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Abstract

Electrical motors are widely used in industrial and emerging applications such as
electrical automotive. Industrial 4.0 has led to the usage of neural networks for
electrical motor tasks like fault detection, monitoring, and control of electrical mo-
tors. The growing increase of neural networks in safety-critical systems requires an
in-depth analysis of their robustness and stability. This paper studies the robustness
of neural networks used in time-series tasks like system modeling, signal denoising,
speed-torque estimation, temperature estimation, and fault detection. The dataset
collected for these problems has all types of noise from the operating environment,
sensors, and the system itself. This affects the performance of different network
architectures during training and inference. We train and analyze under perturba-
tions several different architectures that range from simple linear, convolutional
and sequential networks to complex networks like 1D ResNet and Transformers.
Code is available at https://github.com/sagarverma/robust-motor.

1 Introduction

Electrical motors are one of the most used heavy devices in industrial and non-industrial places.
In heavy industry, they can be found in cranes, tunnel boring machines, and trains, while at home,
they can be found inside all electrical appliances like washing machines, fans, and rotational drives.
Each of these applications requires different operating reliability from the motor used. These motors
also have different types of operating environments and scenarios. A brushless DC motor inside
a rotational drive has a consistent operating paradigm. In contrast, an induction motor inside a
tunnel boring machine has to face extreme heat, humidity, and dust while having a very inconsistent
operation cycle. Given the nature of the operation, it has been vital for the drive control community
to use fault detection and observation methods (1; 2). Recently neural network based methods have
been proposed for such tasks (3; 4; 5). The scale with which neural network based methods have been
proposed for electrical motor tasks does not match the very much required robustness and stability
analysis of such methods.

Figure 1 shows how naturally occurring perturbation in inputs can cause a neural network to give
the wrong output. When such neural networks are cascaded to drive a control system, it can lead to
catastrophic failures. In this case, meta-denoiser (6) and speed-torque estimator (7) together take
denoised currents and voltages and estimate speed and torque which can then be used to drive the
control system. Currents and voltages are measured using sensors that can be affected by extreme
heat, water, dust, or material faults. Sensors can also perform poorly due to aging. Motors can age
and get affected due to their environment and will behave differently. Given that meta-denoiser and
DiagBiRNN have not been trained on a dataset that considers such varied inputs and motor states, the
networks are bound to give wrong predictions, which can affect the downstream task of control.
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Figure 1: Different sources of perturbations in inputs to neural networks used in electrical motor
tasks like denoising and speed-torque estimation.

In (8), convolutional, feed-forward, and sequential neural networks have been used to model electrical
motor dynamics by modeling the input-output relationship of its quantities in a data-driven manner.
An encoder-decoder based network called DiagBiRNN has also been proposed which is then used
in (7) to estimate speed-torque from currents and voltages. To apply this network in real-world
setting where currents and voltages are noisy, a meta-denoiser network has been proposed in (6) to
denoise noisy currents and voltages. To model electrical motor dynamics, a multi-scale pyramid and
lightweight residual networks have been proposed in (9; 10). Estimating the temperature of different
parts of an electrical motor is important to understand its thermal evolution. Given the complexity
of rotating parts, (11) proposed an induction motor temperature dataset. They use convolution
and recurrent network-based benchmarks to predict permanent magnet temperature using several
electrical motor quantities and temperatures of different motor parts, which are easy to record. Several
electrical motor fault datasets cover different categories of faults occurring in different types of motors.
(12) proposed fault detection and classification dataset to identify the number of broken bars from
electrical motor quantities and vibrations recorded using accelerometers.

2 Robustness Issue in Neural Networks

Test time instability of neural networks is a well-known and active area of research leading to a
more explainable and reliable A.I. In (13), the concept of adversarial attacks was first proposed to
fool neural networks. Adding a well-crafted subtle perturbation to the input of the neural network
produces a misclassification. This scenario is possible even when the model has good clean accuracy.
These attacks pose a huge threat to the performance of neural networks. There has been a multitude of
works introducing stronger adversarial attacks and their defenses. Goodfellow et al. (14) proposed the
Fast Gradient Sign Method (FGSM) to generate ℓ∞ bounded adversarial attacks. This is a white box
attack, i.e., it has access to network structure, parameter weights, and all the related training details.
The generated inputs are misclassified by adding perturbations and linearizing the cost function
in the gradient direction. FGSM is a single-step attack, Madry et al. (15) proposed a multi-step
variant of FGSM called Projected Gradient Descent (PGD) attack. Kurakin et al. (16) proposed an
optimized FGSM, Iterative Gradient Sign Method (IGSM), which adds perturbations in multiple
smaller steps and clips the results after each iteration ensuring that the perturbations are restricted to
the neighborhood of the example. Dong et al. (17) added momentum to IGSM attacks. Moosavi et al.
(18) proposed Deepfool as a non-targeted attack that tries to find the decision boundary closest to the
sample in the input space and then uses the classification boundary to fool the classifier. Moosavi et
al. (19) proposed a universal image-agnostic perturbation attack method that fools the classifier by
adding a single perturbation to all images in the dataset. Carlini et al. (20) proposed a powerful attack
based on L-BFGS. In (21), the authors propose a general framework for the generation of adversarial
examples in both classification and regression tasks for applications in the image domain.

Most of these methods belong to the class of white box attackers, i.e., the attacker has access to the
information related to the trained neural network model, including the model architecture and its
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parameters. A black box attacker is introduced in (22). Such attackers do not know the model but
can interact with it. Ballet et al. proposed a white box attacker specifically for handling tabular (23)
for classification tasks. A similar approach using the Jacobian property of the neural network for
tabular data is proposed in Gupta et al.(24) for regression tasks. These attacks and defenses constitute
the adversarial robustness of neural networks. Robustness of time-series networks due to thermal
evolution can be considered as a generalization problem. Such problem have been very well studied
in (25; 26).

3 Experimental Setup

We use 9 different architectures proposed in (8) for motor dynamics, denoise, and speed-torque
tasks. We use networks named FNN, RNN, LSTM, and CNN for baselines. We also use encoder-
decoder variants from the paper named Deep, Skip, RNN-Skip, BiRNN-Skip, and DiagBiRNN-Skip
to understand robustness behavior with respect to network complexity. Details of these networks can
be found in (8). For the temperature task we use DiagBiRNN-Skip and FedFormer (27). For the
broken bars task, we use 1D variant of three classification networks namely CRNN (28), ResNet-18
(29), and RegNet-20 (30).

For generating adversarial attacks, we use FGSM and DeepFool. The Value of ϵ is taken at 0.01 and
0.1. In the case of DeepFool number of iterations used is 100. For the broken bars task, we report
clean accuracy and FGSM and DeepFool attack accuracy. For all the regression tasks, we report clean
and FGSM attack values of Mean Absolute Error (MAE), Symmetric Mean Absolute Percentage
Error (SMAPE), coefficient of determination (R2) (31), and Root Mean Squared Error (RMSE).

Network Attack MAE SMAPE(%) R2 RMSE

Deep Clean 0.026 5.15 0.73 0.06
FGSM ϵ = 0.01 0.11 22.89 -1.02 0.15
FGSM ϵ = 0.1 0.15 32.11 -2.90 0.21

Skip Clean 0.02 4.62 0.77 0.05
FGSM ϵ = 0.01 0.11 24.94 -1.14 0.16
FGSM ϵ = 0.1 0.39 94.92 -21.99 0.52

RNN-Skip Clean 0.03 6.73 0.72 0.06
FGSM ϵ = 0.01 0.09 20.36 -0.54 0.13
FGSM ϵ = 0.1 0.29 73.5 -10.87 0.37

BiRNN-Skip Clean 0.03 6.82 0.72 0.06
FGSM ϵ = 0.01 0.13 26.09 -1.85 0.18
FGSM ϵ = 0.1 0.69 76.03 -84.77 0.99

DiagBiRNN-Skip Clean 0.02 4.70 0.76 0.05
FGSM ϵ = 0.01 0.10 21.31 -0.83 0.15
FGSM ϵ = 0.1 0.32 58.40 -16.23 0.44

Table 1: Metrics of clean and adversarial predictions from all the encoder-decoder variants trained
for motor dynamics task.
Tables 1 shows results obtained by training encoder-decoder networks proposed in (8) for motor
dynamics task. It shows MAE, SMAPE, R2, and RMSE for clean predictions and FGSM predictions
at ϵ = 0.01 and ϵ = 0.1. Skip encoder-decoder variant achieves the best clean predictions SMAPE
(4.62%) and R2 (0.77). When attacked, RNN-Skip is most robust at ϵ = 0.01 with SMAPE (20.36%),
followed by DiagBiRNN-Skip with SMAPE (21.31%). Skip achieves the second worst performance
when attacked.

In case of denoise task, RNN-Skip obtains the best SMAPE (0.14%) among all the variants. R2

is 0.99 for all the networks. However, when attacked with FGSM at ϵ = 0.01, DiagBiRNN-Skip
outperforms every other network with the lowest SMAPE (1.53%). With a more aggressive attack
of ϵ = 0.1, DiagBiRNN-Skip still outperforms every other network with SMAPE (13.6%) and R2

(0.72).

Table 2 shows results of the encoder-decoder variants trained for speed-torque estimation task.
Encoder-decoder variant Skip shows the best SMAPE (0.18%) among all the variants. R2 is 0.99 for
all the networks. However, when attacked with FGSM at ϵ = 0.01, DiagBiRNN-Skip outperforms
every other network with the lowest SMAPE (2.70%). With a more aggressive attack of ϵ = 0.1, RNN-
Skip outperforms every other network with SMAPE (17.96%) and R2 (-0.56). DiagBiRNN-Skip
achieves the best R2 of -0.49.
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Network Attack MAE SMAPE(%) R2 RMSE

Deep Clean 0.00 0.3 0.99 0.00
FGSM ϵ = 0.01 0.01 2.94 0.96 0.02
FGSM ϵ = 0.1 0.096 24.42 -0.87 0.13

Skip Clean 0.00 0.18 0.99 0.00
FGSM ϵ = 0.01 0.01 2.83 0.97 0.02
FGSM ϵ = 0.1 0.10 23.99 -0.80 0.13

RNN-Skip Clean 0.00 0.82 0.99 0.00
FGSM ϵ = 0.01 0.01 3.13 0.96 0.02
FGSM ϵ = 0.1 0.10 17.96 -0.56 0.12

BiRNN-Skip Clean 0.00 0.68 0.99 0.00
FGSM ϵ = 0.01 0.01 2.91 0.97 0.02
FGSM ϵ = 0.1 0.10 24.84 -0.67 0.12

DiagBiRNN-Skip Clean 0.00 0.26 0.99 0.00
FGSM ϵ = 0.01 0.01 2.70 0.97 0.02
FGSM ϵ = 0.1 0.10 20.11 -0.49 0.12

Table 2: Metrics of clean and adversarial predictions from all the networks trained for speed-torque
estimation task.

Network Attack MAE SMAPE(%) R2 RMSE

FedFormer Clean 0.03 6.47 0.96 0.04
FGSM 0.03 7.53 0.95 0.05

DiagBiRNN-Skip Clean 0.00 0.82 1.00 0.01
FGSM 0.03 7.73 0.97 0.04

Table 3: Metrics for clean and adversarial predictions for the two networks trained for permanent
magnet temperature prediction task.

Table 3 shows results for FedFormer and DiagBiRNN-SKip trained to do permanent magnet tem-
perature prediction task. In this case, it can be seen that FedFormer has performed very poorly
when compared to DiagBiRNN in terms of clean predictions. However, when attacked with FGSM
at ϵ = 0.01, FedFormer manages to be robust and give the same result as DiagBiRNN. This shows
that FedFormer is very robust to adversarial examples. It should be noted that the clean metrics of
FedFormer can be improved with a better training strategy as we have used default hyperparameters
to train the network.

ϵ Method Clean(%) FGSM(%) DeepFool(%)

0.01
CRNN 80.0 79.0 79.0
ResNet 90.0 89.0 89.0
RegNet 93.0 92.0 92.0

0.1
CRNN 79.4 61.4 60.1
ResNet 88.9 80.0 79.6
RegNet 92.3 86.8 86.6

Table 4: Classification results for broken bars task.
Table 4 shows results obtained by CRNN, ResNet, and RegNet on broken bars task. In this case,
RegNet gives the best clean accuracy. When attacked with FGSM and DeepFool at ϵ = 0.01 and
ϵ = 0.1, the accuracy of all three networks decreases, but the order remains the same. Although at
ϵ = 0.1, RegNet is still more robust compared to the other two networks.

4 Conclusion and Future Work

We present a robustness analysis of neural networks used in five different electrical motor tasks. We
train a wide array of networks and generate adversarial attacks on them to show their instability.
Although our experiments show that networks are somewhat unstable to input perturbations, we still
need more sophisticated perturbations to understand the robustness of neural network in electrical
motors. In future, it will would be interesting to consider domain knowledge and sequential dynamics
of data to generate better attacks and improve the robustness of neural networks for electrical motors.
It is also essential to understand the sensitivity of the individual inputs with respect to neural network
stability.
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A Appendix

A Datasets

We use dataset proposed in (6) for motor dynamics, denoise, and speed-torque tasks. The dataset
consists of following quantities currents (id, iq), voltages (ud, uq), noisy currents (îd, îq), noisy
voltages (ûd, ûq), rotor speed (ωr), and mechanical torque (τem). The dataset consists of simulations
using the control law proposed in (32). The dataset contains 100 hours of simulation data which cover
a wide range of operating trajectories. All three tasks are regression problems where some motor
quantities are estimated from other quantities. In case of motor dynamics inputs are voltages (ud,
uq) and rotor speed (ωr). The quantities that have to be predicted are currents (id, iq) and mechanical
torque (τem). The denoise problem deals with denoising noisy currents (îd, îq), noisy voltages (ûd,
ûq). For the speed-torque estimation we predict rotor speed (ωr), and mechanical torque (τem) from
currents (id, iq) and voltages (ud, uq).

Temperature dataset (11) has been used for data-driven thermal modeling to remove or reduce
the cost of placing thermal sensors deep inside moving parts of motors. It consists of different
experiments where the temperature of the stator and rotor were measured in real operating conditions.
Currents (id, iq), voltages (ud, uq), speed (ωr), and torque (τem) are the electrical motor quantities.
Permanent magnet (ϑPM ), stator yoke (ϑSY ), stator tooth (ϑST ), stator winding (ϑSW ), ambient
temperature outside of stator (ϑa), and coolant temperature (ϑc) are the recorded temperatures. The
objective is to predict permanent magnet (ϑPM ) temperature from all other quantities, making this a
regression task.

Broken bars dataset (12) is a multiclass classification dataset. The data set contains currents, voltages,
and torque as electrical signals. Accelerometers placed in 5 different motor parts are used to collect
vibrations/mechanical signals. In total, 400 experiments, each lasting 20 seconds, are performed.
The objective is to predict how many broken bars are in the motor from its electrical and mechanical
signals.
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where yt is the ground truth, ŷt is the predicted output of the model at time t, and T is the total
experiment duration. ȳ denotes the mean of ground truth y.
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Figure 2: A sample from validation set of motor dynamics task showing clean input, clean output,
DiagBiRNN-Skip clean prediction, FGSM generated adversarial example and adversarial prediction.

Figure 2 shows an example trajectory from the validation set of the motor dynamics dataset. In the
top sub-figure normalized values of ud, uq, and ωr are showed as normal lines. FGSM is used with
ϵ = 0.01 to attack the DiagBiRNN-Skip network to generate an adversarial example shown using the
dotted lines in the same sub-figure. It can be seen that the adversarial example has an offset when
compared to the clean input, but this offset can be positive and negative. There is also intermittent
noise like big offsets, for example, one in the 90s. The middle sub-figure shows the ground truth of
output signals id, iq , and τem using normal lines and DiagBiRNN-Skip predictions using dotted lines.
It can be seen that the network has poor predictions during the first ramp between 5s and 20s. The
bottom figure shows ground truth as normal lines and dotted lines are the predictions of DiagBiRNN
when the generated adversarial example is given as the input. It can be seen that the adversarial
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Network Attack MAE SMAPE(%) R2 RMSE

FNN Clean 0.03 5.97 0.72 0.06
FGSM ϵ = 0.01 0.12 24.06 -1.57 0.17
FGSM ϵ = 0.1 0.82 66.11 -130.99 1.23

CNN Clean 0.02 4.86 0.76 0.05
FGSM ϵ = 0.01 0.11 22.02 -1.05 0.15
FGSMϵ = 0.1 0.56 94.63 -45.14 0.73

RNN Clean 0.03 6.33 0.73 0.06
FGSM ϵ = 0.01 0.11 21.91 -0.77 0.14
FGSM ϵ = 0.1 0.22 45.53 -6.99 0.30

LSTM Clean 0.03 5.05 0.75 0.05
FGSM ϵ = 0.01 0.12 24.73 -1.90 0.18
FGSM ϵ = 0.1 0.39 65.19 -32.92 0.63

Table 5: Metrics of clean and adversarial predictions from all the simple networks trained for motor
dynamics task.

Network Attack MAE SMAPE(%) R2 RMSE

Deep Clean 0.00 0.22 0.99 0.00
FGSM ϵ = 0.01 0.01 1.63 0.99 0.01
FGSM ϵ = 0.1 0.06 13.95 0.58 0.09

Skip Clean 0.00 0.18 0.99 0.00
FGSM ϵ = 0.01 0.01 1.59 1.00 0.01
FGSM ϵ = 0.1 0.07 15.25 0.67 0.08

RNN-Skip Clean 0.00 0.14 0.99 0.00
FGSM ϵ = 0.01 0.01 1.76 1.00 0.01
FGSM ϵ = 0.1 0.08 16.16 0.66 0.08

BiRNN-Skip Clean 0.00 0.15 0.99 0.00
FGSM ϵ = 0.01 0.01 1.59 1.00 0.01
FGSM ϵ = 0.1 0.06 14.04 0.71 0.08

DiagBiRNN-Skip Clean 0.00 0.18 0.99 0.00
FGSM ϵ = 0.01 0.01 1.53 1.00 0.01
FGSM ϵ = 0.1 0.07 13.6 0.72 0.08

Table 6: Metrics of clean and adversarial predictions from all the networks trained for motor denoise
task.

predictions are very noisy compared to clean predictions when the perturbations in the input are
minimal. This shows that the attacks on the networks are strong and establishes that robustness study
of such networks is important.

Tables 5 shows results obtained by simple networks proposed in (8) for motor dynamics task. It
shows MAE, SMAPE, R2, and RMSE for clean predictions and FGSM predictions at ϵ = 0.01 and
ϵ = 0.1. CNN variant achieves the best clean predictions MAE (0.02), SMAPE (4.86%) and R2

(0.76). When attacked, RNN is most robust at both epsilon values.

Table 6 shows results of the encoder-decoder variants trained for denoise task. RNN-Skip obtains
the best SMAPE (0.14%) among all the variants. R2 is 0.99 for all the networks. However, when
attacked with FGSM at ϵ = 0.01, DiagBiRNN-Skip outperforms every other network with the lowest
SMAPE (1.53%). With a more aggressive attack of ϵ = 0.1, DiagBiRNN-Skip still outperforms
every other network with SMAPE (13.6%) and R2 (0.72).
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