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We define and study a fully-convolutional neural network stochastic model, NN-Turb, which gen-
erates a 1-dimensional field with some turbulent velocity statistics. In particular, the generated
process satisfies the Kolmogorov 2/3 law for the second order structure function. It also presents
negative skewness across scales (i.e. Kolmogorov 4/5 law) and exhibits intermittency as character-
ized by skewness and flatness. Furthermore, our model is never in contact with turbulent data and
only needs the desired statistical behavior of the structure functions across scales for training.

I. INTRODUCTION

Turbulence is characterized by non-linear, multiscale and non-local interactions [I]. Moreover, it presents long-range
dependencies and intermittency [2] making it a very interesting subject of study in the field of complex systems [3]
and multifractals [4].

The generation of stochastic fields sharing the statistical behavior of turbulence has been matter of study during the
last century. Thus, several stochastic models [5HI2] have been proposed to recover the very known energy distribution
and energy cascade, in the sense of the Kolmogorov’s 2/3 and 4/5 laws respectively [I3], as well as intermittency [14]
15]. From the first fractional Brownian motion [5 6], only recovering the energy distribution, the modelling of
turbulence evolved towards more complex fields introducing also intermittency [16] or both intermittency and energy
cascade [10, [I7]. However, the generation of stochastic fields matching the statistical properties of turbulence is still
challenging since while modelling the energy distribution only requires second order statistics, modelling the energy
cascade and intermittency requires high order ones. Most of the models of the state of the art only focus on second
order statistics and so do not exhibit intermittency nor do they respect Kolmogorov’s 4/5 law [I8H21].

In the last decades, neural network (NN) models evidenced their potential to deal with non-linear complex prob-
lems [22424]. Specifically, generative NN models have been recently developed [25]. These models aim to learn the
statistical distribution of some data to then create new data matching the underlying distribution [26] 27]. Some
NN models of turbulence already appeared in the last years [28-31]. However, these NN models of turbulence use
to present training and validation approaches that only focus on second order statistics [29] [32H34] do not modelling
then the energy cascade nor intermittency. In addition, all these works learn from experimental or numerical tur-
bulent data, sometimes helped by additional physic information [35 [36]. This introduces a strong dependence on
databases that are not always easily available. However, a NN model is just a non-linear function ¥y completely
defined by the weights 6 of its neurons, and so, we can formulate an optimization problem of Wy with respect to a
given criterion [37) 38]. From this viewpoint, we don’t need to feed our model with data.

We propose to avoid learning from data and directly impose the multiscale statistical behavior described by Kol-
mogorov and Obukhov theories. The proposed approach is a multiscale generalization of the Generative Moment
Matching Networks from Li et al. [39] and grounds on the Kolmogorov multiscale descriptions of second, third and
fourth order structure functions of turbulent velocity across scales [I3HIS, [40]. We focus on these three functions
since they are representative of the energy distribution, the energy cascade and intermittency respectively [1]. Since
our model do not impose the behavior across scales of higher order structure functions, the full probability density
function (pdf) across scales of the generated stochastic field will be different from the turbulent velocity one. Only
second, third, and fourth order structure functions will be recovered. So, our model takes a Gaussian white noise as
input and only needs the desired evolution across scales of these three structure functions of turbulent velocity for
learning. These functions can be defined from experimental or numerical data, but also from empirical or theoretical
models.

The main originality of this work is the proposed approach, which directly imposes the evolution across scales of
the structure functions of the stochastic field and presents several advantages compared to the current state of the
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art: it is not limited to second order statistics, it is easily generalizable to consider higher and higher order statistics
and it does not need data for training nor synthesis. The main disadvantage of this approach is the current lack of
explainability of Neural Networks, even if progresses are being done in the field [41].

In section [[I} we describe the multiscale statistical behavior of turbulent velocity as illustrated by the Kolmogorov-
Obukhov theories. Then, section [[T]] presents our NN model, that we named NN-Turb, as well as the optimization
approach used to train it. Finally, in sections [[V] and [V] we show the statistical multiscale behavior of the NN-Turb
stochastic field, we compare it with experimental turbulent velocity and with a regularized Multifractal Random Walk
(tMRW) [9], and we give some conclusions and perspectives.

II. ISOTROPIC AND HOMOGENEOUS FULLY DEVELOPPED TURBULENCE

The Kolmogorov 1941 (K41) statistical multiscale theory of turbulence prescribes the existence of three domains of
scales with different statistical behaviors: integral, inertial and dissipative domains, where the energy is respectively
injected in the flow, transferred across scales and dissipated [I], [[3]. The integral scale L separates the integral and
inertial domains, while the Kolmogorov scale i divides the inertial and dissipative ones.

The Kolmogorov 1941 theory enuntiates two statistical relationships for the longitudinal turbulent velocity in the
inertial domain of scales: the 2/3 and the 4/5 laws, that illustrate respectively the energy distribution and cascade
across scales [T}, [13]:

ov(z) =v(z+1) —v(z) (1)
Sp(l) = (G (2))?) (2)
Sa(1) oc 12 (3)
Ss(l) o _4 (4)

where z is the spatial dimension, v(z) is the longitudinal turbulent velocity, §;v(x) is the velocity increment of size
[ and S,(I) is the p-th order structure function. Thus, in the inertial domain the Kolmogorov 2/3 law implies that
So(1) o< 1?/3, and the Kolmogorov 4/5 law imposes S3(1) oc —I. The 4/5 law was directly derived by Kolmogorov from
the Navier-Stokes equations and must be respected by any model of turbulence [13].

Moreover, the Kolmogorov and Obukhov 1962 theory (KO62) corrected K41 by introducing intermittency: the
energy dissipation rate is inhomogeneous and should be considered locally [14, [I5]. Moreover, this correction leads to
the emergence of extreme values of the velocity increments both in the inertial and dissipative domains, and so, to a
deformation of the pdf of the velocity increments when the scale decreases, from Gaussian in the integral domain to
strongly non-Gaussian in the dissipative one [ [2].

For practical purposes we define the skewness and flatness as:

S(l) = Sfjg?ﬂ (5)
F) = 5 )

In these measures the dominant effects of the energy distribution across scales (S2(1)) are compensated and so they
allow us to finely study high-order statistics. On the one hand, the skewness characterizes the degree of asymmetry of
the distributions of the velocity increments and from the Kolmogorov 4/5 law it is a signature of the energy cascade.
On the other hand, the Flatness describes the significance of the tails of the distribution of the increments and its
evolution across scales characterizes intermittency.

In this work, we will focus on four main points of the Kolmogorov-Obukhov theories that we will impose to the
process generated by our NN-Turb model: a) turbulence presents three domain of scales with different statistical
behaviors, b) in the inertial domain S3(I) matches the 2/3 Kolmogorov law, ¢) in the dissipative and inertial domaines
the skewness should be negative (4/5 Kolmogorov law) and d) in the integral domain the flow statistics are close to
Gaussian and become non-Gaussian at small scales, i.e. the flatness of the velocity increments increases when the
scale decreases. Thus, our NN-Turb model will generate intermittent processes with the desired energy distribution
and cascade as prescribed by Kolmogorov and Obukhov theories. Note that all along the paper and following the Kol-
mogorov 1941 theory, the 2/3 and 4/5 laws of Kolmogorov are respectively identified as signatures of the distribution
and cascade of energy across scales [T}, [13]. Note also that the structure functions of order higher than four are not



imposed by the model and so, the generated process will not reproduce the full pdf of turbulent velocity increments.
It focuses on second, third and fourth order statistics, contrary to most of the existing literature only focusing on
second order ones [6l [I8H2T], 29] [32H34] or second and fourth order ones [16, [42].

III. TURBULENT VELOCITY NEURAL NETWORK BASED GENERATION

This section describes the proposed deep learning approach, referred to as NN-Turb, for modelling a 1-dimensional
stochastic field with some turbulent velocity statistics. We introduce our neural network model and the optimization
setup.

A. NN-Turb model

We propose a fully convolutional model for the generation of a 1-dimensional field with some turbulent velocity
statistics:

b1, u(x) = ¥(w(x)) (7)

where [, is the sampling distance of the generated fields, i.e. the smallest available scale of analysis. W is our
model which takes as input a Gaussian white noise w(x) with zero mean and unit variance, and produces the field
corresponding to the velocity increment ¢; u(z). Finally, the generated turbulent velocity field u(z) is defined as the
cumulative sum of d;, u(z):

u(z) = / " sLuly)dy (8)

— 00

So, our NN-Turb model performs a double operation on the input noise w(x). On the one hand it deformates
the Gaussian pdf of w(z) to a pdf in agreement with the turbulent velocity statistics at the sampling scale l5. On
the other hand, our model introduces a structure of dependencies (multi-point correlations) in the initial white noise
used as input. This approach implies the existence of a small scale process §; u(x) with a given distribution and a
given structure of dependencies whose cumulative sum statistically behaves as turbulent velocity up to fourth order
statistics. Physically the scales in the dissipative domain take information from larger scales and this information is
encoded in the structure of dependencies and pdf of §;, u(x) [43]. Moreover, directly generating a small scale increment
in the dissipative domain and constructing the full process u(z) by eq. facilitates the continuous deformation of
the pdf of the increments across scales from the dissipative to the integral domain.

The operator ¥ follows a U-net architecture performing a multi-resolution processing of the input Gaussian white
noise based on convolutional kernels of different sizes [44]. This generative approach consists of a non-linear filtering
of the input noise, thus generalizing the linear filtering version of [20 2I]. See [A] for more details on the NN-Turb
architecture.

B. Optimization setup

From eq. the only input of our model is a Gaussian white noise w(x). In addition, during training, we need to
introduce the desired statistics across scales of the generated process u(x). Indeed, we impose the evolution across
scales of Sa(1), S(I) and F(I), see section

In this work, the reference curves of the second order structure function, skewness and flatness, that we note S5 (1),
S8"(1) and F" (1), are obtained from statistical measures on the Modane wind tunnel dataset [45]. It consists on Eulerian
longitudinal velocity measurements v(x) obtained from a grid turbulence setup. The sampling frequency of the setup
was fs = 25 kHz, the mean velocity of the flow is (v) = 20.5 m/s, and the Taylor-scale based Reynolds number of the
flow is Ry = 2500. Thus the flow is considered as exhibiting fully developed turbulence. For this dataset, we use the
Taylor frozen turbulence hypothesis [I] in order to interpret temporal variations as spatial ones. Thus, the sampling
distance can be expressed as I, = (v) / fs. Detailed multiscale statistical analyses of Modane turbulent velocity signals
have been previously provided in [40, 45H47]. Furthermore, from previous studies the integral and Kolmogorov scales
for this flow are respectively L = 235015 and nn = 515 [48]. Figures|2]a), b) and ¢) provide respectively the evolution
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across scales of log(S5), 8" and log(F"/3) in blue. Here and all along the paper, the natural logarithm is used and
noted log.

We want to point out that even if in this work the reference curves are obtained from statistical measures on real
data, the used learning approach allows us to use empirical or theoretical laws to define them. Our model never sees
turbulent data neither during training nor during fields generation.

We consider the optimization of our NN-Turb model according to the following four losses:

1. the mean squared error between the reference log(S5(1)), S"(I) and F" (1), and log(S2(1)), S(I) and F(I) of the
generated field u(x).

s, =1 | (toe(S5(1) - ox(2(1) | )

Ls = |(570) - 5(1))2} (10)

Lr=E (F(z) - ]-'(l))Q] (11)

where E; is the expected value operator. The logarithm used only in eq.@ allows to homogenize across scales
the magnitude of the standard deviation of S5 and, more importantly, to highlight the differences across scales of
So for scales in the dissipative and inertial ranges. This is an advantage for training the network. The logarithm
is not used on the skewness because this statistic can take negative values, and it is not used on the flatness
because the logarithm produces the inverse effect on this statistic: it reduces the differences of F across scales
for scales in the dissipative and inertial ranges.

2. a regularization loss L& = 1 — r(u/(z), w(x)) where r is the cross-correlation function between u'(x), which is
the centered and standardized version of u(z), and w(x) which is the Gaussian noise used as input. This loss
aims at increasing the correlation between these two time-series.

The optimization criterion £ is a weighted sum of these losses:

L=oa (Ls,+Ls+LFr)+F L (12)

We set empirically the weights of the three first losses to a = ag, = as = ar = 1 and the weight of the regularization
loss to 8 = 0.1. These weights were chosen by grid searching with a grid step of 0.1 for 8 € [0, 1) and with as € {0.5,1},
ar € {0.5,1} and fixed ag, = 1. We decided to impose ag, > as and ag, > ar since Ss directly intervenes in the
definition of § and F. We also imposed as > 8 and ar > 8. Changes in as and ar impact very slightly the results,
on the other hand the value of § was important for converging to an adequate field.

Consequently, our optimization approach completely grounds on the Kolmogorov theories as well as on previous
descriptions of turbulent velocity fields. The three mean squared error losses impose the desired 2/3 and 4/5 laws of
Kolmogorov, i.e. the distribution and cascade of energy across scales, as well as intermittency. The regularization
loss is used to impose stationarity at large scales as desired for turbulent velocity.

Using Pytorch, our learning setup relies on Adam optimizer with a learning rate of 2e-3 for the first 100 epochs,
le-3 for epochs between 100 and 1000 and 5e-4 for remaining epochs up to epoch 2000. The open source code is
available at https://github.com/cgranerob/NN-Turb.

IV. RESULTS AND DISCUSSION

In this section, we study the process u(z) generated by our NN-Turb model ¥. For this purpose, we generate 256
realizations of u(z), each one of size N = 2!% samples. To avoid border effects due to convolutions, we first generate
realizations of size N + N, samples, where N, is the number of samples impacted by border effects. In our case of
study N = 2!3. Then, we only consider the N samples far from the borders to define u(z). We analyse the second
order structure function, skewness and flatness of u(z) across scales for scales going from the dissipative domain
to the integral one. We perform the same analysis on Modane experimental turbulent velocity for comparison. To
compare NN-Turb to current state of the art models, we also study a regularized Multifractal Random Walk, z(z), [9]
parameterized to simulate Modane experimental turbulent velocity: the small and large scales of regularization are
€ =1 and R = €® respectively, and the long-range dependence and intermittency parameters are respectively ¢; = 1/3
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and ¢y = 0.025. The used large scale regularization function is Gaussian. A single realization of size 223 was generated
and sliced to provide 256 realizations of size N.

Figure [1| illustrates three realizations of u(x) among the 256 generated. We observe dynamics at very different
scales, from very small scales of the order of the sampling distance [, to scales of the order of the integral scale L of
the process (to facilitate visualization a red box of width L is shown).

Figure |2/ a), b) and c) show respectively log(S2(1)), S(I) and log(F(I)/3) of the NN-Turb (black), Modane (blue)
and TMRW (green) fields in function of log(l/L). The vertical dashed black lines indicate the integral and Kolmogorov
scales as obtained for Modane turbulent data in previous studies [48]. Thus, we observe different behaviors of the
studied statistics depending on the domain of scales.

In figure [2| a) we observe, independently of the process, a plateau of log(S2(1)) for scales I larger than the integral
scale L as expected for turbulent velocity. These are the more energetic scales. Then, when the scale decreases
through the inertial region, log(S2(1)) also decreases following the 2/3 law of Kolmogorov. In the dissipative domain,
log(S2(l)) decreases faster with the scale than in the inertial one, and its slope is close to 2 as described by the
Batchelor model [49]. This behavior in the dissipative domain is a signature of the smoothness of the field at these
scales. While the NN-Turb field perfectly matches the Modane behavior within the errorbars for any scale of analysis,
the rMRW field matches the Modane behavior in the dissipative and inertial ranges but the impact of the large scales
is more localized and does not propagate through the inertial range. This leads, in the case of the rMRW process, to
a linear behavior with a slope of 2/3 remaining at larger scales compared to Modane.

Figure |2 b) illustrates that the generated field u(z) is negative skewed as requested by the Kolmogorov 4/5 law.
Moreover, due to intermittency effects in the dissipative domain, the skewness decreases whith the scale for scales
I < n. However, this decrease is much more steep than the one from Modane experiment. On the other hand, the
increments of the rMRW field present, by construction, null skewness indicating that their pdfs are symmetrical.

In ﬁgurec), independently of the process, log(F(1)/3) goes from zero in the integral domain of scales to larger values
when the scale decreases. This is a signature of intermittency in both the inertial and dissipative domains [14], 40 50].
Moreover, the flatness of Modane and NN-Turb shows a linear behavior in the inertial domain with slope —0.1 (red
dashed line). This behavior is representative of homogeneous and isotropic turbulence [40]. Furthermore, for these
two processes, the intermittency is stronger in the dissipative domain and so the increase of flatness when the scale
decreases becomes steeper [51]. The flatness of the rIMRW process behaves otherwise and does not capture the steeper
increase in the disipative domain. The slope —0.1 in the inertial range is reproduced but in a smaller domain of scales.

Our stochastic field recovers the correct behavior of S3(l) in all the domains of scales. In addition, it recovers
the good behavior of skewness and flatness in the integral and inertial domains. However, in the dissipative domain
the decrease of skewness is to steep and the increase of flatness is not enough compared to Modane statistics. This
illustrates the complexity of correctly recovering high-order statistics in this region.

Finally, figure [3| shows the logarithm of the pdf of the standardized increments of a) the Modane turbulent velocity
signal (8;v(x))/0s,5), b) the NN-Turb field (d;u(x))/0s,.) and c) the rMRW field (§;2(x))/0s,.), for different scales
. Scales from the dissipative domain to the integral one are considered. For Modane and NN-Turb processes we
observe an evolution from non-Gaussian pdfs at small scales: long-tailed and asymmetric, to close to Gaussian when
approaching the integral domain (a Gaussian pdf with zero mean and unit variance is illustrated in red dashed line).
So, the generated field u(x) presents intermittency and becomes Gaussian at large scales. However, the evolution of
the pdf of the increments of u(x) is not exactly the one expected for a turbulent field [40]: the extreme values at
small scales are only partially recovered while the asymmetry of the distribution of the increments at these scales
is overvalued. On the other hand, the rTMRW process do not present asymmetries in the pdfs of its increments but
better recover the broad shape of the pdfs and both the positive and negative extreme events.

V. CONCLUSIONS

We propose a fully-convolutional NN model, NN-Turb, to generate a 1-dimensional field with some turbulent
velocity statistics. Our stochastic model takes as input a Gaussian white noise and perform a double operation on
it: 1) it introduces the desired structure of dependencies and 2) it deformates the Gaussian pdf of the input to a
long-tailed and skewed one. Very importantly, our model only needs the aimed evolution across scales of the second
order structure function, skewness and flatness for learning, and so, it does not require turbulent data.

The generated 1-dimensional field u(x) correctly recovers the 2/3 and 4/5 laws of Kolmogorov as well as the
flatness behavior in the inertial domain described in [40, 5I]. From this perspective, u(z) models adequately the
energy distribution, energy cascade and intermittency of turbulence while remaining close to Gaussian at large scales.
However, we also illustrated that the pdfs of the increments of the generated fields do not necessarily match the
expected behavior of turbulent ones. So, our stochastic field can reproduce the statistical behavior of the second,



third and fourth order structure functions of turbulent velocity without matching the exact pdf deformation across
scales.

Three main future perspectives are considered. First, the application of the proposed learning approach for gen-
erating 2D images of homogeneous and isotropic turbulent velocity. Second, the empirical definition of the structure
functions S, (1) according to a limited number of parameters c,,. This will allow us to completely avoid the use of
experimental data. More interestingly this will allow us to introduce these parameters c,, as inputs of our model, and
so, to generate different types of processes with diverse multifractal properties. Thus, we aim to generalize this NN
optimization approach, which does not need data, to other kind of non-linear physical systems. Finally, the definition
of a learning setup in which we don’t impose the evolution across scales of some structure functions but the evolution
of the pdfs of the increments directly.
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FIG. 1. Illustration of three realizations of process u(z) generated with NN-Turb in function of the spatial variable /L. The
red box corresponds to the length of an integral scale L.
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FIG. 2. a) Logarithm of the second order structure function log(S2(l)), b) skewness S(I) and c) logarithm of the flatness
log(F(1)/3) in function of the logarithm of the scale of analysis log(l/L) for the NN-Turb generated field (black), Modane (blue)
and rtMRW (green). Curves represent the mean value and errorbars the standard deviations calculated on 256 realizations.
Red dashed lines in a) have a slope 2 in the dissipative domain and 2/3 in the inertial one describing respectively the behaviors
of the Batchelor model [49] and the 2/3 Kolmogorov law. Red dashed line in c) has a slope —0.1 previously described for the
log(F(1)/3) in the inertial domain [40]. The vertical black dashed lines correspond to the Kolmogorov and integral scales, 7
and L of Modane.
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velocity signal, b) the NN-Turb field and ¢) the rMRW field, in function of the values of the standardized increments. The
illustrated increments are those with | = [2,4, 8,16, 64, 256, 1024, 4096, 10000] ;. The integral scale of the flow is L = 23501,.
The red dashed lines correpond to the logarithm of a Gaussian probability density function with zero mean and unit variance.
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Appendix A: NN-Turb architecture

Figure [ illustrates the architecture of NN-Turb. It is a fully convolutional U-net architecture grounding on multi-
scale decomposition to modify the Gaussian white noise used as input. Thus, it is composed of an encoder, and a
decoder that are connected by a convolutional bridge. Because of the symmetry of the architecture, both the Gaussian
white noise used as input and the output field have the same size, i.e. the same number N of samples.

The encoder blocks are the combination of 1D convolution layer with batch normalization, non-linear ReLU ac-
tivation function and average pooling. The decoder blocks are the combination of 1D convolution transpose layer
with batch normalization, non-linear ReLLU activation and upsampling layer. A bridge with a 1D convolution layer
with batch normalization and non-linear ReLU activation followed by a 1D convolution transpose layer with batch
normalization and non-linear ReLLU activation is used to connect the encoder and the decoder of the U-net. The
number of channels evolves as follows: 1 — 16 — 32 — 64 — 128 — 256 — 128 — 64 — 32 — 16 — 1) and the
kernel sizes are [1,2,4,8,16,32,64]. Furthermore, we introduced additive long-skip connections between the encoder
and the decoder layers [44].

We want to point out that in both the encoder and the decoder the kernel sizes of the different layers increase
exponentially in order to rapidly and completely sample the dissipative, inertial and integral domains of turbulence.
This is specially important to recover the expected multi-scale behavior of each domain. Furthermore, the average
pooling and upscaling layers also facilitate to process the whole domain of scales of interest without increasing
dramatically the computational cost of learning.

The additive long-skip connections have been introduced to facilitate the learning [44]. Moreover, the longest skip
connection, the one connecting the second and next-to-last layers, appeared as crutial to impose Gaussianity at large
scales.

Furthermore, we decided to generate the smallest available velocity increment ¢; u(x) instead of directly the turbu-
lent velocity u(z) since the long-range dependencies of the velocity could complicate the learning process. The range
of dependencies of the velocity increments are shorter.

FIG. 4. Fully convolutional U-net architecture of NN-Turb model. The size of the input Gaussian white noise is N. Yellow
blocks correspond to convolutional layers followed by batch normalization and ReLU activation function. Red layers correspond
to average pooling of factor 2 in the spatial dimension. Green blocks correspond to convolutional transpose layers followed
by batch normalization and ReLLU activation. Blue layers correspond to upscaling of factor 2 in the spatial dimension. The
kernel size of the convolutional layers is indicated in bold. The number of channels is also indicated for each block. Blue arrows
indicate additive long-skip connections between the encoder and the decoder branches of the U-net.
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