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Abstract

Using the self-focusing non-linear Schrödinger (NLS) equation, we suggest a
singularity-mediated turbulent scenario. This equation is taken as a simple
(toy) model to investigate the role of potential singularities in fully developed
turbulence and intermittencies. The self-focusing NLS equation has the ad-
vantage to exhibit finite-time singular solutions in any dimension D, which are
described by a simple solution of a nonlinear self-similar universal equation. We
investigate in this paper in particular the two dimensional (2D) dynamics which
provides a more complex behavior than the 1D case studied formerly. The cur-
rent scenario of turbulence offers an understanding of the role of singularities
in dissipation in a turbulent flows and reproduces, among other aspects, the
observed anomaly of dissipation in the limit of zero viscosity.

Keywords: Non-linear Schrödinger equation, finite-time singularities,
Turbulent dissipation, Inttermitency, Anomalous dissipation

1. Introduction

Singularities and turbulence have always been in a dangerous relationship.
At first, it concerns the incompressible Navier-Stokes equation that describes
the dynamics of incompressible simple fluids, as water, and provides the good
framework to study turbulence. Already, the question whether this Navier-10

Stokes equation exhibits or not finite-time singularities (for smooth initial con-
ditions) remains an open problem despite the tremendous efforts of the scien-
tific community, tracing back to the pioneering work of Leray for the case of
the Navier-Stokes equations [1]. The analogous question of the existence of
finite-time singularities for the inviscid case ruled by the Euler equations also15

remains an open problem (see for instance [2, 3, 4, 5]). Furthermore, the clas-
sical theories of turbulence, following the work of Kolmogorov [6] provides a
power spectrum for the velocity fluctuations that is a wonderful example of a
singular limit. Indeed, the von Kármán-Howarth-Monin relationship [7] relates
the statistical mean value of the velocity increment δv = v(x0 +x)−v(x0), be-20

tween two points separated by a distance x = |x| to the energy dissipation rate
per unit mass, ε (with dimensions of L2/T 3), through the scaling δv ∼ (εx)1/3.
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This relationship is valid in the inertial regime where viscosity can be neglected,
that means for length larger than the Kolmogorov length λK ∼ (ν3/ε)1/4, where
ν is the kinematic viscosity of the fluid. The singular limit arises thus naturally25

when considering vanishing ν, leading to a finite dissipation rate ε (the so-called
zero-th law of turbulence) while the spatial derivative of the mean value of the
velocity increment is no longer defined. Finally, signature of turbulent behav-
iors are often invoked to justify the intermittency properties of the turbulent
fields [8]. Therefore, since the existence (and the form) of finite-time singulari-30

ties in the Navier-Stokes equations remains undetermined, the influence of such
possible singular flows (even if they would be eventually regularized at short
scales) to the statistical properties of turbulent flows cannot be evaluated.

Recently, three of us have considered a much simpler model where the exis-
tence of finite-time singularities in the limit equation without dissipation is well35

known and characterized, allowing to study how a turbulent dynamics in such
system is affected by the occurrence of these very intense events as viscosity
is switched on [9]. We have shown, that, despite its simplicity, our model in
one spatial dimension exhibits both, intermittency (the dynamics appears as
a random sequence of peaks, corresponding to viscosity-regularized potential40

singularities), and, a turbulent cascade spectrum, although in these systems no
cascade processes towards small scales can be identified.

The model is in fact deduced from the focusing nonlinear Schrödinger (NLS
later on) equation to which forcing at large scale and dissipation at small scales
are added, which reads:45

i
∂ψ

∂t
= −α

2
∇2ψ − g|ψ|2nψ − iν∆2ψ + f(x, t), (1)

where ψ(x, t) is a complex field representing a wave amplitude which can be
considered in general in a space of dimension D. The α term represents the
wave dispersion, and g the strength of the nonlinear dependence of oscillation
frequency, g|ψ|2n, on the wave amplitude |ψ|. The term −iν∆2ψ in (1) denotes
a damping which we have chosen to be of higher order in derivatives than the50

inviscid and conservative case (ν = 0). Finally, f(x, t) is an additive complex
forcing that acts at large scales. Equation (1) is complemented with a smooth
initial condition. In the present paper, we study this model in two space dimen-
sions (2D) and investigate how the existence of singularities in the inviscid limit
influences the turbulent dynamics when dissipation and forcing are present.55

The paper is organized as follows: next section 2 introduces the inviscid
nonlinear Schrödinger equation which is the basic model under study. Section 3
summarizes the main characteristic of the well known singular finite-time blow-
up in the inviscid nonlinear Schrödinger equation. Before the conclusion, section
4 describe the observed features of a singularity-mediated turbulence in this 2D60

NLS equation (1).
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2. The focusing nonlinear Schrödinger Model

In what follows we firstly consider the focusing nonlinear Schrödinger (NLS)
equation with zero damping and zero forcing, that is,

i
∂ψ

∂t
= −α

2
∇2ψ − g|ψ|2nψ. (2)

Here, ψ(x, t) is a complex field defined in an infinite space of dimension D.65

Since the hyper-viscosity ν and the forcing vanish here, one recovers the usual
(2n + 1)-th order nonlinear Schrödinger equation which is explicitly conserva-
tive and reversible. Indeed, from the NLS equation one derives the following
conservation laws.

2.1. Mass conservation70

The “density” |ψ|2 ≡ ψψ̄, where ψ̄ means the complex conjugated field of
ψ, follows a conservative dynamics

∂t|ψ|2 + ∂iji = 0, (3)

where the current is defined by

ji = − iα
2

(
ψ̄∂iψ − ψ∂iψ̄

)
. (4)

In equation (3), as well as, in equations (6) and (9) below, the indices run
{i, k} = 1, 2, . . . D and repeated indices stand for a sum following Einstein’s75

convention.
The conservation law (3) implies that the total mass (or number of particles

in the context of Bose-Einstein condensates, light intensity in nonlinear optics)

N =

∫
|ψ|2dDx (5)

remains constant in time.

2.2. Momentum conservation80

The current, which is a momentum density flow, rules

∂tji + ∂kTik = 0, (6)

where Tik is a stress tensor:

Tik =
α2

4

(
∂iψ̄∂kψ + ∂iψ∂kψ̄ − ψ̄∂ikψ − ψ∂ikψ̄

)
− αgn

n+ 1
|ψ|2(n+1)δik. (7)

Interestingly, the term p = − αgn
n+1 |ψ|

2(n+1) represents an isotropic pressure
which has a negative sign for αg > 0, whence an uniform solution becomes
linearly unstable since ∂p

∂|ψ|2 ≤ 0. Therefore, in the long wave limit this system85
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develops a linear instability. However, we underline that the short wavelength
perturbations are dispersive modes, hence the short wavelength modes do not
grow exponentially in time. Any initial perturbation of the uniform solution
grows thus exponentially at short time with a well defined bandwidth wave-
length.90

Finally, the force per unit area acting on a boundary is given by the compo-
nents of the stress tensor (7): fi = Tikn̂k, where n̂k is the unitary normal vector
to the desired surface.

2.3. Energy conservation

Contrary to fluid dynamics, the energy of the focusing NLS equation, in-95

volves two terms of opposite signs, allowing the possibility that the relevant
energy is not a positive defined quantity. Indeed, the energy density reads,

E =

(
α

2
|∇ψ|2 − g

n+ 1
|ψ|2(n+1)

)
, (8)

and, it obeys a conservation equation

∂tE + ∂kQk = 0, (9)

where the energy flux is given by

Qk =
i

2

[(α
2
∇2ψ̄ − g|ψ|2nψ̄

)
∂kψ − cc.

]
.

Here c.c. stands for complex conjugated. Therefore, the total energy or Hamil-
tonian,100

H =

∫ (
α

2
|∇ψ|2 − g

n+ 1
|ψ|2(n+1)

)
dDx, (10)

is conserved by the dynamics of (2).

3. Blow-up solutions of the nonlinear Shchrödinger equation.

In what follows we show that under some conditions the perturbation am-
plitude blows-up in finite-time in the inviscid case (ν = 0) and for the sake of
simplicity we set α = g = 1 without loss of generality.105

3.1. Self-similar Wave collapse for the inviscid limit.

One of the features of the un-forced and inviscid limit (2) is that it displays,
in the cases where nD > 2, a finite-time singularity at a given point (a position
and a time that depends explicitly on the shape of the initial condition). This
makes the great difference with respect to the inviscid fluid case, namely the110

Euler equations, where the existence of such a singular solutions are in fact still
an open question on the way of being solved positively (hopefully).
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The existence of this finite-time singularity is due to the non positiveness of
the energy density, which is the difference of two positive terms that can both
become large (and infinite at the singularity) while their difference remains115

constant. In fact, defining
〈
|x|2

〉
=
∫
|x|2|ψ(x, t)|2dDx, the arguments for the

finite-time singularity, following Talanov [10] and Zakharov [11], come from the
dynamical relation :

d2

dt2
〈
|x|2

〉
= 4αH − 2(nD − 2)

(n+ 1)

∫
|ψ(x, t)|2(n+1)dDx, (11)

therefore if nD > 2 one has d2

dt2

〈
|x|2

〉
≤ 8H. Moreover because H is constant,〈

|x|2
〉
≤ 2αHt2 + c1t+ c0, thus, if initially H ≤ 0 necessarily it exists a tc, such

that
〈
|x|2

〉
→ 0 as t→ tc. Then, applying the Cauchy-Schwarz inequality:∫

|ψ|2dDx ≤
(∫
|∇ψ|2dDx

)(∫
xixi|∇ψ|2dDx

)
implies that at the singularity

∫
|∇ψ|2dDx → ∞, indicating the presence of a

finite time singularity. In fact, there is abundant evidence of the existence of120

self-similar finite-time blow-up solutions with an amplitude that increases in a
contracting region that vanishes at the collapsing time [12, 13]. Seeking a radial
symmetric solution (r = |x|)

ψ(r, t) =
1

(tc − t)1/2n
Φ

(
r

(tc − t)1/2
,− log(tc − t)

)
, (12)

then the self-similar function Φ(ξ, τ) that depends on the self-similar variables
ξ = r/(tc − t)1/2 and τ = − log(tc − t) rules the following partial differential125

equation

i
∂

∂τ
φ(ξ, τ) +

i

2

(
1

n
+ ξ

∂

∂ξ

)
φ = −1

2

(
∂2φ

∂ξ2
+
D − 1

ξ

∂φ

∂ξ

)
− |φ|2nφ. (13)

This equation admits “oscillatory” solutions in τ of the form: φ(ξ, τ) = eiλτϕ(ξ),
where ϕ(ξ) satisfies the ordinary differential equation:

−λϕ(ξ) +
i

2

(
1

n
ϕ+ ξϕ′

)
= −1

2

(
ϕ′′ +

D − 1

ξ
ϕ′
)
− |ϕ|2nϕ, (14)

which is complemented by the boundary conditions:

ϕ(0) = ϕ0, ϕ
′(0) = 0, & ϕ(ξ) ∼ ξ−1/n, ξ →∞. (15)

Because of phase invariance of (14) it is possible to set ϕ0 real. The real parame-130

ters λ and ϕ0 make possible the integration of (14), however for an arbitrary pair
of numbers (λ, ϕ0), the solution of the ode (14) displays an oscillatory behavior
in the limit ξ → ∞, whence the solution does not satisfy the right boundary
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conditions (15). The selection mechanism follows by simple counting the free
available parameters (λ, ϕ0) and the number of conditions required to satisfy a135

non-oscillatory behavior when ξ →∞ (this is simply the linear part of (15)). In
the present case, the asymptotic condition selects the right values for (λ, ϕ0).

It has been shown that there are infinite solutions that satisfy the equa-
tion (14) together with the boundary condition (15). We label with an index
` = 0, 1, 2, . . . , the solutions ϕ`, which are characterized by the “nonlinear eigen-140

value” λ` and the finite amplitude ϕ
(`)
0 .

(a) (b) (c)

Figure 1: Plot of the numerical solution self-similar ordinary differential equation (14) with
the boundary conditions (15) for different dimensions. The plots show three distinct numerical
solutions for three different couple of parameters (ϕ0, λ). In particular, at each plot, the red
solution represents the zero energy solution (see below). (a) The one dimensional case for
n = 3. (b) The two dimensional case D = 2 with n = 2. (c) The three dimensional case
D = 3 with n = 1.

The figure 1 shows numerical simulations of the self-similar ordinary differ-
ential equation (14) with the boundary conditions (15) that do not present any
oscillatory asymptotic behavior. The following table summarizes the firstvalues

of the parameter λ` and ϕ
(`)
0 .145

case ` = 0 ` = 1 ` = 2

d = 1 &n = 3 λ = 0.3598 ϕ0 = 0.975 λ = 0.707 ϕ0 = 0.8675 λ = 1.4175 ϕ0 = 1.035
d = 2 &n = 2 λ = 0.32625 ϕ0 = 0.9795 λ = 0.861 ϕ0 = 0.926 λ = 1.134 ϕ0 = 1.662
d = 3 &n = 1 λ = 0.545 ϕ0 = 1.3925 λ = 1.56 ϕ0 = 1.05 λ = 2.20 ϕ0 = 1.66

Table 1: Summary of some the self-similar ordinary differential equation (14) with the bound-
ary conditions (15) for d = 1, 2, 3 and various n. The column ` = 0 correspond to the
zero-energy, H0 solution (see main text).

The question is which one of these solutions is the selected one by the dy-
namics of NLS? We need to explore in more detail the conserved quantities.
Near the wave collapse the “mass” of the singular solution defined through (5)
becomes

Ncollapse =

∫
|ψ|2dDx = (tc − t)D/2−1/nSD

∫ ∞
0

|ϕ|2 ξD−1 dξ

where SD is the surface of a unit sphere in dimension D. Because nD > 2, then,150

Ncollapse → 0 as t→ tc, therefore the mass of the singularity becomes zero at tc.
Notice that this is not the current total mass, because the self-similar solution
of the nonlinear eigenvalue problem (14) suffers a mechanism of attraction of
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an arbitrary initial condition to (12). The important aspect is that this process
is not forbidden by a conservation law. Indeed, if the mechanism of attraction155

would require an infinite mass, the self-similar singularity would not be possible.
On the other hand, a similar analysis says that the Hamiltonian scales as

H = (tc − t)D/2−1/n−1H0, hence it may diverge for 2 < nD < 2(n+ 1), in this
case it is necessary to impose :

H0 =

∫ ∞
0

(
1

2
|ϕ′|2 − 1

n+ 1
|ϕ|2(n+1)

)
ξD−1dξ ≡ 0. (16)

It follows that the solution selected by the dynamics satisfy equation (14)160

together with the boundary condition (15) and the restriction (16). This solution
is called the ground state (` = 0) and appears to be stable. It is thus the one
observed in the time dependent numerical simulations of (2).

In summary, if 2 < nD < 2(n+1) and for a suitable smooth initial condition
(in such a way that the initial Hamiltonian is negative), then the solution of (2)165

blows-up at a point (the solution and its gradient become infinite) in finite-time
in a self-similar way such that the amplitude increases while the size of blow-up
region decreases.

3.2. Pressure fluctuation as a consequence of a finite-time singularity.

We briefly discuss here the effect of a singularity on the momentum (7). This170

effect is given by the stress tensor, near the position where the singular blow-up
has happened. The stress tensor (7) in 1D, possesses only a single component
which is Txx. Because of the symmetry of the singularity, we focus on the radial
pressure in higher dimensiosn (in dimensions D = 2, & 3 here), which exhibits
the same expression as the one in the one dimensional case:175

Trr = n̂iTiknk =
1

4

(
2|∂rψ|2 − ψ̄∂rrψ − ψ∂rrψ̄

)
− n

n+ 1
|ψ|2(n+1).

After introducing the self-similar solution (12) into the previous radial stress
expression, one obtains:

Trr =
1

(tc − t)1+1/n
σ(ξ) with

σ(ξ) ≡
(

1

4

(
2|ϕ′|2 − ϕ̄ϕ′′ − ϕϕ̄′′

)
− n

n+ 1
|ϕ|2(n+1)

)
, (17)

The stress field, Trr, thus always diverges as t→ tc, and its space evolution
depends on the explicit self-similar solutions computed already. The far field
behavior for the singular solution being

ψ ≈ Aξ−
1+2iλn

n ,

for ξ � 1, the asymptotic behavior of the pressure force becomes:

Trr =
1

(tc − t)1+1/n

α2A2
(
1 + 4λ2n2

)
2n2

ξ−2(1+1/n), (18)
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Figure 2: Plot of the self-similar the stress tensor σ(ξ) as a function of the self-similar variable
ξ. The plot includes the stresses computed in the following cases: D = 1, n = 3 (blue), D = 2,
n = 2 (green), and D = 3, n = 1 (red).

for ξ � 1. We show the spatial variation of the singularity impulsive reaction
(the self-similar function σ) for 1, 2, and 3 space dimensions on Figure 2. The180

most characteristic feature is that the singular solution always produces a singu-
lar pressure peak since in (17) 1+1/n > 0. Other observables, as the dissipation
rate, may not as we will see next.

3.3. Dissipative regularization of the singularity.

When the dissipation term −iν∆2ψ is added to the dynamics, leading to a185

viscous NLS equation:

i
∂ψ

∂t
= −α

2
∇2ψ − g|ψ|2nψ − iν∆2ψ, (19)

the singularity is suppressed, meaning that the inviscid finite-time singularity is
regularized by the viscous term acting at short scales (and thus high amplitude).
Indeed, one can deduce from the self-similar variable ξ = r/(tc − t)1/2, that the
dissipation term diverges like ν(tc− t)−2ψ when approaching the singularity. It190

thus becomes dominant there, curing the finite-time singularity that is replaced
by a finite amplitude peak. This can be seen by considering, using numerical
simulations the time evolution with the viscous term −iν∆2ψ of an initial small
density bump that would lead to a finite-time singularity for the NLS equation
(2). In this case, as illustrated in figure (3) for the 2D case with n = 2 and195

ν = 10−4, we observe the formation in time of a peak that reaches a maximum
value at some time.

As we follow in time the bump amplitude on figure 4 (a), which corresponds
to the maximum of the square of the modulus wave function max|ψ|2, we notice
that the formation of the first peak is followed by an oscillatory dynamics corre-200

sponding to successive density peaks localized also at the initial bump location.
It should also be noticed that these peaks are well localized in time, the smaller
the viscosity, the shorter, the more frequent and the higher are the peaks.

In fact, adding the viscous term to the NLS equation cancels the conservation
laws of the dynamics and particularly the mass (5) and energy (8). Since the205

energy (8) has not a well defined sign, the quantity of interest for such simplified
model is the mass (5) which is positive and dissipated by the viscous term, as

8
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Figure 3: Snapshot of the density field |ψ|2 at different times for a numerical simulation of the
damped 2D NLS equation (19) with n = 2 starting with a small initial bump (top left figure).
We observe the formation of a very thin peak localized at the center of the original bump,
that reaches a maximum value up to 30 times the initial bump amplitude (bottom right). The
viscosity is ν = 10−4 and the times of the snapshots correspond t = 0.1, 1.2, 1.4, 1.6, 1.8 and
2 from left to right and top to bottom.

proposed in our former study [9]. Indeed, the dissipation rate ε(x, t), that is
the loss of mass density per unit of time due to the dissipation term is directly
deduced from the damped NLS equation (19), yielding for the variation of the210

total mass:
dN

dt
= −2ν

∫
|∆ψ|2dDx = −

∫
ε(x, t) dDx,

where the dissipation rate as a function of space and time is defined through

ε(x, t) = 2ν|∆ψ|2. (20)

From now on, it is useful to define the spatial averaged density and dissipation
rate following

N̄(t) =
1

LD

∫
LD
|ψ|2dx , and (21)

ε̄(t) =
2ν

LD

∫
LD
|∆ψ|2dx . (22)

In fact, throughout the paper, we will denote the spatial average of a quantity q215

by q̄, and the temporal averages by 〈q〉, so that 〈ε̄〉 denotes the spatio-temporal
average. Figure 4 (b) shows then the mean mass dissipation rate ε̄(t) as a
function of time for ν = 10−4 corresponding to the bump oscillations shown on
figure 4 (a). It demonstrates that the |ψ|2 peaks correspond exactly to peaks
of the mass dissipation rate. More precisely, in the model, the dissipation (of220

mass) is concentrated in the violent events due to the singular dynamics of the
inviscid dynamics. Remarkably however, we observe in this curve that these
dissipation peaks increase with time as if the peaks are on top of an increasing
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Figure 4: (a) The evolution of the maximum of the wave function modulus max|ψ|2 with time
for a single damped singularity ruling the unforced but damped 2D NLS equation (19) with
n = 2. The initial condition is a smooth bump for the different viscosities, ν = 10−4, 10−3, 5 ·
10−3, 10−2 and 5 · 10−2, the smaller the viscosity, the higher the peak amplitude. (b) The
dissipation rate ε̄(t) as a function of the time for the case ν = 10−4.

curve that we interpret as the dissipation rate coming from concentric waves
generated by the density peaks (as it can be qualitatively observed on Figure 3.225

In order to characterize these dissipation peaks, let us focus now on the dis-
sipation rate that would induce a finite-time singularity using the inviscid single
self-similar collapse (12), but estimating the dissipation rate of this solution at
a non-zero viscosity ν, yielding:

ε(t) = 2ν(tc − t)D/2−1/n−2
∫ ∞
0

|∆ξϕ|2 ξD−1dξ.

The total dissipation rate would therefore diverge in time in this framework
as t → tc, following ε(t) ∼ (tc − t)−11/6 for D = 1 and n = 3 as studied
in [9], and ε(t) ∼ (tc − t)−3/2 for D = 2 and n = 2 as studied here. The
viscosity eventually regularizes this singular behavior consistent with the sharp
peak of the mean dissipation observed in the numerics of figure 4 (b). Notice230

that in three space dimensions (D = 3) with n = 1, it is coincidently the same
exponent, ε(t) = 2ν(tc − t)−3/2. We underline that for the NLS equation in
higher dimensions, e.g. D > 6 and n = 1, the solutions of NLS (2) blow-up in
finite-time, while the dissipation rate ε(t) does not.

Finally, we conclude noticing that in our numerics, we observe that the235

dissipation peak decreases with the viscosity, while the frequency peak increases
so that the spatio-temporal averaged dissipation remains finite as ν → 0, as
observed in 1D [9].
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4. A turbulent behavior mediated by singularities

4.1. Forcing and dissipation: a simple turbulence framework240

Adding a random forcing at large scale to the former dissipative model pro-
vides an idealized framework to investigate how a turbulent regime can emerge
from a dynamics which contains finite-time singularities in the inviscid limit.
We thus consider the equation (1) rewritten here:

i
∂ψ

∂t
= −α

2
∇2ψ − g|ψ|2nψ − iν∆2ψ + f(x, t),

where the forcing term f(x, t) is modeled in the Fourier space as a white noise
with a Gaussian amplitude, namely:

f̂k0(k, t) = a0w(t)e
− k2
k20 .

Here a0 is the forcing amplitude, while w(t) is a homogenous complex random
noise inside a sqare of radius 1 and centered at the origin in the complex plane.

The time variation of the total mass N reads now:

dN

dt
= −

∫
ε(x, t) dDx + i

∫ (
ψf̄k0 − ψ̄fk0

)
dDx, (23)

Therefore, in strong analogy with fluids, the dissipation density −ε(x, t) is
strictly negative while the forcing can be positive or negative. As already said,245

we will focus only on N(t) with its dissipation balance (23). We have shown
that in the presence of forcing and dissipation the NLS equation (1) provides
a genuine scenario for a singularity-mediated turbulence in 1D [9]. There, we
have obtained that: i) the dissipation takes place near the singularities only,
ii) such intense events are random in space and time, iii) the mean dissipa-250

tion rate is almost constant as the viscosity varies, and iv) we observed an
Obukhov-Kolmogorov spectrum with a power law dependence together with an
intermittent behavior characterized by structure functions correlations. We now
seek to investigate how such model generalizes in 2D.

By “turbulent” we mean a disordered or chaotic spatio-temporal behavior255

given by the solutions of the partial differential equations (like (1)) where mass
(N) and energy (H) are injected at large scale by a forcing term fk0(x, t), while
the viscous term dissipates them at small scales. Such turbulent dynamics
is illustrated on figure 5 for two different viscosity ν = 10−3 (left) and ν =
10−4, (right) and two different forcing amplitudes a0 = 0.2 (top) and a0 = 0.5260

(bottom). We observe qualitatively that the number of peaks increases with
the forcing amplitude, while their height increases as we lower the viscosity,
particularly for the higher forcing.

The numerical simulations show the existence of a permanent turbulent
regime that is illustrated on Fig. 6, where the mean mass N̄(t) and energy265

H̄(t) are plotted as functions of time for the lower forcing a0 = 0.2. There we
observe that both the total mass and energy reach rapidly a stationary statisti-
cal regime where forcing and dissipation balances and N̄(t) fluctuates around a
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Figure 5: Density fields |ψ(x, t)|2 solutions of the forced and viscous NLS equation (1) for
ν = 10−3 (left) and ν = 10−4, (right) in the turbulent regime, for D = 2 and n = 2. The
computational box size is 512× 512 and the forcing is obtained using k0 = 0.5 and a0 = 0.5.
We observed that the field is composed of many density peaks randomly distributed, the lower
the viscosity, the higher the peaks.

mean value that is not depending strongly on the viscosity. Notice that in these
cases the total energy displays negative values, a necessary condition for the270

genesis of a potential singularity (reminding the blow-up conditions, equation
(11).

The mean (in space) dissipation rate, Fig. 7, exhibits a (statistically steady)
randomly distributed sequence of peaks, in close correspondence with turbulent
dissipation [14]. In our picture, these peaks correspond to the formation of275

singularities stopped by the viscosity.

4.2. The turbulent dissipation rate

As observed in Ref. [9] in one space dimension the total dissipation rate
shows a sequence of intermittent appearance of peaks of dissipation which are
reminiscent of the inviscid blow-up solution of the NLS equation (2). These280

peaks do not present any singularity because viscosity regularizes a potential
singular behavior. Varying viscosity, but keeping all the other parameters con-
stant, it is observed similar phenomenology than in 1 D [9]. As in one space
dimension, in the numerics we observe that the strength of the dissipation peaks
decreases with the viscosity, and the recurrence time for the appearance of peaks285

increases so that, the spatio-temporal averaged dissipation rate remains finite.

12



(a)

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  1000  2000  3000  4000  5000

(b)
-0.00018

-0.00016

-0.00014

-0.00012

-0.0001

-8 10
-5

-6 10
-5

-4 10
-5

-2 10
-5

 0  1000  2000  3000  4000  5000

 0

Figure 6: The mean density (21) and mean energy density versus time for various numerical
simulation of the viscous forced NLS model (1). The is done numerics for D = 2 and n = 2,
the forcing is a0 = 0.2 and various dissipation as show in the plots.
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Figure 7: The mean dissipation rate ε̄(t) defined by eq. (20) vs. time for various numerical
simulation of the viscous forced NLS model (1) for an amplitude of the forcing (a) a0 = 0.2
and (b) a0 = 0.5 for k0 = 0.5 for dissipation varying for ν = 10−1 to ν = 10−4 as shown in the
plots. Remark that although the temporal average 〈ε̄〉 looks almost independent of viscosity
for large forcing (panel b), for small forcing (panel a) there is an slight dependence of the time
average 〈ε̄〉 as a function of ν.

The most remarkable feature is the observation of an “anomalous dissipa-
tion” effect. More precisely, the mean (in space and time) dissipation rate, 〈ε̄〉,
is almost independent of viscosity as ν → 0 for a fixed forcing amplitude (1/ν
is thus the analog of high Reynolds number here, see the dimensional analysis290

below) , as shown in Fig. 8 (a). This feature suggests that the injection purely
selects the mean dissipation rate. The dissipative processes adapt to viscosity
variations. This mechanism corresponds to the “anomalous dissipation” in the
infinite Reynolds number limit, where mean dissipation converges to a constant
value as the viscosity decreases [15].295

Although 〈ε̄〉 is almost constant as a function of viscosity, as in one space
dimensions, for intermediate forcing, the ratio between the dissipation peaks
over the mean dissipation rate, εpeak/ 〈ε̄〉 exhibits a critical behavior as viscosity
varies (See Fig. 8 (b)). This plot shows the average of the dissipation peaks
normalized by the mean dissipation rate 〈ε̄〉 vs 1/ν. As ν → 0, or 1/ν � 1300

the dissipation peaks decrease. The maximum ratio arises for a viscosity of the
order of ν = 10−3 in dimensionless units. This feature was also observed in one
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Figure 8: (a) The mean dissipation rate defined by eq. (20) vs. the inverse of viscosity 1/ν.
The mean dissipation rate is 〈ε̄〉 = 0.5025± 0.016 and almost constant up to a 3%. (b) Mean
peak dissipation created by the intermittent events, normalized by the mean dissipation rate,
as a function of the inverse of viscosity. One observes that the peak events may be as large as 10

times the mean dissipation rate. The curves corresponds to the fits εpeak/ 〈ε̄〉 = 1.051
(
1
ν

)0.347
for 1/ν < 1000, and εpeak/ 〈ε̄〉 = 151 ν0.374 for 1/ν > 1000. The numerical simulations of the
viscous forced NLS model (1) are done for D = 2 and n = 2. The system size is L = 9.7 units
and a forcing a0 = 0.1.

space dimensions [9], but, unfortunately, at this stage, a rational explanation of
this striking effect is still missing.

As the forcing is changed this overall picture remains unchanged. The mean305

dissipation rate is almost independent of viscosity, except, perhaps, for small
forcing (see a0 = 0.01 in Figure 9 (a)) where one notices an apreciable non
constant tendency for various measurements. Figure 9 (b) shows that the non-
monotonic behavior of εpeak/ 〈ε̄〉, still exhibits a maximum around ν ≈ 10−3.
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Figure 9: (a) The mean dissipation rate for various forcing, as function of the inverse of the
dissipation coefficient ν. The plot shows that for almost all values of a0 the mean dissipation
rate is almost independent of viscosity. (b) Mean peak dissipation created by the intermittent
events, normalized by the mean dissipation rate, as a function of the inverse of viscosity for
various forcing. In both plot •: a0 = 0.5, •: a0 = 0.1, •: a0 = 0.01, •: a0 = 0.25, •: a0 = 0.05,
•: a0 = 0.03.

We end this section, noticing two interesting features that discriminate the310

1D from the 2D cases. In two space dimensions the mean dissipation rate in
space and time are much larger than in one space dimensions, that is
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〈ε̄〉2D � 〈ε̄〉1D .

On the contrary, the peak-mean ratio is about a hundred times smaller than
the same quantity in one space dimensions, that is

εpeak/ 〈ε̄〉2D � εpeak/ 〈ε̄〉1D.

Finally, in Fig. 10 we observe that the mean dissipation rate scales like the
square of the forcing amplitude 〈ε̄〉2D ∼ a20.
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Figure 10: a) The mean dissipation rate of Fig. 9-a normalized by a20 vs. the inverse of the
dissipation coefficient ν. The plot shows that excepting for a small forcing a0 = 0.03 all other
points collapse in a single horizontal line. b) The mean dissipation rate 〈ε̄〉 vs. the forcing
a0 for various viscosities. The line represents the law 〈ε̄〉 ∼ a20 as an eye-guide. Because the
mean dissipation rate does not depend strongly on the viscosity all points overlap in a single
point, excepting for the small forcing a0 = 0.03 as in the left panel. The colors correspond to
the same points of Figs. 9-a & b.

4.3. Dimensional analysis of the problem and discussion315

In order to discuss our results, it is important to first perform a dimension
analysis. We attribute to |ψ|2 the dimensions of %, that is |ψ|2 ∼ %. Then,
the parameters of the un-forced non-linear Schrödinger equation (1) scale as:
α ∼ `2/τ , g ∼ 1/(τ%n) and ν ∼ `4/τ , where ` and τ stand for the units of length
and time respectively. Therefore we cannot define a dimensionless parameter320

from these equations parameters only playing a role similar to the Reynolds
number in fluid mechaics. The additive complex forcing, f(x, t), in equation
(1) must be included as a Wiener process, that is |f2|∆t has dimensions of %,
therefore the global turbulent problem (with forcing and dissipation) exhibits a
single dimensionless number (first written in general, and then, using the specific325

values D = n = 2 of the current study, and recalling that the magnitude of the
forcing is characterized by a0):

Π = g|f |2n
( ν
α2

)n+1

=
ga40ν

3

α6
. (24)

This dimensionless number is however difficult to interpret since the forcing
and the dissipation are on the same side of the fraction, in apparent contradic-
tion with a Reynolds number that would involve a ratio of these two quantities.330
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However, as discussed above when plotting the dissipation rate, we can argue
that Π represents the inverse of a Reynolds number of the problem for fixed
forcing amplitude.

Contrarily to the Navier-Stokes equation, where there is no intrinsic length,
in the current case the presence of the dispersion (the α term) and viscosity335

(ν term) introduces an intrinsic length, namely
√

ν
α . Therefore, considering the

system size L ∼ ` as an additional geometrical parameter, we can build another
dimensionless number

Π1 =
αL2

ν
. (25)

This parameter may be seen as the analogous of a Knudsen number, that is the
ratio of the system size with a microscopic length. It is practically large in our340

simulations and should not play a crucial role a priori so that we will omit it in
the further analysis.

Next, we perform the dimensional analysis on the mean observable quantities
in the turbulent regime, namely

〈
N̄
〉
∼ % and 〈ε̄〉 ∼ %/t.

For the dissipation rate we thus obtain:345

〈ε̄〉 = a20Fε(Π). (26)

Our numerical simulations showing that the dissipation rate does not vary
with the viscosity at first order suggest that we can consider there Fε(Π) as a
constant, leading to the prediction 〈ε̄〉 ∝ a20, as observed in the numerics (see
Figure 10).

Similar analysis for the mean density gives:
〈
N̄
〉
∼ νa20

α2 FN (Π). Here the350

numerical observation that
〈
N̄
〉

varies only slightly with the viscosity leads
to the prediction (seeking a power law behavior for the function FN (Π) ∝
Πm such that the viscosity dependance disappears):

〈
N̄
〉
∝ a

2/3
0 g−1/3 that

seems consistent with our results (N is increasing with the forcing less than
the dissipation rate) although a detailed study should be performed in further355

studies.
Because of the variety of dimensionless quantities a pure Kolmogorov-like

argument is not sufficient to provide a close formula for the spectrum. Indeed,
following [9] we define the Fourier spectrum Sk(t) by

Sk ≡
〈
|ψ̂k|2

〉
(27)

where the brackets 〈· · · 〉 stand here for the mean angular average and with the
following definition of the Fourier transform:

ψ̂k(t) =
1

LD/2

∫
ψ(x, t)e−ik·xdx,

we obtain the relations:

ψ2
k ∼ `D% and thus a20 ∼ `D%/τ2.
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Thus the Fourier spectrum, Sk ∼ |ψ̂k|2 ∼ %`D. Since the spectrum depends a360

priori on the wave number k, the dimensional analysis suggests:

Sk =
a20
α

( ν
α

)1+D/2
FS
(

Π, k

√
ν

α

)
=
a20ν

2

α3
FS
(

Π, k

√
ν

α

)
.

In fact, the pertinent quantity for the spectrum should be the dissipation rate, so
that we can easily transform this relation using eq. (26) into a Kolmogorov-like
spectrum:

Sk =
εν2

α3
GS
(

Π′, k

√
ν

α

)
,

where Π′ is the equivalent dimensionless number based on ε instead of a0:365

Π′ = gεn
( ν
α2

)n+1

=
gε2ν3

α6
. (28)
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Figure 11: The Fourier spectrum (27) in the turbulent regime as a function of the wave
number for two distinct forcing amplitudes a0 = 0.2 and a0 = 0.5 and viscosities ν varying
form 10−4 to 0.1. The spectra seem to follow a scaling law 〈Sk〉 ∼ const.

Figure 11 (a) shows the spectrum as function of the wave number k for
two different forcing amplitudes (a0 = 0.2 and 0.5) and different viscosities
(from ν = 0.1 to 10−4), showing a plateau at large scale, that indicates, at
first order at least, that the spectrum seems independent both on k and ν
(the dependance on ε being difficult to determine since it does not vary too370

much for the different amplitude of forcing by contrast with the viscosity). The
viscosity will then enter in the spectrum only through the spectral extension of
the spectrum, defining a Kolmogorov scale of wavenumber kν above which the
spectrum decreases rapidly. Using these numerical observations, the spectrum
should follow by dimensional analysis:375
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Sk = A
α

ε1/3g2/3
, (29)

where A is a numerical constant. Balancing the dissipation rate ε of this flat
spectrum extending towards k = kν , we obtain:

ε ∼
∫ kν

0

νk5Skdk ∼ νk6νA
α

ε1/3g2/3
,

leading to the definition of the Kolmogorov lengthscale:

`ν ∼
1

kν
∼ (να)1/6

(gε2)1/9
.

However, if we rescale the different spectrum by the constant value α
ε1/3g2/3

and plot them as function of k`ν , we do not observe a clear collapse of the spec-
trum on a master curves, showing that a more detailed analysis on the turbulent
spectrum should be performed (for instance considering a small dependance on380

the wave number, as observed in the 1D case [9]), that we postpone to furture
studies.

5. Conclusions

A generic mechanism for the observed intermittency behavior of the dissi-
pation rate in turbulence is proposed in the framework of the self-focusing non-385

linear Schrödinger with dissipation and subjected to a random forcing. The
toy-model display the remarkable property of anomalous dissipation, that is the
dissipation rate does not depend on the dissipation mechanism as viscosity goes
to zero. Additionally, the system displays a transition-like behavior for the mea-
sure of the peaks of dissipation normalized to the mean dissipation as viscosity390

diminishes. All behaviors are robust in one and two space dimensions.
Finally, we have investigated whether such turbulent dynamics that is strongly

induced by the singular feature of the model gives rise to a continuum spectrum
that could be viewed as due to a Kolmogorov-Richardson cascade where smaller
structures are generated by the growth of instabilities in larger structures, as395

imagined by Kolmogorov. In 1D, we observed that despite the high intermit-
tencies of the flow due to the intense peak of density, the mean spectrum did
exhibit a power law dependance in k−1/3 which is different than that of a peak,
meaning that a genuine turbulent spectrum emerge from the random formation
of the peaks. In two space dimensions, the dimensional analysis suggest a flat400

spectrum extending over a range selected by a Kolmogorov scale. However,
the present numerical simulations do not clearly exhibit such behavior and a
more detailed and specific analysis on the turbulent spectrum, as well as on the
structure functions is postponed to further studies. Our results draw however
some perspective while open questions remain: first of all, for the two space405

dimensions investigated, we observed a peak in the dissipation peak around a
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given viscosity. Such a behavior is surprising and deserves a more precise analy-
sis. The link, if any, between the singularities and the Kolmogorov-like spectra
observed is unclear and an analysis going further than dimensional analysis is
needed. Moreover, our model suggest that Kolmogorov spectrum can be com-410

patible with finite time singularities, so that the transfert of a quantity (mass
here, energy in other cases) from large to short scales might use short-cuts in-
stead of cascades. In fact the two mechanisms are not in contradiction and
could happen simultaneously, or the cascade could appear as a complex average
process over a singularity, as highlighted for vortex collapses in fluids [16, 17]. It415

would thus be interesting to use recent time and space correlation functions that
characterize irreversible processes to characterize the role of the singularities in
the mass transfer here [18]. Finally, it would be also interesting to investigate
similar models exhibiting finite time singularities, with a positive definite energy
in particular, to observe how our result can generalize.420
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