher input discussed above (the higher endogenization rate). Yet, once this effect is controlled for,360

a trend towards a higher rate of domestication remains. More specifically, the likelihood of domestication following361

endogenization was significantly higher in endoparasitoids than in ectoparasitoids, but was not significantly higher than362

in free-living species. This later lack of significant difference may be biologically explained if a single domestication event363

precludes the domestication of additional EVEs, while not affecting the rate of non-adaptive endogenization. This would364

"dilute" the signal along branches involved in domestication. If this effect is at play, then it reduces considerably the365

power of our analysis to detect any difference on the rate of domestication between lifestyles. Indeed, in all known cases,366

only one domesticated virus has been documented, suggesting that further domestications are not beneficial once a viral367

machinery has been recruited by a wasp lineage.368

Whether or not the rate of domestication per se is higher in endoparasitoids than in other hymenopterans, the se-369

lective advantages brought by these viral genes in endoparasitoids should be discussed. It has been demonstrated in a370

few model systems that EVEs may confer antiviral immunity against related "free-living" viruses via the piRNA pathway371

[7, 61]. Yet, to our knowledge, such and effect has only been demonstrated against RNA viruses, so that it would not372

explain the excess of DNA viruses documented here. Furthermore, the sequence identities with known viral sequences,373

which is needed for this mechanism to work, is low in our dataset. Accordingly, previous work revealed that EVE-derived374

piRNAs studied in 48 arthropod species were also probably too divergent to induce an efficient antiviral response [20].375

At that stage, the ability of EVEs to generate PIWI-interacting RNAs that play a functional role in antiviral immunity seems376
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questionable. Further studies involving small RNA sequencing in hymenopterans would be required to shed light on this377

issue. Protection of the eggs and larvae against the host immune system is recognized as an important trait where EVEs378

play a critical role. Because of their peculiar lifestyle, endoparasitoids are all targeted by the host immune system, a379

matter of life or death to which other hymenopterans are not exposed to. Several cases of endogenization and domes-380

tication in endoparasitoids, all involving dsDNA viruses, are thought to be related to this particular selective pressure381

[42, 16, 17, 18, 19]). The parasitoids appear to have co-opted the viral fusogenic property to address their own proteins382

(VLPs) or DNA fragments (polydnaviruses) to host immune cells, thereby canceling the host cellular immune response.383

The above-hypothesized high exposure of endoparasitoids to viruses, together with this unique selective pressure, may384

act in concert to produce the pattern documented here: a strong input, that is, a diverse set of putative genetic novelties,385

combined with a strong selective pressure for retaining some of them. The observed excess of dsDNA viruses may be386

an indication that these viruses display a better potential for providing adaptive material in this context. In the cases387

of polydnaviruses (found in some Braconidae and some Campopleginae), it appears that one way to efficiently deliver388

virulence factors to the host cell is by addressing DNA circles that ultimately integrate into the host immune cells and389

get expressed [62, 63]. The DNA which is packed into the mature particles typically encodes virulence proteins deriving390

from the wasp [64]. This means that, at least for these cases, the viral system should be able to pack DNA, which is most391

likely a feature that DNA viruses may provide. Such an argument does not hold in the VLP systems, where only proteins392

are packed in viral particles, and it is unclear why EVEs deriving from dsDNA viruses would be more able to fulfill such a393

function. Here other features of dsDNA viruses come into mind as possibly important factors: their large genome size,394

and their large capsids and envelopes [65]. These may predispose dsDNA viruses to be domesticated, since abundant395

quantities of venoms have to be transmitted in order to efficiently suppress the host immune response.396

Materials and methods397

Genome sampling, assembly correction and assembly quality398

A bioinformatic pipeline mixing sequence homology search, phylogeny, genomic environment, and selective pressure399

analysis was built to search for viral endogenization and domestication events in Hymenoptera genomes. We used 133400

genome assemblies in total, of which 101 were available on public repositories (NCBI and BIPPA databases) and 32 were401

produced by our laboratory (all SRA reads and assemblies available under the NCBI submission ID : SUB11373855). Con-402

cerning the last 32 samples, DNA was extracted on single individuals (usually one female) or a mix of individuals when403

the specimens were too small using Macherey-Nagel extraction kit, the DNA was then used to construct a true seq nano404

Illumina library at Genotoul platform (Toulouse, France). The sequences were generated from HiSeq 2500 or HiSeq 3000405

machines (15Gb/sample). The paired-end reads were then quality trimmed using fastqmcf (-q15 –qual-mean 30 -D150,406

github) and assembled using IDBA-UD [66]. All sample information can be found on the github repository under the name407

: All_sample_informations.txt and is available under the NCBI Biosample number : SUB11338872.408

The size of the 133 assemblies ranged from 106.14mb to 2102.30mb. We kept only genome assemblies containing409

at least 70% non-missing BUSCO genes (124/133 genomes, [67]) (all genome information can be found on the github410

repository under the name : Assembly_genome_informations.txt). In addition, when the raw reads were available, we411

used the MEC pipeline [68] to correct possible assembly errors. Although some genomes were highly fragmented (such412

as the 32 genomes we generated since they were obtained using short reads only), the N50 values (min: 3542bp) were413

equal to or larger than the expected sizes of genes known to be endogenized and domesticated (min known domesticated414

EVE : 165bp) indicating that most of the putative EVEs should be detected entirely.415

Out of the 32 samples sequenced by our laboratory for this study, one (corresponding to Platygaster orseoliae) gave416

unexpected results. After assembly and BUSCO analysis, two sets of contigs were identified: one with only 4X coverage417

on average, and one with 33X on average. The phylogeny of these different BUSCOs gene sets showed that the low-418

coverage scaffolds likely belong to an early diverging lineage of Chalcidoidea (Figure1), whereas the 33x scaffolds belong419

to the target species P. orseoliae. This result suggests that the pool of 10 individuals used for sequencing was likely a mix420

of two species. A phylogenetic study of Ultra Conserved Elements (UCEs) obtained from several species of Chalcidoidea by421

[69, 70] recovered the unknown species as sister to Aprostocetus sp (Eulophidae) (see details in the supporting information422

and Figure S2 ). In the figures and tables, the name putative_ Aprostocetus_sp was consequently assigned to the unknown423

sample. However, since the lifestyle and identity of this species are uncertain, we did not include the corresponding424

scaffolds in the main analysis. The scaffolds belonging to this putative_Aprostocetus_sp. (i.e : all scaffolds with a mean425
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coverage < 10X) were removed from the P. orseoliae assembly file hosted in NCBI.426

Pipeline outline427

EVEs were identified from the 124 Hymenoptera assemblies using a sequence-homology approach against a comprehen-428

sive viral protein database (including all categories of viruses : ssDNA, dsDNA, dsRNA and ssRNA). In order to validate429

viral endogenization within Hymenoptera genomes, we developed an "endogenization confidence index" ranging from430

A to X (FigureS13-7). This index takes into consideration the presence of eukaryotic genes and/or transposable elements431

around candidate loci, and scaffolds coverage information (coverage for a valid candidate should be similar to that found432

in BUSCO containing scaffolds. Finally, the pipeline also included an assessment of the evolutionary history and of the433

selective regime shaping the candidates (based on dN/dS and/or expression data).434

Hymenoptera phylogeny435

The phylogenetic reconstruction of the 124 Hymenoptera species was performed based on a concatenation of the 375436

BUSCO proteins. The analysis was conducted by maximum likelihood via Iqtree2 [71] selecting the best model [72]. The437

tree was rooted via two species of the Coleoptera order (Anoplophora glabripennis and Tribolium castaneum). Bootstrap438

scores were evaluated using the UFboot approach [73]. The results found were consistent with a previous, more compre-439

hensive study [28].440

Search for viral homology441

We collected all protein sequences available in NCBI virus database [74], removing phage and polydnavirus (virulence442

genes from wasp origin found within PDVs) sequences. This database contained 849,970 viral protein sequences (down-443

load date : 10/10/2019), to which the 40 putative viral proteins encoded by the Hyposoter didymator genome were added444

(so-called IVSPER sequences, [29]). The sequence homology search was performed with a BlastX equivalent implemented445

in Mmseqs2 [75]) using each genome assembly as queries and the viral proteins collected as database. The result gave a446

total of 81,953,678 viral hits (max E-value 5e-04 with an average of 660,916 hits per genomes). We kept only candidates447

with a percentage coverage of the viral protein >= 30%, an identity score >= 20% and an E-value score < 5e-04 (Figure S13-448

1). The threshold parameters were optimized to maximize the detection of the 13 endogenous viral sequences within449

the genus Leptopilina [19]. Once all the viral hits were recovered, we formed putative EVEs loci (n=238,108) correspond-450

ing to the overlap of several viral hits on the same scaffold using the GenomicRanges R package [76] (Figure S13-2). To451

remove false positives corresponding to eukaryotic genes rather than viral genes, we then performed another generalist452

sequence homology search against the Nr database (downloaded the 09/11/20) using mmseqs2 search (-s 7.5, E-value453

max = 0.0001) (Figure S13-3). We did not select our candidate based on the best hit, since it does not necessarily reflect454

the true phylogenetic proximity. Instead, candidates with more than 25 hits with either eukaryotic non-hymenoptera455

species or prokaryotic species were removed, except if they also had hits with at least 10 different virus species (bits >=456

50). We chose to eliminate Hymenoptera hits from the database because if a real endogenization event concerns both457

one of the 124 species of our dataset and some species in the NCBI database, then an apparent "Hymenoptera" hit will458

be detected, possibly leading to its (unfair) elimination. Since viral diversity is poorly known, we also kept sequences459

with even one single viral hit, as long as it did not have more than 5 eukaryotic or prokaryotic hits. Using these filtering460

criteria we removed a total of 234,036/238,108 (98,3%) candidate loci leaving 4,072 candidates with convincing homology461

to viral proteins. Note that among these loci a certain proportion actually corresponded to non-endogenized "free-living"462

viruses. To study the evolutionary history of these candidate EVEs, we then performed a general protein clustering of all463

the candidates and the NCBI viral proteins (Figure S13-4, Mmseqs cluster; thresholds : E-value 0.0001, cov% 30, options :464

–cluster-mode 1 –cov-mode 0 –cluster-reassign –single-step-clustering[77]).465

We eliminated from the dataset the chuviral glycoproteins that have been captured by LTR retrotransposons [78], as466

these loci have complex histories mostly linked to the transposition activity after endogenization. For this purpose, we467

systematically searched among the candidates for the presence of TEs within or overlapping with the EVE (see the file468

All_TEs_overlapping_with_EVEs under the github repository). Only one cluster (Cluster4185) was concerned by such a469

situation (chuviral glycoproteins overlapping to Gypsy/LTRs). It was detected in 89/124 species (1074 total copies, median470

= 7 copies/species, max = 244, min =1), and was probably similar as the one described in [79].471
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Evolutionary history and selection pressure of endogenous loci472

Arguments for endogenization473

Among all the candidates for endogenization there were probably false positives that corresponded either to natural474

contaminants (infecting viruses sequenced at the same time as the eukaryotic genome) or laboratory contaminants (virus475

accidentally added to the samples). One way to filter these cases was to study (i) the genomic environment (are there476

other eukaryotic genes or transposable element on the same scaffolds?) and (ii) metrics such as G+C% (used only for477

cov/GC plots) and scaffold coverage depth around candidate loci (are they the same as scaffolds containing housekeeping478

genes?). All of these data were used to establish confidence in the endogenization hypothesis, scaled from A to X (Figure479

S13-7).480

(i) Scaffolds sequencing depth (Figure S13-5) : In order to support the hypothesis that a scaffold containing candi-481

date EVEs was part of the Hymenoptera genome, we studied the sequencing depth of the scaffolds. If the sequencing482

depth of a candidate scaffold was not different from the depth observed in scaffolds containing BUSCO genes, then this483

scaffold was likely endogenized into the Hymenoptera genome. Hence, when DNA reads were available (FigureS1), we484

measured this metric by mapping the reads on the assemblies using hisat2 v 2.2.0 [80]. An empirical p-value was then485

calculated for each scaffold containing a candidate EVE. To calculate this empirical p-value, we sampled 500 loci of the486

size of the scaffold of interest within BUSCO scaffolds. These 500 samples represented a null distribution for a scaffold487

belonging to the Hymenoptera genome. The p-value then corresponded to the proportion of BUSCO depth values that488

were more extreme than the one observed in the candidate scaffold (two-sided test). We used a threshold of 5% and a489

5% FDR (multipy python package [81]).490

(i) Genomic environment and scaffold size (Figure S13-6) Another way to rule out contaminating scaffolds was to491

look for the presence of eukaryotic genes and transposable elements in the scaffolds containing candidate EVEs, assum-492

ing that their presence in a viral scaffold is unlikely. Indeed, so far, very few viral genomes have been shown to contain493

transportable elements [82, 83, 84, 85, 86] because TE insertions are mostly deleterious and are therefore quickly elimi-494

nated by negative selection [84, 85]. We searched for transposable elements by a BlastX-like approach (implemented in495

Mmseqs2 search -s 7.5), taking as query the scaffolds of interest and as database the protein sequences of the transpos-496

able element (TE) available in RepeatModeler database (RepeatPeps) RepeatModeler (v2.0.2) [87]. We only kept hits with497

an E-value < 1e-10 and with a query alignment greater than 100aa. We then merged all overlapping hits and counted498

the number of TEs for each scaffold. To find eukaryotic genes within genomes we used Augustus 3.3.3 [88] with BUSCO499

training and then assigned a taxonomy to these genes via sequence homology with Uniprot/Swissprot database using500

mmseqs2 search [75], and only retained genes assigned to insects.501

Accordingly, the scaffolds were scored as follows (Figure S13-7) :502

• A: scaffolds with a corrected coverage p-value > 0.05 and at least one eukaryotic gene and/or one repeat element,503

• B: scaffolds with at least one eukaryotic gene and/or one repeat element but no coverage data available,504

• C: scaffolds with a corrected coverage p-value > 0.05 and neither eukaryotic gene nor transposable element,505

• D: scaffolds with a corrected coverage p-value < 0. 05 and whose coverage value was higher than the average of506

the scaffolds containing BUSCOs (as it is difficult to imagine that an endogenized scaffold present a lower coverage507

than expected, whereas a higher coverage could correspond to the presence of repeated elements that inflate the508

coverage of the scaffold for example) but with at least 5 eukaryotic genes and/or a repeated element (in total),509

• E: scaffolds presenting no DNA seq coverage data available and no eukaryotic gene nor transposable element de-510

tected,511

• F: scaffolds presenting a corrected p-value of coverage < 0.05 and less than 5 eukaryotic genes without any trans-512

posable elements; this category may rather correspond to free-living viruses.513

• X: scaffolds with a corrected p-value < 0.05 and neither eukaryotic gene nor transposable element; This category514

may rather correspond to free-living viruses.515

Inference of endogenization events516

Because several EVEs may derive from the same endogenization event, we sought to aggregate EVEs into unique events.517

We aggregated into a single event, firstly (i) all the EVEs present on the same scaffolds, and secondly (ii) all the EVEs that518

presented the same taxonomic assignment at the level of the viral family. These two steps were sufficient to aggregate519

EVEs in the simplest case of events involving only one species (but possibly several EVEs).520
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To further characterize the endogenization events including more than one species, we also relied on phylogenetic in-521

ference. To this end, the protein sequences belonging to each of the clusters (containing both viral proteins and candidate522

EVEs) were first aligned with clustalo v1.2.4 [89] in order to merge possible candidate loci (which may in fact correspond523

to various HSPs). All loci (=HSPs) within the same scaffold presenting no overlap in the alignment were thus merged, as524

they probably correspond to multiple HSPs and not duplications. We then performed a new codon alignment from the525

augmented sequences in the clusters using the MACSE v2 alignsequence program [90] (Figure S13-8). This alignment526

allowed us to obtain a protein and nucleotide codon alignment. We used the protein alignment to infer the phylogeny527

of each cluster with the program Iqtree2 v2.1.2 [71] (-m MFP -alrt 1000 (partitioned))(Figure S13-9). No trimming was528

performed at the amino-acid level, since this may result in loss of topology information [91, 92]. However, since it can529

affect branch length, only codon alignment was trimmed at the protein level via Trimal v1.2 (Figure S13-10) (-backtrans530

-automated1) [93]. We then exploited the information from the cluster phylogenies to form the endogenization events.531

EVEs potentially deriving from the same event should be supported by the formation of the same well-supported mono-532

phyletic clade (bootstrap > 80) both in the gene tree and the Hymenoptera tree (allowing gene losses in 20% of the species533

concerned by the monophyletic group). EVEs were possibly aggregated within the same event only if the Hymenoptera534

belonged to the same family. (Figure S13-11). Finally, the clustering of multiple EVEs within the same scaffold in one535

species was used to aggregate the homologous EVEs found in a related species within the same shared event, even if536

they were on different scaffolds (Figure S13). For details, see some canonical examples in Figure S14.537

For events shared by several species, we were also able to analyze gene synteny around putative EVEs. To do this,538

we conducted the equivalent of an all vs all TblastX (Mmseqs2 search –search-type 4, max E-value =1e-07) between all539

the candidate loci within a putative event (deduced from the phylogenetic inference), and then looked for hits (HSPs)540

between homologous EVEs around the insertions. Because it is possible to find homology between two genomic regions541

that does not correspond to orthology, for example because of the presence of conserved domains, we had to define542

a threshold to identify with confidence the orthology signal. We therefore conducted simulations to define this value,543

based on the well assembled genome of Cotesia congregata (GCA_905319865.3) by simply performing the same all vs all544

blast analysis against itself (as if the two species considered had the same genome). Based on this, we defined two types545

of simulated EVEs, (i) independently endogenized EVEs in the genomes of the two "species". This is simply simulated546

by randomly selecting two different regions in the genomes, and (ii) a shared simulated EVE that was acquired by their547

common "ancestor". This is simulated by selecting the same random genomic location in both "genomes". We then548

counted the total length of the HSPs found around the simulated insertions all along the corresponding scaffold (i and549

ii). As the result will obviously depend on scaffold length, we performed these simulations on several scaffold lengths550

(100000000bp, 10000000bp, 1000000bp, 100000bp and 10000bp). We conducted 500 simulations in each scenario, and551

we measured the cumulative length of homologous sequences by counting the sum of HSPs (bit score > 50). We then552

defined a threshold for each windows size in order to minimize for the false-positive (FP) and maximize true-positifs (TP)553

(thresholds 100000000bp = 172737bp (FP = 0.012, TP= 0.922); 10000000bp = 74262 bp (FP= 0.012, TP=0.878) ; 1000000bp554

= 21000 bp (FP=0.014, TP=0.28); 100000bp = 1332 bp (FP= 0.012 TP= 0.198) and 10000bp = 180 bp (FP= 0.008, TP= 0.208)).555

Events were linked to viral families based on the closest match information between the viral blastx (GenBank acces-556

sion number and/or viral protein and/or viral species) and the classification proposed in [94].557

Arguments for domestication558

One way to test for the domestication of an EVEs (dEVEs) was to estimate the ratio (omega) of the number of nonsynony-559

mous substitutions per non-synonymous site (dN), to the number of synonymous substitutions per synonymous site (dS).560

If EVEs are evolving neutrally, then the ratio is expected to be equal to 1, whereas if the EVE is under purifying selection,561

dN/dS is expected to be lower than 1. We conducted this analysis on trimmed codon alignments from (Figure S13-11) via562

the codeml algorithm from PAML [95] implemented in the python 3.3 package [96] (model Muse Gaut [97]). We tested563

the deviation from the null model in which the branches of the monophyletic group evolved under a neutral scenario564

(�2 test). The p-values were then corrected by selecting a FDR of 0.05 (multipy python package), and we estimated the565

standard errors of dN/dS that maximized the likelihood (option getSE = 1). dN/dS with dS greater than 10 were removed,566

since this indicates substitution saturation (Figure S13-12).567

The other way we choose to study the domesticated nature of a viral gene was to study their expression profile (Fig-568

ure S13-13). We reasoned that domesticated genes are likely to be significantly expressed. To test this, when RNAseq569

reads were available on NCBI (SRA), we mapped them on the assembled genomes (until reaching 300x coverage as far570
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as possible). Using the TPMCalculator program [98], we measured expression in ovaries and whole body if available or571

alternatively in any tissue (see supplemental information table :RNA_seq_reads_mapped.txt). An EVE was considered as572

domesticated if the gene was expressed with a Transcripts Per Kilobase Million (TPM) index above 1000. This threshold573

was chosen based on the median value observed for control EVEs (718.70 TPM), rounded up to 1000TPM to be conser-574

vative. We measured the accuracy of this metric using EVEs for which both TPM and dN/dS calculations were possible:575

among the 36 genes having a TPM>1000, 33 also had a dN/dS significantly below 1 suggesting that inferring domestication576

based on TPM>1000 was consistent with dN/dS test with a 0.9166 probability. Finally, based on the idea that an active577

EVE should encode a protein with similar length to the donor virus, we calculated the actual viral protein sequence length578

using the orfipy algorithm [99] (Figure S13-14).579

A possible bias when comparing lifestyles on domesticated elements could come from a difference of RNAseq reads580

availability depending on the lifestyle, which may result in a different number of EVEs considered as domesticated. A581

GLM binomial analysis did not reveal any correlation between RNAseq data availability and lifestyle (endoparasitoid =582

Slope(SE)=0.21(0.62), p=0.73; free-living= Slope(SE)=0.40(0.57), p=0.49 using ectoparasitoid as intercept).583

Sensitivity and specificity of the analysis584

585

Capacity to find Endogenous Viral Elements (EVEs)586

Among the species included in our dataset, 7 were known to contain a domesticated virus (2 with similar PDV [42], 5 with587

different VLPs [17, 18, 19]), corresponding to 4 independent endogenization events. Our pipeline was able to detect the588

vast majority of the corresponding virally-derived genes (88.6%, details in table S1). The 11.14% false negatives corre-589

sponded to sequences that were too divergent or with a region of similarity too small to be detected by our pipeline. We590

found that 88.7% of the control EVEs were located within scaffolds scored as A (i.e. having a depth of coverage falling591

within the distribution of those containing BUSCO genes, as well as having one or more eukaryotic genes and/or trans-592

posable elements in the vicinity). Since the remaining 11.3% were scored either C (7.64%) or D (3.66%) (table S1), we593

considered candidates within the range A-D as valid candidates for endogenization. On the contrary, scaffolds annotated594

as F or X were rather considered as free-living viruses since they did not show eukaryotic genes or TE in their vicinity595

and had different coverage compared to BUSCO-containing scaffolds. Scaffolds classified as E were of unclear status and596

discarded.597

598

Capacity to find domesticated EVEs (dEVEs)599

An EVE was considered as domesticated if the dN/dS ratio was significantly below 1 or if TPM was above 1000. When600

dN/dS computations were possible (for 75/152 control EVEs), our pipeline considered the EVEs as being under purifying601

selection in 70.39% of the cases. Overall, by combining the two metrics (dN/dS and TPM), our pipeline identified 69.04%602

of the control locus as being domesticated (table S1).603

604

Capacity to infer events of endogenization (EVEs events) Among the control species, the pipeline correctly inferred605

the expected 4 independent events: (1) Leptopilina boulardi/Leptopilina clavipes/Leptopilina heterotoma [19] (2) Venturia606

canescens [17], (3) Fopius arisanus [57], and (4) Cotesia vestalis/Microplitis demolitor [15] (table S1). However, in addition to607

the expected unique shared event concerning theM. demolitor and C. vestalis species, our pipeline inferred two additional608

events, each specific to one lineage. This was due to the fact that two genes were not detected by our pipeline as shared609

byM. demolitor and C. vestalis, either because they are effectively not shared (for 3 of them: HzNVorf118, like-pif-4 (19kda),610

fen-1), or because of some false negative in one of the two lineage (for one of them:p33 (ac92)).611

Assessing the distribution of virus infecting insects612

We estimated the number of viral species infecting insect species based on the virushostdb database (downloaded the613

23/05/2022 on https://www.genome.jp/virushostdb/ ) which lists a wide diversity of viral species associated with their pu-614

tative hosts. We also added two important exploratory RNA virus search studies [94, 100]. We kept only viruses present615

found in interaction with insect in at least one of these databases. Genomic structures were retrieved through the ICTV616

report (2021.v1) and information available in ViralZone (all viral species details can be found on the github repository un-617

der the name : All_virus_infecting_insects_informations.csv). We counted the number of viruses per genomic structure,618

and viruses from unknown genomic structures were discarded. In total, 2,626 viral species infecting insects were consid-619
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ered (detail : ssRNA(-) = 603sp, ssRNA(+) = 1,241sp, ssDNA = 75sp, dsRNA = 401sp, dsDNA =155sp, Unknown= 151sp). The620

Partiti-Picobirna, Narna-Levi, Mono-Chu, Bunya-Arenao, Luteo-Sobemo, Hepe-Virga and Picorna-Calici clades correspond621

to viral clades proposed by [94].622

Divergence time estimation623

We time-calibrated the inferredphylogenetic tree using aBayesian approachonRevBayes 1.1.1 [101] and information on5624

fossils selected by [28]. Condensation of the supermatrix became necessary to overcome computational limitations when625

estimating node ages resulting from the large size of the concatenated BUSCO supermatrix (nsites = 228,009). Therefore,626

we first selected 176,648 variable sites from the supermatrix via the snp-sites function [102]. We then generated one627

fasta file with a random draw without replacement of 20,000 sites from the supermatrix composed of the variable sites.628

Evaluation of the phylogenetic likelihood being the most expensive operation when calculating the posterior density, we629

decided to use themethod developed in [103] to reduce computational cost and approximate the phylogenetic likelihood630

using a two-step approach. In the first step, the posterior distribution of branch lengthsmeasured in expected number of631

substitutions is obtained for the fixed unrooted topology of using a standard MCMC analysis (100,000 iterations, 3 chains,632

5000 burn-in, tuningInterval=200). The obtained posterior distribution is then used to calculate the posterior mean and633

posterior variance of the branch length for each branch of the unrooted topology. In the second step, we date the634

phylogeny using a relaxed clock model and calibrations (500,000 iterations, 4 chains, 5000 burn-in, tuningInterval=200).635

Calibration of the root was done using a uniform law between 300 and 412Mya. To verify that MCMC analyses converged636

to the same posterior distribution, we applied for both steps the effective sample size and the Kolmogonov-Smirnov test637

computed in R v1.4.1717.638

Ancestral state reconstruction639

To explore the dynamics of EVEs gain in relation to lifestyle, we first had to reconstruct the ancestral lifestyle states of640

the Hymenoptera used in this study. This was achieved using a Bayesian approach implemented in RevBayes 1.1.1 [101].641

The lifestyles of the Hymenoptera species used in this study were deduced from various sources (details and sources in642

the table named Assembly_genome_informations.csv from the github repository). Since lifestyle characters are probably643

not equally likely to change from any one state to any other state, we choose the Mkmodel with relaxed settings allowing644

unequal transition rates. Thus, we assumed 6 different rates with an exponential prior distribution. Before running the645

MCMC chains, we made a preliminary MCMC simulation used to auto-tune the moves to improve mixing of the MCMC646

analysis with 1000 generations and a tuning interval of 300. We then ran two independent MCMC analyses, each set to647

run for 200 000 cycles, sampling every 200 cycles, and discarding the first 50 000 cycles as burn-in. To verify that MCMC648

analyses converged to the same posterior distribution, we applied the effective sample size and the Kolmogonov-Smirnov649

test computed in R v1.4.1717. After this step and for each likely scenario, each branch was thus assigned a lifestyle (free-650

living, endoparasitoid or ectoparasitoid).651

Test of the lifestyle effect on viral endogenization and domestication652

In order to test the lifestyle effect on the propensity to integrate and domesticate viral element, we first randomly sampled653

1000 probable ancestral state scenarios to take into account the uncertainty in the estimates of the ancestral states of the654

nodes. Because a lot of branches had no EVE endogenization inferred, we ran zero-inflated negative-binomial GLMmodel,655

for each of these 1000 scenarios such that (GLM(NbEVEs free-living + endoparasitoid + ectoparasitoid * Branch_length,656

family = zero inflated neg binomial). We eliminated all branches older than 160 million years because they are too old for657

our analysis to detect events (the oldest event detected by our analysis is around 140mya) that could artificially inflate the658

zero count. The model was implemented in stan language using the R package brms (seed = 12345, thin=5, nchains =4,659

niter = 10000) [104, 105]. Posterior predictive check was done using the package brmsfit in order to check that the model660

was correctly predicting the proportion of zeros. Indices relevant to describe and characterize the posterior distributions661

were computed using the R package BayestestR [106]. Autocorrelation was studied using the effective sample size index662

(ESS) with a value greater than 1000 being sufficient for stable estimates [104]. The convergence of Markov chains was663

evaluated by a Rhat statistic equal to 1. All the posterior coefficient estimated values were then pooled together (after664

checking the convergence of all chains via the GelmanRubin function in R [107]) and compared between the free-living,665

endoparasitoid and ectoparasitoid modalities.666

To calculate the rate of domestication independent of the rate of endogenization, we built a binomial logistic regres-667
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sion model in a Bayesian framework, specifying the number of domesticated EVEs (or Events) (the numerator) relative to668

the total number of EVEs or Events inferred by our pipeline (the denominator). These binomial models allowed us to test669

whether the probability of domestication after endogenization correlated with lifestyle by controlling for the endogeniza-670

tion input (the denominator). Thus, for each of the 1000 lifestyle scenarios, we ran a binomial brms model with a logit671

link such that brms(Nb dEVEs/dEvents | trials(Nb EVEs/Events) lifestyle + Branch length).672

Before analyzing the data, we checked that the inferences did not depend on the quality of the genomes selected673

for analysis. We found a significant effect of the lifecycle on the N50 and percentage of complete+partial BUSCO in the674

assemblies (Kruskal-Wallis rank sum test p-values respectively = 3.192e-10 and 1.26e-14). Furthermore, a pairwise Wilcox675

test with p-values adjusted with Bonferroni method revealed a significantly higher values of N50 and %complete+partial676

BUSCOwithin genome assemblies from free-living species compared to endo and ectoparasitoids species (p-value <0.05).677

The same test using the total assembly length in bp did not reveal any difference between the three lifestyles (p-value678

>0.05). Overall, free-living species have better assemblies. Because better assembly quality should facilitate the discovery679

of endogenous viral elements both by sequence homology detection and by a better assessment of the endogenized680

nature of the EVE (scaffolds A,B,C and D), we should thus underestimate the number of EVEs in endo- and ectoparasitoid681

species compared to free-living species. Since our analysis led to opposite conclusion, our results cannot be explained682

by this feature of the dataset.683
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Supporting Information
1- ssRNA endogenization
Although our results show an under-representation of EVEs deriving from ssRNA viruses (relatively to their high abun-
dance in insect virome), they were involved in a high absolute number of endogenization events: 21 viral families/clades
were involved in 174 independent endogenization events in the 114 Hymenoptera genomes analyzed, in particular in-
volving Chuviridae, Artoviridae and Nyamiviridae (Figure2-B). In a recent meta-analysis [4], more than 1876 EVEs involving
ssRNA viruses were identified in 37 species distributed in 8 insect orders. Interestingly, the authors noticed that the con-
tribution of negative-stranded RNA viruses was overall high (67%), but was also highly species-specific. In our dataset,
the great majority of ssRNA viruses donors were negative-stranded (14/21 viral family/clades) accounting for 78.8% of
ssRNA events. The pattern thus seems even more pronounced in Hymenoptera compared to insects in general, and
resemble the pattern observed in ticks [56]. The reasons for the asymmetry observed between negative and positive
strand RNA viruses in endogenization are unclear. One explanation proposed by [108] posits that the ssRNA(-) have a
higher probability of endogenization compared to ssRNA(+) because non-segmented ssRNA(-) usually produce abundant
short mRNAs compared to ssRNA(+) which conversely produce lower amount of long mRNAs encoding a single polypro-
tein [109]. Then, all else being equal, an RNA(-) virus would produce more RNA molecules which increase the likelihood
that some of them get reverse-transcribed and ultimately endogenized into the host genome. In support of that, [108]
noticed that the NP gene wasmore often endogenized compared to the other genes encoded bymost ssRNA(-), which fits
its prediction. This is because for most Mononegavirales species the 3 nucleoprotein (NP) gene is themost abundant RNA
[110], due to the polar 3-5 stepwise attenuation of transcription [110]. This pattern was since observed on some systems
(i.e. mosquitoes and few mammals genomes [1]) but opposite results were also obtained on others (ticks, [56]). In our
dataset, we found two ssRNA(-) non-segmented families showing the expected pattern where the genes closest to the
3’ regions were the most endogenized : the Nucleoprotein (N) which is the first transcribed protein in Nyamiviridae was
endogenized in 26 cases out of 28, and the 3’-unknown protein in Lispiviridae (first transcribed) was endogenized in 12
cases out of 15 endogenization events (FigureS3). On the contrary, all the other putative ssRNA families donor presented
more EVEs deriving from the middle or the 5’ genomic regions: the most endogenized gene from Artoviridae was the U2
protein (19/39) which is in the middle of the genome (2nd/3); in Bornaviridae and Rhabdoviridae the most endogenized
gene was the RdRp (L) protein, which is the last ORF in the first genome (out of 8 genes) and the one just before the last
gene in Rhabdoviridae. Finally, out of 36 EVEs deriving from Chuviridae, 26 corresponded to the Nucleoprotein (N) which
is the last transcribed protein in the closest viral genomes. These unexpected results under Holmes model may thus lead
one to reject the hypothesis, unless peculiar mechanisms of regulation of the transcription are at play for these viruses.
Another explanation could come from a strong selective pressure for retaining particular proteins (i.e. Nucleoprotein) in
the genome, independently of their level of transcription.
2- A new case of virus domestication in Platygaster orseoliae
In the assembly of P. orseoliae, 12 scaffolds were annotated as free-living viruses (F-X scaffolds). They had a different
sequencing depth compared to BUSCO containing scaffolds and encoded 136 complete ORFs for which 21 presented
homology with LbFV ORFs (min bit score = 50, min ORF size = 150pb, max overlaps = 23pb). ORF density was 82.7% which
is in the range of expected values for related free-living viruses [111]. In order to identify additional scaffolds possibly
belonging to this free-living virus, we searched for homology between the 136 putative viral proteins, and the scaffolds
obtained from the assembly of P. orseoliae. These results allowed us to identify two additional scaffolds (scaffold_117128
scaffold_18896). Because the total size of the 14 putative "free-living" scaffolds was within the expected range for a
dsDNA virus genome (136,801 bp) and because the average coverage was much higher than BUSCO-containing scaffolds
(mean cov = 95.6X [sd=5.05X] compared to 33X in BUSCOs) and homogeneous (Figure S4), we believe that this set of
scaffolds corresponds to the whole genome of a new virus, related to LbFV, which we propose to call Platygaster orseoliae
filamentous virus (PoFV). In order to characterize the relationship of this new virus within dsDNA viruses diversity, we
inferred a phylogenetic tree including ORFs of known dsDNA viruses along with the EVEs newly identified here. The
phylogenetic reconstruction revealed that PoFV was the closest relative of the endogenized virus found in the same
species (PoEFV, Figure 5).

In order to detect possible new viral endogenization from the same "donor virus", we queried the genome of P. orse-
oliae with the 136 predicted proteins of PoFV. This way, we found a total of 139 convincing hits (89 PoFV ORFs), including
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the hits to the 15 ORFs with LbFV-homology. All ORFs were encoded by scaffolds with BUSCO-like coverage depth (p-value
cov >= 0.05) and/or containing eukaryotic genes and/or transposable elements (Blastx E-value max = 7.060e-07, bits min
=50, with an average percentage of identity of 69.16%). Furthermore, a large proportion of the EVEs (22.7%) presented
premature stop codons within the sequences, further suggesting that these virally-derived genes are indeed endogenized
since abundant pseudogenization is not expected in free-living virus genomes (Figure S8-A).

Among the 81/139 apparently intact EVEs (with ORF length >= 50% of the PoFV ORF), some are likely implicated in
DNA replication (integrase), in transcription (lef-8,lef-9,lef-5,lef-4), in packaging and envelopment (ac81, 38k) and in infec-
tivity (pif-1, pif-2, pif-3). Among the 139 PoFV-related EVEs found in P. orseoliae, 104 corresponded to putative paralogs.
Conversely, none of these 104 ORFs were present in two copies within the PoFV genome, suggesting that a major post-
endogenization duplication event occurred or that multiple endogenization events did occur. Among these 104 dupli-
cated EVEs, 78 presented topologies allowing us to calculate dN/dS ratios using Bayesian pairwise estimates (runmode
-3 in codeml) or foreground/background tests (codeml) when topologies presented more than 4 leafs. Before running
the foreground/background tests, we constrained all paralogs to form a monophyletic group including the PoFV loci as
the closest taxa in the phylogenies (all LRT tests did not significantly present differences between constrained and un-
constrained trees). Among these 78 paralogs EVEs, 44 presented a complete and intact open reading frame and a dN/dS
ratio significantly lower than 1 suggesting that they are under stabilizing selection (Figure S8-A).

Although functional studies are needed to confirm that these virus-derived genes are involved in the formation of
VLPs as observed in Leptopilina [19], we believe that P. orseoliae filamentous virus (PoEFV) is a good candidate for viral
domestication, possibly involved in counteracting its Diptera host immune system (from the family Cecidomyiidae [33]).
4- Assignation of the unknown Hymenoptera to species
UCEs along with 400 bp of flanking regions on either side were extracted from the low coverage scaffolds with a custom
script. We used a two-step process to assign the unknown sample to species. First, UCEs + flanking regions were ana-
lyzed with a set of UCEs + flanking regions obtained from early diverging families of Chalcidoidea by [70, 69] to assign
the unknown sample to family. Then, unknown sequences were analysed with a larger set of species belonging to the
identified family (Eulophidae; loci taken from [69]). In both cases, only loci that had a sequence for at least 75% of the
samples included in the analysis were retained. Loci were aligned with MAFFT (-linsi option; [112]). Positions with > 90%
gaps and sequences with > 25% gaps were removed from the alignments using SEQTOOLS (package PASTA; [113]). The
concatenation of all loci was analysedwith IQ-TREE v 2.0.6 [71] without partitioning. Best fitmodels were selectedwith the
Bayesian Information Criterion (BIC) as implemented in ModelFinder ([72]). FreeRate models with up to ten categories
of rates were included in tests. The candidate tree set for all tree searches was composed of 98 parsimony trees + 1
BIONJ tree and only the 20 best initial trees were retained for NNI search. Statistical support of nodes was assessed with
ultrafast bootstrap (UFBoot) ([114]) with a minimum correlation coefficient set to 0.99 and 1,000 replicates of SH-aLRT
tests ([115]). Results of the phylogenetic analyses are presented in Figure S2. Placement of the unknown species in trees
shows that samples of P. orseoliae were likely mixed up with a species belonging to the genus Aprostocetus (Eulophidae,
Tetrastichinae). Given its small size, color and abundance (265 species described just in Europe), it seems plausible that
one specimen of Aprostocetus sp. remained unnoticed in the pool of P. orseoliae.
Supplementary figures
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Pseudomyrmex_gracilis
Ooceraea_biroi
Dinoponera_quadriceps
Harpegnathos_saltator

Apis_cerana
Apis_mellifera
Apis_dorsata
Apis_florea

Bombus_impatiens
Bombus_terrestris
Lepidotrigona_ventralis
Melipona_quadrifasciata

Eufriesea_mexicana
Euglossa_dilemma

Ceratina_australensis
Ceratina_calcarata
Habropoda_laboriosa
Megachile_rotundata
Osmia_bicornis

Lasioglossum_albipes
Nomia_melanderi
Dufourea_novaeangliae
Polistes_canadensis
Polistes_dominula
Goniozus_legneri
Nasonia_giraulti
Nasonia_longicornis
Nasonia_vitripennis
Trichomalopsis_sarcophagae
Cecidostiba_fungosa
Cecidostiba_semifascia

Eupelmus_annulatus
Eupelmus_azureus
Eupelmus_kiefferi
Eupelmus_urozonus

Ceratosolen_marchali
Ceratosolen_solmsi
Ceratosolen_corneri
Megastigmus_dorsalis
Megastigmus_stigmatizans

Eurytoma_adleriae
Eurytoma_brunniventris

Torymus_auratus
Torymus_geranii
Torymus_flavipes
Torymus_sinensis

Ormyrus_nitidulus
Ormyrus_pomaceus

Anagyrus_pseudococci
Leptomastidea_abnormis
Copidosoma_floridanum
Copidosoma_aretas

Encarsia_formosa
Eretmocerus_eremicus

Trichogramma_brassicae
Trichogramma_pretiosum
Aprostrocetus ?
Trichopria_nigra

Platygaster_equestris
Platygaster_orseoliae
Trissolcus_brochymenae
Trissolcus_japonicus

Leptopilina_clavipes
Leptopilina_heterotoma
Leptopilina_boulardi
Ganaspis_brasiliensis
Ganaspis_sp

Synergus_japonicus
Synergus_umbraculus

Campopleginae
Venturia_canescens
Ophioninae_A
Ophioninae_B

Cremastinae_A
Cremastinae_B

Tryphoninae_A
Tryphoninae_B

Ichneumoninae_A
Ichneumoninae_B

Meteorus_colon_F
Meteorus_colon_M
Meteorus_cinctellus
Macrocentrus_cingulum
Cotesia_vestalis
Microplitis_demolitor

Psyttalia_concolor
Psyttalia_lounsburyi
Diachasma_alloeum
Fopius_arisanus
Aphidius_colemani

Orussus_abietinus
Cephus_cinctus
Neodiprion_lecontei
Neodiprion_pinetum
Athalia_rosae
Anoplophora_glabripennis
Tribolium_castaneum

Unknown

Figure S1. Source of the datasets and availability of the reads. Phylogeny of 124 Hymenoptera species. Two Coleoptera species were used to root the
tree. The aLRT bootstrap scores are represented along the nodes. The sources refer to the platform or laboratory in which the assemblages come from
(This study, BIPPA: BioInformatics Platform for Agroecosystem Arthropods, NCBI: National Center for Biotechnology Information). The assemblies for
which raw DNAseq or RNAseqs reads were available are listed in the column DNA or RNA reads. The G+C% column reflects the average G+C rate for each
assembly, and the BUSCO% column reflects the rate of complete or partial BUSCOs found via the analysis with BUSCO V3. Posterior Bayesian lifestyle
inference distribution for each node and tips are represented by colored pie charts.
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SPARASIONIDAE Archaeoteleia mellea OSUC00020_3348 [NbUCES=261]
100/100 MYMAROMMATIDAE Mymarommatinae Mymaromma anomalum JRAS07601_0189 [NbUCES=309]

MYMAROMMATIDAE Mymarommatinae Zealoromma sp JRAS08222_0101 [NbUCES=316]

100/100

100/100 MYMARIDAE Eustochus atripennis JRAS08194_0189 [NbUCES=395]
MYMARIDAE Boudiennyia sp JRAS08210_0101 [NbUCES=383]

56.1/69

100/100 BAEOMORPHIDAE Chiloe micropteron JRAS07627_0189 [NbUCES=399]
BAEOMORPHIDAE Rotoita basalis JRAS07866_0101 [NbUCES=405]

100/100

100/100 TRICHOGRAMMATIDAE Trichogrammatinae Trichogramma pretiosum GENO00028_0101 [NbUCES=342]
TRICHOGRAMMATIDAE Trichogrammatinae Trichogramma brassicae TRIC00029_0199 [NbUCES=235]

91/85

100/100 EULOPHIDAE Eulophinae Elasmus sp JRAS07327_0489 [NbUCES=400]
100/100

EULOPHIDAE Tetrastichinae Aprostocetus sp JRAS07817_0189 [NbUCES=359]

93.8/90

100/100 ENCYRTIDAE Encyrtinae Metaphycus insidiosus JRAS07597_0489 [NbUCES=336]
ENCYRTIDAE Tetracneminae Leptomastix dactylopii JSTR01580_0189 [NbUCES=390]

99.8/100

100/100 SIGNIPHORIDAE Chartocerus subaeneus JRAS07600_0201 [NbUCES=395]
SIGNIPHORIDAE Clytina giraudi JRAS07820_0189 [NbUCES=401]

100/100 APHELINIDAE Aphelininae Centrodora amoena JRAS07600_0389 [NbUCES=185]
APHELINIDAE Aphelininae Aphytis melinus JSTR01583_0189 [NbUCES=381]

0.0 0.16

100/100

67.3/82

100/100

100/100

100/100

98.2/98

14.2/52

100/100

100/100

99.5/99

99.6/100

100/100

100/100

100/100

EULOPHIDAE Tetrastichinae Aprostocetus sp JRAS07817_0189 [NbUCES= 357]
100/100 EULOPHIDAE Tetrastichinae Crataepus marbis JRAS08422_0101 [NbUCES= 334]

EULOPHIDAE Tetrastichinae Puklina gelincika JRAS08423_0101 [NbUCES= 376]
EULOPHIDAE Tetrastichinae Aprostocetus sp USNM00132_2186 [NbUCES= 266]

100/100 EULOPHIDAE Tetrastichinae Aprostocetus aff. rufescens JRAS06367_0489 [NbUCES= 348]
EULOPHIDAE Tetrastichinae Aprostocetus leucone JRAS07595_0389 [NbUCES= 369]

100/100 EULOPHIDAE Tetrastichinae Melittobia acasta JRAS07818_0189 [NbUCES= 311]
EULOPHIDAE Tetrastichinae Nesolynx phaeosoma JRAS08370_0189 [NbUCES= 393]

EULOPHIDAE Tetrastichinae Neotrichoporoides aff. nyemitawus JRAS06492_0501 [NbUCES= 388]
100/100 EULOPHIDAE Tetrastichinae Sigmophora brevicornis JRAS06349_0189 [NbUCES= 362]

EULOPHIDAE Tetrastichinae Kolopterna blascoi JRAS08388_0101 [NbUCES= 372]

99.9/87

100/100

100/100 EULOPHIDAE Tetrastichinae New Genus sp JRAS07425_0589 [NbUCES= 371]
EULOPHIDAE Tetrastichinae Leprosa milga JRAS07880_0189 [NbUCES= 369]

100/100 EULOPHIDAE Tetrastichinae Leptocybe invasa JRAS07879_0189 [NbUCES= 375]
EULOPHIDAE Tetrastichinae Quadrastichodella nova JRAS07881_0189 [NbUCES= 377]

EULOPHIDAE Tetrastichinae Paragaleopsomyia sp JRAS08369_0189 [NbUCES= 383]

100/100

100/100 EULOPHIDAE Tetrastichinae Oxypracetus sp JRAS07577_1001 [NbUCES= 387]
EULOPHIDAE Tetrastichinae Neohyperteles sp JRAS08363_0189 [NbUCES= 394]

100/100 EULOPHIDAE Tetrastichinae Galeopsomyia sp JRAS07577_1101 [NbUCES= 325]
EULOPHIDAE Tetrastichinae Galeopsomyia sp JRAS08366_0189 [NbUCES= 374]
EULOPHIDAE Tetrastichinae Minotetrastichus platanellus JRAS08389_0101 [NbUCES= 368]

100/100

90.2/93

96.7/98

100/100
100/100

100/100 EULOPHIDAE Tetrastichinae Baryscapus servadeii JRAS07837_0189 [NbUCES= 386]
EULOPHIDAE Tetrastichinae Baryscapus chrysopae JRAS08360_0189 [NbUCES= 378]

EULOPHIDAE Tetrastichinae Tetrastichus sp JRAS08371_0289 [NbUCES= 285]
EULOPHIDAE Tetrastichinae Oomyzus sp JRAS07327_0101 [NbUCES= 323]
EULOPHIDAE Tetrastichinae Quadrastichus erythrinae JRAS07878_0189 [NbUCES= 382]

100/100 EULOPHIDAE Tetrastichinae Tamarixia pubescens GDEL07010_0101 [NbUCES= 331]
EULOPHIDAE Tetrastichinae Tamarixia radiata USNM00133_9650 [NbUCES= 339]

100/100 EULOPHIDAE Tetrastichinae Palmistichus elaeisis JRAS07877_0189 [NbUCES= 394]
EULOPHIDAE Tetrastichinae Pentastichus xanthopus JRAS08365_0189 [NbUCES= 374]

100/100

100/100

100/100

100/100

100/100

100/100

100/100 EULOPHIDAE Eulophinae Eulophus ramicornis JRAS06349_0201 [NbUCES= 374]
EULOPHIDAE Eulophinae Eulophus cyanescens JRAS07603_1201 [NbUCES= 386]

99.2/100 EULOPHIDAE Eulophinae Pnigalio soemius JRAS07594_0101 [NbUCES= 338]
EULOPHIDAE Eulophinae Hemiptarsenus unguicellus JRAS07603_0489 [NbUCES= 144]

EULOPHIDAE Eulophinae Hemiptarsenus ornatus JRAS07603_0389 [NbUCES= 359]
EULOPHIDAE Eulophinae Diaulomorpha sp JRAS07327_0501 [NbUCES= 399]

100/100

100/100
100/100

10/74 EULOPHIDAE Eulophinae Elasmus platyedrae JRAS06480_2689 [NbUCES= 346]
EULOPHIDAE Eulophinae Elasmus sp JRAS07327_0489 [NbUCES= 386]
EULOPHIDAE Eulophinae Elasmus albizziae USNM00132_2182 [NbUCES= 183]
EULOPHIDAE Eulophinae Elasmus sp JRAS06864_0989 [NbUCES= 356]

EULOPHIDAE Eulophinae Sympiesis notata JRAS07602_1501 [NbUCES= 386]

100/100

99.7/87

93.5/86

87.1/87
100/100 EULOPHIDAE Eulophinae Miotropis sp JRAS06864_1801 [NbUCES= 381]

EULOPHIDAE Eulophinae Xanthellum sp JRAS06864_1901 [NbUCES= 370]
EULOPHIDAE Eulophinae Paraolinx typica JRAS06864_2201 [NbUCES= 391]

100/84 EULOPHIDAE Eulophinae Grotiusomyia flavicornis JRAS06864_1601 [NbUCES= 399]
EULOPHIDAE Eulophinae Platyplectrus aff. ornatus JRAS08371_0189 [NbUCES= 293]
EULOPHIDAE Eulophinae Hoplocrepis albiclavus JRAS07790_0301 [NbUCES= 376]

100/100
80.5/98 EULOPHIDAE Eulophinae Euplectrus sp BRAN00055_0101 [NbUCES= 353]

EULOPHIDAE Eulophinae Euplectrus maculiventris JRAS06349_0389 [NbUCES= 368]
EULOPHIDAE Eulophinae Euplectrus sp JRAS06864_1089 [NbUCES= 368]

100/100

98.8/100

100/100
100/100

100/100 EULOPHIDAE Eulophinae Cirrospilus diallus JRAS07593_0101 [NbUCES= 378]
EULOPHIDAE Eulophinae Cirrospilus lyncus JRAS07602_1401 [NbUCES= 358]

EULOPHIDAE Eulophinae Zagrammosoma mirum JRAS03390_0389 [NbUCES= 312]
EULOPHIDAE Eulophinae Naumanniola sp JRAS08445_0101 [NbUCES= 384]
EULOPHIDAE Eulophinae Trichospilus diatraeae JRAS07876_0189 [NbUCES= 388]

EULOPHIDAE Eulophinae Diglyphus isaea JRAS07832_0189 [NbUCES= 239]

100/100

100/100

100/100

100/100

100/100

95/95

100/100
100/100
97.9/100 EULOPHIDAE Entedoninae Pediobius eubius JRAS07600_0489 [NbUCES= 221]

EULOPHIDAE Entedoninae Kokandia salsolicola JRAS08394_0101 [NbUCES= 380]
EULOPHIDAE Entedoninae Mestocharis maculata JRAS08372_0189 [NbUCES= 370]

EULOPHIDAE Entedoninae Proacrias sp JRAS08367_0189 [NbUCES= 342]

100/99
100/100 EULOPHIDAE Entedoninae Horismenus sp JRAS07577_1389 [NbUCES= 365]

EULOPHIDAE Entedoninae Horismenus apantelivorus JRAS08362_0189 [NbUCES= 385]
EULOPHIDAE Entedoninae Closterocerus sp JRAS08361_0189 [NbUCES= 330]

100/100

100/100
98/100 EULOPHIDAE Entedoninae Chrysocharis sp JRAS01314_4289 [NbUCES= 374]

EULOPHIDAE Entedoninae Chrysocharis clarkae USNM00132_2184 [NbUCES= 116]
EULOPHIDAE Entedoninae Apleurotropis viridis JRAS07460_0689 [NbUCES= 308]

100/100 EULOPHIDAE Entedoninae Entedon sparetus JRAS07830_0189 [NbUCES= 351]
EULOPHIDAE Entedoninae Entedon ergias USNM00132_2185 [NbUCES= 166]

100/100 EULOPHIDAE Entedoninae Chrysonotomyia sp JRAS07425_0489 [NbUCES= 367]
EULOPHIDAE Entedoninae Chrysonotomyia auripunctata JRAS08359_0189 [NbUCES= 375]

EULOPHIDAE Entedoninae Closterocerus aff. flavicinctus JRAS06864_1701 [NbUCES= 331]

100/100
100/100 EULOPHIDAE Entedoninae Baeoentedon balios JRAS07766_0101 [NbUCES= 66]

EULOPHIDAE Entedoninae Neopomphale aleurothrixi JRAS07828_0189 [NbUCES= 336]
EULOPHIDAE Entedoninae Aleuroctonus vittatus JRAS07824_0189 [NbUCES= 369]

100/100

100/100

100/100
100/100 EULOPHIDAE Entiinae Euderus sp JRAS07575_0389 [NbUCES= 370]

EULOPHIDAE Entiinae Euderus sp JRAS07829_0189 [NbUCES= 390]
EULOPHIDAE Entiinae Euderus sp JRAS07577_0901 [NbUCES= 376]

99.8/100
100/100 EULOPHIDAE Entiinae Acrias sp JRAS07790_0401 [NbUCES= 400]

EULOPHIDAE Entiinae Astichus solutus JRAS07815_0189 [NbUCES= 381]
EULOPHIDAE Entiinae Bellerus sp JRAS07875_0189 [NbUCES= 358]

100/100

100/100 EULOPHIDAE Opheliminae Ophelimus sp JRAS07425_0601 [NbUCES= 390]
EULOPHIDAE Opheliminae Ophelimus maskelli JRAS07816_0189 [NbUCES= 373]

100/100 EULOPHIDAE Opheliminae Perthiola bouceki JRAS07873_0189 [NbUCES= 394]
EULOPHIDAE Opheliminae Anselmella miltoni JRAS07874_0189 [NbUCES= 368]

100/100

93.1/95

100/100
100/100

100/100 TETRACAMPIDAE Tetracampinae Foersterella sp JRAS07821_0101 [NbUCES= 361]
TETRACAMPIDAE Tetracampinae Kilomotoia kitoko JRAS07867_0101 [NbUCES= 381]

TETRACAMPIDAE Tetracampinae Epiclerus sp JRAS07853_0189 [NbUCES= 386]
TETRACAMPIDAE Tetracampinae Diplesiostigma particolor QMNH00040_0101 [NbUCES= 382]

100/100 TETRACAMPIDAE Mongolocampinae Mongolocampe trjapitzini JRAS08092_0101 [NbUCES= 361]
TETRACAMPIDAE Mongolocampinae Eremocampe nitrariae JRAS08145_0101 [NbUCES= 346]

100/100 EULOPHIDAE Incertae sedis Trisecodes africanum JRAS07857_0101 [NbUCES= 291]
EULOPHIDAE Incertae sedis Trisecodes agromyzae JRAS08214_0189 [NbUCES= 299]

100/100 BAEOMORPHIDAE  Chiloe micropteron JRAS07627_0189 [NbUCES= 356]
BAEOMORPHIDAE  Rotoita basalis JRAS07866_0101 [NbUCES= 380]

100/100

75.6/93
100/100

29.1/61 MYMARIDAE  Anaphes nitens JRAS07782_0189 [NbUCES= 297]
MYMARIDAE  Australomymar sp JRAS07786_0189 [NbUCES= 353]

MYMARIDAE  Mymar regale JRAS07603_0889 [NbUCES= 253]
MYMARIDAE  Proarescon primitivus JRAS08238_0101 [NbUCES= 263]

MYMARIDAE  Boudiennyia sp JRAS08210_0101 [NbUCES= 341]

0.0

A

B

0.04

UKNOWN CHALCIDOIDEA [NbUCES=231]

UKNOWN CHALCIDOIDEA [NbUCES=212]

Figure S2. UCE trees built to assign to species the unknown Chalcidoidea sequenced with the pool of P. orseoliae. A: Phylogeny of early diverging
families of Chalcidoidea (423 UCES and 127,979 bp were analysed to get the tree, best fit model = GTR+F+R10). B : Phylogeny of the family Eulophidae to
which the unknown sample was inferred to belong to (408 UCES and 77,514 bp were analysed to get the tree, best fit model = GTR+F+R10). For both trees,
SH-aLRT/UFBoot are shown at nodes; the number of UCEs analyzed for each sample is indicated between bracket and the unknown sample is highlighted
in red.
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Table S1. Summary statistics for control cases. The numerator indicates the numbers of EVEs or dEVEs inferred by our pipeline, andthe denominator indicates the number of known EVEs for each case. Analysis on dN/dS was only possible when orthologs or paralogswere available. Controls Endogenous viral elements present in scaffolds probably belonging to the Hymenoptera genome are scoredfrom A to D, and scaffolds probably belonging to free viruses are scored as F or X: (see details in Materials and methods). TPM(Transcripts per kilobase million) values were calculated via RNAseq read mapping when available in the databases (all RNAseq datasources can be found on the github repository under the name : RNA_seq_reads_mapped.txt). * In addition to the expected uniqueshared event concerning the M. demolitor and C. vestalis species, our pipeline inferred two additional events, each specific to onelineage. This was due to the fact that two genes were not detected by our pipeline as shared by M. demolitor and C. vestalis, eitherbecause they are effectively not shared (for 3 of them: HzNVorf118, like-pif-4 (19kda), fen-1), or because of some false negative in one ofthe two lineage (for one of them:p33 (ac92)).
V. canescens F. arisanus C. vestalis M. demolitor L. boulardi L. heterotoma L. clavipes % Total

——– NBEVEs1 36/40 42/47 20/21 18/25 12/13 12/13 12/13 88.4%

Scaffold A 36 42 18 16 11 6 8 90.13%
Scaffold B 0 0 0 0 0 0 0 0%
Scaffold C 0 0 0 0 1 6 4 7.24%
Scaffold~ D 0 0 2 2 0 0 0 2.63%
Scaffolds E-F-X 0 0 0 0 0 0 0 0%
——– NB
dEVEs

22/36 11/42 20/20 18/18 12/12 12/12 12/12 71.82%

by dN/dS2 3/3 0/1 16/20 15/18 12/12 12/12 12/12 70.39%
by TPM 1000 21 11 10 9 1 0 0 43.60%
——– Nb
Events

1/1 1/1 3/1* 1/1 .
1 When paralogs were detected on different scaffolds, the best scaffold score was used.
2 Analysis on dN/dS was only possible when orthologs or paralogs were detected (for example, in V. canescens this
calculation was only possible for 3 genes having paralogs)
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Table S2. Summary table. Clusters refers to the number of homologous clusters with one or more candidate
Endogenous Viral Elements (EVEs). Raw EVEs is the raw number of EVEs (i.e. including all paralogs and orthologs)
according to the scaffold categories from A to D. Nb EVEs with complete ORFs corresponds to the number of raw EVEs
with an ORF starting with a methionine, without premature stop codons, and ending with a stop codon, distinguishing
ORFs whose size is at least equal to or greater than 80% of that of the best viral hit. EVEs is the count of EVEs, i.e.
counting the number of genes within each monophyletic group only once (as several EVEs may have undergone
post-endogenization duplications or an EVE may be ancestrally acquired and shared by several species). Mean pident is
the average of the percentage identity of all EVEs with the best viral hit, the number in brackets corresponds to the
standard error. Nb EVEs pident and Nb EVE E-values 1e-20 correspond to the number of refined EVEs showing a hit with
more than 80% identity and an E-value below 1e-20 with a viral protein, respectively. Domesticated EVEs (dEVEs)
corresponds to the number of refined EVEs with either a dN/dS significantly less than 1 with a complete ORF and
without a stop codon and/or a TPM value > 1000 with a complete ORF and without stop codon. Events corresponds to
the number of endogenization events that may include one or more genes and involve one or more species. Shared
Events is the number of endogenization events shared by at least two species. Viral families corresponds to the number
of different putative viral families associated with the best viral hits. dEvents corresponds to the number of
endogenization events presenting at least one dEVE.

dsDNA ssDNA dsRNA ssRNA Total
Clusters 166 9 18 36 229
Raw EVEs
(A|B|C|D)

819
(534|61|102|122)

92
(40|27|6|19)

95
(45|19|26|5)

255
(129|74|34|18) 1261

Complet raw EVEs ORFs
(>80% best viral hit) 694 (409) 74 (39) 76 (26) 223 (76) 1067 (550)
EVEs 366 32 61 162 621
Mean pident (sd) 36.99 (15.35) 36.91 (11.37) 38.32 (13.27) 33.30 (11.82) 36.32
EVE pidents >= 80 22 0 0 0 22
EVE E-values 1e-20 430 29 67 126 652
dEVEs 112 9 12 38 171
Events 130 26 59 152 367
shared Events 17 1 5 13 36
viral families/clades 12 3 4 21 40
dEvents 47 10 12 38 107
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0.3

YP003800000 [Spissistilus festinus virus 1]

scaffold_1241_16618-17503_-__Encarsia_formosa (A)

UXGD01007991.1_6028-8134_+__Torymus_auratus (C)

UELV01135335.1_4891-7099_-__Megastigmus_stigmatizans (A)

YP_003800003 [Circulifer tenellus virus 1]

UELU01116388.1_12145-14374_+__Megastigmus_dorsalis (B)

YP_009025165 [Persimmon latent virus]

YP_009336492 [Hubei toti- l ike virus 10]

scaffold_8654_1055-3200_-__Platygaster_orseoliae (F)

100

99.1

84.9

5 0

100

98.6

Figure S3. Example of endogenization events. The phylogeny of cluster21304 corresponds to the clustering of a set of viral and candidate viral insertion
genes sharing a homology. In red are represented the loci of viral origin, and in blue are represented the loci probably endogenized (EVEs). The letter at
the end of the taxon label represents the endogenization score assigned to the candidate (see details in Materials and methods). In this example, we found
two singular endogenization events in the species endoparasitoid Encarsia formosa (annotated A and thus presenting a depth of coverage non-significantly
different from the distribution of the BUSOs of the genome as well as at least one transposable element and/or one eukaryotic gene) and ectoparasitoid
Torymus auratus (annotated C and thus presenting only a depth of coverage non-significantly different from the distribution of the BUSOs of the genome).
Since these two species do not share a close common ancestor in the phylogeny and come from two different families, the algorithm therefore assigned
them to two independent viral endogenization events. The viral locus found in the assembly of the endoparasitoid species Platygaster orseoliae was
annotated F, meaning that the depth of coverage deviated significantly from the BUSCO distribution of the genome and that no TEs and less than 5
eukaryotic genes were found in the scaffold containing the candidate insertion. Finally, the two loci belonging to the ectoparasitoid species Megastigmus
stigmantizans and Megastigmus dorsalis both show a score supporting viral endogenization. Furthermore, these species exhibit a doubly monophyletic
clade (high bootstrap score) within the gene phylogeny and within the species phylogeny, suggesting that they acquired this viral gene from their closest
common ancestor about 20 million years ago. All newick phylogenies are available on the github repository under the name : Allc lusterpℎylogeniesmerged.
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Figure S5. Violin plots of the posterior distribution of GLM coefficients after exponential transformation in relation to wasp lifestyle. The
ectoparasitoid lifestyle is in yellow, the endoparasitoid lifestyle is in green, and the free-living lifestyle is in blue. Coefficients have been transformed into
exponential and correspond to the posterior distribution of the coefficients of a binomial negative zero-inflated GLM model, where the lifestyle free-living
stand for the intercept. The Y-axis corresponds to the multiplicative factor of the number of endogenization and/or domestication of EVES and/or events
relative to free-living species. The coefficients are derived from 1000 GLM models adjusted on 1000 randomly selected probable scenarios (>90 CI) of
ancestral states at nodes. Branches from nodes older than 160 million years have been removed from the dataset. The ROPE% is the percentage of the
posterior distribution of coefficients below the intercept. The posterior distribution of the interaction coefficients between lifestyles and branch size were
not informative, and the branch size factor was therefore added as an additive effect to the model.
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Figure S8. Genomic environment for the EVEs detected in Platygaster orseoliae . The plot show regions homologous to viral ORFs in the Platygaster
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dN/dS is below 1, suggesting purifying selection in the P.orseoliae genome. Arrow with black borders correspond to EVEs showing a complete ORF (>50% of
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Table S3. EVEs distribution according to putative non-segmented single-stranded RNA virus donor and their genomic position.For each EVE, we retrieved the position of the homologous ORF in the virus genome identified after a blastp search (first hit). Theinformation on the position of the ORFs was retrieved either from [94], from the ICTV reports or manually after recovery of the viralassembly in NCBI, ORF annotation with getorf (ORF length min= 150bp) and blastp to confirm the position of the ORFs and theirfunctions. The position of the ORF in the free-living virus genome is reported in the column "ORF position", when the genome wasincomplete, we inferred the position of the ORF with respect to the position of the homolog in the closest complete viral genome. Thenumber of EVEs corresponds to the number of EVEs counting paralogs only once (i.e. counting only one EVE per species per genecluster).
Family Closest viral blast hit Protein ID Protein Name ORF position Source Nb EVEs
Artoviridae Pteromalus puparum peropuvirus YP_009505431 Glycosylated matrix protein M (U3) 3 out 5 ICTV 19
Artoviridae Pteromalus puparum peropuvirus YP_009505433 RNA pol (L) 5 out 5 ICTV 9
Artoviridae Beihai rhabdo like virus 1 YP_009333442 Phosphoprotein (U2) 2 out 3 ICTV 1
Bornaviridae Estrildid finch bornavirus 1 YP_009505428 RNA pol (L) 4 out 4 Manually 8
Chuviridae Hubei chuvirus like 1 YP_009337906 Nucleoprotein (N) Incomplete (putative 3 out 3) Manually 24
Chuviridae Hubei coleoptera virus 3 YP_009336865 Nucleoprotein (N) 2 out 3 Shi et al 2016 6
Chuviridae Hubei chuvirus like 3 YP_009337091 Nucleoprotein (N) 3 out 3 Shi et al 2016 2
Chuviridae Hubei coleoptera virus 3 YP_009336866 RNA pol (L) 3 out 3 Shi et al 2016 2
Chuviridae Lonestar tick chuvirus YP_009254003 Nucleoprotein (N) 3 out 3 Manually 1
Chuviridae Hubei odonate virus 11 YP_009336948 Nucleoprotein (N) 3 out 3 Shi et al 2016 1
Lispiviridae Tacheng tick virus 6 YP_009304417 ORF1 1 out 5 Manually 5
Lispiviridae Hubei rhabdo like virus 3 YP_009336884 Glyceraldehyde-3-phosphate dehydrogenase 1 out 5 Manually 7
Lispiviridae Hubei rhabdo like virus 3 YP_009336887 Glycoprotein (G) 3 out 5 Manually 2
Lispiviridae Hubei rhabdo like virus 3 YP_009336889 RNA pol (L) 5 out 5 Manually 1
Nyamiviridae Midway nyavirus YP_002905336 Nucleoprotein (N) 1 out 6 ICTV 8
Nyamiviridae Orinoco orinovirus YP_009666283 Nucleoprotein (N) 1 out 4 Manually 8
Nyamiviridae Sierra Nevada nyavirus YP_009044206 Nucleoprotein (N) 1 out 6 ICTV 5
Nyamiviridae Nyamanini nyavirus YP_002905342 Nucleoprotein (N) 1 out 6 ICTV 4
Nyamiviridae Midway nyavirus YP_002905331 RNA pol (L) 6 out 6 ICTV 1
Nyamiviridae Wenzhou Crab Virus 1 YP_009304556 Nucleoprotein (N) 1 out 4 Manually 1
Nyamiviridae Beihai rhabdo like virus 3 YP_009666292 RNA pol (L) 5 out 5 Shi et al 2016 1
Rhabdoviridae Wugan Ant virus YP_009304559 RNA pol (L) Incomplete (putative 5 out 5) Manually 2
Rhabdoviridae Wuhan insect virus 7 YP_009301743 RNA pol (L) 5 out 5 Manually 1
Rhabdoviridae Sanxia Water Strider Virus 5 YP_009289351 Glycoprotein (G) 4 out 5 Manually 1
Rhabdoviridae Muscina stabulans sigmavirus YP_009664711 RNA pol (L) Incomplete (putative 5 out 5) Manually 1
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Figure S9. Heatmap representing the viral genes known to be domesticated by Hymenoptera. The panel (A) refers to the four known cases (Venturia
canescens, Fopius arisanus, Cotesia congregata and Microplitis demolitor) involving Nudivirus donors while the panel (B) refers to the known case involving
LbFV donors in three Leptopilina species. Complete parasitoid wasp genomes information were available for Microplitis demolitor, Venturia canescens,
Fopius arisanus and Cotesia congregata, while only partial genomic data were available for Chelonus inanitus. Each row indicates a gene which has been
identified previously as being endogenized in at least one species. In (A), the first four columns indicate whether the gene is a core gene for baculoviruses
(Bv), Nudiviruses (Nd), alpha-nudiviruses (alpha-Nv) or beta-nudivirus (beta-nv). The following columns indicate the presence of each gene based on the
literature (in blue) and based on our pipeline (columns with a star symbol). The colors indicate the inferred selection pressure acting on each gene (dN/dS)
and the letters A, B, C, D, E, and X represent the degree of confidence in the endogenization. Capital letters indicate that this gene is present in a scaffold
that contains other candidate genes. When the box is framed in black, it means that the gene is expressed (TPM>1000).
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Figure S10. Violin plots of the posterior distribution of dEVEs and dEvents GLM coefficients in relation to wasp lifestyle (corrected for EVEs and
Events rates) . The ectoparasitoid lifestyle is in yellow, the endoparasitoid lifestyle is in green, and the free-living lifestyle is in blue (the intercept).
Coefficients have been transformed into exponential and correspond to the posterior distribution of the coefficients of a binomial logistic regression GLM
model, where the lifestyle free-living stand for the intercept. The Y-axis corresponds to the multiplicative factor of the number of domestication of dEVES
or dEvents (corrected for EVEs and Events rates) correlative to free-living species. The coefficients are derived from 1000 GLM models adjusted on 1000
randomly selected probable scenarios (>90 CI) of ancestral states at nodes. Branches from nodes older than 160 million years have been removed from
the dataset. The ROPE% is the percentage of the posterior distribution of coefficients below the intercept. The posterior distribution of the interaction
coefficients between lifestyles and branch size were not informative, and the branch size factor was therefore added as an additive effect to the model.A-
The corrected coefficient within all number of dEVEs and dEvents, B- The corrected coefficient within all number of dEVEs and dEvents without the control
genomes, C- The corrected coefficient within all number of dEVEs and dEvents present in a scaffold annotated with a score A, D- The corrected coefficient
within all number of dEVEs and dEvents present in a scaffold annotated with a score A and without the control genomes.
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Figure S11. IVSPER genes identified in the Campopleginae genome. The figure compares the synteny of the IVSPER between Hyposoter didymator
ichnovirus (HdIV) and the Campoplegninae of our dataset. Homologous genes with synteny between the two species are indicated by grey shading. The
direction of the arrows corresponds to the sense and anti-sense strand. The color of the boxes is unique to each IVSPER.
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Figure S12. Cladogram of the Ophioniformes group, illustrating the two independent endogenization events of two unknown viruses in
Banchinae and Campopleginae lineages. The phylogeny includes 12 subfamilies of the Ophioniformes group within the superfamily Ichneumonoidea.
Several species of these subfamilies have been examined for the presence of ichnovirus-like polydnaviruses: by negative staining of calyx fluid (N), TEM of
ovarian sections (S), visual examination of the calyx fluid (CF), probes from ichnovirus replication or structural proteins (probes) or by IVSPER sequence
homology on whole genome assemblies (WG). The subfamilies and species in blue correspond to those positive for a dsDNA virus endogenization from
unknown origin (ichnovirus-like). The others (in black) were negative for endogenized ichnovirus-like elements. The phylogeny is inspired from [116], and
the data reported comes from [116, 117, 118, 119].
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Figure S13. Simplified summary of the bioinformatics pipeline for the detection and validation of candidates for endogenization and domestication.
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Figure S14. Canonical examples of endogenization events inferred by our pipeline. The column "Sp names" contains the species name, followed by
the name of the scaffold in which the EVE has been identified. The "Viral family" column refers to the putative viral family that donated the EVEs. The
column "Cluster number" corresponds to the number of the corresponding cluster phylogeny (thus the EVE phylogeny). The "Monophyletic clade number"
column corresponds to the number of the monophyletic clade within a cluster (can be a single locus or multiple loci). The column "Event number" is the
number given to single/multiple EVEs that derive from the same endogenization event. 45 of 45
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