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CONCENTRATION OF CMC SURFACES IN A 3-MANIFOLD

PAUL LAURAIN

Abstract. We prove that simply connected H-surfaces with small diameter in
a 3-manifold necessarily concentrate at a critical point of the scalar curvature.

Introduction

Let (N, g) be a compact oriented Riemannian manifold. The aim of this article
is to understand the behaviour of a sequence of surfaces ΣH ⊂ N with constant
mean curvature H , refereed to as H-surfaces, when H → +∞.

TheseH-surfaces naturally appear as boundaries of isoperimetric domains. Their
existence is given by geometric measure theory [29], but we have no information
about their topology or their location in the considered manifold except for some
special manifolds like space forms where we have a classification of compact embed-
ded H-surfaces (this is an extension of Aleksandrov theorem [1], see for instance
[28]).

It would be too ambitious for now to hope for a classification of these H-surfaces
in a general compact manifold. However, in the particular case of minimal surfaces
(H = 0), a rough classification can be obtained thanks to the works of Colding,
Meeks, Minicozzi, Ros and Rosenberg and others. We will find an overview on this
subject in the collective book edited by Hoffman [23] and the papers of Colding and
Minicozzi [11], [12], [13] and [14]. This area of research is still very active motivated
by its close links with the topology of 3-manifolds.

In order to begin the description of the moduli space of H-surfaces, we look to
the case of surfaces with small diameter (or large mean curvature). Up to perform
dilation of the ambient space, we can normalize the mean curvature of these sur-
faces to be 1 and the ambient space becomes quasi-Euclidean. In this setting, an
idea to obtain explicit examples of constant mean curvature surfaces is to pertub
the constant mean curvature surfaces of the Euclidean space (i.e. round spheres but
also connected sums of spheres and Delaunay surfaces) in order to get surfaces with
constant mean curvature in our quasi-Euclidean space. This idea has been very suc-
cessful and has led to many examples, see Ye [42], Butscher [6], Butscher-Mazzeo
[7], Pacard [33] and Pacard-Xu [34]. But each of these constructions requires a
condition on the geometry of the manifold at the point of concentration. A natural
question then is the question of the necessity of this geometric condition. In fact if
we were able to show that these conditions are necessary, we would have a clearer
picture of the moduli space, at least for surfaces of small diameter. A first answer
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2 PAUL LAURAIN

was given by Druet [15] in the case of isoperimetric domains. By proving an op-
timal isoperimetric inequality for domains of small volumes, he shows that these
domains concentrate necessarily at a point of maximum scalar curvature. This re-
sult, together with the examples mentioned above, leads naturally to the following
question, already mentioned in [34] : if, for any ρ > 0, the ball B (p, ρ) contains a
constant mean curvature surface, is it true that p has to be a critical point of the
scalar curvature ? All the examples mentioned above are constructed in a neigh-
bourhood of a critical point of the scalar curvature (with various nondegeneracy
assumptions).

For isoperimetric domains, the topology and geometry of the domains become
simple as the volume goes to 0 (that is as the constant mean curvature goes to
+∞). Indeed, they asymptotically become round spheres (see [30, 15, 31]). Of
course, without this minimizing property of isoperimetric domains, the geometry
of constant mean curvature surfaces becomes more intricate. Notably, even in the
embedded case, ΣH could be a connected sum of Delaunay surfaces and an arbitrary
number of almost round spheres. Indeed, Pacard and Malchiodi (see [33]) have
constructed sequences of H-surfaces which are perturbations of two small geodesic
spheres connected as a Delaunay surface. Another problem is the topology of the
surface which is a priori unknown, even if the ambient space is Euclidean as shown
by Wente’s tori and then by Kapouleas’s surfaces, see [41] and [25]. In order to
generalize the result of Druet [15], we consider sequences of H-surfaces ΣH which
are embedded spheres with bounded area and small diameter. The assumptions
are precisely the following :

{

δ(ΣH) = o(1)

A(ΣH) = O
(

1
H2

) as H → +∞, (H)

where δ(ΣH) and A(ΣH) denote respectively the extrinsic diameter and the area of
ΣH . Here, the area is computed with respect to the induced metric. Under these
assumptions, we are able to locate the possible places of concentration of these
sequences :

Theorem 0.1. Let (N, g) be a smooth compact 3-Riemannian manifold and ΣH ⊂
N be a sequence of embedded spheres with constant mean curvature H which satisfies
assumptions (H). Then, ΣH converges uniformly to a critical point of the scalar
curvature.

We can rephrase this theorem as follows : choose any function δ(H) such that
δ(H) → 0 as H → +∞. Then for any ρ > 0, there exists some H0 > 0 such that
any embedded topological sphere with constant mean curvature H ≥ H0, diameter
δ ≤ δ(H) and area A ≤ ρ−1H−2, has to be in a ball B (p, ρ) where p is a critical
point of the scalar curvature of (N, g).

Conversely, if p is a nondegenerate critical point of the scalar curvature, then
there are such embedded spheres in any ball B (p, ρ) (see Ye [42]).

Moreover, as will be seen from the proof of the theorem, we get a precise asymp-
totic description of the surfaces ΣH as H → +∞ : roughly speaking, they look like
a connected sum of spheres.

This theorem thus provides a beginning of classification of high constant mean
curvature surfaces in 3-dimensional Riemannian manifolds.
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Note that one could ask the same question for curves in 2-manifolds. And the
answer is simpler than in dimension 3 : curves with high constant geodesic curvature
and small diameter converge to some critical point of the Gauss curvature. This
was proved by Sun [38]. The difference between curves and surfaces is that, for
curves, one has to analyze solutions of some ODE while, here, we have to deal with
solutions of some system of elliptic PDEs. We also note that a similar theorem has
been proved by the author concerning small constant mean curvature surfaces with
boundary in a euclidean domain, see [26].

The rest of the paper is devoted to the proof of theorem 0.1 and is organized as
follows. First, in section 1, we compute the equation satisfied by ourH-surfaces in a
general 3-manifold and we recall the classification of solutions of the limit equation
(i.e. when the ambient metric becomes flat) obtained by Brezis and Coron [5]. In
section 2, we set up our proof by reformulating the problem in the framework of
some blow-up analysis for a sequence of solutions of perturbed H-systems. These
systems are systems of elliptic PDEs, critical form the point of view of Sobolev
embeddings, but which enjoy some nice compactness by compensation properties
(see Rivière [35] for a nice and clear explanation of these phenomena). However,
the perturbation due to the presence of some Riemannian metric, instead of the
Euclidean one, breaks most of these properties. In section 3, we start the blow-
up analysis by showing that our sequence of solutions decomposes asymptotically
into a sum of spheres. This is a generalization of the classical result of Brezis and
Coron [5] in our setting. Then comes the key point of the proof : we need to
estimate precisely (and in a pointwise way) the error between our solutions and
this sum of parametrizations of spheres. Roughly speaking, we have to upgrade the
theory of Brezis-Coron which took place in the energy space into a pointwise theory,
following the general scheme developed for Yamabe type equations by Hebey et al.,
see e.g. [22], [19], [21], [17]. This is done in two steps. We first use an estimate
obtained thanks to the Green formula and a classification of decreasing solutions
of the linearized equation, see section C.2. It remains to control the interaction
between the bubbles, which is postponed at the end of proof. Finally, this estimate
is in section 5 to conclude. The proof is rather technical and the reader can start
by assuming that there is juste one bubble, like in the construction of Ye. In this
case, one can ignore section 6. In the general case, when there are several bubbles,
we must also get a good control on the interaction between bubbles.

Acknowledgements : I thank my thesis advisor Olivier Druet for his constant
support during the preparation of this paper. I would also like to thank deeply
Tristan Rivière for his valuable comments and remarks on a first draft of the man-
uscript.

1. Equation of mean curvature in a 3-Riemannian manifold

Here, we compute the equation satisfied by a conformal immersion with respect
to its mean curvature. The fact that we consider conformal immersion is very natu-
ral when we look at problems concerning mean curvature. Especially in dimension
2 where, thanks to the uniformization theorem, on the sphere every metric is con-
formally equivalent to the standard metric.
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Let (N , g) be an oriented 3-Riemanniann manifold, (M, h) be an oriented surface
and f : M → Σ ⊂ N be a conformal immersion, that is to say such that
f∗(g|Σ) = e2uh, where u ∈ C∞(M). Hence Σ = f(M) is a surface of mean
curvature equal to H if

∂2f j

(∂xα)2
+ Γj

ik(f)
∂f i

∂xα
∂fk

∂xα
= 2H(f)

√

|g|gij(f)νi for j ∈ {1, 2, 3}. (1)

In arbitrary coordinates, (1) is transformed into

∆Mf j − hαβΓj
ik(f)

∂f i

∂xα
∂fk

∂xβ
= −2H(f)

√

|g|gij(f)νi
√

|h|
for j ∈ {1, 2, 3}, (2)

where ∆M is the Laplace-Beltrami operator of (M, h). Here we have to notice the
fundamental fact that this equation is invariant by a conformal diffeomorphism.
That is to say, if u satisfies (2) and φ ∈ Conf(M) then u ◦ φ still satisfies (2).

The fundamental example of the Euclidean case :

If we consider a sphere with mean curvature H immersed in R3, we get the
so-called equation of H-bubbles :

{

∆ξu = −2H(u)ux ∧ uy,
〈ux, uy〉ξ = 0 and ‖ux‖ξ = ‖uy‖ξ.

(3)

Here ξ is the standard metric of R3. This equation, in particular when H is con-
stant, will play a fundamental role in what follows since this is the limit of the
general equation when the metric becomes flat. Moreover, thanks to Hopf’s the-
orem, we know that the sphere is the only immersed compact simply connected
surface with constant mean curvature in R3. Hence the sphere provides us a funda-
mental solution of (3). Hence we need a conformal parametrization of the sphere:
this is exactly the purpose of the inverse of the stereographic projection.

Let ω : R2 → R
3 be defined as follows

ω(x, y) =
1

1 + r2





2x
2y

r2 − 1



 ,

where r2 = x2 + y2. This exactely the inverse ogf the stereographic projection with
respect to the north pole. Computing the derivatives and their cross product, we
get the following useful formulas

ωx(x, y) =
2

(1 + r2)2





1 + (y2 − x2)
−2xy
2x



 , ωy(x, y) =
2

(1 + r2)2





−2xy
1 + (x2 − y2)

2y



 ,

ωx ∧ ωy(x, y) =
−4

(1 + r2)3





2x
2y

1− r2



 =
−4ω(x, y)

(1 + r2)2
,

|∇ω|2
2

= |ωx|2 = |ωy|2 =
4

(1 + r2)2
and 〈∇ωk,∇ωl〉 = (δkl − ωkωl)

|∇ω|2
2

. (4)
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Then we remind a very important result of Brezis and Coron [5] which states that
the only solution of

∆u = −2 ux ∧ uy,
with bounded energy are exactly, up to a conformal reparametrization, the inverse
of the stereographic projection. This result can be seen as a variant of the Hopf’s
theorem, see [24], where the hypothesis of conformality is replaced by a bound on
the area.

Lemma 1.1 (lemma A.1 of [5]). Let u ∈ L1
loc(R

2,R3) which satisfies

∆u = −2 ux ∧ uy,
∫

R2

|∇u|2dz < +∞.
(5)

Then u has precisely the form

u(z) = ω

(

P (z)

Q(z)

)

+ C,

where P and Q are polynomial, C is a constant. In addition
∫

R2

|∇u|2 dz = 8πk with k = max{degP, deg Q},

provided that P
Q

is irreducible.

It could be useful to remark that, thanks to (4), the gradient of such an ω satisfies
the following formula

|∇ω| = 2
√
2|P ′Q−Q′P |
|P |2 + |Q|2 .

Then we defined a special class of solutions which will be very important in what
follows: the spheres which are parametrized only one time.

Definition 1.1. A solution u of (5) is said to be simple if

u(z) = ω

(

P (z)

Q(z)

)

+ C,

with P
Q

is irreducible and max{degP, deg Q} = 1.

In particular, if u is a simple solution of (5), then we have

|∇ωε(x)| = O

(

λε

|x− aε|2 + (λε)2

)

, (6)

where uε = u
(

.−aε

λε

)

, aε and λε are respectively a sequence of points in R2 and a
sequence of positive numbers.

2. Preliminaries

The aim of this section is to remind some basic facts about embedded surfaces
in the euclidean space and to use them to give an appropriate formulation of the
problem.

First of all, we give some classical relations between the diameter, the area and
the mean curvature of such embedded surfaces. Then we will give an equivalent of



6 PAUL LAURAIN

such relations in our Riemannian setting.

The following classical lemma gives a lower bound of the diameter by the inverse
of the mean curvature.

Lemma 2.1. Let S be a smooth surface of R3 with mean curvature H. Then

2 ≤ δ(S) sup
x∈S

|H(x)|,

where δ(S) is the extrinsic diameter of M .

Proof of lemma 2.1:

Let B(x, r) be the smallest closed ball that enclose M . Using a classical max-

imum principal at y ∈ B(x, r) ∩ S, we see that |H(y)| ≥ |HS(x,r)(y)| = 1
r
, which

proves the lemma. �

Then, we remind the Simon’s inequality which relates the diameter to the area
and the mean curvature.

Theorem 2.1. Let S be a closed connected surface immersed in R
3, then

δ(S) <
2

π
A(S)

1
2

(∫

S

|H |2dσ
)

1
2

, (7)

where A, H and dσ are respectively the area, the mean curvature and the volume
element of S.

See [37] for the original proof and [40] for the proof with the optimal constant
2
π
. Indeed considering a long cylinder ending by spherical caps we see that the

constant cannot be improved. Then we obtain, as a by product of (7), that

δ(S) <
2

π
A(S) sup

x∈S

|H(x)|. (8)

Such an inequality have been also proved by Bethuel and Rey, see theorem 6.2 of
[4]. By now, we are in position to give a proof, in Riemannian setting, of the fact
that the diameter of an H-surface is controlled by the product of the area by the
mean curvature. In fact, we need the additional assumption that the diameter is
small enough, in order to get a relatively flat geometry. It is false without this
additional assumption as shown by a tubular surface around a closed geodesic of
S3, see [27].

Lemma 2.2. Let (N , g) be a 3-Riemannian manifold whose injectivity radius ad-
mits a positive lower bound and ΣH ⊂ N a sequence of connected H-surface which
satisfies the following hypothesis

{

δ(ΣH) = o(1),

A(ΣH) = O
(

1
H2

)

.
as H → +∞,

Then we get the following estimate

1

KH
≤ δ(ΣH) ≤ K

H
,

where K is a positive constant.



SURFACES WITH LARGE CONSTANT MEAN CURVATURE 7

Proof of lemma 2.2 :

Let cH ∈ ΣH , for H large enough, we can assume that ΣH ⊂ B(cH , δ) where δ
is smaller than the injectivity radius of N . Then we rescale the exponential chart
centered in cH by a factor 1

δH
, where δH = δ(ΣH). We get a sequence of surface Σ̃H

of (R3, gH) with diameter 1, here gH is the rescale metric. The mean curvature

of Σ̃H , computed with respect to gH , is equal to H̃ = δHH . Remarking that gH
converges uniformly to ξ on every compact and that Σ̃H ⊂ B(0, 2) we get, thanks
to lemma 2.1, for H large enough that

H̃ = δHH ≥ 1,

which proves the left hand-side inequality.
In the other hand, thanks to (8), for H large enough, we have

H̃ = δHH ≥ (δHH)2

C
,

where C is the positive constant. This achieves the proof of the lemma. �

Hence, we immediately see that our assumption (H) is equivalent to assuming
that ΣH satisfies

{

1
CH

≤ δ(ΣH) ≤ C
H

A(ΣH) ≤ C
H2

as H → +∞, (H’)

where C is a positive constant.

In order to look more precisely at our H-surfaces we need some coordinates. In
particular we have to choose a center of chart. For that purpose we fix an arbitrary
point cH of ΣH as a centre of chart. Up to a subsequence, ΣH → p∞ as H → +∞.
Of course cH → p∞ as H → +∞. From now on, we look at ΣH in the exponential
chart centered at cH . Then we rescale this chart by a factor H with respect to 0
and we replace the variable H by 1

ε
. Hence we get a new sequence of immersed

spheres (Σε) ⊂ (R3, gε) with constant mean curvature 1, where gε is the rescaled
metric: gε(y)(u, v) = g(εy)(εu, εv). Moreover, Σε satisfies the following additional
assumption

{

A(Σε) ≤ C,

Σε ⊂ B(0, C),
(H ′′)

where C is a positive constant.

Finally, let uε be a parametrization of Σε from (S2, h) to (R3, gε). Up to a diffeo-
morphism of the sphere we can assume this parametrization to be conformal. In-
deed (uε)∗(gε|Σε

) is in the conformal class of the standard metric, since there is only

one conformal class on S2. Hence, let φε ∈ Diff(S2) such that (φε)∗((uε)∗(gε|Σε
)) is

pointwise conformal to h, then uε◦φε is our conformal parametrization from (S2, h)
to (R3, gε). Up to replace uε by uε ◦ φε, uε satisfies, in any conformal coordinates,
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the following equations














∆S2uε − (Γj
ik)ε(u

ε)〈∇(ui)ε,∇(uk)ε〉h = −2

√
|gε|g

ij
ε ((uε)x∧(uε)y)i√

|h|

‖uε‖∞ ≤ C

‖∇uε‖2 ≤ C,

(9)

where (Γj
ik)ε are the Christoffel symbols of gε and C is a positive constant. This

equation is totally invariant under any conformal diffeomorphism of the sphere. But
as we will remind it, the group of conformal diffeomorphism of the S2, Conf(S2),
is not compact. Hence it could be interesting to fix our parametrization once and
for all. Of course, there is no canonical choice. We choose to rescale the highest
bubble around the north pole and so to send the remainder around the south pole.

But before making this rescaling, let us defined a dilatation on the sphere S2.
For any Q ∈ S2, let πQ : S2 :→ C the associate stereographic projection (here
(RQ)⊥ is identified to C) and for any t ∈ [1,+∞[. Let τt : C → C as τt(z) = tz, we
set

ΦQ,t = π−1
Q ◦ τt ◦ πQ.

Hence, we are in position to fix the parametrization of uε. Let aε and λε be such
that

|∇uε(aε)| = 1

λε
= sup

S2

|∇uε|.

Up to compose uε with a rotation of S2, we can also assume that aε = N . Then we
replace uε by uε ◦ΦN,λε and we easily check that ∇uε is bounded on every compact
subset of S2 \ {S}. Moreover, thanks to the conformal invariance of our problem,
uε still satisfies (9). Hence, thanks to standard elliptic theory, see [20], there exist
a subsequence of uε (still denoted uε) and u0 ∈ C2(S2 \ {S}) such that

uε → u0 in C2
loc(S

2 \ {S}), (10)

If we set ω0 = u0 ◦ π−1
N , then ω0 ∈ C2(R2 \ {0}) and satisfies

∆ω0 = −2ω0
x ∧ ω0

y on R
2 \ {0}.

Then, thanks to the conformal invariance of ‖∇ . ‖2, we have

‖∇ω0‖2 ≤ lim inf
ε→0

‖∇uε ◦ π−1
N ‖2 = lim inf

ε→0
‖∇uε‖2 < +∞.

Hence ω0 is a solution of (5) and ω0 is non trivial since |∇u0(N)| = 1. Moreover
|∇ω0| has a maximum in R2, let a0 ∈ R2 be a point where |∇ω0| achieves its max-
imum.

Finally, up to replace uε by uε ◦ π−1
N , uε satisfies



















∆ξu
ε − (Γj

ik)ε(u
ε)〈∇(ui)ε,∇(uk)ε〉ξ = −2

√

|gε|gijε ((uε)x ∧ (uε)y)i

uε0 → ω0 in C2
loc(R

2 \ {−a0})
‖uε‖∞ ≤ C

‖∇uε‖2 ≤ C.

(11)

where uε0 = uε(z + a0), a0 ∈ R2 and ω0 is a non trivial solution of (5) such that
|∇ω0| achieves its maximum at 0.
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Now on and until the end, uε is seen as a map from R2 to R3.

3. Decomposition of uε as sum of bubbles.

The aim of this section consists in two steps. First we will show that Σε con-
verges to a sum of round spheres. Then we will adjust these round spheres to the
geometry of our manifold. All of this will be sum up at the end of this section.

Such a decomposition has already been observed by Brezis and Coron in [5]
where they notably give an H1-decomposition for approached solution of the mean
curvature equation on the disk. Here we give a result in the same spirit, replacing
the H1 by C2

loc. The method used have been intensively used for the Yamabe
equation and then generalized to critical elliptic systems, see [19], [16] and [18].

Theorem 3.1. Let uε be a sequence of C2-solutions of (11). Then, there exist
p ∈ N and

(i) ω1, . . . , ωp simple solutions of (5) such that |∇ωi| has a maximum at 0,
(ii) aε1, . . . , a

ε
p sequences of R2 which all converge to 0, and

(iii) λε1, . . . , λ
ε
p sequences of positive numbers such that lim

ε→0
λεi = 0,

such that, for a subsequence of uε (still denoted uε ) the following assertions hold

uεi → ωi in C2
loc(R

2 \ Si) as ε→ 0 for all 1 ≤ i ≤ p, (A)

where uεi = uε(λεi .+ aεi ) and Si = lim
ε→0

{

aεj − aεi

λεi
s.t. j ∈ {1, . . . , p} \ {i}

}

.

dεi (a
ε
j)

λεj
+
dεj(a

ε
i )

λεi
→ +∞ for all i 6= j, (B)

where dεi (x) =
√

(λεi )
2 + |aεi − x|2 for 1 ≤ i ≤ p and d0(x) =

√

1 + |x− a0|2.

With the additional properties that

lim
ε→0

sup
x∈R2

(

min
0≤i≤p

dεi (x)

)

∣

∣

∣

∣

∣

∇
(

uε −
p
∑

i=0

ωε
i

)

(x)

∣

∣

∣

∣

∣

= 0 (C)

and
∥

∥

∥

∥

∥

∇
(

uε −
p
∑

i=0

ωε
i

)∥

∥

∥

∥

∥

2

→ 0 as ε→ 0, (D)

where ωε
i = ωi

(

. −aε
i

λε
i

)

and (aε0, λ
ε
0) = (a0, 1).

When there is just one bubble, that is to say when p = 0, the conclusion limits
to

uε → ω0 in C2(R2) as ε→ 0.

Proof of theorem 3.1 :

We are going to extract the bubbles by induction and the process will stop thanks
to our uniform bound on the area of Σε.

For k ≥ 0 let (Pk) be the following assertion :

There exist
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(i) ω0, . . . , ωk non trivial solutions of (5) such that |∇ωi| has its maximum at 0,
(ii) aε0, . . . , a

ε
k bounded sequences of R2 such that lim

ε→0
aεi = 0 for 1 ≤ i ≤ k , and

(iii) λε0, . . . , λ
ε
k bounded sequences of positive numbers such that lim

ε→0
λεi = 0 for

1 ≤ i ≤ k,

such that, for a subsequence of uε (still denoted uε) the following assertions hold

uεi → ωi in C
2
loc(R

2 \ Si) as ε→ 0 for all , (Ak)

where uεi = uε(λεi . − aεi ) and Si = lim
ε→0

{

aεj − aεi

λεi
s.t. j ∈ {0, . . . , k} \ {i}

}

.

dεi (a
ε
j)

λεj
+
dεj(a

ε
i )

λεi
→ +∞ ∀i 6= j, as ε→ 0, (Bk)

where dεi (x) =
√

(λεi )
2 + |aεi − x|2.

Claim 1: if (Pk) holds for some k ≥ 0 then either (Pk+1) holds or

lim
ε→0

sup
x∈R2

(

min
1≤i≤k

dεi (x)

)

∣

∣

∣

∣

∣

∇
(

uε −
k
∑

i=0

ωε
i

)

(x)

∣

∣

∣

∣

∣

= 0, (12)

where ωε
i = ωi

(

.−aε
i

λε
i

)

.

Proof of Claim 1 :

In order to prove this claim, we assume that (Pk) holds and that there exists
γ0 > 0 such that

sup
z∈R2

(

min
0≤i≤k

dεi (z)

)

∣

∣

∣

∣

∣

∇
(

uε −
k
∑

i=0

ωε
i

)

(z)

∣

∣

∣

∣

∣

≥ γ0 for all ε > 0. (13)

We need to prove that (Pk+1) holds. Let a
ε
k+1 ∈ R2 be such that

(

min
0≤i≤k

dεi (a
ε
k+1)

)

∣

∣

∣

∣

∣

∇
(

uε −
k
∑

i=0

ωε
i

)

(aεk+1)

∣

∣

∣

∣

∣

= sup
z∈R2

(

min
0≤i≤k

dεi (z)

)

∣

∣

∣

∣

∣

∇
(

uε −
k
∑

i=0

ωε
i

)

(z)

∣

∣

∣

∣

∣

.

The fact that the supremum is achieved is a consequence of our assumptions. In-
deed, thanks (11), we get

∣

∣

∣

∣

∣

∇
(

uε −
k
∑

i=0

ωε
i

)

(z)

∣

∣

∣

∣

∣

= O

(

1

1 + |z|2
)

as z → +∞,

which proves that the maximum is achieved. Now we define λεk+1 by the equation
∣

∣

∣

∣

∣

∇
(

uε − ω0 −
k
∑

i=1

ωε
i

)

(aεk+1)

∣

∣

∣

∣

∣

=
1

λεk+1

.

Always thanks to (11) and the assumptions about the aεi and the λεi , we remark
that

∣

∣

∣

∣

∣

∇
(

uε −
k
∑

i=0

ωε
i

)∣

∣

∣

∣

∣

→ 0 on R
2 \ {0},



SURFACES WITH LARGE CONSTANT MEAN CURVATURE 11

then (aεk+1) converges to 0. Then, if k ≥ 1 we have

min
0≤i≤k

dεi (a
ε
k+1) → 0 as ε→ 0,

and

λεk+1 → 0 as ε→ 0. (14)

In fact, (14) is also true when k = 0. Indeed, else uε − ωε
0 would be uniformly

bounded in C1(R2) and hence converge to 0 on the whole plane which contradicts
(13).

Now there are two cases to consider.

First case :

lim
ε→0

min
0≤i≤k

dεi (a
ε
k+1)

λεk+1

= +∞. (15)

In this case, (Bk+1) is automatically satisfied. Now, we set uεk+1 = uε(λεk+1 . +

ak+1). Let z ∈ R2, we get that

|∇uεk+1(z)| = λεk+1|∇uε(λεk+1z + aεk+1)|

≤ λεk+1

∣

∣

∣

∣

∣

∇
(

uε −
k
∑

i=0

ωε
i

)

(λεk+1z + aεk+1)

∣

∣

∣

∣

∣

+ λεk+1

∣

∣

∣

∣

∣

∇
(

k
∑

i=0

ωε
i

)

(λεk+1z + aεk+1)

∣

∣

∣

∣

∣

.

(16)

Thanks to (6) and (15), we easily see that

λεk+1

∣

∣

∣

∣

∣

∇
(

k
∑

i=0

ωε
i

)

(λεk+1z + aεk+1)

∣

∣

∣

∣

∣

= o(1),

and

lim
ε→0

λεk+1

∣

∣∇uε(aεk+1)
∣

∣ = 1.

(17)

Then using the definition of aεk+1, (15), (16) and (17) we have

|∇uεk+1(z)| ≤
mini d

ε
i (a

ε
k+1)

mini dεi (λ
ε
k+1z + aεk+1)

+ o(1) = 1 + o(1). (18)

Then |∇uεk+1| is bounded on every compact subset of R2. Moreover thanks to the
conformal invariance of our problem, uεk+1 still satisfies (11). Hence, thanks to
standard elliptic theory, see [20], there exist a subsequence of uε (still denotes uε)
and ωk+1 ∈ C2(R2) such that

uεk+1 → ωk+1 in C2
loc(R

2)

and
∆ωk+1 = −2ωk+1

x ∧ ωk+1
y on R

2.

Moreover, thanks to the conformal invariance of ‖∇. ‖2, we have

‖∇ωk+1‖2 ≤ lim inf
ε→0

‖∇uεk+1‖2 = lim inf
ε→0

‖∇uε‖2 < +∞.

Then, thanks to lemma 1.1, ωk+1 is a solution of (5) on R2 and ωk+1 is non-trivial
since |∇ωk+1(0)| = 1. Finally, thanks to (17) and (18), we easily see that |∇ωk+1|
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has a maximum at 0. This achieves the proof of the fact that (Pk+1) holds in the
first case.

Second case :

lim
ε→0

min
0≤i≤k

dεi (a
ε
k+1)

λεk+1

= γ > 0. (19)

In that case we necessary get k > 0.

First of all, we need to prove that (Bk+1) holds. If it doesn’t hold, up to a
subsequence, there exists 1 ≤ i0 ≤ k such that

dεk+1(a
ε
i0
) = O(λεi0 ) and d

ε
i0
(aεk+1) = O(λεk+1). (20)

From the one hand, (20) gives that

λεk+1

λεi0
→ c as ε→ 0 and |aεi0 − aεk+1| = O(λεi0 ), (21)

where c is a positive constant. From the other hand, thanks to (Ak) and (Bk), we
have

∇
((

uε −
k
∑

i=0

ωε
i

)

(λεi0 .+ aεi0)

)

→ 0 in C1
loc(R

2 \ {Si0}). (22)

Then, thanks to (19) and (21), we necessary get that

d

(

aεk+1 − aεi0
λεi0

, Si0

)

= o(1).

Then there exists j ∈ {0, . . . , k} \ {i0} such that
∣

∣

∣

∣

aεk+1 − aεj

λεi0

∣

∣

∣

∣

= o(1).

Then, thanks to (19) and (21), for ε small enough, we get

λεj

λεk+1

≥ γ

2
,

and, thanks to (21), for ε small enough, we get

λεj

λεi0
≥ γ

4c
,

But, since
aε
i0

−aε
j

λε
i0

= O(1) and that i0 and j satisfies (Bk), we have

λεi0 = o(λεj).

Hence for every j such that
aε
k+1−aε

j

λε
i0

= o(1) we have

λεi0 = o(λεj).

In particular, thanks to (6), there exists δ > 0 such that for every z ∈ B(0, δ) we
get that

λεi0 |∇ωε
i (a

ε
k+1 + zλεi0)| = o(1) for every i 6= i0

Then we easily get that

λεi0 |∇uε| = O(1) on B(aεk+1, δλ
ε
i0
).
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Hence thanks to elliptic theory, up to a subsequence, we see that

|∇(uεi0 − ωi0)(aεk+1)| → 0,

which leads to

λεi0

∣

∣

∣

∣

∣

∇
((

uε −
k
∑

i=0

ωε
i

)

(aεk+1)

)∣

∣

∣

∣

∣

→ 0,

which, thanks to (21), is a contradiction with (19) and proves (Bk+1).

Now, we set uεk+1 = uε(λεk+1 .+ aεk+1). Let z ∈ R2 \ {Sk+1}, we get that

|∇uεk+1(z)| = λεk+1|∇uε(λεk+1z + aεk+1)|

≤ λεk+1

∣

∣

∣

∣

∣

∇
(

uε −
k
∑

i=0

ωε
i

)

(λεk+1z + aεk+1)

∣

∣

∣

∣

∣

+ λεk+1

∣

∣

∣

∣

∣

∇
(

k
∑

i=0

ωε
i

)

(λεk+1z + aεk+1)

∣

∣

∣

∣

∣

.

(23)

Thanks to (6) and (19), we easily see that

λεk+1

∣

∣

∣

∣

∣

∇
(

k
∑

i=0

ωε
i

)

(λεk+1 .+ aεk+1)

∣

∣

∣

∣

∣

= O

(

1

d(z, Sk+1)

)

. (24)

Then using the definition of aεk+1, (23) and (24) we have

|∇uεk+1(z)| ≤
mini d

ε
i (a

ε
k+1)

mini dεi (λ
ε
k+1z + aεk+1)

+O(
1

d(z, Sk+1)
) = O(

1

d(z, Sk+1)
). (25)

Then |∇uεk+1| is bounded on every compact subset of R2\{Sk+1}. Moreover thanks
to the conformal invariance of our problem, uεk+1 still satisfies (11). Hence, thanks
to standard elliptic theory, see [20], there exists a subsequence of uε (still denotes
uε) and ωk+1 ∈ C2(R2 \ Sk+1) such that

uεk+1 → ωk+1 in C1
loc(R

2 \ Sk+1)

and

∆ωk+1 = −2ωk+1
x ∧ ωk+1

y on R
2 \ Sk+1.

Moreover, thanks to the conformal invariance of ‖∇ .‖2, up to extraction, we have

uεk+1 ⇀ ωk+1 in L2(R2)

and

‖∇ωk+1‖2 ≤ lim inf
ε→0

‖∇uεk+1‖2 = lim inf
ε→0

‖∇uε‖2 < +∞.

Then, thanks to lemma 1.1, ωk+1 is a solution of (5) on R2. Then we want to
show that ωk+1 is non-trivial. This is obvious if 0 6∈ Sk+1, since in this case we get
|∇ωk+1(0)| = 1. But for every i0 such that

|aεi0 − aεk+1|
λεk+1

= o(1),

thanks to (19) and (Bk+1), we get

λεi0 = o(λεk+1).
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Then mimiking the argument of the proof of (Bk+1) we prove that

∇uεk+1 → ∇ωk+1 on B(0, δ),

where δ > 0. Which leads to |∇ωk+1(0)| = 1 and proves that ωk+1 is non-trivial.

Finally |∇ωk+1| achieves his maximum at ak+1 ∈ R2, then up to replace aεk+1

by aεk+1 + λεk+1ak+1, the conclusion still holds with a new ωk+1 such that |∇ωk+1|
achieves his maximum at 0. This proves (Pk+1) in the second case. The study of
these two cases ends the proof of claim 1.

Then, before proving the theorem, we need to prove a claim about the growth
of the energy of such a decomposition.

Claim 2: Let k ∈ N and

(i) ω0, . . . , ωk non trivial solution of (5),
(ii) aε0, . . . , a

ε
k bounded sequences R2 , and

(iii) λε0, . . . , λ
ε
k, bounded sequences of positive numbers,

such that, with uε, they satisfy (Pk). Then

lim inf
ε→0

‖∇uε‖22 ≥
k
∑

i=0

‖∇ωi‖22 ≥ 8π(k + 1).

Proof of claim 2 :

Indeed let R be a real positive number, then, thanks to (Bk), for ε small enough,
we get

∫

R2

|∇uε|2dz ≥
k
∑

i=0

∫

B(aε
i
,Rλε

i
)\Ωε

i
(R)

|∇uε|2dz,

where Ωε
i (R) = ∪j 6=iB(aεj , Rλ

ε
j). Then, thanks to (Ak), we get

∫

R2

|∇uε|2dz ≥
k
∑

i=0

∫

B(0,R)\Ωi(R)

|∇ωi|2dz + δε,R

≥ 8π(k + 1) + δε,R

(26)

where Ωi(R) = ∪x∈Si
B(x,

1

R
) and lim

R→+∞
lim
ε→0

δε,R = 0. �

Proof of the theorem :

Since uε satisfies (11), we see that (P0) holds and we set λε0 = 1. Then we can
start our extraction. Indeed, thanks to claim 1 and 2 and the fact that ‖∇uε‖2 is
finite, there exists k ∈ N such that (Pk) is satisfied and

lim
ε→0

sup
x∈R2

(

min
0≤i≤k

dεi (x)

)

∣

∣

∣

∣

∣

∇
(

uε −
k
∑

i=0

ωε
i

)

(x)

∣

∣

∣

∣

∣

= 0, (27)
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where ωε
i = ωi

(

.+aε
i

λε
i

)

. Which proves that (A), (B) and (C) holds. It remains to

prove (D). Let

Rε = uε −
k
∑

i=0

ωε
i

and let us assume for contradiction that there exists δ > 0 such that

‖∇Rε‖2 ≥ δ.

Then we are going to extract a new bubble and prove this contradicts (27). Here
we follow the method developed in [5].

First we introduce the concentration function

Cε(t) = sup
x∈R2

∫

B(x,t)

|∇Rε|2dz.

In fact this supremum is a maximum, since Rε is in L2(R2). Moreover, each Cε is

continuous, increasing in t, Cε(0) = 0 and, thanks to (Pk), C
ε(1) ≥ Cε(∞)

2 ≥ δ
2 , for

ε small enough. We fix ν such that

0 < ν < min

{

1

2C0
,
δ

2

}

,

where C0 is the constant involved in lemma E.3. Hence there exists aε ∈ R2 and
λε > 0 such that

Cε(λε) =

∫

B(aε,λε)

|∇Rε|2dz = ν.

Of course, thanks to (Pk), we know that

aε → 0 and λε → 0, as ε→ 0.

Then we rescale at aε, setting f̃ = f(λε . + aε), and we get
∫

R2

|∇R̃ε|2dz = ‖∇Rε‖22 ≤ C,

and

‖∇R̃ε‖∞ ≤ C,

where C is a positive constant. Moreover, thanks to (11), R̃ε satisfies

∆R̃ε = −2 R̃ε
x ∧ R̃ε

y +O





k
∑

i=0

|∇ω̃ε
i |





∑

j 6=i

|∇ω̃ε
j |+ |∇R̃ε|









+O(ε2|∇ũε|2).
From the other hand, we get, thanks to (Bk), that

|∇ω̃ε
i ||∇ω̃ε

j | → 0 in L1
loc(R

2)

and, thanks to (27), we get that

|∇ω̃ε
i ||∇R̃ε| → 0 in L1

loc(R
2).

Hence we get that

∆R̃ε = −2 R̃ε
x ∧ R̃ε

y + hε,
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where hε → 0 in L1
loc(R

2) as ε→ 0. Then, up to a subsequence, we have

R̃ε → R a.e. on R
2

and

∇Rε ⇀ ∇R weakly in L2(R2).

Moreover R is a weak solution of (5). Thanks to our choice of ν, we are going to

prove that the weak convergence is in fact a strong convergence. Let vε = R̃ε −R,
then vε satisfies

∆vε = −2 vεx ∧ vεy − 2(vεx ∧Ry +Rx ∧ vεy) + hε.

Thanks to lemma E.1, there exists ψε a the solution in H1(R2) of

∆ψε = −2(vεx ∧Ry +Rx ∧ vεy),
which satisfies

‖∇ψε‖2 + ‖ψε‖∞ ≤ ‖∇vε‖2‖∇R‖2. (28)

On the other hand,
∫

R2

|∇ψε|2dz = −2

∫

R2

〈ψε, vεx ∧Ry +Rx ∧ vεy〉dz.

Then, thanks to (28), ψε ∧ Rx and ψε ∧ Ry are bounded in L2(R2). Hence, since
∇vε → 0 weakly in L2, it follows that

∫

R2

|∇ψε|2dz → 0.

Finally we have

∆vε = −2 vεx ∧ vεy + gε,

where gε → 0 in D′(R2).

Finally, let φ ∈ C∞
c (R2) such that supp(φ) is contained in a ball of radius 1,

using lemma E.3, we have
∫

R2

|∇(φvε)|2dz = −2

∫

R2

〈vε, φvεx ∧ φvεy〉dz + o(1),

≤ 2
(

C0‖∇vε|supp(φ)‖2
)

‖∇(φvε)‖22 + o(1).

Thanks to our choice of λε, we have C0‖∇vε|supp(φ)‖2 ≤ 1
2 , and then

∫

R2

|∇(φvε)|2dz = o(1)

which prove that

∇R̃ε → ∇R strongly in L2
loc(R

2).

Then the convergence is strong, since it was already the case far from 0. Moreover
R is not constant since ‖∇R‖2 = ν > 0. But thanks to (27) we get that, for all
z ∈ R2, there exists i such that

|∇R̃ε(z)| = o









1
√

(

λε
i

λε

)2

+
∣

∣

∣z +
aε−aε

i

λε

∣

∣

∣

2









,
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which leads to a contradiction and proves (D).

Finally, in order to finish the proof of the theorem we just need to prove that

max{degPi, deg Qi} = 1 for all 0 ≤ i ≤ N , with ωi = πPi

(

Pi

Qi

)

where Pi

Qi
is irre-

ducible. But this is an easy consequence of the fact that our surfaces are embedded,
(A) and lemma A.1 and this achieves the proof of the theorem. �

In the previous theorem, we showed that uε behaves asymptotically as a sum of
Euclidean bubbles. Hence in this decomposition the curved term doesn’t play any
role. In order to prove our theorem, we have to make appear these terms and to be
more precise about this decomposition. In this goal, we expand the metric in (11)
thanks to appendix D, which gives

∆uεj = −2 (uεx ∧ uεy)j + ε2
(

2

3
Rimnj(pε)(u

ε)m(uε)n(uεx ∧ uεy)i

+
1

3
Ricmn(pε)(u

ε)m(uε)n(uεx ∧ uεy)j

+
1

3
(Rnmij(pε) +Rnjim(pε)) (u

ε)m〈∇(uε)i,∇(uε)n〉
)

+O(ε3|∇uε|2),

(29)

where pε is the center of our chart.

Since we want to prove something about the derivatives of the curvature, we
have to eliminate the curvature term. In order to do it we are going to be more
precise on the shape of our bubbles. In fact this bubbles aren’t euclidian once ε > 0,
the curvature make them look like ellipsoids. For each i we are going to search a
perturbation of ωi such that when we consider (29) around aεi the curvature term
disappear. A last thing we have to pay attention is that our ωi are a priori not
centered at 0, which is not very convenient when we want to compare ωi

x ∧ ωi
y and

ωi. Then we will consider sometimes ω̂i = ωi−pi where pi is the center of mass of ωi.

Hence we look for ρεi such that ωε
i = ω̂i + pεi + ρεi solves (29) at the first order,

here pεi is a constant we will fix later. That is to say

∆ωε
i = −2(ωε

i )x ∧ (ωε
i )y

+ ε2
(

2

3
Rkmnl(pε)(ω

ε
i )

m(ωε
i )

n((ωε
i )x ∧ (ωε

i )y)
k

+
1

3
Ricmn(pε)(ω

ε
i )

m(ωε
i )

n((ωε
i )x ∧ (ωε

i )y)l

+
1

3
(Rmnkl(pε) +Rmlkn(pε)) (ω

ε
i )

n〈∇(ωε
i )

k,∇(ωε
i )

m〉
)

+O(ε3)

(30)

with the relation of almost conformality

〈(ωε
i )x, (ω

ε
i )y〉+

1

3
Rkmnl(pε)(ω

ε
i )

m(ωε
i )

n(ωε
i )

k
x(ω

ε
i )

l
y = O(ε3),

〈(ωε
i )x, (ω

ε
i )x〉+

1

6
Rkmnl(pε)(ω

ε
i )

m(ωε
i )

n(ωε
i )

k
x(ω

ε
i )

l
x

− 〈(ωε
i )y, (ω

ε
i )y〉 −

1

6
Rkmnl(pε)(ω

ε
i )

m(ωε
i )

n(ωε
i )

k
y(ω

ε
i )

l
y = O(ε3).

(31)
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We look for ρεi of the form ε2ρεi . Then, thanks to the expansion of the metric
and (4), then we see that ρεi must solve

∆ρεi + 2((ρεi )x ∧ ω̂i
y + ω̂i

x ∧ (ρεi )y) =

(

−2

3
Rkmnl(pε)(ω̂i + pεi )

m(ω̂i + pεi )
n(ω̂i)

k

− 1

3
Ricmn(pε)(ω̂i + pεi )

m(ω̂i + pεi )
n(ω̂i)l

+

(

1

3
Rmnkl(pε) +Rmlkn(pε)

)

(ω̂i + pεi )
n(δkm − ω̂k

i ω̂
m
i )

) |∇ω̂i|2
2

(32)

and

〈(ρεi )x, ω̂i
y〉+ 〈ω̂i

x, (ρ
ε
i )y〉 = −1

3
Rkmnl(pε)(ω̂i + pεi )

m(ω̂i + pεi )
n(ω̂i

x)
k(ω̂i

y)
l,

〈(ρεi )x, ω̂i
x〉 − 〈ω̂i

y, (ρ
ε
i )y〉 =

1

6
Rkmnl(pε)(ω̂i + pεi )

m(ω̂i + pεi )
n(ω̂i

y)
k(ω̂i

y)
l

− 1

6
Rkmnl(pε)(ω̂i + pεi )

m(ω̂i + pεi )
n(ω̂i

x)
k(ω̂i

x)
l.

As for the linearized equation, see proposition C.2, we decompose ∇ρεi on the
orthogonal frame ω̂i

x, ω̂
i
y, ω̂

i
x∧ ω̂i

y in order to find the solution. After a straitforward
computation, we check that

ρεi =
1

6

(

Rickl(pε)(ω̂
i)l − 3

2
Scal(pε)(ω̂i)k

)

− 1

6
Rkmnl(pε)(p

ε
i )

m(pεi )
n(ω̂i)l

− 1

3
Rkmnl(pε)(p

ε
i )

m(ω̂i)n(ω̂i)k − 1

12
Rickl(pε)(ω̂

i)k(ω̂i)lω̂i

(33)

provides a solution. Here we used the fact that in dimension 3, we get

Rkmnl = (gknRicml − gklRicmn + gmlRickn − gmnRickl)

+
Scal

2
(gklgmn − gkngml).

Hence we set

ωε
i = ω̂i + pεi + ε2ρεi

and

Bε
i (z) = ωε

i

(

z − aεi
λεi

)

.

(34)

But, we have to make an adjustment on our bubbles, choosing them such that they
are ”tangent” to Σε at its extreme points.

First, let i ∈ {0, . . . , p} be such that

lim
ε→0

dεj(a
ε
i )

λεi
= 0 for some j 6= i. (35)

Let us fix bεi ∈ R2 such that














bεi ∈ B(aεi , λ
ε
i )

and

d
(

bεi−aε
i

λε
i
, Si

)

≥ d > 0,
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and pεi ∈ R3 such that

pεi + ω̂i(bεi ) = uε(bεi ).

Then, we consider i ∈ {0, . . . , p} such that

lim
ε→0

dεj(a
ε
i )

λεi
6= 0 for any j 6= i. (36)

Hence, thanks to theorem 3.1, there exists δ0 > 0 such that, up to a subsequence,

∇ũε → ∇ωi in C2(B(0, δ0)), (37)

where ũε = uε(λεi . + aεi ). In fact the convergence should hold on B(0, δ0) \ {Si}.
But, thanks to (36) and (B), either aij = lim

ε→0

aεj − aεi

λεi
6= 0 or λεi = o(λεj). Hence, in

every cases, we get that

|∇B̃ε
j | → 0 in C1(B(0, δ0)), for all j 6= i

which proves the validity of (37).

Then, thanks to (37) and the fact that |∇ωi| has a strict maximum at 0, for ε
small enough, there exists ãεi ∈ R2 such

|ãεi − aεi | = o(λεi ) and |∇uε| has a local maximum at ãεi . (38)

Still thanks to (37), there exists Rε
i ∈ SO(3), θεi ∈ [0, 2π] and λ̃εi ∈ R such that

λ̃εi ∼ λεi , R
ε
i → Id,

ũεx(0) = Rε
i (ω

i
x(0))

and

Vect
(

ũεx(0), ũ
ε
y(0)

)

= Vect
(

Rε
i (ω

i
x(0)), R

ε
i (ω

i
y(0))

)

,

(39)

where ũε = uε(eiθ
ε
i λ̃εi . + ãεi ). Then, we set pεi ∈ R3 such that

ω̂ε
i = Rε

i ω̂
i,

pεi = uε(ãεi )− ω̂ε
i (0)

ωε
i = ω̂ε

i + pεi + ε2ρεi ,

and

Bε
i (z) = ωε

i

(

z − ãεi

eiθ
ε
i λ̃εi

)

,

where ρεi is associated to ω̂i
ε and pεi thanks to (33).

Moreover, thanks to (37), there exists cεi ∈ R2 such that

|cεi | = o(1) and |∇ωε
i | has a local maximum at cεi . (40)

However using the fact that |∇ω̂ε
i | has a local maximum at 0 and the fact that

|∇(ω̂ε
i − ωε

i )| = O(ε2) in a neighborhood of 0, we get that

|cεi | = O(ε)

and

|∇ũε(0)−∇ωε
i (c

ε
i )| = O(ε)
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where ũε = uε(eiθ
ε
i λ̃εi . + ãεi ). This implies that there exist R̂ε

i ∈ SO(3) θ̂εi ∈ [0, 2π]

and λ̂εi ∈ R such that
∣

∣

∣

∣

∣

λ̂εi
λεi

− 1

∣

∣

∣

∣

∣

= O(ε), |R̂ε
i − Id| = O(ε),

uεx(ã
ε
i ) = R̂ε

i ((B̂
ε
i )x(ã

ε
i ))

and

Vect
(

uεx(ã
ε
i ), u

ε
y(ã

ε
i )
)

= Vect
(

R̂ε
i ((B̂

ε
i )x(ã

ε
i )), R̂

ε
i ((B̂

ε
i )y(ã

ε
i ))
)

,

(41)

where B̂ε
i = ωε

i

(

z−ãε
i

e
iθ̂ε

i λ̂ε
i

+ cεi

)

. Then we replace aiε by ãεi , λ
ε
i by eiθ

ε
i λ̂εi and Bε

i by

R̂ε
i B̂

ε
i . Thanks to (38), (39) and (41) the conclusions of theorem 3.1 still holds with

our new choice of λεi and aεi . Moreover, thanks to(31), (3), (41) and the fact that
we have adjust the tangent plane, for every i that satisfies (36), we have

(

ũε − B̃ε
i

)

(0) = O (ε) ,

∣

∣

∣∇
(

ũεi − B̃ε
i

)

(0)
∣

∣

∣

2

= O
(

ε3
)

,

and
∣

∣

∣∇2
(

ũεi − B̃ε
i

)(

∇B̃ε
i

)

(0)
∣

∣

∣

2

= O
(

ε3
)

,

(42)

where f̃ ε
i = f(λεi . + aεi ). Then, we give the equations satisfied by our modified

bubbles,

∆Bε
i = −2(Bε

i )x ∧ (Bε
i )y + ε2

(

2

3
Rimnj(pε)(B

ε
i )

m(Bε
i )

n((Bε
i )x ∧ (Bε

i )y)
i

+
1

3
Ricmn(pε)(B

ε
i )

m(Bε
i )

n((Bε
i )x ∧ (Bε

i )y)j

+
1

3
(Rmnij(pε) +Rmjin(pε)) (B

ε
i )

n〈∇(Bε
i )

i,∇(Bε
i )

m〉
)

+O(ε3|∇Bε
i |2)

(43)

and the relation of quasi-conformality

〈(Bε
i )x, (B

ε
i )y〉 = −1

3
Rkmnl(pε)(B

ε
i )

m(Bε
i )

n(Bε
i )

k
x(B

ε
i )

l
y +O(ε3|∇Bε

i |2),

〈(Bε
i )y , (B

ε
i )y〉 − 〈(Bε

i )x, (B
ε
i )x〉 =

1

6
Rkmnl(pε)(B

ε
i )

m(Bε
i )

n(Bε
i )

k
y(B

ε
i )

l
y

− 1

6
Rkmnl(pε)(B

ε
i )

m(Bε
i )

n(Bε
i )

k
x(B

ε
i )

l
x +O(ε3|∇Bε

i |2).

(44)

Conclusion of the decomposition step :

Finally, let uε be a sequence of C2-solutions of (11). Then, there exist p ∈ N and

(i) ω0, . . . , ωp simple solutions of (5) such that |∇ωi| has a maximum at 0,
(ii) aε0, . . . , a

ε
p bounded sequences of R2 such that lim

ε→0
aεi = 0 for all 1 ≤ i ≤ p,

(iii) λε0, . . . , λ
ε
p bounded sequences of complex numbers such that lim

ε→0
λεi = 0 for

all 1 ≤ i ≤ p,
(iv) Rε

0, . . . , R
ε
2p+1 sequences of SO(3) such that lim

ε→0
Rε

i = Id for all 0 ≤ i ≤ 2p+1,
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(v) pε0, . . . , p
ε
p sequences of points of R3 such that lim

ε→0
pεi = pi for all 0 ≤ i ≤ p,

where pi is the center of mass of ωi,

such that, for a subsequence of uε (still denoted uε) the following assertions hold

uεi → ωi in C2
loc(R

2 \ Si) as ε→ 0 for all 0 ≤ i ≤ p,

where uεi = uε(λεi .+ aεi ) and Si = lim
ε→0

{

aεj − aεi

λεi
s.t. j ∈ {0, . . . , p} \ {i}

}

.

dεi (a
ε
j)

λεj
+
dεj(a

ε
i )

λεi
→ +∞ for all i 6= j, (45)

where dεi (x) =
√

(λεi )
2 + |aεi − x|2.

With the additional properties that

lim
ε→0

sup
x∈R2

(

min
0≤i≤p

dεi (x)

)

∣

∣

∣

∣

∣

∇
(

uε −
p
∑

i=0

Bε
i

)

(x)

∣

∣

∣

∣

∣

= 0 (46)

and
∥

∥

∥

∥

∥

∇
(

uε −
p
∑

i=0

Bε
i

)∥

∥

∥

∥

∥

2

→ 0 as ε→ 0,

where

ω̂i = ωi − pi,

ω̂ε
i = Rε

i ω̂
i,

ωε
i = ω̂ε

i + pεi + ε2ρεi ,

and

Bε
i (z) = Rε

p+1+iω
ε
i

(

z − aεi
λεi

)

,

where ρεi is associated to ω̂i
ε and pεi thanks to (33).

Moreover, for all i, there exists bεi ∈ R2 such that

bεi ∈ B(aεi , λ
ε
i )

d

(

bεi − aεi
λεi

, Si

)

≥ d > 0,

and

|uε(bεi )−Bε
i (b

ε
i )| = O(ε),

(47)

and for all i such that lim
ε→0

dεj(a
ε
i )

λεi
6= 0 for any j 6= i, we get

∣

∣

∣
∇
(

ũε − B̃ε
i

)

(0)
∣

∣

∣

2

= O
(

ε3
)

,

∣

∣

∣∇2
(

ũε − B̃ε
i

)

(B̃ε
i )(0)

∣

∣

∣

2

= O
(

ε3
)

.

(48)

Finally, we can replace the λεi by there absolute value since the argument part can
be in the Bε

i . Moreover, thanks to the method we used to construct our λεi , up to
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reordering, we can assume that

‖∇uε‖∞ =
1

λεp
.

4. Strong estimate

Let Bε
i defined as in the last section and Rε = uε −

p
∑

i=0

Bε
i be the remainder.

The aim of this step is to prove an estimate on the gradient of the remainder,
rε = ‖∇Rε‖∞. Thanks to the previous step Rε satisfies the following equations

∆Rε = −2





∑

i6=j

(Bε
i )x ∧ (Bε

j )y +

p
∑

i=0

(Bε
i )x ∧Rε

y +Rε
x ∧ (Bε

i )y





− 2Rε
x ∧Rε

y +O

(

ε2

(

p
∑

i=0

|uε −Bε
i ||∇Bε

i |2
))

+O



ε2





p
∑

i=0

|∇Bε
i |





∑

j 6=i

|∇Bε
j |+ |∇Rε|



+ |∇Rε|2








+
(

ε3|∇uε|2
)

,

(49)

∑

i6=j

〈(Bε
i )x, (B

ε
j )y〉+ 〈Rε

x, R
ε
y〉+

p
∑

i=0

〈(Bε
i )x, R

ε
y〉+ 〈Rε

x, (B
ε
i )y〉

= O

(

ε2

(

p
∑

i=0

|uε −Bε
i ||∇Bε

i |2
))

+
(

ε3|∇uε|2
)

+O



ε2





p
∑

i=0

|∇Bε
i |





∑

j 6=i

|∇Bε
j |+ |∇Rε|



+ |∇Rε|2






 , and

∑

i6=j

〈(Bε
i )x, (B

ε
j )x〉 − 〈(Bε

i )y , (B
ε
j )y〉+ 2

p
∑

i=0

〈(Bε
i )x, R

ε
x〉 − 〈(Bε

i )y, R
ε
y〉

+ 〈Rε
x, R

ε
x〉 − 〈Rε

y , R
ε
y〉 = O

(

ε2

(

p
∑

i=0

|uε −Bε
i ||∇Bε

i |2
))

+
(

ε3|∇uε|2
)

+O



ε2





p
∑

i=0

|∇Bε
i |





∑

j 6=i

|∇Bε
j |+ |∇Rε|



+ |∇Rε|2








(50)

Then our aim is to show that the remainder is controlled by ε3‖∇uε‖∞ = ε3

λε
p
. In-

deed if the contrary holds then the last terms of (49) and (50) would be negligible
and we would get a non-trivial solutions of the linearized problem which has only
trivial solution for a good choice of the initial data, see proposition C.2.



SURFACES WITH LARGE CONSTANT MEAN CURVATURE 23

But we also need to control the cross terms like
∑

j 6=i

|∇Bε
i ||∇Bε

j |. Hence, we

define, for i 6= j,

tεij =
λεj

(dεj(a
ε
i ))

2 + (dεi (a
ε
j))

2

which is the trace around aεi of ∇Bε
j . Indeed, thanks to (6), we easily check that

on any compact subset of R2 \ {Si}, we have
∣

∣∇Bε
j (λ

ε
i .+ aεi )

∣

∣ ∼ c tεij ,

where c is a positive constant. Then we define also the maximum of these interac-
tions as

tε = max
i6=j

(tεij).

In order to get an estimate on Rε, the idea is to apply Green identity to (49). This
is possible thanks to lemma D.1. Hence let zε ∈ R

2, we get

|∇Rε(zε)| ≤ Iεi (z
ε) + Iεij(z

ε) + |∇φε(zε)|

+O



ε2





p
∑

i=0

(Jε
i (z

ε) + Iεi (z
ε)) +

∑

0≤i<j≤p

Iεij(z
ε)







+O(Iε(zε))

+O(Jε(zε))

(51)

where

Iεi (z
ε) =

∫

R2

|∇G( . , zε)||∇Bε
i ||∇Rε|dz

Iεij(z
ε) =

∫

R2

|∇G( . , zε)||∇Bε
i ||∇Bε

j |dz

Jε
i (z

ε) =

∫

R2

|∇G( . , zε)||uε −Bε
i ||∇Bε

i |2dz

Iε(zε) = ε2
∫

R2

|∇G( . , zε)||∇Rε|2dz

Jε(zε) = ε3
∫

R2

|∇G( . , zε)||∇uε|2dz

and φε ∈ H1(R2) est une solution de

∆φε = −2Rε
x ∧Rε

y.

First, using lemma E.1 and (D), we deduce that

|∇φε(zε)| = O(‖∇Rε‖2‖∇Rε‖∞) = o(rε). (52)

Then, we estimate Iεi (z
ε), Iεij(z

ε) and Jε
i (z

ε).

Let R > 0, we set rεi,R = sup
Ωε

i,R

|∇Rε| where Ωε
i,R = B(aεi , λ

ε
iR) \

{

∪j 6=iB(aεj ,
λεi
R

)

}

.

For ε small enough, we get

Iεi (z
ε) ≤ rε

∫

R2\Ωε
i,R

|∇G( . , zε)||∇Bε
i |dz

+ rεi,R

∫

Ωε
i,R

|∇G( . , zε)||∇Bε
i |dz.

(53)
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But, by a simple change of variable we get,

∫

Ω

|∇G( . , zε)||∇Bε
i |dz = O





∫

Ω−aε
i

λε
i

∣

∣

∣

∣

∇G
(

. ,
zε − aεi
λεi

)∣

∣

∣

∣

1

1 + |z|2 |dz



 ,

where Ω is any measurable set. Then either
zε−aε

i

λε
i

→ +∞ and ,thanks to lemma

D.2, we get
∫

R2

|∇G( . , zε)||∇Bε
i |dz = o(1)

or
zε−aε

i

λε
i

→ z0 and

lim
ε→0

∫

R2\Ωε
i,R

|∇G( . , zε)||∇Bε
i |dz = O

(

∫

R2\Ωi,R

|∇G( . , z0)|
1

1 + |z|2 |dz
)

where Ωi,R = B(0, R) \
{

∪z∈Si
B(z, 1

R
)
}

. Hence in every case we get

Iεi (z) ≤ rεδR,ε +O



rεi,R

Ln
(

2 +
|aε

i−zε|
λε
i

)

1 +
|aε

i−zε|

λε
i





where lim
R→+∞

lim
ε→0

δR,ε = 0.

Then, we estimate Iεij . Then, there is two cases to consider. First max(λεi , λ
ε
j) =

o(|aεi − aεj |). Then we separate the integral as follow

Iεij =

∫

D
+
ij

|∇G( . , zε)||∇Bε
i ||∇Bε

j |dz

+

∫

D
−
ij

|∇G( . , zε)||∇Bε
i ||∇Bε

j |dz,

where D+
ij = {z s.t. 〈z−mij , zj − zi〉 ≥ 0} and D−

ij = {z s.t. 〈z−mij , zj − zi〉 ≤ 0}
and mij =

zε
i+zε

j

2 . We are going to estimate the first integral, it would be the same
for the second term. But we easily see that

∫

D
+

ij

|∇G( . , zε)||∇Bε
i ||∇Bε

j |dz ≤ tεji

∫

R2

|∇G( . , zε)||∇Bε
j |dz,

and using the lemma D.2, we get

∫

D
+

ij

|∇G( . , zε)||∇Bε
i ||∇Bε

j |dz = O



tεji

Ln
(

2 +
|aε

j−zε|

λε
j

)

1 +
|aε

j
−zε|

λε
j



 .

Then we examine the second case, that is to say, up to exchange i and j, |aεi −aεj | =
O(λεj) and λ

ε
i = o(λεj). Then we easily check that

|∇Bε
j (z)| ≤ c tεij on R

2,

where c is a positive constant. Hence, we have

Iεij ≤ O

(

tεij

∫

R2

|∇G( . , zε)||∇Bε
i |dz

)

.
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and using the lemma D.2, in every case, we have

Iεij = O



tεij

Ln
(

2 +
|aε

i−zε|
λε
i

)

1 +
|aε

i
−zε|

λε
i



+O



tεji

Ln
(

2 +
|aε

j−zε|

λε
j

)

1 +
|aε

j
−zε|

λε
j



 . (54)

Finally, we estimate Jε
i (z

ε). Firstly we remark that thanks to (47) we have

|(uε −Bε
i )(z)| ≤

∑

j 6=i

|Bε
j (z)−Bε

j (b
ε
i )|+ |Rε(z)−Rε(bεi )|. (55)

But we easily see that

|Bε
j (z)−Bε

j (b
ε
i )| ≤

∫

[aε
i
,z]

|∇Bε
j |dt

= O

(

∫ |z−aε
i |

0

λεj

(λεj)
2 + |aεi + tãεj − aεj |

dt

)

,

(56)

where ãεi =
z − aεi
|z − aεi |

. Hence we get

|Bε
j (z)−Bε

j (b
ε
i )| ≤ tεij(|z − aεi |+ λεi ) (57)

Moreover we clearly get

|Rε(z)−Rε(bεi )| ≤ rε(|z − aεi |+ λεi ),

which gives, with (55) and (57), that

|(uε −Bε
i )(z)||∇Bε

i | = O





∑

j 6=i

tεij + rε



 , (58)

and then

Jε
i (z

ε) = O









∑

j 6=i

tεij + rε





∫

R2

|∇G(., zε)||∇Bε
i |dz





= O









∑

j 6=i

tεij + rε





Ln
(

2 +
|aε

i−zε|
λε
i

)

1 +
|aε

i
−zε|

λε
i



 .

(59)

Then we can estimate Jε with respect to the previous terms andIε. Indeed

Jε(zε) = O





p
∑

i=0

ε3

λεi

Ln
(

2 +
|aε

i−zε|
λε
i

)

1 +
|aε

i
−zε|

λε
i



+ ε3
p
∑

i=0

Iεi (z
ε) + Iε(zε). (60)

Hence we just need to estimate Iε(zε). In order to do it, we use the weak estimate
(46) on ∇Rε, then we get

Iε(zε) = ε2(rε)
1
3

p
∑

i=0

o

(

∫

R2

1

|z − zε|
1

(λεi + |z − aεi |)
5
3

dz

)

.

Then we set yεi = aεi − zε, which gives

Iε(zε) = ε2(rε)
1
3

p
∑

i=0

o

(

∫

R2

1

|z − yεi |
1

(λεi + |z|) 5
3

dz

)

.
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Hence we set the new variable z = µε
iu where µε

i = λεi + |yεi |, then

Iε(zε) = ε2(rε)
1
3

p
∑

i=0

o






(µε

i )
−2

3

∫

R2

1
∣

∣

∣
u− yε

i

µε
i

∣

∣

∣

1
(

λε
i

µε
i

+ |u|
)

5
3

du






.

Since the integral are uniformly bounded, we get

Iε(zε) =

p
∑

i=0

o
(

ε2(rε)
1
3 (µε)

−2

3

)

.

Using the Young inequality

Iε(zε) =

p
∑

i=0

o

(

(rε)
1
3 ε2(λεi )

−2

3

(

1 +
|yεi |
λεi

)
−2
3

)

=

p
∑

i=0

o

(

rε +
ε3

λεi

(

1 +
|yεi |
λεi

)−1
)

= o



rε +

p
∑

i=0

ε3

λεi

1

1 +
|zε−aε

i
|

λε
i



 .

(61)

Finally, thanks to (51), (52), (53), (54), (59), (60) and (61) we get, for any R > 0,

|∇Rε(zε)| =
p
∑

i=0

O







rεi,R +
ε3

λεi
+
∑

j 6=i

tεij





Ln
(

2 +
|aε

i−zε|
λε
i

)

1 +
|aε

i
−zε|

λε
i





+ δR,εr
ε.

(62)

where lim
R→+∞

lim
ε→0

δR,ε = 0.

Now we are going to show that rεi,R is controlled by tε. First we prove a stronger
result when another bubble is closed to the one we consider.

Claim 1: Let i fixed. If there exists i0 6= i such that lim sup
ε→0

dεi0 (a
ε
i )

λεi
< +∞.

Then for every R > 0, we get

rεi,R = o(tε).

Proof of claim 1 :

Thanks to the previous section, we have

sup
z∈R2

( min
0≤j≤p

dεj(z))|∇Rε| = o(1).

Now we fix R > 0 and zε ∈ Ωε
i,R, we have

|∇Rε(zε)| = o

(

1

minj d
ε
j(z

ε)

)

.

Then, up to a subsequence, there exists j0 such that

dεj0(z
ε) = min

0≤j≤p
dεj(z

ε),
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and then

|∇Rε(zε)| = o

(

dεj0(z
ε)

(dεj0(z
ε)))2

)

. (63)

Moreover, using the fact zε ∈ Ωε
i,R, we easily get

(λεi )
2 + |aεi − aεj0 |2 + (λεj0)

2 = O(|zε − aεj0 |2 + (λεj0)
2)

= O((dεj0 (z
ε))2).

(64)

From the other hand, we get

dεj0(z
ε)) ≤ dεi (z

ε) = O(λεi ) (65)

Finally, thanks to (63), (64) and (65), we get

|∇Rε(zε)| = o

(

λεi
(dεj0(a

ε
i ))

2 + (dεi (a
ε
j0
))2

)

,

which proves claim 1. �

Now we prove that if the main estimate is not satisfied, i.e. if rε and tε are not

controlled by ε3

λε
p
, then rεi,R is controlled by tε. Indeed, else the reminder will be

greater than the interactions and will give a non-constant solution of the linearized
equation.

Claim 2 : Either rε + tε = O
(

ε3

λε
p

)

or, for any positive number R, we

have max
0≤i≤p

rεi,R = O(tε).

In particular if p = 0 we necessary get tε = 0 and rε = O
(

ε3

λε
p

)

.

Proof of Claim 2 :

Let us assume for contradiction that

ε3

λεp
= o(rε + tε)

and that there exists R such that tε = o

(

max
0≤i≤p

rεi,R

)

. Then, up to a subsequence,

we can assume that, there exists i0 such that

rεi0,R = max
0≤i≤p

rεi,R.

Of course our hypothesis leads to tε = o(rε). Then we are going to prove that
rεi0,R = o(rε) which, with (62), will give a contradiction and prove the claim.

Thanks to the previous claim we can also assume that for every j 6= i0 we have

lim sup
dε
j(a

ε
i )

λε
i0

= +∞. Then (48) is true and we rescale setting f̃ = f(λεi0 . + aεi0).
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Then, thanks to (43), (44), (49), (50) and (48), we see that B̃ε
j and R̃ε satisfy

the following equations, on every compact subset of R2 \ {Si0}
|∇B̃ε

i0
| = O(1),

|∇B̃ε
j | = o(λεi0r

ε) for j 6= i,

|∇R̃ε| = O
(

λεi0r
ε
)

,

and

∆





k
∑

j=0

B̃ε
j + R̃ε



 = −2





k
∑

j=0

B̃ε
j + R̃ε





x

∧





k
∑

j=0

B̃ε
j + R̃ε





y

+ o
(

λεi0r
ε
)

,

and the relation of quasi-conformality
〈

k
∑

j=0

(B̃ε
j )x + R̃ε

x,

k
∑

j=0

(B̃ε
j )y + R̃ε

y

〉

= o
(

λεi0r
ε
)

,

〈

k
∑

j=0

(B̃ε
j )x + R̃ε

x,

k
∑

j=0

(B̃ε
j )x + R̃ε

x

〉

−
〈

k
∑

j=0

(B̃ε
j )y + R̃ε

y,

k
∑

j=0

(B̃ε
j )y + R̃ε

y

〉

= o
(

λεi0r
ε
)

,

and the initial conditions

∇





∑

j 6=i0

B̃ε
j + R̃ε



 (0) = o(λεi0r
ε),

∇2





∑

j 6=i0

B̃ε
j + R̃ε



 (∇B̃ε
i0
)(0) = o(λεi0r

ε).

Then, thanks to standard elliptic theory, see [20], we get that R̃ε

λε
i0

rε
converge in

C2
loc(R

2 \ {Si0}) to R̃ which satisfies

∆R̃ = −2
(

ωi0
x ∧ R̃y + R̃x ∧ ωi0

y

)

,

and the relations of conformality ,

〈ωi0
x , R̃y〉+ 〈R̃x, ω

i0
y 〉 = 0,

〈ωi0
x , R̃x〉 − 〈ωi0

y , R̃y〉 = 0

and

∇R̃(0) = 0,

∇2R̃(∇ωi0)(0) = 0.

Moreover, ∇R̃ is uniformly bounded on R2 \ {Si0}, then it can be extended to a
smooth function of R2 which satisfies the same equation and whose gradient is still
uniformly bounded. Finally applying proposition C.2, we see that

∇R̃ ≡ 0,

which proves that rεi0,R = o(rε). As already said this last estimate contradicts (62)

applied with R big enough, ε small enough and zε such that ∇Rε(zε) = rε

2 , which
finally proves claim 2. �



SURFACES WITH LARGE CONSTANT MEAN CURVATURE 29

Finally applying the fundamental estimate (62) with zε such that ∇Rε(zε) = rε

2 ,
R big enough and ε small enought, we get thanks to claim 2, that

rε = O

(

tε +
ε3

λεp

)

, (66)

In order to get our desired estimate, it suffices to prove that tε = O
(

ε3

λε
p

)

. This fact

is postponed to the last section. Now we will take it as proved while proving the
theorem. We can remark that this estimate is automatically satisfies when there is
only one bubble, since the interaction term vanishes.

5. Proof of theorem 0.1

In this section we assume that

rε + tε = O

(

ε3

λεp

)

.

We are going to use this estimate looking at the highest bubble, that is to say ωp.

We set f̃ = f(λεp . + aεp), thanks to (49), R̃ε = ũε − B̃ε
p then satisfies, on every

compact set of R2,

∆R̃ε = −2

p−1
∑

i=0

(B̃ε
p)x ∧ R̃ε

y + R̃ε
x ∧ (B̃ε

p)y

+ ε3
(

1

6
Ricij,k(B̃

ε
p)

i(B̃ε
p)

j(B̃ε
p)

k((B̃ε
p)x ∧ (B̃ε

p)y)

+
1

3
Rikmj,n(B̃

ε
p)

k(B̃ε
p)

m(B̃ε
p)

n((B̃ε
p)x ∧ (B̃ε

p)y)
i

+ Bijkmn(B̃
ε
p)

m(B̃ε
p)

n
〈

∇(B̃ε
p)

i,∇(B̃ε
p)

k
〉)

+ R̃ε
x ∧ R̃ε

y + o

(

p
∑

i=0

|∇B̃ε
i ||∇R̃ε|

)

+O(ε4|∇ũε|2)

(67)

where Bijkmn is defined in appendix B. Then, dividing (67) by ε3 and thanks to

the standard elliptic theory, see [20], up to a subsequence, R̃ε

ε3
converge in C2

loc(R
2)

to R̃ solution on R2 of

∆R̃ = −2(ω̂p
x ∧ R̃y + R̃x ∧ ω̂p

y) +
1

6
Ricmn,k(ω̂

p + pp)
m(ω̂p + pp)

n(ω̂p + pp)
k(ω̂p

x ∧ ω̂p
y)j

+
1

3
Rikmj,n(ω̂

p + pp)
k(ω̂p + pp)

m(ω̂p + pp)
n(ω̂p

x ∧ ω̂p
y)

i

+Bijkmn(ω̂
p + pp)

m(ω̂p + pp)
n
〈

∇(ω̂p)i,∇(ω̂p)k
〉

.

(68)

Then, up to compose R̃ with an homography, we can assume that ω̂p = ω. We also
replace pp by p.

Moreover, we know that ωx, ωy and xωx+ y ωy are solution of the linearized op-
erator, then testing (68) against these functions we should find some informations.
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From now to the end of the proof we denote ωx, ωy and xωx + y ωy by Y 1,Y 2 and
Y 3. Let R > 0, then we have
∫

B(0,R)

Y l∆R̃ dz =

∫

B(0,R)

−2〈Y l, ωx ∧ R̃y + R̃x ∧ ωy〉 + Cj(p∞, z)(Y
l)j dz,

where

Cj(p∞, z) = Bijkmn(p∞)(ω + p)m(ω + p)n
〈

∇ωi,∇ωk
〉

+
1

3
Rikmj,n(p∞)(ω + p)k(ω + p)m(ω + p)n(ωx ∧ ωy)

i

− 1

6
Ricij,k(p∞)(ω + p)i(ω + p)j(ω + p)k(ωx ∧ ωy).

Integrating by parts, we get
∫

B(0,R)

〈R̃,∆Y l + 2(Y l
x ∧ ωy + ωx ∧ Y l

y )〉dz =

∫

B(0,R)

Cj(p∞, z)(Y
l)jdz

+O

(

∫

∂B(0,R)

(|∇ω||Y l|+ |ω||∇Y l|+ |R̃||∇Y l|+ |∇R̃||Y l|)dz
)

.

(69)

Thanks to the fact that ∇R̃ satisfies (62), we get that
{

|R̃| = o(|z|)
|∇R̃| = o (1)

as z → +∞.

Moreover, thanks to the formulas of section 2, we also get the following estimates
{

|ω| = O(1)

|∇ω| = O
(

1
|z|2

) as z → +∞,

and






|Y k| = O
(

1
|z|

)

|∇Y k| = O
(

1
|z|2

) as z → +∞.

Thanks to these estimates, passing to the limit in (69) as R goes to infinity, we get
∫

R2

Bijlm(p∞)(ω + p)m(ω + p)n
〈

∇ωi,∇ωk
〉

(Y l)jdz =

1

6

∫

R2

Ricij,k(p∞)(ω + p)i(ω + p)j(ω + p)k(ωx ∧ ωy)(Y
l)jdz

− 1

3

∫

R2

Rikmj,n(p∞)(ω + p)k(ω + p)m(ω + p)n(ωx ∧ ωy)
i(Y l)jdz .

Then changing the variable via y = ω(z) and using (??), we get the following
integral on the sphere

∫

§2
Bijlm(p∞)(y + p)m(y + p)n(δik − yiyk)(Y l)jdvh =

1

6

∫

S2

Ricij,k(p∞)(y + p)i(y + p)j(y + p)kyj(Y
l)jdvh

− 1

3

∫

S2

Rikmj,n(p∞)(y + p)k(y + p)m(y + p)nyi(Y l)jdvh .
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Then we compute Y l(y), thanks to the formulas of section 2, we get that

ωx(π(y)) =





1
0
0



+





−y3
0
y1



− y1y,

ωy(π(y)) =





0
1
0



+





0
−y3
y2



− y2y,

(xωx + y ωy)(π(y)) =





0
0
1



− y3y,

Now taking in account that every integrand with an odd number of y vanishes
and using the symmetry of the Riemannian tensor, we get, after a straitforward
computation, that

∫

S2

Bijkmn(p∞)ymyn(δik − yiyk)(δjl − yjyl)dvh = 0 for all l.

We remark that this expression is independent of p. It is naturual since p de-
pends on the center of chart we have choose at the beginning of our analysis. But
this center of chart has been chosen arbitrary, hence the result mustn’t depend on p.

Finally, replacing Bijkmn by its expression, we get that
∫

S2

(4Rkmij,n(p∞)+2Rimnj,k(p∞)−Rimnk,j(p∞))ymyn(δik−yiyk)(δjl−yjyl)dvh = 0

We have the following standard formulas on the sphere
∫

S2

ymyndvh =
4π

3
δmn and

∫

S2

ymynylyjdvh =
4π

15
(δmnδjl + δmjδnl + δmlδnj)

which gives that
Ric ,m

ml (p∞) = 0 for all l.

Finally, thanks to the second Bianchi identity, we have

∇Scal(p∞) = 0.

This achieves the proof of the theorem. �

6. estimate on the bubble interaction

The aim of this section is to prove the following claim.

Claim : tε = O( ε3

λε
p
).

Proof of the claim :

We assume for contradiction that ε3

λε
p
= o(tε). First we remark that this implies

thanks to (62) that
rε = O(tε).

Before we start the proof , we give some complementary definition on the inter-
action.
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Let I = {i|∃j s.t. lim inf
tεij
tε
> 0} be the set of indices whose bubbles receive a

maximal interaction and Ti = {j s.t. lim inf
tεij
tε

> 0} be the set of indices whose
bubbles give this maximal interaction.

First we prove that each element of I received at least two maximal interaction.

Claim 1 : For all i0 ∈ I we have

|Ti0 | > 1. (70)

Proof of Claim 1 :

Let us assume for contradiction that Ti0 = {j0}. Then, we prove that if a
bubble ”contains ” Bε

i0
, it can’t receive any maximal interaction. Indeed, else Bε

i0

would received more than one maximal interaction which contradict our hypothesis.

Claim 1.1 : Let i 6= i0 then either lim sup
ε→0

dεi0(a
ε
i )

λεi
= +∞ or tεik = o(tε) for

all k 6= i.

Proof of Claim 1.1 :

Let i 6= i0 and let us assume that lim supε→0

dε
i0

(aε
i )

λε
i

< +∞. Then thanks to

(45), we have
{

λεi0 = o(λεi ),

|aεi − aεi0 | ≤ λεi .
(71)

Let us assume for contradiction assume that there exists k 6= i such that tε = O(tεik).
Remarking that we necessarily get that tεki = O(tεik), then we have

lim sup
ε→0

dεk(a
ε
i )

λεi
= +∞. (72)

Else we have
{

λεk = o(λεi ),

|aεi − aεk| = O(λεi ),

which gives that






tεik = O
(

λε
k

(λε
i
)2

)

,

1
λε
i
= O (tεki) ,

and leads to tεik = o(tεki), which is clearly a contradiction and proves (72).
Then, thanks to (71) and (72), we also get

tεik =
λεk

(λεk)
2 + (λεi )

2 + |aεi − aεk|2)
= O

(

λεk
(dεk(a

ε
i ))

2

)

= O

(

1

dεk(a
ε
i )

)

,

and

1

λεi
= O

(

λεi
(λεi0 )

2 + (λεi )
2 + |aεi0 − aεi |2

)

= O(tεi0i),
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Then, thanks to (72), we easily get that tε = o(tεi0i), which is a contradiction and
achieves the proof. �

Now we are going to give a decreasing estimate on ∇Rε around aεi0 . Let R > 0
and zε such that |zε − aεi0 | = Rλεi0 . Thanks to (62) we have

|∇Rε(zε)| ≤ o(tε) +





p
∑

i=0

∑

j 6=i

tεij



O





Ln
(

2 +
|aε

i−zε|
λε
i

)

1 +
|aε

i
−zε|

λε
i



 , (73)

Then there is two cases to consider. Let i 6= i0, if lim sup
ε→0

dεi0(a
ε
i )

λεi
= +∞ then we

easily see that

Ln
(

2 +
|aε

i−zε|
λε
i

)

1 +
|aε

i
−zε|

λε
i

= o(1). (74)

Else lim sup
ε→0

dεi0 (a
ε
i )

λεi
< +∞ and thanks to claim 1.1, for all j 6= i0, we get that

tεij = o(tε). (75)

Finally thanks to (74) and (75) we get

|∇Rε(zε)| ≤ o(tε) +O

(

tε
Ln (2 +R)

1 +R

)

.

So we see that ∇Rε

tε
decreases at infinity, so it cannot compensate

∇Bε
j0

tε
which is

constant. But the sum of its two function should goes to a solution of the linearized
equation, that is to say zero which will leads us to a contradiction. The following
is devoted to prove what we have just sketched.

First we prove, for all j 6= i0, that

lim
ε→0

dεj(a
ε
i0
)

λεi0
6= 0. (76)

Indeed, thanks to (45), we get that

λεi0λ
ε
j0

= o((dεi0 (a
ε
j0
))2 + (dεi0 (a

ε
j0
))2),

if (76) doesn’t hold for some j, then we get that

tεi0j0 = o

(

1

λεi0

)

= o(tεji0 ),

which is a contradiction and proves (76). Hence it insure that (42) is satisfied.

Then we rescale the bubble i0 setting f̃ = f(λεi0z+ aεi0)− f(aεi0). Thanks to our

assumption (43), (44), (49) and (50), we see that B̃ε
i and R̃ε satisfy the following
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equations, on every compact subset of R2 \ {Si0},
|∇B̃ε

i0
| = O(1),

|∇B̃ε
j0
| = O(λεi0 t

ε),

|∇B̃ε
i | = o(λεi0 t

ε) for i 6∈ {i0, j0},
|∇R̃ε| = O

(

λεi0 t
ε
)

.

Then, we also get

∆B̃ε
i = −2(B̃ε

i )x ∧ (B̃ε
i )y +O(ε3) for all i,

∆(B̃ε
j0
+ R̃ε) = −2((B̃ε

i0
)x ∧ (B̃ε

j0
+ R̃ε)y + ∧(B̃ε

j0
+ R̃ε)x ∧ (B̃ε

i0
)y) + o(λεi0 t

ε),

and the relation of quasi-conformality

〈(B̃ε
i0
)x, (B̃

ε
j0
+ R̃ε)y〉+ 〈(B̃ε

j0
+ R̃ε)x, (B̃

ε
i0
)y〉 = o(λεi0 t

ε),

〈(B̃ε
i0
)x, (B̃

ε
j0
+ R̃ε)x〉 − 〈(B̃ε

j0
+ R̃ε)y, (B̃

ε
i0
)y〉 = o(λεi0 t

ε).

Moreover, thanks to (42), we have

∇(B̃ε
j0
+ R̃ε)(0) = o(λεi0 t

ε),

∇2(B̃ε
j0
+ R̃ε)(∇B̃ε

i0
) = o(λεi0 t

ε).
(77)

Then, thanks to standard elliptic theory, see [20], we get that
B̃ε

j0
+R̃ε

λε
i0

tε
converges in

C2
loc(R

2 \ {Si0}) to S̃ which satisfies

∆S̃ = −2
(

ωi0
x ∧ S̃y + S̃x ∧ ωi0

y

)

,

with the relations of conformality

〈ωi0
x , S̃y〉+ 〈S̃x, ω

i0
y 〉 = 0,

〈ωi0
x , S̃x〉 − 〈S̃y, ω

i0
y 〉 = 0,

and the initial data,

∇S̃(0) = 0,

∇2S̃(∇ωi0(0)) = 0.

From the other hand, using the fact that tεj0i0 = O(tεi0j0) and (45), we see that

lim
ε→0

dj0(a
ε
i0
)

λi0
= +∞.

Then, we deduce that
∇B̃ε

j0

λε
i0

tε
is uniformly bounded and satisfies

∆B̃ε
j0

= o((λεi0 t
ε)2)

Hence, we easily deduce that
∇B̃ε

j0

λε
i0
tε

converges to a constant vector different from

zero on R2. Moreover∇R̃ is uniformly bounded on R2\{Si0}, then it can be extend
to a smooth function of R2 which satisfies the same equation and whose gradient
is still uniformly bounded. Now we can apply lemma C.2 to S̃ = R̃ + B̃j0 and we
get that

∇(R̃ + B̃j0) ≡ 0,



SURFACES WITH LARGE CONSTANT MEAN CURVATURE 35

which proves that, for R big enought and ε small enough, we have

|∇Rε(zε)| ≥ tε

2
.

Then we have a contradiction with (73) which achieves the proof of claim 1. �

Now our aim is to find among all bubbles with a maximal interaction a good
configuration, that is to say one where the bubbles are separated. Then passing
to the limit we will get a contradiction. Indeed, we will get a sum of plane which
will be minimal which can’t be approximate by embedded surfaces. This planes are
what is seen of Bε

j from aεi asymptoticly, that is to say a tangent plane.

Claim 2 : There exits i0 ∈ I such that, setting dε = min{dεj(aεi0) s.t. j ∈
Ti0}, for k ∈ Ti0 either lim

ε→0

λεk
λεi0

> 0 or dε = o(dεi0 (a
ε
k)).

That is to say either a bubble of Ti0 is at dε from aεi0 and have a reciprocal
interaction with the bubble Bε

i0
or goes to infinity.

Proof of claim 2 :

We are going to find i0 ∈ I which satisfies our claim by induction. In fact let
i0 ∈ I, there is two possibilities :

First case, there exists j0 ∈ Ti0 such that lim
ε→0

tεj0i0
tε

> 0, that is to say the

interaction between i0 and j0 is reciprocal, and we get

lim
ε→0

λεi0
λεj0

> 0. (78)

Then, for every k ∈ Ti0 , either

lim
ε→0

dεk(a
ε
i0
)

dεj0(a
ε
i0
)
= +∞,

or, thanks to (78), we get

ti0j0 = O

(

λεi0
(dεj0(a

ε
i0
))2

)

= O

(

λεi0
(dεk(a

ε
i0
))2 + (dεj0(a

ε
i0
))2

)

= O

(

λεi0
(dεi0 (a

ε
k))

2 + (dεk(a
ε
i0
))2

)

,

which gives

lim
ε→0

tεki0
tε

> 0,

and finally we get

lim
ε→0

λεk
λεi0

> 0.

Hence, in that cases i0 satisfies our claim.
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Second Case, else, for all j ∈ Ti0 , we have lim
ε→0

tεji0
tε

= 0. Let j0 ∈ Ti0 such that

λεj0 ≤ λεk for all k ∈ Ti0 . Then j0 satisfies

1 < |Tj0 | < |Ti0 |.
In fact, let us prove that 0 < |Tj0 | then the right hand side inequality will follow
from claim 1. Let k ∈ Ti0 \ {j0}, which is not empty thanks to claim 1. Thanks to
the fact that tεki0 = o(tε), we have

λεi0 = o(λεk). (79)

Moreover, thanks to our hypothesis on j0 and k, that is to say

λεj0 ≤ λεk and lim
ε→0

tεi0k

tεi0j0
> 0,

we have

dεj0(a
ε
i0
) = O(dεk(a

ε
i0
)). (80)

Then, thanks to (79) and (80), we get

tεi0k = O

(

λεk
(dεk(a

ε
i0
))2

)

= O

(

λεk
(dεk(a

ε
i0
))2 + (λεj0)

2

)

= O

(

λεk
(dεk(a

ε
j0
))2 + (dεj0(a

ε
k))

2

)

,

which proved that tεi0k = O(tεj0k) and the left hand side of the desired inequality.

In order to show the right hand side inequality, we show that Tj0 ⊂ Ti0 \ {j0}
. Indeed let k in the complementary of Ti0 \ {j0}, then dεj0(aεi0 ) = O(dεj0 (a

ε
k)), else

using (79) we easily get that tεi0j0 = o(tεkj0 ) which is absurd. Hence we have

tεj0k = O

(

λεk
(λεk)

2 + (λεj0 )
2 + |aεj0 − aεk|2

)

= O

(

λεk
(λεk)

2 + (λεi0 )
2 + |aεi0 − aεj0 |2 + |aεj0 − aεk|2

)

= O

(

λεk
(λεk)

2 + (λεi0 )
2 + |aεk − aεi0 |2

)

= O(tεi0k)

= o(tε),

which proves the assertion.

Hence if i0 doesn’t satisfy the claim we restart with j0, then this induction
achieve since the sequence |Ti0 | is strictly decreasing and greater than 1, which
proves the claim. �
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Now, we are in position to prove the main claim of this section. Let i0 as in

the previous claim, then we rescale the space around aεi0 setting f̃ =
f(dεz+aε

i0
)

dεtε
,

where dε = min{|aεi0 − aεj | s.t. j ∈ Ti0}. Thanks to (43), (44), (49), (50) then B̃ε
i

and R̃ε satisfy the following equations, on every compact subset of R2 \ S̃i0 , where

S̃i0 = lim
ε→0

{

aεj − aεi0
dε

s.t. 1 ≤ j ≤ k

}

,

|∇B̃ε
i | = O(1) for i ∈ Ti0 ∪ {i0},

|∇B̃ε
i | = o(1) for i 6∈ Ti0 ∪ {i0},

|∇R̃ε| = O (1) ,

and

∆B̃ε
i = o(1),

∆R̃ε = o(1),

and the relation of quasi-conformality

〈(B̃ε
i )x, (B̃

ε
i )y〉 = o(1),

〈(B̃ε
i )x, (B̃

ε
i )x〉 − 〈(B̃ε

i )y, (B̃
ε
i )y〉 = o(1).

and
〈

∑

i

(B̃ε
i + R̃ε)x,

∑

i

(B̃ε
i + R̃ε)y

〉

= o(1),

〈

∑

i

(B̃ε
i + R̃ε)x,

∑

i

(B̃ε
i + R̃ε)x

〉

−
〈

∑

i

(B̃ε
i + R̃ε)y,

∑

i

(B̃ε
i + R̃ε)y

〉

= o(1).

Then, thanks to standard elliptic theory, see [20], we get that R̃ε and B̃ε
i converge

in C2
loc(R

2 \ {S̃i0}) to R̃ and B̃i which satisfy

∆R̃ = ∆B̃i = 0,

the relations of conformality

〈(B̃i)x, (B̃i)y〉 = 0,

〈(B̃i)x, (B̃i)x〉 − 〈(B̃i)y, (B̃i)y〉 = 0,

and
〈

∑

i

(B̃i + R̃)x,
∑

i

(B̃i + R̃)y

〉

= 0,

〈

∑

i

(B̃i + R̃)x,
∑

i

(B̃i + R̃)x

〉

−
〈

∑

i

(B̃i + R̃)y,
∑

i

(B̃i + R̃)y

〉

= 0.

On the one hand, if i ∈ Ti0∪{i0} we easily check that B̃i is a conformal parametriza-

tion of a plane. Then either this parametrization is singular if ãi = lim
ε→0

aεi − aεi0
dε

is

finite, or it is an affine map from R
2 to R

3.
On the other hand, thanks to the fact that rε = O(tε), then ∇R̃ is uniformly

bounded on R2, hence by the Liouville theorem ∇R̃ is constant, then R̃ is the stan-
dard parametrization of a plane. Let j0 such that |aεi0 − aεj0 | = dε. Then we have
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the sum of at least two planes (B̃i0 and B̃j0) whose parametrization is singular in
different points, which satisfies the equation of minimal surfaces. But, since this
planes come from the limit of embedded surfaces they must be parallel. Hence up to

change the coordinates we can assume that the third coordinate of ∇
(

∑

i B̃i + R̃
)

vanishes. Then we have a conformal maps from R2 into itself with at least two
singularities, we easily see that the minimal surface parametrized by

∑

i B̃i + R̃

necessary get a branched point. Here, the idea come from the Enneper-Weierstrass
representation of minimal surfaces, see [32]. Indeed, let u be a solution of the
minimal surface equation, we set

Φ = ux + iuy.

Then, Φ is holomorphic and Φ2 = 0, but applying this to B̃i, we easily see that Φ
is a rational fraction, with a pole if the parametrization is singular. Since we get
at least two different poles, then this proves that (B̃i + R̃)x + i(B̃i + R̃)y vanishes
some where. Finally the limit surface can be seen as a rational fraction of C whose
derivative vanishes some where.

But, applying lemma A.1, we get a contradiction on the fact that uε is embed-
ded, which achieves the proof of the claim. �

Appendix A. Why the bubbles are simple?

In this appendix, we give an explanation of the fact that an embedding can’t
converge to a branched surface.

Lemma A.1. Let uε : B(0, 1) → R3 a sequence of smooth embedding such that
there exists u0 ∈ C1(B(0, 1),R3) and

uε → u0 in C2
loc(B(0, 1) \ {0}.

Then u0 can’t be a multiple parametrization, that is to say there is no embedded
U0 ∈ C1(B(0, 1),R3), Φ ∈ O(B(0, 1),C) an holomorphic function and an integer
k ≥ 2 such that

u0 = U0 ◦ Φ
and

Φ(z) = zk + o(|z|k) as z → 0.

Proof of the lemma A.1 :

First of all, up to a diffeomorphism of a neighborhood of 0, we can assume that

uε → U0(zl) in C2
loc(B(0, δ) \ {0}).

where l ≥ 2 and δ > 0. Let Aδ = B
(

0, δ2
)

\B
(

0, δ3
)

and Cr be the cylinder of center

U0(0), radius r and orthogonal to TU0(0)U
0, the tangent plane to the image of U0

at U0(0). Let δ > 0 and r > 0 be small enough such that Cr ∩ U0(Aδ) is a simple
curve. Then, for ε small enough, we easily see that the intersection of uε(Aδ) and
Cr turn l times around the cylinder, hence uε(Aδ) necessary intersect, which is a
contradiction and proves the lemma. �
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Appendix B. Expansion of the metric and the Christoffel symbol

Using the classical expansion of the metric in a normal coordinates centered at
p ∈ N , see [36], we get

gij(y) = δij +
Rikmj(p)

3
ykym +

Rikmj,n(p)

6
ykymyn + o(r3).

where r2 =
∑

y2i . Let g
ε(y) = g(εy) then we get

(gε)ij(y) = δij +
ε2

3
Rikmj(p)y

kym +
ε3

6
Rikmj,n(p)y

kymyn + o(ε3).

Then we easily gets

gijǫ (y) = δij −
ε2

3
Rikmj(p)y

kym − ε3

6
Rikmj,n(p)y

kymyn + o(ε3)

and
√

|gε|(y) = 1− ε2

6
Ricmn(p)y

myn − ε3

12
Ricmn,k(p)y

mynyk + o(ε3).

Now we are going to compute the expansion of the Christoffel symbol, using its
expression with respect to the metric, that is to say

Γk
ij =

1

2
gkl (gjl,i + gil,j − gij,l) .

Using the above formulas and the second Bianchi identities, we get

(Γε)
k
ij(y) =

ε2

3
(Rjmik(p) +Rimjk(p)) y

m

+
ε3

6
(Rjmik,n(p) +Rimjk,n(p) +Rimjn,k(p)) y

myn + o(ε3),

where (Γε)
k
ij is the Christoffel symbol of gε. What we re-write it in more digest

form

(Γε)
j
ik(y) = Aijkm(p)ymε2 +Bijkmn(p)y

mynε3 + o(ε3) (81)

where Aijkm(p) = 1
3 (Rkmij(p) +Rimkj(p)) and

Bijkmn(p) =
1
12 (2Rkmij,n(p) + 2Rimkj,n(p) +Rkmnj,i(p) +Rimnj,k(p)−Rimnk,j(p)).

Appendix C. Linearized equation

Before to state our main result about the linearized equation, we give a lemma
about the solution of ∆α = 8

(1+|x|2)2α which satisfy a decreasing assumption.

Lemma C.1. Let α be a smooth solution of
{

∆α = 8
(1+|x|2)2α on R2,

α(0) = ∇α(0) = 0.
(82)

If |α(x)| ≤ c(1 + |x|)τ for some τ ∈ [0, 2[ in R2, then α ≡ 0.

Such a lemma has already be proved by Chen and Lin with τ ∈ [0, 1[, see lemma
2.3 of [10]. This result is not surprising, since the hypothesis of Chen and Lin is
almost equivalent to α ∈ H1(S2) and in that case the main equation is just the
stereographic projection of ∆S2α = 2α which has only zero as a solution which
satisfies our initial data.
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Proof of lemma C.1:

Here we repeat the proof of Chen and Lin with our additional estimate in order
to get a larger set of admissible functions. In fact we prove first that the Fourier
coefficient decrease more than expected.

Let k ≥ 2 and

αk + iβk =

∫ 2π

0

αeikθdθ.

Then

∆αk =

(

8

(1 + r2)2
− k2

r2

)

αk, (83)

where ∆αk = −1
r
∂r(r∂rαk). Then we set γk = αk

rk
on [1,+∞[, and we easily get

that

∆αk = −k2rk−2γk − (2k + 1)rk−1γ′k − rkγ′′k . (84)

On the other hand, thanks to our hypothesis and (83), there exists c a positive
constant such that

∆αk ≤ crτ−4 − k2rk−2γk on [1,+∞[. (85)

Hence, thanks to (84) and (85), we get

−(2k + 1)rk−1γ′k − rkγ′′k ≤ crτ−4

r2k+1γ′′k + (2k + 1)r2kγ′k ≥ −crτ+k−3

(r2k+1γ′k)
′ ≥ −crτ+k−3.

Then we integrate on [1, r] ⊂ [1,+∞[, which gives

r2k+1γ′k(r) − γ′k(1) ≥ c
1− rτ+k−2

τ + k − 2

γ′k(r) ≥
(

1

r

)2k+1

γ′k(1) +
c

τ + k − 2

(

1

r2k+1
− rτ−k−3

)

.

Then we integrate on [R,+∞[, which gives

−γk(R) ≥
R−2k

2k
γ′k(1) +

c

τ + k − 2

(

1

(2k)R2k
+

Rτ−k−2

τ − k − 2

)

Here we used the fact that γk(r) = O
(

rτ−2
)

and τ < 2. Thanks to last inequality,
there exists C a positive constant, such that

γk(R) ≤ CRτ−k−2

Then we get

αk(r) ≤ C(rτ−2 + 1) on [0,+∞[.

Since the equation is linear we can applied the same argument to −α an finally
we get the improved estimate, for every k ≥ 2, there exists Ck a positive constant,
such that

|αk| ≤ Ck(1 + r)τ−2 on [0,+∞[.

Of course the same result is true considering βk. Now we can follow the proof of
Chen and Lin.
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Let

ψi(x) =
xi

(1 + |x|2) for i = 1, 2 and ψ0(x) =
1− |x|2
1 + |x|2

We are going to prove that any solution α of (82) witch satisfies |α(x)| ≤ c(1+ |x|)τ
for some τ ∈]0, 2[, is a linear combination of this three elementary solutions of 82,
that is to say

α =

2
∑

i=0

aiψi,

for some constant ai ∈ R. And then, the initial condition will give the result.

In order to show our result it suffices to show that αk ≡ 0 and βk ≡ 0 for k ≥ 2.
We are going to prove this result for the αk, the argument are exactly the same

for the βk. Let φ1 =
∫ 2π

0
ψ1cos(θ)dθ. Then φ1 = O

(

1
|x|

)

. Now, we suppose that

αk 6≡ 0 for some k ≥ 2. Since φ1(r) > 0 on ]0,+∞[, then by comparison with φ1,
αk never vanishes on ]0,+∞[.

Then, thanks to (83), we get

φ1(r)α
′
k(r)r − αk(r)φ

′
1(r)r =

∫ r

0

(αk∆φ1 − φ1∆αk)sds

= (k2 − 1)

∫ r

0

αkφ1

s
ds.

Since |αk| = O(1+r)τ−2, then for a given positive content C, there exists a sequence
of ri → +∞ such that α′

k(ri)ri ≤ Crτ−2
i . Thus

0 = lim
i→+∞

φ1(ri)α
′
k(ri)ri − αk(ri)φ

′
1(ri)ri = (k2 − 1)

∫ +∞

0

αkφ1

s
ds.

Note that
αkφ1

s
= O((1 + s)τ−3) is integrable. Thus αk ≡ 0, which is a contradic-

tion and prove the lemma. �

Now we show how the study of the linearized problem can be reduce to the study
of the previous equation.

Proposition C.1. Let ω a simple solution of (5). Let also r ∈ C2(R2) be a solution
of

∆r + 2 (rx ∧ ωy + ωx ∧ ry) = 0 (86)

with

〈rx, ωx〉 − 〈ry , ωy〉 = 0,

〈rx, ωy〉+ 〈ry , ωx〉 = 0.
(87)

Setting a, b, c, d, e and f smooth functions as

∇r =
(

rx
ry

)

=

(

aωx + bωy + c(ωx ∧ ωy)
dωx + eωy + f(ωx ∧ ωy)

)

, (88)
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then a, b, c, d, e and f satisfy

e = a

d = −b
∆a = |∇ω|2a
∆b = |∇ω|2b

c =
2

|∇ω|2 (−ax + by)

and

f =
2

|∇ω|2 (−bx − ay)

Proof of proposition C.1:

First of all, we easily get, thanks to (87) and (88), that

a = e

b = −d
Differentiating (88), we get

∆r =

(

−ax + by + c
|∇ω|2
2

)

ωx +

(

−bx − ay + f
|∇ω|2
2

)

ωy

+

(

−cx − fy − 2a− c
(|∇ω|2)x
|∇ω|2 − f

(|∇ω|2)y
|∇ω|2

)

(ωx ∧ ωy)

Now using (86) and identifying each coefficient of the equation in our special or-
thogonal frame, we get

−ax + by − c
|∇ω|2
2

= 0, (89)

−bx − ay − f
|∇ω|2
2

= 0. (90)

−cx − fy + 2a− c
(|∇ω|2)x
|∇ω|2 − f

(|∇ω|2)y
|∇ω|2 = 0 (91)

Moreover, thanks to the fact that rxy = ryx we get

ay + bx + f
|∇ω|2
2

= 0, (92)

by − ax − c
|∇ω|2
2

= 0, (93)

2b+ cy − fx + c
(|∇ω|2)y
|∇ω|2 − f

(|∇ω|2)x
|∇ω|2 = 0. (94)

Then, summing (89)x, −(92)y and − |∇ω|2

2 (91) we get

∆a− |∇ω|2a = 0.

Then, summing (90)x, −(93)y and − |∇ω|2

2 (94) we get

∆b− |∇ω|2b = 0.
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Finally, thanks (89), (90) , we get

c =
2

|∇ω|2 (−ax + by)

and

f =
2

|∇ω|2 (−bx − ay) .

�

Here is our main result on the linearized problem. This classification is an
improvement of existing results, see Lemma 9.1 of [9] and Corollary 1.8 of [8].

Proposition C.2. let ω be a simple solution of (5) and r ∈ C2(R2) be a solution
of

∆r + 2 (rx ∧ ωy + ωx ∧ ry) = 0,

〈rx, ωy〉+ 〈ωx, ry〉 = 0,

〈rx, ωx〉 = 〈ry , ωy〉 = 0,

∇r(0) = ∇2r(∇ω)(0) = 0.

If |∇r| is bounded then r is a constant function.

Proof of proposition C.2 :

First of all, up to compose with an homography we can assume that

ω(x, y) =
1

1 + r2





2x
2y

r2 − 1



 .

Indeed our equations are invariant with respect to a conformal transformation. Just
the initial condition change in

∇r(a) = ∇2r(∇ω)(a) = 0.

where a is the preimage of 0 by the homography, of course it could be ∞. Now, up
to compose by an inversion or a translation, our initial condition comes back to zero.

We improve the decreasing assumption using Green function. Indeed Thanks to
lemma D.1 and D.2, we easily get that

|∇r(z)| = O

(

Ln(|z|)
|z|

)

when z → +∞ (95)

Now, let a, b, c, d, e and f as in the previous proposition. Then they satisfies

∆a = |∇ω|2a
∆b = |∇ω|2b

c =
2

|∇ω|2 (−ax + by)

and

f =
2

|∇ω|2 (−bx − ay)

e − a = d+ b = 0.
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Moreover thanks to our initial condition and (95), we have

a(0) = b(0) = ∇a(0) = ∇b(0) = 0,

|a|, |b| = O((1 + |z|) 3
2 ).

Then a and b satisfies the hypothesis of lemma C.1, then a ≡ b ≡ 0 and we easily
prove that r is a constant function . �

Appendix D. Green functions and integral estimates

Let G and GR be the Green function of the Laplacian respectively on the plane
and on the ball B(0, R), that is to say

G(z1, z2) =
1

2π
Ln|z1 − z2|,

GR(z1, z2) =
1

2π

(

Ln|z1 − z2| − Ln

∣

∣

∣

∣

R

|z1|
z1 −

|z1|
R
z2

∣

∣

∣

∣

)

.

Lemma D.1. Let u and f two functions in C2(R2,R) which satisfies














∆u = f,

‖∇u‖∞ < +∞,

f = O
(

1
|z|2

)

.

Then we have

∇u(z0) =
∫

R2

∇G(z0, z)f(z)dz.

Proof of lemma D.1:

Let z0 ∈ R2 and R > 0 such that z0 ∈ B(0, R), then thanks to the standard
Green formula, we get

∇u(z0) =
∫

B(0,R)

GR(z0, z)∇f(z)dz +
∫

∂B(0,R)

∂GR

∂n
(z0, z)∇u(z)dσ.

Then, integrating by part, we get

∇u(z0) =
∫

B(0,R)

∇GR(z0, z)f(z)dz +

∫

∂B(0,R)

GR(z0, z)f(z)dz

+

∫

∂B(0,R)

∂GR

∂n
(z0, z)∇u(z)dσ.

(96)

For z0 fixed, we get
{

|GR(z0, z)| = O (Ln|z − z0|)
|∇GR(z0, z)| = O

(

1
|z−z0|

) when z → +∞,

and
∣

∣

∣

∣

∇
(

GR

∂n

)

(z0, z)

∣

∣

∣

∣

= O

(

1

R2

)

when z ∈ ∂B(0, R) and R→ +∞.

This allows us to take the limit when R goes to infinity in (96) and this gives
the result. �
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Lemma D.2. There exits a positive constant C such that, for all z0 ∈ R2,
∫

R2

|∇G(z, z0)|
1

1 + |z|2dz ≤ C
Ln(2 + |z0|)

1 + |z0|
.

Proof of lemma D.2 :

Applying again standard estimates on Green functions, there exists a positive
constant C, such that

∫

R2

|∇G(z, z0)|
1

1 + |z|2 dz ≤
∫

R2

C

|z − z0|(1 + |z|2)dz

=

∫

B
(

z0,
|z0|
2

)

C

|z − z0|(1 + |z|2)dz

+

∫

B
(

0,
|z0|
2

)

C

|z − z0|(1 + |z|2)dz

+

∫

{

|z|≥
|z0|
2

,|z−z0|≥
|z0|
2

}

C

|z − z0|(1 + |z|2)dz

≤ 4C

4 + |z0|2
∫

B
(

z0,
|z0|

2

)

1

|z − z0|
dz

+
C

|z0|

∫
|z0|
2

0

2r

1 + r2
dr

+ 4C

∫ ∞

|z0|

2

1

r2
dr

≤ C

(

2|z0|
4 + |z0|2

+
1

|z0|
Ln

(

1 +
|z0|2
4

)

+
8

|z0|

)

,

which proves the lemma. �

Appendix E. Wente inequality and applications

First of all, we remind us the Wente inequality. Thanks to the work of Bethulel,
Ghigladia and Topping, see [2] and [39], we have the following version of the Wente
inequality.

Theorem E.1 (Wente inequality). Let Ω be a bounded open set of R2 and v ∈
H1(Ω). Let u ∈W

1,1
0 (Ω) be the solution of

∆u = −2vx ∧ vy on Ω,

then

‖u‖∞ + ‖∇u‖2 ≤
1

π
‖∇v‖22.

Which is remarkable here is that the constant is independent of Ω. Then using
such a result, Topping as proved a Wente’s inequality for surfaces, see theorem 4
of [39].

Theorem E.2. Let Σ a compact Riemannian surface and v ∈ H1(Σ,R2). Then if
u ∈ W 1,1(Σ) be the solution of
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∆u = det(∇v) on Σ,

then

osc(u) + ‖∇u‖2 ≤
1

π
‖∇v‖22,

where osc(u) = sup
x,y∈Σ

|u(x)− u(y)|.

Then, assuming that u ∈ H1, we extend such an equality to Ω = R2.

Corollary E.1. Let v ∈ H1(R2) and u ∈ H1(R2) be a solution of

∆u = −2vx ∧ vy on R
2

then

‖∇u‖2 ≤
2

π
‖∇v‖22.

Proof of corollary E.1 :

Let π the standard stereographic projection from S2 to R2. Thanks to the
conformal invariance of the equation, u ◦ π−1 and v ◦ π−1 satisfies the hypothesis
of theorem E.2 when Σ = S2, hence we get that

osc(u) ≤ 1

π
‖∇v‖22

Then testing the equation against u and integrating by parts we get the desired
inequality. �

Now we are in position to prove the our lemma, which allowed to control the
supremum of the gradient for such solution. This is a new manifestation of the
presence of a strong compensation phenomena in this equation.

Lemma E.1. Let v ∈ H1(R2) and u ∈ H1(R2) be a solution of

∆u = vx ∧ vy. (97)

Then there exists a positive constant C, independent of v, such that

‖∇u‖∞ ≤ C‖∇v‖∞‖∇v‖2.
The proof of this lemma relies on the corollary E.1 and the following interpolation

inequality.

Lemma E.2 (lemma A.2 [3]). Let Ω a smooth domain. Assume u satisfies
{

∆u = f on Ω

u = 0 on ∂Ω

Then

‖∇u‖2∞ ≤ C‖f‖∞ ‖u‖∞
where C is a constant depending only on Ω.

To conclude this appendix, we give an other useful version of the Wente’s in-
equality, see [5] for example.
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Lemma E.3. Let Ω = B(0, 1), u ∈ H1(Ω) ∩ L∞(Ω) and v ∈ H1
0 (Ω), then there

exists C, independent of u and v, such that
∣

∣

∣

∣

∫

Ω

〈u, vx ∧ vy〉
∣

∣

∣

∣

≤ C‖∇v‖2‖∇u‖22.
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