Generic non-singular Poisson suspension is of type III 1
Alexandre Danilenko, Zemer Kosloff, Emmanuel Roy

To cite this version:
Alexandre Danilenko, Zemer Kosloff, Emmanuel Roy. Generic non-singular Poisson suspension is of type III 1. Ergodic Theory and Dynamical Systems, 2022, 42 (4), pp.1415-1445. 10.1017/etds.2021.5. hal-03861108

HAL Id: hal-03861108
https://hal.science/hal-03861108
Submitted on 19 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
GENERIC NONSINGULAR POISSON SUSPENSION IS OF TYPE III_1

ALEXANDRE I. DANILENKO, ZEMER KOSLOFF AND EMMANUEL ROY

Abstract. It is shown that for a dense $G_δ$-subset of the subgroup of nonsingular transformations (of a standard infinite $σ$-finite measure space) whose Poisson suspensions are nonsingular, the corresponding Poisson suspensions are ergodic and of Krieger’s type III_1.

0. Introduction

In this paper we continue to study nonsingular Poisson suspensions for nonsingular transformations of infinite Lebesgue spaces $(X, 𝒫, µ)$ that we initiated in our previous work [DaKoRo]. Let X^* denote the space of $σ$-finite integer-valued nonnegative measures on X. We endow X^* with the smallest $σ$-algebra $𝒫^*$ of subsets such that the map $N_B : X^* \ni \omega \mapsto \omega(B) \in \mathbb{Z}_+$ is $𝒫^*$-measurable for each $B \in 𝒫$.

There exists a unique probability measure $µ^*$ on $𝒫^*$ such that

— for each finite family B_1, \ldots, B_n of mutually disjoint subsets from $𝒫$ of finite $µ$-measure, the random variables N_{B_1}, \ldots, N_{B_n} are independent,
— for each $B \in 𝒫$ with $0 < µ(B) < ∞$, the measure $µ^* \circ N_B^{-1}$ is the Poisson distribution on \mathbb{Z}_+ with parameter $µ(B)$.

The triplet $(X^*, 𝒫^*, µ^*)$ is called the Poisson suspension of $(X, 𝒫, µ)$. Completing $𝒫^*$ with respect to $µ$, we obtain that the Poisson suspension is a Lebesgue space. We showed in [DaKoRo, Corollary 4.1] that there is a maximal subset $\text{Aut}_2(X, µ)$ of the group $\text{Aut}(X, µ)$ of all nonsingular transformations T of $(X, 𝒫, µ)$ for which the Poisson suspension T^* is well defined as a nonsingular invertible transformation of $(X^*, 𝒫^*, µ^*)$. As in the classical measure preserving case, by T, ω we mean the measure $\omega \circ T^{-1} \in X^*$ for each $\omega \in X^*$.

Moreover, $\text{Aut}_2(X, µ)$ is a Polish group in an appropriate topology d_2 which is stronger than the usual weak topology [DaKoRo, Theorem D]. The suspension T_* admits an equivalent invariant probability measure if and only if T admits an equivalent invariant measure $ν$ such that

$$\sqrt{dν/dµ} - 1 \in L^2(X, µ).$$

In this paper we consider the problem:

Let T_* do not admit an equivalent probability measure. Can T_* be ergodic? If yes, what is the Krieger type of T_*?

We answer affirmatively the first question and contribute partly to the second one. Though we are unable so far to construct a concrete example of an ergodic conservative T of type III whose Poisson suspension is ergodic and of type III, we instead utilize the Baire category tools to prove a stronger “existence” result.

The research of Z.K. was partially supported by ISF grant No. 1570/17.
Theorem A (main result). The subset of all \(T \in \text{Aut}_2(X,\mu) \) such that \(T \) is ergodic and of type \(III_1 \) and \(T_* \) is ergodic and of type \(III_1 \) is a dense \(G_δ \) in \((\text{Aut}_2(X,\mu),d_2) \).

To prove this theorem we first construct a concrete example of a totally dissipative \(T \) with \(T_* \) being ergodic and of type \(III_1 \). The construction is motivated by a recent progress in the theory of nonsingular Bernoulli shifts achieved in [Ko1] and [DaLe], because if \(T \) is totally dissipative then \(T_* \) is always a nonsingular Bernoulli shift. However the aforementioned papers deal only with the shifts on \(\{0,1\}^\mathbb{Z} \) while we encounter indeed with the product spaces \(A^\mathbb{Z} \) with \(A \) uncountable. This situation is considerably more difficult and we are not sure that the techniques developed in [Ko1] and [DaLe] extends to it in the full generality. However, we need only a very particular case which, in turn, can be reduced further to the shift on \((\mathbb{Z}^\mathbb{N})^\mathbb{Z},\bigotimes_{n\in\mathbb{Z}}\kappa_n \), where \((\kappa_n)_{n\in\mathbb{Z}} \) is a specially selected sequence of Poisson distributions. Then we prove that \(T_* \) is of type \(III_1 \) by showing that the Maharam extension of \(T_* \) is conservative and has nonsingular property \(K \). For that we use essentially properties of Skellam distributions (see Appendix A) and Lévy’s continuity theorem in addition to the theory of nonsingular endomorphisms and measurable orbit theory that were utilized in [Ko1] and [DaLe].

Secondly, we prove that the conjugacy class of \(T \) is dense in \(\text{Aut}_2(X,\mu) \). Main Theorem follows from that and an additional fact that the subset of ergodic type \(III_1 \) transformations in \(\text{Aut}_2(X,\mu) \) is a dense \(G_δ \) in \(d_2 \) [DaKoRo, Theorem E].

The group \(\text{Aut}_1(X,\mu) \) and a homomorphism \(\chi : \text{Aut}_1(X,\mu) \to \mathbb{R} \) were introduced in [Ne, Chapter X, §4]. We showed in [DaKoRo, Theorem D] that \(\text{Aut}_1(X,\mu) \subset \text{Aut}_2(X,\mu) \), \(\text{Aut}_1(X,\mu) \) is a Polish group in a topology \(d_1 \) which is stronger than \(d_2 \), and \(\chi \) is continuous. If \(\chi(T) \neq 0 \) then \(T \) is dissipative [DaKoRo, Proposition 4.13]. Thus, every ergodic transformation from \(\text{Aut}_1(X,\mu) \) is contained in the proper closed subgroup \(\ker \chi \). The following statement is proved in the same way as Theorem A.

Theorem B. The subset of all \(T \in \ker \chi \) such that \(T \) is ergodic and of type \(III_1 \) and \(T_* \) is ergodic and of type \(III_1 \) is a dense \(G_δ \) in \((\ker \chi,d_1) \).

It is interesting to note that dynamical properties of \(T_* \) are determined not only by the dynamical properties of \(T \) but also by the choice of \(\mu \) inside its equivalence class. Indeed, if \((X,\mu,T) \) is totally dissipative then we can find three different measures \(\mu_1 \sim \mu_2 \sim \mu_3 \) in the equivalence class of \(\mu \) such that \((X^*,\mu_1^*,T_1) \) is a probability preserving Bernoulli shift, \((X^*,\mu_2^*,T_2) \) is an ergodic system of type \(III_1 \) and \((X^*,\mu_3^*,T_3) \) is a totally dissipative system. We “refine” further this phenomenon in a rather surprising way: for each \(T \in \text{Aut}_2(X,\mu) \) and \(t > 0 \) we consider a dynamical system \((X^*,\mu_1^*,T_1^t) \), where \(\mu_t \) is the scaling of \(\mu \) by \(t \), i.e. \(\mu_t(A) := t\mu(A) \) for each Borel subset \(A \subset X \). Of course, \(\frac{d\mu_t^T}{d\mu_1^T} = \frac{d\mu_t^T}{d\mu} \) for each \(t > 0 \). We then encounter with the following phase transition phenomenon.

Theorem C. Let \(T \in \text{Aut}_1(X,\mu) \). If there is \(\alpha > 1 \) such that \(\alpha^{-1} < \frac{d\mu_t^T(x)}{d\mu(x)} < \alpha \) for each \(n > 0 \) at a.e. \(x \in X \) then there is \(t_0 \in [0,\infty] \) such that the Poisson suspension \((X^*,\mu_1^*,T_1^t) \) is conservative for each \(t \in (0,t_0) \) and the Poisson suspension \((X^*,\mu_1^*,T_1^t) \) is totally dissipative for each \(t \in (t_0,\infty) \).

The most interesting case is when the bifurcation point \(t_0 \) is proper, i.e. \(0 < t_0 < \infty \).
Example D. There is a totally dissipative $T \in \text{Aut}_1(X, \mu)$ and $t_0 \in (\frac{1}{6}, 4)$ such that the Poisson suspension $(X^*, (t\mu)^*, T)$ is weakly mixing of stable type III_1 if $0 < t < t_0$ and the Poisson suspension $(X^*, (t\mu)^*, T)$ is totally dissipative for $t > t_0$.

We recall that a nonsingular transformation T has conservative index $n \in \mathbb{N}$ if the n-th Cartesian power of T is conservative and the $(n + 1)$-th is dissipative.

Proposition E. Let the condition of Theorem C hold and let the bifurcation point t_0 be proper. Then for each $n \in \mathbb{N}$, if $\frac{1}{n+1} < t < \frac{1}{n}$ then $(X^*, (t\mu)^*, T)$ has conservative index n.

As a byproduct, we apply the techniques developed in this paper to study conservativeness of the Poisson suspensions of general dissipative transformations. In particular, we show the following.

Theorem F. If $T \in \text{Aut}_1(X, \mu)$ and $\chi(T) \neq 0$ then T is totally dissipative.

The outline of the paper is as follows. The first two sections are of preliminary nature. We present there some concepts and facts from the theory of measured equivalence relations and their cocycles (§1) and nonsingular endomorphisms and their extensions (§2) to be used below in the paper. In §3 we study Poisson suspensions of transformations defined on purely atomic measure spaces. Since the purely atomic case was not considered in our previous paper on the Poisson suspensions, we first establish some basic results related to the nonsingularity and conservativeness of such suspensions independently of [DaKoRo] (see Propositions 3.1 and 3.2). Then we prove some necessary (Proposition 3.3) and sufficient (Proposition 3.4) conditions for conservativeness of the Poisson suspensions in terms of the underlying dynamical system. Theorem 3.5 plus Corollary 3.7 provide some conditions on a measure on \mathbb{Z} under which the Poisson suspension of the underlying unit translation on \mathbb{Z} possesses the nonsingular property K. This is technically the most involved result of the paper. Example 3.8 gives a concrete example of a measure on \mathbb{Z} satisfying those conditions. In §4 we show how to pass from the purely atomic case studied in §3 to the continuous case. In particular, we construct a totally dissipative transformation on a nonatomic Lebesgue space whose Poisson suspension is weakly mixing and of type III_1 (see Theorem 4.2 and a remark just below it). In §5 we prove Theorems A and B (see Theorem 5.3). §6 is devoted to Poisson extensions of general dissipative transformations. We prove there Theorem F (see Theorem 6.1). Some extension of Theorem F to the more general case where $T \in \text{Aut}_2(X, \mu)$ is also discussed in that section (see Remark 6.2). In §7 we study the phase transitions for the conservativeness of Poisson suspensions when scaling the underlying intensity. Theorem C and Proposition E are proved there. Example D is also provided in §7. The paper has Appendix A which is devoted completely to the Skellam distributions and their properties that we utilize in the proof of Theorem 3.5.

Acknowledgements. We thank the anonymous referee for careful reading the paper and making useful remarks.

1. Measured equivalence relations and their cocycles

Let (X, \mathcal{B}, μ) be a standard σ-finite measure space. A Borel equivalence relation $\mathcal{R} \subset X \times X$ is countable if for each $x \in X$, the \mathcal{R}-equivalence class $\mathcal{R}(x)$ is
countable. If \mathcal{R} is countable and $A \in \mathfrak{B}$ then the \mathcal{R}-saturation $\mathcal{R}(A) := \bigcup_{x \in A} \mathcal{R}(x)$ of A belongs to \mathfrak{B}. An \mathcal{R}-saturated subset is also called \mathcal{R}-invariant. If for each Borel subset A of zero measure, $\mathcal{R}(A)$ is also of zero measure then \mathcal{R} is called μ-nonsingular. If the sub-σ-algebra $\{ \mathcal{R}(A) \mid A \in \mathfrak{B} \}$ of \mathcal{R}-invariant Borel subsets is trivial (mod 0) then \mathcal{R} is called μ-ergodic.

From now on \mathcal{R} is countable and μ-nonsingular. The full group $[\mathcal{R}]$ of \mathcal{R} consists of all nonsingular transformations R of (X, μ) such that $Rx \in \mathcal{R}(x)$ at a.e. $x \in X$. Given a locally compact Polish group G, a Borel map $\alpha : \mathcal{R} \to G$ is called a cocycle of \mathcal{R} if there is a Borel subset N of zero measure such that

$$
\alpha(x, y)\alpha(y, z) = \alpha(x, z) \quad \text{for all } x, y \in X \setminus N \text{ such that } (x, y), (y, z) \in \mathcal{R}.
$$

In the later sections of this paper we deal only with the cases where G is either \mathbb{R} or the multiplicative group \mathbb{R}_+^*. A cocycle $\beta : \mathcal{R} \to G$ is cohomologous to α if there is a Borel function $\phi : X \to G$ and a Borel subset N of zero measure such that

$$
\beta(x, y) = \phi(x)\alpha(x, y)\phi(y)^{-1} \quad \text{for all } x, y \in X \setminus N.
$$

Fix a left Haar measure λ_G on G. The α-skew product equivalence relation $\mathcal{R}(\alpha)$ on the product space $(X \times G, \mu \times \lambda_G)$ is defined by:

$$(x, g) \sim (y, h) \quad \text{if } (x, y) \in \mathcal{R} \quad \text{and} \quad h = \alpha(x, y)g.
$$

This equivalence relation is countable and $(\mu \times \lambda_G)$-nonsingular. If $\mathcal{R}(\alpha)$ is ergodic then α is called ergodic. Of course, if α is ergodic then \mathcal{R} is ergodic. If a cocycle β is cohomologous to α and α is ergodic then β is also ergodic.

We now isolate an important cocycle of \mathcal{R} with values in the multiplicative group \mathbb{R}_+^*. It is called the Radon-Nikodym cocycle of \mathcal{R} and denoted by $\Delta_\mathcal{R}$. To define it, we first fix a countable subgroup Γ of Borel bijections of X that generates \mathcal{R}. Such a group exists according to [FeMo, Theorem 1]. Now we set

$$
\Delta_\mathcal{R}(x, \gamma x) := \frac{d\mu \circ \gamma}{d\mu}(x), \quad x \in X, \gamma \in \Gamma.
$$

It follows from the chain rule for the Radon-Nikodym derivatives that $\Delta_\mathcal{R}$ is a cocycle of \mathcal{R}. This cocycle is well defined, i.e. it does not depend on the choice of Γ generating \mathcal{R}.

Example 1.1. Let A be a countable set and let λ_a be a non-degenerated distribution on A, i.e. $\lambda_a(a) > 0$ if $a \in A$ and $\sum_{a \in A} \lambda_a(a) = 1$, for each $n \geq 1$. We set $(X, \lambda) := (A^\infty, \otimes_{n=1}^\infty \lambda_a)$. Denote by \mathcal{S} the tail equivalence relation on X, i.e. two points $x = (x_n)_{n=1}^\infty$ and $y = (y_n)_{n=1}^\infty$ from X are \mathcal{S}-equivalent if there is $N > 0$ such that $x_n = y_n$ for all $n > N$. Then \mathcal{S} is an ergodic λ-nonsingular countable equivalence relation on X and

$$
\Delta_\mathcal{S}(x, y) = \prod_{n=1}^\infty \frac{\lambda_a(y_n)}{\lambda_a(x_n)} = \prod_{n=1}^N \frac{\lambda_a(y_n)}{\lambda_a(x_n)}.
$$

\[1\] In this paper we do not distinguish between objects (such as subsets, maps, cocycles, etc.) which agree almost everywhere.
for all \((x, y) \in S\).

If we change \(\mu\) with an equivalent \(\sigma\)-finite measure then the Radon-Nikodym cocycle of \(R\) related to the new measure is cohomologous to the original \(\Delta_R\). The \(\Delta_R\)-skew product equivalence relation \(R(\Delta_R)\) is called the Maharam extension of \(R\). If it is ergodic, i.e. \(\Delta_R\) is ergodic, then \(R\) is said to be of Krieger’s type \(III_1\).

It follows from the aforementioned cohomology property of \(\Delta_R\) that the property of \(R\) to be of type \(III_1\) does not change if we replace \(\mu\) with an equivalent \(\sigma\)-finite measure.

Suppose now that \(R\) is \(\mu\)-ergodic. Given a cocycle \(\alpha\) of \(R\) with values in an Abelian locally compact Polish group \(G\), we say that an element \(g \in G\) is an essential value of \(\alpha\) if for each neighborhood \(U\) of \(g\) in \(G\) and each Borel subset \(A \subset X\) of positive measure there are a Borel subset \(B \subset A\) of positive measure and a Borel one-to-one map \(\gamma : B \rightarrow A\) such that \((x, \gamma x) \in R\) and \(\alpha(x, \gamma x) \in U\) for each \(x \in B\).

The set \(r(\alpha)\) of all essential values of \(\alpha\) is a closed subgroup of \(G\) ([Sc, Lemma 3.3], [FeMo, Proposition 8.5]). The cocycle \(\alpha\) is ergodic if and only if \(r(\alpha) = G\) [Sc, Corollary 5.4] (see also [FeMo, Theorem 8]).

The following standard approximation lemma (see [ChHaPr, Lemma 2.1]) is useful for computation of \(r(\alpha)\).

Lemma 1.2. Let \(A \subset B\) be a semiring such the corresponding ring is dense in \(B\). Let \(0 < \delta < 1\) and let \(g \in G\). If for each \(A \in \mathfrak{A}\) of positive measure and a neighborhood \(U\) of \(g\) there are a subset \(B \subset A\) and a one-to-one Borel map \(\gamma : B \rightarrow A\) such that \(\mu(B) > \delta \mu(A)\), \((x, \gamma x) \in R\), \(\alpha(x, \gamma x) \in U\) and \(\delta < \Delta_R(x, \gamma x) < \delta^{-1}\) for all \(x \in B\) then \(g\) is an essential value of \(\alpha\).

An ergodic invertible transformation \(T\) of \((X, \mathcal{B}, \mu)\) is called of Krieger’s type \(III_1\) if the \(T\)-orbit equivalence relation is of type \(III_1\). If, moreover, \(T \times S\) is of type \(III_1\) for each ergodic probability preserving transformation \(S\) then \(T\) is called of stable type \(III_1\).

For more information on the measurable orbit theory and detailed proofs of the aforementioned facts we refer the reader to [FeMo], [Sc], [DaSi].

2. Nonsingular endomorphisms, their extensions and associated equivalence relations

Let \((X, \mathcal{B}, \mu)\) be a standard \(\sigma\)-finite measure space. A Borel map \(T : X \rightarrow X\) is called a \(\mu\)-nonsingular endomorphism if \(\mu \circ T^{-1} \sim \mu\). Consider the following decreasing sequence \(\mathcal{B} \supset T^{-1}\mathcal{B} \supset T^{-2}\mathcal{B} \supset \cdots\) of sub-\(\sigma\)-algebras in \(\mathcal{B}\). If \(\bigcap_{n=1}^{\infty} T^{-n}\mathcal{B} = \{\emptyset, X\}\) (mod 0) then \(T\) is called exact. We will consider only aperiodic endomorphisms, i.e. we assume that

\[
\mu \left(\bigcup_{n>0} \{x \in X \mid T^n x = x\} \right) = 0.
\]

Let \(T\) be \(\mu\)-nonsingular endomorphism. We recall that a measurable function \(\omega : X \rightarrow \mathbb{R}_+^\ast\) is called markovian for \((X, \mu, T)\) if

\[
\int f \circ T \omega \, d\mu = \int f \, d\mu \quad \text{for each } f \in L^1(X, \mu) \quad [SiTh1].
\]
Such a function may not be unique (see [SiTh1, Example 1.3(c)]). However if we assume that the measure $\mu \circ T^{-1}$ is σ-finite then a standard verification shows that there exists a unique $T^{-1}\mathfrak{B}$-measurable markovian function for (X, μ, T). We call it the Radon-Nikodym derivative of T and denote by ρ_T. One can check that $\rho_T = \frac{d\mu}{d\nu_T} \circ T$. Of course, if T is invertible then $\rho_T = \frac{d\mu}{d\nu}$. Let κ denote a measure on \mathbb{R}_+^* equivalent to the Lebesgue measure and such that $\kappa(aB) = a^{-1}\kappa(B)$. Given T such that $\mu \circ T^{-1}$ is σ-finite, we can define a σ-finite measure preserving endomorphism T_{ρ_T} of the product space $(X \times \mathbb{R}_+^*, \mu \times \kappa)$ by setting $T_{\rho_T}(x, t) := (Tx, \rho_T(x)t)$. It is called the Maharam extension of T. If (Y, \mathfrak{Y}, ν) is a standard σ-finite measure space, S is a transformation from $\text{Aut}(Y, \nu)$, $\pi : Y \to X$ is a Borel map such that

$$\mu \circ \pi^{-1} = \nu, \pi S = T\pi, \rho_S = \rho_T \circ \pi \quad \text{and} \quad \mathfrak{Y} = \bigvee_{n>0} S^n\pi^{-1}\mathfrak{B}$$

then S is called the natural extension of T [SiTh2, Definition 4.1]. The existence and uniqueness (up to a natural isomorphism) of the natural extension was proved in [SiTh2, Theorem 4.2]. We will denote it by \tilde{T}. The natural extension of the Maharam extension of T is canonically isomorphic to the Maharam extension of the natural extension of T. If $S \in \text{Aut}(Y, \nu)$ is the natural extension of an exact endomorphism then S is called a nonsingular K-automorphism. We recall that a nonsingular invertible transformation is called weakly mixing if the Cartesian product of it with every ergodic probability preserving transformation is ergodic. A nonsingular K-automorphism is weakly mixing whenever it is conservative [SiTh2, Proposition 4.8].

If for a.e. $x \in X$, the set $T^{-1}\{x\}$ is at most countable then T is called countable-to-one. From now on we will consider only endomorphisms which are countable-to-one. Given such a T, we can associate an equivalence relation \mathcal{S}_T on X by setting:

$$(x, y) \in \mathcal{S}_T \quad \text{if there is } n \geq 0 \text{ such that } T^n x = T^n y.$$

Then \mathcal{S}_T is countable and μ-nonsingular. It is ergodic if and only if T is exact [Ha]. If (2-1) holds, we set

$$\alpha_{\rho_T}(x, y) := \rho_T(x)\cdots\rho_T(T^{-1}x)\rho_T(T^{-1}y)\cdots\rho_T(y)^{-1}.$$

Then α_{ρ_T} is a well defined cocycle of \mathcal{S}_T with values in \mathbb{R}_+^*.

Remark 2.1. We note that α_{ρ_T} depends also on μ, i.e., in fact, $\alpha_{\rho_T} = \alpha_{\rho_T, \mu}$. If we replace μ with an equivalent measure λ and the Radon-Nikodym derivative $\frac{d\lambda}{d\mu}$ is measurable with respect to the σ-algebra $T^{-1}\mathfrak{B}$ then the cocycle $\alpha_{\rho_T, \lambda}$ is cohomologous to $\alpha_{\rho_T, \mu}$.

Denote by $\mathcal{S}_T(\alpha_{\rho_T})$ the α_{ρ_T}-skew product extension of S. Then $\mathcal{S}_{T_{\rho_T}} = \mathcal{S}_T(\alpha_{\rho_T})$. From the aforementioned facts we deduce the following proposition (see the beginning of the proof of [DaLe, Theorem 4.1, Claim B] for details).

The reader should not confuse α_{ρ_T} with Δ_{ρ_T}. The former is the cocycle generated by the Radon-Nikodym derivative of T. The later is the Radon-Nikodym cocycle of \mathcal{S}_T. If T is invertible then $\alpha_{\rho_T} = \Delta_{\rho_T}$. However, in the general case, the two cocycles are different—see the proof of Theorem 3.5 below.
Proposition 2.2. Let \(T \) be countable-to-one nonsingular endomorphism of a probability space. The Maharam extension of the natural extension of \(T \) is a \(K \)-automorphism if and only if the cocycle \(\alpha_{tr} \) of \(S_T \) is ergodic.

We illustrate the aforementioned concepts with the following example.

Example 2.3. Let \((X, \mu) := (A^\mathbb{Z}, \otimes_{n=1}^\infty \mu_n)\), where \(A \) and \((\mu_n)_{n=1}^\infty \) stand for the same objects as in Example 1.1. Denote by \(T : X \rightarrow X \) the one-sided Bernoulli shift on \(X \). Of course, it is countable-to-one. By the Kakutani criterion [Ka], \(T \) is \(\mu \)-nonsingular if and only if

\[
\sum_{n=1}^\infty \sum_{a \in A} \left(\sqrt{\mu_n(a)} - \sqrt{\mu_{n+1}(a)} \right)^2 < \infty.
\]

Moreover, if \(T \) is nonsingular then we can compute the Radon-Nikodym derivative of \(T \):

\[
(2-2) \quad \rho_T(x) = \prod_{n=1}^\infty \frac{\mu_n(x_{n+1})}{\mu_{n+1}(x_{n+1})} \quad \text{at } \mu\text{-a.e. } x = (x_n)_{n \in \mathbb{N}} \in X.
\]

It is easy to see that \(S_T \) is the tail equivalence relation on \(X \). Of course, \(T \) is exact. The natural extension of \(T \) is the two-sided Bernoulli shift on the space \((A^\mathbb{Z}, \otimes_{n \in \mathbb{Z}} \tilde{\mu}_n)\), where \(\tilde{\mu}_n := \mu_n \) if \(n > 0 \) and \(\tilde{\mu}_n := \mu_1 \) if \(n \leq 0 \). The corresponding projection \(\pi : A^\mathbb{Z} \rightarrow A^\mathbb{N} \) is given by the formula \(\pi((x_n)_{n \in \mathbb{Z}}) := (x_n)_{n \in \mathbb{N}} \).

Given a standard probability space \((Y, \mathcal{F}, \nu)\) and a transformation \(S \in \text{Aut}(Y, \nu) \), we denote by \(U_S \) the associated (with \(S \)) Koopman unitary operator in \(L^2(Y, \nu) \), i.e. \(U_S f := f \circ S^{-1} \cdot \sqrt{\nu} \) for all \(f \in L^2(Y, \nu) \).

We recall that \(S \) is said to be

- \textit{conservative} if for each subset \(B \in \mathcal{F} \) of positive measure, there is \(n > 0 \) such that \(\nu(S^{-n}B \cap B) > 0 \),
- \textit{dissipative} if it is not conservative,
- \textit{totally dissipative} if there is \(B \in \mathcal{F} \) such that \(\bigcup_{n \in \mathbb{Z}} T^n B = Y \text{ (mod } 0) \).

The following lemma from [Ko1, Lemma 2.2] will be used in the subsequent sections.

Lemma 2.4. If \(\sum_{n=1}^\infty \| U_{S^n} 1,1 \| < \infty \) then \(S \) is totally dissipative.

We remind Hopf’s criterion of conservativeness for nonsingular maps.

Lemma 2.5 (see, e.g., [Aa, Proposition 1.3.1]). A nonsingular transformation \(S \) of a standard probability space \((Y, \mathcal{F}, \nu)\) is conservative if and only if \(\sum_{n=1}^\infty \frac{\| \nu^{S^n} \|}{\nu^{S^n}}(y) = +\infty \) at a.e. \(y \in Y \).

We will also need the following sufficient condition for conservativeness of nonsingular transformations.

Proposition 2.6. Let \(S \) be a nonsingular transformation on a standard probability space \((Y, \nu)\). Assume that \(\frac{d\nu^{S^n}}{d\nu} \in L^2(Y, \nu) \) for each \(n > 0 \) and write \(b(n) := \| \frac{d\nu^{S^n}}{d\nu} \|_2^2 \). If there is a sequence \((a(n))_{n=1}^\infty \) of positive reals such that \(\sum_{n=1}^\infty a(n) = \infty \) but \(\sum_{n=1}^\infty a(n)^2 b(n) < \infty \) then \(S \) is conservative.

\[^3\text{For the sake of simplicity, we use here and below the notation } S' \text{ for the Radon-Nikodym derivative of } S, \text{ i.e. } S' := \frac{\nu^{S^n}}{\nu}.\]
Proof. We set \(A_n := \{ y \in Y \mid \frac{d\nu \circ S^{-n}}{d\nu}(y) < a(n) \} \). By Markov’s inequality,

\[
\nu(A_n) = \nu\left(\left\{ y \in Y \mid \left(\frac{d\nu}{d\nu \circ S^{-n}}(y) \right)^2 > \frac{1}{a(n)^2} \right\} \right) \leq a(n)^2 b(n).
\]

Since \(\sum_{n=1}^{\infty} a(n)^2 b(n) < \infty \), it follows from the Borel-Cantelli lemma that for \(\nu \)-a.e. \(y \), there is \(N(y) > 0 \) such that for each \(n > N(y) \),

\[
\frac{d\nu \circ S^{-n}}{d\nu} - a(n) \geq 0.
\]

Now the condition \(\sum_{n=1}^{\infty} a(n) = \infty \) yields that \(\sum_{n=1}^{\infty} \frac{d\nu \circ S^{-n}}{d\nu}(y) = \infty \). Hence \(S \) is conservative by Lemma 2.5. \(\square \)

We also recall definition of an r.f.m.p. extension for nonsingular maps. A nonsingular endomorphism \(T \) of \((X, \mathcal{B}, \mu) \) is called a relatively finite measure preserving (r.f.m.p.) extension of a nonsingular endomorphism \(S \) of \((Y, \mathcal{F}, \nu) \) if there is a Borel map \(\pi : X \to Y \) such that \(\nu = \mu \circ \pi^{-1} \), \(\pi T = S \pi \) and \(\rho_T = \rho_S \circ \pi \). For instance, the natural extension of a nonsingular endomorphism is r.f.m.p.

For more information on nonsingular endomorphisms we refer to [Aa], [Ha], [StTh2] and [DaLe].

3. Poisson suspensions of type III\(_1\) over a discrete base

Let \((X, \mathcal{B}, \mu) \) be a \(\sigma \)-finite measure space and \(\mu(X) = \infty \). We first recall some definitions, notation and facts from [DaKoRo]. \(\text{Aut}(X, \mu) \) stands for the group of all \(\mu \)-nonsingular invertible transformations. The weak topology on \(\text{Aut}(X, \mu) \) is induced from the weak (equivalently, strong) operator topology on the unitary group \(U \) of the Hilbert space \(L^2(X, \mu) \) via the embedding \(\text{Aut}(X, \mu) \ni S \mapsto U_S \in U \).

We also let

\[
\text{Aut}_2(X, \mu) := \{ T \in \text{Aut}(X, \mu) \mid \sqrt{T^* - 1} \in L^2(X, \mu) \} \quad \text{and}
\]

\[
\text{Aut}_1(X, \mu) := \{ T \in \text{Aut}(X, \mu) \mid T^* - 1 \in L^1(X, \mu) \}.
\]

The two sets are Borel subgroups of \(\text{Aut}(X, \mu) \) endowed with the weak topology and \(\text{Aut}_1(X, \mu) \subset \text{Aut}_2(X, \mu) \) [DaKoRo, Proposition 4.14]. For \(j = 1, 2 \), we define a topology \(d_j \) on \(\text{Aut}_j(X, \mu) \) by saying that a sequence \((T_n)_{n=1}^{\infty} \) of transformations from \(\text{Aut}_j(X, \mu) \) converges to a transformation \(T \) from \(\text{Aut}_j(X, \mu) \) if \(T_n \to T \) weakly and \(\| (T_n)/j - (T)/j \| \to 0 \) as \(n \to \infty \). Then \(\text{Aut}_j(X, \mu) \) endowed with \(d_j \) is a Polish group [DaKoRo, Theorem D]. There exists a continuous homomorphism \(\chi : \text{Aut}_1(X, \mu) \to \mathbb{R} \) defined by the formula

\[
\chi(T) := \int_X (T^* - 1) \, d\mu
\]

(see [Ne, Chapter X, §4] and [DaKoRo, Theorem 4.11]).

From now on and till the end of the section let \(X = Z \) and let \(T \) denote the unit translation, i.e. \(T_n := n + 1 \) for all \(n \in \mathbb{Z} \). Given a measure \(\mu \) on \(X \), we set \(a_n := \mu(n) \) for each \(n \in \mathbb{Z} \). Then \(T \) is \(\mu \)-nonsingular if and only if \(\mu \) is non-degenerated, i.e. \(a_n > 0 \) for each \(n \in \mathbb{Z} \). Moreover,

\[
T'(n) = \frac{a_{n-1}}{a_n} \quad \text{for all } n \in \mathbb{Z}.
\]
Of course, $\text{Aut}(X, \mu)$ is the group of all permutations of \mathbb{Z}. We see that $T \in \text{Aut}_2(X, \mu)$ if and only if

$$\sum_{n \in \mathbb{Z}} \left(\frac{a_{n-1}}{a_n} - 1 \right)^2 a_n = \sum_{n \in \mathbb{Z}} \left(\sqrt{a_{n-1}} - \sqrt{a_n} \right)^2 < \infty. \quad (3-1)$$

In a similar way, $T \in \text{Aut}_1(X, \mu)$ if and only if

$$\sum_{n \in \mathbb{Z}} |a_{n-1} - a_n| < \infty. \quad (3-2)$$

The latter inequality holds then there exist the two limits $a_{+\infty} := \lim_{n \to +\infty} a_n$ and $a_{-\infty} := \lim_{n \to -\infty} a_n$. Moreover, it is easy to verify that

$$\chi(T) = a_{+\infty} - a_{-\infty}. \quad (3-3)$$

Let (X^*, μ^*, T^*) denote the Poisson suspension of the dynamical system (X, μ, T). The mapping $\omega \mapsto (\omega(n))_{n \in \mathbb{Z}}$ is an isomorphism of (X^*, μ^*) onto the infinite product space $(\mathbb{Z}^\mathbb{Z}_+, \bigotimes_{n \in \mathbb{Z}} \kappa_n)$, where κ_n is the Poisson distribution with parameter a_n for each $n \in \mathbb{Z}$. Moreover, this mapping conjugates T_* with the shift on $\mathbb{Z}^\mathbb{Z}_+$. For this reason, from now on we view T_* as the shift $\mathbb{Z}^\mathbb{Z}_+$ defined by

$$(T_*(y))_n := y_{n+1} \quad \text{for all } y = (y_n)_{n \in \mathbb{Z}} \in \mathbb{Z}^\mathbb{Z}_+.$$

It was shown in [DaKoRo, Theorem A] that in the case where μ is non-atomic, T_* is μ^*-nonsingular if and only if $T \in \text{Aut}_2(X, \mu)$. We now verify that the same holds also in our (purely atomic) case.

Proposition 3.1. T_* is μ^*-nonsingular if and only if $(3-1)$ is satisfied. In this case for a.e. $y = (y_n)_{n \in \mathbb{Z}} \in X^*$,

$$(T_*)'(y) = \prod_{n \in \mathbb{Z}} \frac{\kappa_{n-1}(y_n)}{\kappa_n(y_n)}.$$

Proof. We first recall definition of the Hellinger distance $H(\lambda, \xi)$ between two probability measures λ, ξ on a countable set C:

$$H^2(\lambda, \xi) := 1 - \int_C \sqrt{\frac{d\lambda}{d\xi}} \, d\xi = \frac{1}{2} \sum_{c \in C} \left(\sqrt{\lambda(c)} - \sqrt{\xi(c)} \right)^2.$$

Given two Poisson distributions ν_a and ν_b on \mathbb{Z}_+ with parameters a and b respectively, then the Hellinger distance $H(\nu_a, \nu_b)$ between ν_a and ν_b satisfies

$$H^2(\nu_a, \nu_b) = 1 - e^{-\frac{1}{2}(\sqrt{a} - \sqrt{b})^2}.$$

Therefore it follows from the Kakutani criterion [Ka] that T_* is μ^*-nonsingular if and only if

$$\infty > 2 \sum_{n \in \mathbb{Z}} H^2(\kappa_n, \kappa_{n+1}) = 2 \sum_{n \in \mathbb{Z}} \left(1 - e^{-\frac{1}{2}(\sqrt{a_n} - \sqrt{a_{n+1}})^2} \right). \quad (3-3)$$

The series in the righthand side of (3-3) converges if and only if (3-1) holds. □

In a similar way, the Kakutani criterion [Ka] can be applied to prove the following claim.
Proof. Since (ii) follows from (i) and (3-2), it suffices to prove (i). Let
\[i < - \delta > \]
condition of (i) that there is the Hellinger distance on the set of probability measures on
\[T \]
Let \[\beta \] and \[\alpha \] sequence \((a_n)_{n<0} \) and let \(\mathcal{L}_+ (\mu) \) denote the set of limit points of the sequence \((a_n)_{n>0} \). If \(T \in \text{Aut}_2 (X, \mu) \) then (3-1) implies that there exist reals \(\beta_+ \geq \alpha_+ \geq 0 \) and \(\beta_- \geq \alpha_- \geq 0 \) such that \(\mathcal{L}_- (\mu) = [\alpha_-, \beta_-] \) and \(\mathcal{L}_+ (\mu) = [\alpha_+, \beta_+] \).

Proposition 3.3.

(i) If \(T \in \text{Aut}_2 (X, \mu) \) and \(\mathcal{L}_- (\mu) \cap \mathcal{L}_+ (\mu) = \emptyset \) then \(T^* \) is totally dissipative.

(ii) If \(T \in \text{Aut}_1 (X, \mu) \) and \(\chi (T) \neq 0 \) then \(T^* \) is totally dissipative.

Proof. Since (ii) follows from (i) and (3-2), it suffices to prove (i). Let \(\mathcal{H}(\cdot, \cdot) \) denote the Hellinger distance on the set of probability measures on \(\mathbb{Z}_+ \). It follows from the condition of (i) that there is \(\delta > 0 \) and \(N > 0 \) such that \(\mathcal{H}(\kappa_i, \kappa_j) > \delta \) whenever \(i < -N \) and \(j > N \). This inequality and Proposition 3.1 yield that if \(n > 3N \) then

\[
\langle U^n_{T}, 1, 1 \rangle = \prod_{n \in \mathbb{Z}} \int_{\mathbb{Z}_+} \sqrt{\frac{d\kappa_k-n(y_k)}{d\kappa_k}} d\kappa_k(y_k)
= \prod_{n \in \mathbb{Z}} (1 - H^2(\kappa_k-n, \kappa_k))
\leq \prod_{\frac{1}{2} < k < \frac{3}{2}} (1 - H^2(\kappa_k-n, \kappa_k))
< (1 - \delta^2)^{n/3}.
\]

Hence \(\sum_{n=1}^{\infty} \langle U^n_{T}, 1, 1 \rangle < \sum_{n=1}^{\infty} (1 - \delta^2)^{n/3} < \infty \). It remains to use Lemma 2.4. \(\square \)

We will also need a sufficient condition for conservativeness of \(T^* \).

Proposition 3.4. Let \(T \in \text{Aut}_1 (X, \mu) \), \(\chi (T) = 0 \) and \(\left(\frac{d\mu}{d\mu + T} \right)^2 - 1 \in L^1 (X, \mu) \) for each \(n \in \mathbb{N} \). If there is a sequence \((b_n)_{n=1}^{\infty} \) of positive reals such that \(\sum_{n=1}^{\infty} b_n = \infty \) but

\[
\sum_{n=1}^{\infty} b_n^2 \int_X \left(\left(\frac{d\mu}{d\mu + T} \right)^2 - 1 \right) d\mu < \infty
\]

then \(T^* \) is conservative.

Proof. Since \(\chi (T) = 0 \), it follows that \(\sum_{k \in \mathbb{Z}} (a_k - a_{k-n}) = 0 \) for each \(n > 0 \). Therefore

\[
\log \left(\frac{d\mu^* \circ T^{-n}}{d\mu^*} (y) \right)^2 = -\sum_{k \in \mathbb{Z}} 2 \log \frac{\kappa_k-n(y_k)}{\kappa_k(y_k)}
= -2 \sum_{k \in \mathbb{Z}} \left(y_k \log \frac{a_{k-n}}{a_k} + a_k - a_{k-n} \right)
= -2 \sum_{k \in \mathbb{Z}} y_k \log \frac{a_{k-n}}{a_k} = -\langle y, 2 \log \frac{d\mu \circ T^{-n}}{d\mu} \rangle
\]
at a.e. \(y \in X^* \). Here we consider \(y \) as a measure on \(X \) and use the notation \(\langle y, f \rangle \) for the integral of a function \(f \in L^1(X, y) \) with respect to \(y \). Utilizing the above formula and the Laplace transform we obtain that

\[
\left\| \frac{d\mu^*}{d\mu^* \circ T_n} \right\|_2^2 = \int_{X^*} e^{-\langle y, 2\log \frac{d\mu^*}{d\mu} \rangle} d\mu^*(y) = e^{f_{\delta}(v)} \left(e^{-\frac{2}{\log \frac{\mu}{\mu^*}} - 1} \right) d\mu.
\]

It remains to apply Proposition 2.6. □

From now on we will assume that \(a_n := ae^{\epsilon_n} \) for some \(a > 0 \) and a sequence \((\epsilon_n)_{n \in \mathbb{Z}}\) of reals such that

\[(3-4) \quad \epsilon_n = 0 \text{ if } n \leq 1, \quad \lim_{n \to +\infty} \epsilon_n = 0, \quad \sum_{n=1}^{\infty} \epsilon_n^2 = \infty \text{ but } \sum_{n=1}^{\infty} \epsilon_n^4 < +\infty.\]

Let \(R \) denote the one-sided Bernoulli shift on the space \(((\mathbb{Z}_+)^{\mathbb{N}}, \otimes_{n=1}^{\infty} \kappa_n)\), and let \(\pi \) denote the projection \((\mathbb{Z}_+)^2 \ni (x_n)_{n \in \mathbb{Z}} \mapsto (x_n)_{n > 0} \in (\mathbb{Z}_+)^{\mathbb{N}}\).

Then \(R\pi = \pi T_\ast \). In view of Example 2.3, \(T_\ast \) is the natural extension of \(R \).

Theorem 3.5. If (3-4) holds then the cocycle \(\log \alpha_{\rho_R} \) of the equivalence relation \(S_R \) associated with \(R \) is ergodic.

Proof. According to Example 2.3, \(S_R \) is the tail equivalence relation on \(((\mathbb{Z}_+)^{\mathbb{N}}, \otimes_{n=1}^{\infty} \kappa_n)\).

By (2-2), \(\rho_R(v) = \prod_{j=2}^{\infty} \frac{\kappa_{j-1}(v_j)}{\kappa_j(v_j)} \) for each \(v = (v_j)_{j=1}^{\infty} \in (\mathbb{Z}_+)^{\mathbb{N}} \). Hence for each \(n > 0 \),

\[
\rho_R(v) \cdots \rho_R(R^{n-1}v) = \prod_{j=2}^{n} \frac{\kappa_1(v_j)}{\kappa_j(v_j)} \prod_{j>n} \frac{\kappa_{j-n}(v_j)}{\kappa_j(v_j)}.
\]

Suppose now that \(R^n v = R^n w \). Then \(v_j = w_j \) for all \(j > n \). Therefore

\[
\alpha_{\rho_R}(v, w) := \frac{\rho_R(v) \cdots \rho_R(R^{n-1}v)}{\rho_R(w) \cdots \rho_R(R^{n-1}w)} = \prod_{j=2}^{n} \frac{\kappa_1(w_j)}{\kappa_j(w_j)} \prod_{j=2}^{n} \frac{\kappa_1(v_j)}{\kappa_j(v_j)} = \prod_{j=2}^{n} \left(\frac{a_j}{a_1} \right)^{w_j-v_j}.
\]

Thus we obtain that for each \((v, w) \in S_R\),

\[
\log \alpha_{\rho_R}(v, w) = \sum_{j>1} (w_j - v_j) \epsilon_j.
\]

Let \(\Delta_{S_R} \) denote the Radon-Nikodym cocycle of \(S_R \). Utilizing Example 1.1 and the definition of \(\kappa_j \) we obtain that

\[
\log \Delta_{S_R}(v, w) = \log \left(\prod_{j=1}^{n} \frac{\kappa_j(v_j)}{\kappa_j(w_j)} \right) = \sum_{j>0} (w_j - v_j) \log a_j - \log \frac{w_j}{v_j}.
\]
Now we fix an infinite subset $J \subset \{2, 3, 4, \ldots \}$ with $\sum_{j \in J} \epsilon_j^2 < \infty$. Then it follows from (3-4) that $\sum_{j \not\in J} \epsilon_j^2 = \infty$. Hence we can change $(\epsilon_n)_{n \in \mathbb{Z}}$ with another sequence coinciding with the original one if $n \not\in J$ and such that $\epsilon_n = 0$ for each $n \in J$. Of course, the new sequence satisfies (3-4) and determines a new measure μ on X. Proposition 3.2 yields that $\hat{\mu} \sim \mu^*$. Moreover, the Radon-Nikodym derivative $v \mapsto \frac{d\hat{\mu}}{dv}(v)$ does not depend on the first coordinate of $v = (v_j)_{j=1}^\infty$ because $1 \not\in J$. Therefore according to Remark 2.1, the cocycle $\alpha_{\rho_R, \hat{\mu}}$ is isomorphic to α_{ρ_R, μ^*}. Hence $\alpha_{\rho_R, \hat{\mu}}$ is ergodic if and only if α_{ρ_R, μ^*} is ergodic. In the sequel, by α_{ρ_R} we mean $\alpha_{\rho_R, \hat{\mu}}$. Thus, we may assume without loss of generality that the triplet $((Z_+)^\infty, \otimes_{n=1}^\infty \kappa_n, \mathcal{S}_R)$ is isomorphic to (Z, η, T), where $Z = (\mathbb{Z}_+ \times \mathbb{Z}_+)^\infty$, $\eta = \otimes_{j=1}^\infty (\kappa_j \otimes \kappa_0)$ and T is the tail equivalence relation on Z. The corresponding isomorphism is given by the map $\mathbb{Z}_+^\infty \ni v \mapsto ((v_j)_{j \in J}, (v_j)_{j \not\in J}) \in (\mathbb{Z}_+ \times \mathbb{Z}_+)^\infty$. Indeed, we use here the fact that the sets J and $\mathbb{N} \setminus J$ are both infinite and hence admit a bijection onto \mathbb{N} and, furthermore, $\kappa_j = \kappa_0$ if $j \in J$.

Let $z = (v_j, w_j)_{j>0}$ and $z' = (v'_j, w'_j)_{j>0}$ are two T-equivalent points with $v_j, w_j, v'_j, w'_j \in \mathbb{Z}_+$. Computing $\log \alpha_{\rho_R}$ and $\log \Delta_{\mathcal{S}_R}$ in the “new coordinates” we obtain that

$$\log \alpha_{\rho_R}(z, z') = \sum_{j>0} (v'_j - v_j) \epsilon_j \quad \text{and}$$

$$\log \Delta_{\mathcal{S}_R}(z, z') = \sum_{j>0} \left((v'_j - v_j) \log a_j + (w'_j - w_j) \log a_0 - \log \frac{v'_j}{v_j} - \log \frac{w'_j}{w_j} \right).$$

Denote by τ the flip on $\mathbb{Z}_+ \times \mathbb{Z}_+$, i.e. $\tau(v, w) = (w, v)$. Define a transformation τ_n of Z by setting $\tau_n := \underbrace{\tau \times \cdots \times \tau}_{n \text{ times}} \times \text{Id} \times \text{Id} \cdots$. Of course, $\tau_n \in [T]$ and

$$\log \alpha_{\rho_R}(z, \tau_n z) = \sum_{j=1}^n (w_j - v_j) \epsilon_j = \log \Delta_{\mathcal{S}_R}(z, \tau_n z)$$

at a.e. $z \in Z$ for each $n > 0$.

Claim 1. For each $p > 0$,

$$\lim_{n \to \infty} \eta(\{z \in Z \mid \log \alpha_{\rho_R}(z, \tau_n z) > -p\}) = 0.$$

To prove this claim we first define mappings $X_j : Z \to \mathbb{R}$ by setting

$$X_j(z) := (w_j - v_j) \epsilon_j$$

for each $z = (v_m, w_m)_{m>0}$ and $j \in \mathbb{N}$. Then the following are satisfied:

- X_1, X_2, \ldots is a sequence of independent random variables,
- for each $j > 1$, the measure $\eta \circ \left(\frac{1}{j} X_j \right)^{-1}$ is the Skellam distribution χ_{a_0, a_j} with parameters (a_0, a_j) (see Appendix A) and
- for each $n > 0$ and a.e. $z \in Z$,

$$\log \alpha_{\rho_R}(z, \tau_n z) = \sum_{j=1}^n X_j(z).$$
We now have (see Appendix A):

\[
E(X_j) = \epsilon_j(a_0 - a_j) = a\epsilon_j(1 - e^t),
\sigma^2(X_j) = \epsilon_j^2(a_0 + a_j) = a\epsilon_j^2(1 + e^t)
\]

and for each \(t \in \mathbb{R}, \)

\[
\phi_{X_j - E(X_j)}(t) := E(e^{it(X_j - E(X_j))}) = e^{-\left(\epsilon(a + a'e^t) + a\epsilon^2 + \epsilon e^{it\epsilon_j} - it\epsilon(X_j)\right)}
\]

\[
= e^{\left(\epsilon(a + a'(e^t - 1) + (e^t - 1)\epsilon - it\epsilon_j)\right)}
\]

\[
= e^{-4a\sin^2 \frac{t\epsilon_j}{4} + a(e^t - 1) (e^{-it\epsilon_j} - 1 + it\epsilon_j)},
\]

(3-7)

Let \(\beta_n := \left(\sum_{j=1}^{n} \epsilon_j^2\right)^{-\frac{1}{2}} \). Utilizing (3-7), we now compute the characteristic function of the random variable \(Y_n := \beta_n \sum_{j=1}^{n} (X_j - E(X_j)) \) at a point \(t \in \mathbb{R} \):

\[
\phi_{Y_n}(t) = \prod_{j=1}^{n} \phi_{X_j - E(X_j)}(\beta_n t)
\]

\[
= e^{-4a\sum_{j=1}^{n} \sin^2 \frac{t\epsilon_j}{4} + a\sum_{j=1}^{n} \left(e^t - 1 \right) \left(e^{-it\epsilon_j} - 1 + it\epsilon_j \beta_n \right)}.
\]

Since the sequence \((\epsilon_n)_{n=1}^{\infty} \) is bounded and \(\sum_{j=1}^{\infty} \epsilon_j^2 = \infty \), it follows that

\[
\beta_n \max_{1 \leq j \leq n} |\epsilon_j| \rightarrow 0 \quad \text{as } n \rightarrow \infty.
\]

Therefore there is \(C = C(t) > 0 \) such that

\[
\left| \sum_{j=1}^{n} \sin^2 \frac{t\epsilon_j}{2} - \sum_{j=1}^{n} \frac{(t\epsilon_j\beta_n}{2} \right|^2 \leq C\beta_n^4 \sum_{j=1}^{n} \epsilon_j^4 \quad \text{and}
\]

\[
\sum_{j=1}^{n} (e^t - 1) \left(e^{-it\epsilon_j} - 1 + it\epsilon_j \beta_n \right) \right| \leq C\beta_n^2 \sum_{j=1}^{n} |\epsilon_j|^3.
\]

(3-9) (3-10)

For each \(\epsilon > 0 \), there is \(N > 0 \) such that \(|\epsilon_n| < \epsilon \) whenever \(n > N \). Therefore

\[
\beta_n^4 \sum_{j=1}^{n} \epsilon_j^4 \leq \beta_n^4 \sum_{j=1}^{N} \epsilon_j^4 + \epsilon^2 \sum_{j=N+1}^{n} \epsilon_j^2 \left(\sum_{j=1}^{N} \epsilon_j^2 \right)^{-2} < 2\epsilon
\]

and

\[
\sum_{j=1}^{n} |\epsilon_j|^3 \leq \beta_n^2 \sum_{j=1}^{N} |\epsilon_j|^3 + \epsilon \sum_{j=N+1}^{n} \epsilon_j^2 \left(\sum_{j=1}^{N} \epsilon_j^2 \right)^{-1} < 2\epsilon
\]

for each \(n \rightarrow \infty \). It follows that the lefthand sides in (3-9) and (3-10) go to 0 as \(n \rightarrow \infty \). Hence (3-9) yields that \(\lim_{n \rightarrow \infty} \sum_{j=1}^{n} \sin^2 \frac{t\epsilon_j\beta_n}{2} = \frac{t^2}{2} \) for each \(t \in \mathbb{R} \).

From this, (3-8) and (3-10), we deduce that

\[
\lim_{n \rightarrow \infty} \phi_{\beta_n \sum_{j=1}^{n} (X_j - E(X_j))}(t) = e^{-at^2} \quad \text{for each } t \in \mathbb{R}.
\]
However, the map $\mathbb{R} \ni t \mapsto e^{-at^2}$ is the characteristic function of a normal distribution. Hence by Lévy’s continuity theorem, $(\beta_n \sum_{j=1}^n (X_j - E(X_j)))_{n=1}^\infty$ converges in distribution to a Gaussian random variable. Since $\sum_{j=1}^n \epsilon_j^2 \to \infty$, it follows that
\[
\lim_{n \to \infty} \beta_n \sum_{j=1}^n E(X_j) = \lim_{n \to \infty} \frac{a \sum_{j=1}^n \epsilon_j (1 - e^{\epsilon_j})}{\sqrt{\sum_{j=1}^n \epsilon_j^2}} = -\infty.
\]
Therefore $\beta_n \sum_{j=1}^n X_j \to -\infty$ in distribution. This, in turn, yields that $\sum_{j=1}^n X_j \to -\infty$ in distribution. Thus Claim 1 is proved.

Claim 2. For a.a.e. $z \in Z$ and each $\epsilon > 0$, there is N such that $|X_n(z)| < \epsilon$ for each $n > N$. To prove this claim we let

$$B_n := \{z = (v_j, w_j) : \epsilon_n \in Z \mid |X_n(z)| > \sqrt{\epsilon_n}\} = \{z \in Z \mid |w_n - v_n| > |\epsilon_n|^{1/2}\}.$$

Then $\eta(B_n) = \chi_{\alpha \alpha, \pi}([k \in Z \mid |k| > |\epsilon_n|^{1/2}])$. According to (A-1), there is $L > 0$ such that if $|\epsilon_n|^{1/2} > L$ then

$$\sum_{|k| > |\epsilon_n|^{1/2}} \chi_{\alpha \alpha, \pi}(k) < \epsilon_n^4.$$

Hence $\eta(B_n) < \epsilon_n^4$. Therefore $\sum_{n=1}^\infty \eta(B_n) < \sum_{n=1}^\infty \epsilon_n^4 < \infty$ according to (3-4). Claim 2 follows from this via the Borel-Cantelli lemma.

Claim 3. Each $r < -1$ is an essential value of $\log \alpha_{\mu r}$.

We first recall that given $d > 0$ and elements $a_1, \ldots, a_d \in \mathbb{Z} \times \mathbb{Z}$, the cylinder $[c_1, \ldots, c_d]$ is the set $\{z = (z_n)_{n \in Z} \in Z \mid z_j = c_j, 1 \leq j \leq d\}$. To prove the claim, take $\epsilon > 0$, a positive integer k and a cylinder $C = [(a_1, b_1), \ldots, (a_k, b_k)]^k \times Z$, where $a_1, b_1, \ldots, a_k, b_k \in \mathbb{Z}$. It follows from Claim 1 and Claim 2 that there are $N > M > k$ and a subset $I \subset (\mathbb{Z} \times \mathbb{Z})^{N-k}$ such that the subset

$$A := \bigcup_{(z_{k+1}, \ldots, z_N) \in I} [(a_1, b_1), \ldots, (a_k, b_k), z_{k+1}, \ldots, z_N]^N \subset C$$

satisfies the following three conditions:

- $\eta(A) > 0.5 \eta(C)$,
- $\max_{x \in A} |X_j(z)| < \epsilon$ whenever $N \geq j > M$ and
- $\max_{x \in A} \sum_{j=M+1}^N X_j(z) < -r$.

For $z \in A$, let $l(z)$ be the smallest number $l > M$ such that $\sum_{j=M+1}^l X_j(z) < -r$. Then $l(z) \leq N$ and

$$\left| \sum_{j=M+1}^l X_j(z) - r \right| \leq |X_{l(z)}(z)| < \epsilon.$$

We now set

$$\psi(z) := ((a_1, b_1), \ldots, (a_k, b_k), z_{k+1}, \ldots, z_M, \tau(z_{M+1}), \ldots, \tau(z_{l(z)}), z_{l(z)+1}, \ldots) \quad (3-11)$$
for each $z \in A$. Then $\psi(z) \in C$, $(z, \psi(z)) \in T$ and

$$(3-12) \quad \left| \log \alpha_{\rho^n}(z, \psi(z)) - r \right| < \epsilon$$

in view of (3-11) and (3-6). We now show that the map $\psi : A \ni z \mapsto \psi(z) \in C$ is one-to-one. Suppose that $\psi(z) = \psi(z')$ for some $z = (z_j)_{j \in \mathbb{Z}} \in A$ and $z' = (z'_j)_{j \in \mathbb{Z}} \in A$. If $l(z) = l(z')$ then obviously $z = z'$. Therefore suppose that $l(z) > l(z')$. Then the equality $\psi(z) = \psi(z')$ implies that $z_j = z'_j$ if $1 \leq j \leq M$ and $\tau(z_j) = \tau(z'_j)$ if $1 \leq j \leq l(z')$. Hence $z_j = z'_j$ if $1 \leq j \leq l(z')$. Therefore $-r > \sum_{j=M+1}^{l(z')} X_j(z') = \sum_{j=M+1}^{l(z')} X_j(z)$. This yields that $l(z) \leq l(z')$, a contradiction. Thus, ψ is one-to-one. It follows from (3-5) and (3-12) that $-r - \epsilon < \log \Delta_{S_R}(z, \tau_n z) < -r + \epsilon$ for all $z \in A$. Lemma 1.2 implies now that r is an essential value of $\log \alpha_{\rho^n}$. Thus, Claim 3 is proved.

Since the essential range of $\log \alpha_{\rho^n}$ is a closed subgroup of \mathbb{R} containing an arbitrary real less than -1 (in view of Claim 3), it follows that this subgroup is \mathbb{R}. Hence $\log \alpha_{\rho^n}$ is ergodic. \qed

Remark 3.6. While proving Theorem 3.5 we also showed as a byproduct that the cocycle Δ_{S_R} is ergodic, i.e. S_R is of type III_1. In fact, we proved a stronger result. Let E denote the orbit equivalence relation on \mathbb{Z}_+ generated by the group of finite permutations of the coordinates. Then E is a proper subrelation of S_R. It follows from the proof of Theorem 3.5 that E is of type III_1 and the restriction of the cocycle $\log \alpha_{\rho^n}$ to E is ergodic.

The next corollary is the main result of this section.

Corollary 3.7. If (3-4) holds and T_\ast is conservative then the Maharam extension of T_\ast is a weakly mixing K-automorphism. In particular, T_\ast is weakly mixing and of stable type III_1.

Proof. It follows from Theorem 3.5 that α_{ρ^n} is ergodic. Since T_\ast is the natural extension of R, the Maharam extension $(T_\ast)_{pr_\ast}$ of T_\ast is a nonsingular K-automorphism by Proposition 2.2. Since T_\ast is conservative, $(T_\ast)_{pr_\ast}$ is also conservative according to the Maharam theorem (see [Aa, Theorem 3.4.1], [Sc, Theorem 5.5]). It follows that $(T_\ast)_{pr_\ast}$ is weakly mixing. This implies that T_\ast is weakly mixing and of type III_1. \qed

We now provide concrete examples of conservative T_\ast such that (3-4) holds.

Example 3.8. Let $\varepsilon_n := 0$ if $n \leq 1$ and $\varepsilon_n := -n^{-1/2}$ if $n > 1$. Then (3-4) holds. We claim that if $0 < \alpha < \frac{1}{2}$ then T_\ast is conservative. For that we will utilize Proposition 3.4. We first note that

$$\int_X \left(\frac{d\mu}{d\mu \circ T^{-n}} \right)^2 - 1 \, d\mu = a \sum_{k \in \mathbb{Z}} \left(e^{2(\varepsilon_k - \varepsilon_{k-n})} - 1 \right) e^{\varepsilon_k} = a \sum_{k \in \mathbb{Z}} \left(e^{3\varepsilon_k - 2\varepsilon_{k-n}} - e^{\varepsilon_k} \right)$$

and $|3\varepsilon_k - 2\varepsilon_{k-n}| \leq 3|\varepsilon_k|$. Therefore it follows from the Taylor expansion of the exponential function that

$$e^{3\varepsilon_k - 2\varepsilon_{k-n}} - e^{\varepsilon_k} = 2\varepsilon_k - 2\varepsilon_{k-n} + \frac{1}{2} (3\varepsilon_k - 2\varepsilon_{k-n})^2 - \frac{1}{2} \varepsilon_k^2 + O(\varepsilon_k^3)$$

as \(k \to \infty \). Since \(\sum_{k \in \mathbb{Z}} |\epsilon_k|^3 < \infty \) and \(\sum_{k \in \mathbb{Z}} (\epsilon_k - \epsilon_{k-n}) = 0 \),

\[
\sum_{k \in \mathbb{Z}} (e^{3\epsilon_k - 2\epsilon_k - n} - e^{\epsilon_k}) = \frac{1}{2} \sum_{k \in \mathbb{Z}} ((3\epsilon_k - 2\epsilon_k - n)^2 - \epsilon_k^2) + O(1)
\]

\[= 2 \sum_{k \in \mathbb{Z}} (2\epsilon_k^2 + \epsilon_k^2 - 3\epsilon_k \epsilon_{k-n}) + O(1)\]

\[= 4 \sum_{k=2}^{n+1} \frac{1}{k} + 2 \sum_{k>n+1} \left(\frac{1}{k-n} - \frac{1}{k} + \frac{3}{k} \frac{1}{\sqrt{k(k-n)}} \right) + O(1)\]

\[= 6 \sum_{k=2}^{n+1} \frac{1}{k} + 6 \sum_{k>n+1} \left(\frac{1}{k} - \frac{1}{\sqrt{k(k-n)}} \right) + O(1)\]

\[= 6 \log n + 6 \int_{n+1}^{+\infty} \left(\frac{1}{t} - \frac{1}{\sqrt{t(t-n)}} \right) dt + O(1)\]

\[= 6 \log n + 6 \left(\log t - \log \left(t - \frac{n}{2} + \sqrt{t(t-n)} \right) \right)_{n+1}^{+\infty} + O(1)\]

\[= 6 \log n + O(1)\]

as \(n \to +\infty \). Thus, we have shown that

\[
\int_X \left(\left(\frac{d\mu}{d\mu \circ T^{-n}} \right)^2 - 1 \right) d\mu = 6a \log n + O(1).
\]

It follows that there is a constant \(C > 0 \) such that for each \(n > 0 \),

\[
(3-13) \quad \int_X \left(\left(\frac{d\mu}{d\mu \circ T^{-n}} \right)^2 - 1 \right) d\mu < 6a \log n + C.
\]

Choose a real \(\beta \) such that \(1 \geq \beta > 1 + \frac{a}{6} \). It exists because \(a < \frac{1}{6} \). Now let \(b_n := n^{-\beta} \). Then \(\sum_{n=1}^{\infty} b_n = \infty \) but in view of (3-13),

\[
\sum_{n=1}^{\infty} b_n e^{\int_X \left(\left(\frac{d\mu}{d\mu \circ T^{-n}} \right)^2 - 1 \right) d\mu} \leq e C \sum_{n=1}^{\infty} \frac{1}{n^{2\beta - 6a}} < \infty.
\]

It follows from Proposition 3.4 that \(T_* \) is conservative. It is weakly mixing and of type \(III_1 \) by Corollary 3.7.

We now show that the restriction \(a < \frac{1}{6} \) in Example 3.8 can not be dropped. For that we’ll need a criterion for dissipativity from [DaKoRo, Corollary 6.8].

Lemma 3.9. If \(T \in \text{Aut}_\mathbb{Z}(X,\mu) \) and \(\sum_{n \geq 0} e^{-\frac{1}{2} \left\| \frac{d\mu}{d\mu \circ T^{-n}} - 1 \right\|^2} < \infty \) then \(T_* \) is totally dissipative.

Proposition 3.10. Let \((X,\mu,T) \) be as in Example 3.8 but \(a > 4 \). Then \(T_* \) is totally dissipative.
Proof. For each $n > 0$,

$$\left\| \sqrt{\frac{d\mu \circ T^n}{d\mu}} - 1 \right\|_2^2 = a \sum_{k=-n}^{n+1} \left(e^{-\frac{1}{k} - \epsilon} - 1 \right)^2 e^k$$

$$= a \sum_{k=-n+1}^{n+1} \left(e^{-\frac{1}{k} - \epsilon} - 1 \right)^2 + a \sum_{k=2}^{\infty} \left(e^{-\frac{1}{k} - \epsilon} - 1 \right)^2 e^k$$

$$= a \sum_{k=1}^{n+1} \left(e^{-\frac{1}{k} - \epsilon} - 1 \right)^2 + a \sum_{k=2}^{\infty} \left(e^{-\frac{1}{k} - \epsilon} - e^{\frac{2}{k}} \right)^2$$

$$= a \sum_{k=1}^{n+1} \left(\frac{1}{\sqrt{k}} + O\left(\frac{1}{k} \right) \right)^2 + a \sum_{k=2}^{\infty} \left(\frac{1}{\sqrt{n+k}} - \frac{1}{\sqrt{k}} + O\left(\frac{1}{k} \right) \right)^2$$

$$= a \sum_{k=1}^{n+1} \frac{1}{k} + a \sum_{k=2}^{\infty} \left(\frac{1}{n+k} + \frac{1}{k} - \frac{2}{\sqrt{k(n+k)}} \right) + O(1)$$

as $n \to \infty$. Since $\sum_{k=1}^{n+1} \frac{1}{k} = \log n + O(1)$ and

$$\sum_{k=2}^{\infty} \left(\frac{1}{n+k} + \frac{1}{k} - \frac{2}{\sqrt{k(n+k)}} \right) = \int_2^{+\infty} \left(\frac{1}{n+t} + \frac{1}{t} - \frac{2}{\sqrt{t(n+t)}} \right) dt + o(1)$$

$$= \left(\log(t(n+t)) - 2 \log \left(t + \frac{n}{2} + \sqrt{t(n+t)} \right) \right) \bigg|_{t=2}^{+\infty} + o(1)$$

$$= \log n + O(1),$$

we obtain that $\left\| \sqrt{\frac{d\mu \circ T^n}{d\mu}} - 1 \right\|_2^2 = \frac{a}{2} \log n + O(1)$ as $n \to \infty$. It follows that there is a real D such that for each $n > 0$,

$$(3-14) \quad \left\| \sqrt{\frac{d\mu \circ T^n}{d\mu}} - 1 \right\|_2^2 \geq D + \frac{a \log n}{2}.$$

Since $a > 4$, we deduce from (3-14) that

$$\sum_{n \geq 0} e^{-\frac{1}{2} \left\| \sqrt{\frac{d\mu \circ T^n}{d\mu}} - 1 \right\|_2^2} \leq \sum_{n \geq 0} e^{-\frac{1}{2} (D + \frac{a \log n}{2})} = e^{-\frac{D}{2}} \sum_{n \geq 0} n^{-\frac{a}{2}} \leq \infty.$$

It follows now from Lemma 3.9 that T_* is totally dissipative. □

4. Poisson Suspensions of Type III_1 over a Non-Atomic Base

In this subsection we construct concrete examples of weakly mixing Poisson suspensions of type III_1 which are Poisson suspensions of nonsingular transformations defined on non-atomic σ-finite spaces.

Let (X, μ, T) be as in §3, i.e. $X = \mathbb{Z}$, μ a non-degenerated measure on X and T the unit translation on X. Let $K = [0,1]$. Denote by λ the Lebesgue measure on K. Let $Y := K \times \mathbb{Z}$ and let $Q : Y \to Y$ be the direct product of the identity on K and \mathbb{Z}.
and T on X, i.e. $Q(k, n) := (k, n + 1)$ for all $k \in K$ and $n \in \mathbb{Z}$. Then the product measure $\nu := \lambda \otimes \mu$ is a non-atomic measure on Y. Of course, Q is ν-nonsingular. Moreover,

$$Q'(k, n) = T'(n) = \frac{a_n - 1}{a_n},$$

where $a_n := \mu(\{n\})$. The dynamical system (X, μ, T) is a factor of (Y, ν, Q). Moreover, the corresponding projection

$$(4-1) \quad \vartheta : Y \ni (k, n) \mapsto n \in X$$

is relatively finite measure preserving (r.f.m.p.). It is straightforward to verify that $Q \in \text{Aut}_2(Y, \nu)$ if and only if $T \in \text{Aut}_2(X, \mu)$, i.e. if and only if $(3-1)$ is satisfied. In a similar way, $Q \in \text{Aut}_2(Y, \nu)$ if and only if $T \in \text{Aut}_1(X, \mu)$. Hence if $Q \in \text{Aut}_2(Y, \nu)$ then the limits $\lim_{n \to +\infty} a_n$ and $\lim_{n \to -\infty} a_n$ exist and $\chi(Q) = \chi(T) = \lim_{n \to +\infty} a_n - \lim_{n \to -\infty} a_n$. Moreover, the corresponding projection

$$(3-1) \quad \vartheta : Y \ni (k, n) \mapsto n \in X$$

is satisfied. In this case, the mapping $Q \equiv \vartheta$ over, the corresponding projection

$$\text{Corollary 4.1.} \quad \text{The Bernoulli shift } Q : (Y, \nu, Q) \ni (y, n) \mapsto (y, n+1)$$

corresponds to the 2-sided Bernoulli shift on the infinite product space (\mathbb{Z}, χ, μ) given by $\chi = \chi(\mathbb{Z}, \kappa_n)$, where $\kappa_n := (\nu \mid \{n\})^*(\nu)$ (see §3). The factor map ϑ from $(4-1)$ generates a factor map $\vartheta^* : Y^* \to X^*$. Thus we have that $\vartheta^* Q_* = T_* \vartheta^*$ and $\mu^* = \nu^* \circ (\vartheta^*)^{-1}$. Since ϑ is r.f.m.p., ϑ^* is r.f.m.p. whenever Q_* is ν^*-nonsingular. It is important to note that ϑ^* has a “coordinate-wise” structure, i.e. $\vartheta^* y = (\vartheta^* y_n)_{n \in \mathbb{Z}}$ for each $y = (y_n)_{n \in \mathbb{Z}} \in Y^*$, where ϑ^*_n is a measure preserving mapping from the probability space (K^*, ν^*_n) onto the probability space (\mathbb{Z}_+, κ_n) given by $K^* \ni y_n \mapsto y_n(K) \in \mathbb{Z}_+$. Therefore, the mapping

$$(\vartheta^*, \mu^*) \ni (y, n) \in Y^* \ni (\vartheta^* y, n) \in X^*$$

interwines Q_* with T_*, maps ν^* onto μ^* and

$$\frac{d\nu^* \circ Q_*}{d\nu^*}(y) = \frac{d\mu^* \circ T_*}{d\mu^*}(\vartheta^* y) = \prod_{n \in \mathbb{Z}} \frac{\kappa_{n-1}(\vartheta^*_n y_n)}{\kappa_n(\vartheta^*_n y_n)}$$

for a.e. $y = (y_n)_{n \in \mathbb{Z}} \in Y^*$. Hence (Y^*, ν^*) is isomorphic to the product space $(K^{\mathbb{Z}} \times X^*, \chi^{\mathbb{Z}} \times \mu^*)$ in such a way that

(i) ϑ^* corresponds to the projection to the second coordinate and

(ii) Q_* corresponds the direct product $B \times T_*$, where $B : K^\mathbb{Z} \to K^\mathbb{Z}$ is the Bernoulli shift preserving $\chi^\mathbb{Z}$.
Proof. For each $n \in \mathbb{Z}$, we disintegrate ν_n^* relative to κ_n (via ϑ_n^*):

$$\nu_n^* = \sum_{k \in \mathbb{Z}_+} \kappa_n(k) \xi_n, k,$$

where $(\xi_n, k)_{k \in \mathbb{Z}_+}$ is the corresponding sequence of conditional probabilities on K^*. Using (4-2), we obtain the disintegration of ν^* relative to μ^* (via ϑ^*):

$$\nu^* = \int_{X^*} \bigotimes_{n \in \mathbb{Z}} \xi_n, k_n \, d\mu^*((k_n)_{n \in \mathbb{Z}}).$$

Since ϑ^* intertwines the Bernoulli shifts on Y^* and X^* respectively, the r.f.m.p. property of ϑ^* means that $\otimes_{n \in \mathbb{Z}} \xi_n, k_{n+1} = \otimes_{n \in \mathbb{Z}} \xi_n, k_{n+1}$ and hence $\xi_n, k_{n+1} = \xi_{n+1}, k_{n+1}$ for all $n \in \mathbb{Z}$ and μ^*-a.e. $(k_n)_{n \in \mathbb{Z}} \in X^*$. Hence there is a sequence $(\xi_k)_{k \in \mathbb{Z}_+}$ of probability measures on K^* such that $\xi_{n,k} = \xi_k$ and therefore

$$\nu^* = \int_{X^*} \bigotimes_{n \in \mathbb{Z}} \xi_k \, d\mu^*((k_n)_{n \in \mathbb{Z}}).$$

The measure ξ_k is non-atomic for each $k > 0$ and the measure ξ_0 is a delta-measure. For a.e. $k = (k_n)_{n \in \mathbb{Z}} \in X^*$, there exist infinitely many positive n with $k_n > 0$ and infinitely many negative n with $k_n > 0$. Hence for such a k and every $n \in \mathbb{Z}$, there are (uniquely defined) two integers $l_n(k)$ and $r_n(k)$ such that the following are satisfied:

- $l_n(k) \leq n \leq r_n(k)$,
- $k_{l_n(k)} \neq 0$ and $k_{r_n(k)+1} \neq 0$ and
- if $l_n(k) < n \leq r_n(k)$ then $k_n = 0$.

Of course, the mappings $X^* \ni k \mapsto l_n(k) \in \mathbb{Z}$ and $X^* \ni k \mapsto r_n(k) \in \mathbb{Z}$ are measurable for every $n \in \mathbb{Z}$. For each $n \in \mathbb{Z} \setminus \{0\}$ and $l \in \mathbb{N}$, there is a measure-theoretical isomorphism

$$\tau_{k,l} : ((K^*)^l, \xi_k \otimes \xi_0 \otimes \cdots \otimes \xi_0) \to (K^l, \lambda^l).$$

Next, for each point $k = (k_n)_{n \in \mathbb{Z}} \in X^*$ and $y = (y_n)_{n \in \mathbb{Z}} \in (K^*)^\mathbb{Z}$, we define a point $(k, y) = (z_n)_{n \in \mathbb{Z}}$ of $K^\mathbb{Z}$ in the following way: z_n is the $(n - l_n(k) + 1)$-th symbol in the block

$$\tau_{l_n(k), r_n(k) - l_n(k) + 1}[y_{l_n(k)} \cdots y_{r_n(k)}] \in K^{r_n(k) - l_n(k) + 1}.$$

We now define an isomorphism τ of (Y^*, ν^*) onto $(K^\mathbb{Z} \times X^*, \lambda^\mathbb{Z} \otimes \mu^*)$ by setting

$$\tau(y) := (\langle \vartheta^*, y \rangle, \vartheta^* y).$$

It is straightforward to verify that (i) and (ii) hold. \(

We now state the main result of this section.

Theorem 4.2. If (3-1) and (3-4) are satisfied then the Maharam extension of (Y^*, ν^*, Q_*) is a K-automorphism. If, moreover, T_* is conservative then Q_* is weakly mixing and of stable Krieger’s type III_1. 19
Proof. Consider Q_\ast as the direct product $B \times T_\ast$ described in Corollary 4.1. Then the Maharam extension of Q_\ast is isomorphic to the product of B with the Maharam extension of T_\ast. It remains to apply Theorem 3.5 and a simple fact that the direct product of a (conservative) K-automorphism with a probability preserving Bernoulli shift is a (conservative) K-automorphism. □

Remark 4.3. Utilizing Example 3.8 we obtain concrete examples of ergodic conservative suspensions Q_\ast of type III_1 for Q defined on a nonatomic infinite measure space. Moreover, it follows from Example 3.8 and Proposition 3.10 that Q_\ast is totally dissipative if $a > 4$ and conservative (and hence weakly mixing and of stable type III_1) if $0 < a < \frac{4}{5}$. This result will be improved in §7 below.

5. Generic Poisson suspension is of type III_1

Throughout this section we assume that μ is an infinite σ-finite non-atomic measure on standard Borel space (X, \mathcal{B}). Given two subsets $A, B \subset X$ of finite measure, let $\tau_{A,B}$ denote a μ-nonsingular bijection from A onto B such that

$$\frac{d\mu \circ \tau_{A,B}}{d\mu}(x) = \frac{\mu(B)}{\mu(A)} \quad \text{for all } x \in A.$$

We now recall a definition and some facts from [DaKoRo].

Definition 5.1. A nonsingular transformation T of a σ-finite standard measure space (X, μ) is locally aperiodic if there is a subset $A \subset X$ of positive finite measure such that $Tx = x$ if $x \not\in A$ and $T^n x \neq x$ for each $x \in A$ and $n > 0$.

Of course, each locally aperiodic transformation T belongs to $\text{Aut}_1(X, \mu)$. It is easy to verify that $\chi(T) = 0$. It was also shown in [DaKoRo, Proposition 5.4 and Theorem 5.8(2)] that:

(F1) the conjugacy class of T in $\text{Aut}_2(X, \mu)$ is d_2-dense in $\text{Aut}_2(X, \mu)$ and

(F2) the conjugacy class of T in $\text{Aut}_1(X, \mu)$ is d_1-dense in $\text{Ker} \chi$.

Proposition 5.2. Let $T \in \text{Aut}(X, \mu)$ and there are a partition $X = \bigcup_{n \in \mathbb{Z}} W_n$ of X into subsets W_n of finite measure and a sequence $(a_n)_{n \in \mathbb{Z}}$ of reals such that $TW_n = W_{n+1}$ and $T'(x) = a_n$ a.e. $x \in W_n$ and for each $n \in \mathbb{Z}$. Suppose that there exists a limit $\lim_{|n| \to \infty} \mu(W_n) \in (0, +\infty)$.

(i) If $T \in \text{Aut}_2(X, \mu)$ then the conjugacy class of T is dense in $\text{Aut}_2(X, \mu)$.

(ii) If $T \in \text{Aut}_1(X, \mu)$ then the conjugacy class of T is dense in $\text{Ker} \chi$.

Proof. (i) Since $T \in \text{Aut}_2(X, \mu)$,

$$\infty > \|T - 1\|_2^2 = \sum_{n \in \mathbb{Z}} \int_{W_n} (\sqrt{T'(x)} - 1)^2 d\mu(x) = \sum_{n \in \mathbb{Z}} (\sqrt{a_n} - 1)^2 \mu(W_n).$$

Since $a_n = \mu(W_{n+1})/\mu(W_n)$, we obtain that

(5-1) $$\sum_{n \in \mathbb{Z}} (\sqrt{\mu(W_{n+1})} - \sqrt{\mu(W_n)})^2 < \infty.$$

If we show that the d_2-closure of the conjugacy class of T contains a locally aperiodic transformation then (F1) yields that the conjugacy class of T is dense in $\text{Aut}_2(X, \mu)$.

We now construct such a transformation. For each $n > 0$, we set $h_n := 2^n$. Let B_0 be a subset of X with $\mu(B_0) = 1$ and let S be a μ-preserving transformation...
of X such that $Sx = x$ if $x \notin B_0$ and the restriction of S to B_0 is isomorphic to the 2-adic odometer. Then S is locally aperiodic and there exists a decreasing infinite sequence of subsets $B_0 \supset B_1 \supset \cdots$ in X such that $S^iB_0 \cap S^iB_0 = \emptyset$ if $0 \leq i < j < h_n$ and $\bigcup_{i=0}^{h_n-1} S^iB_0 = B_0$. We see that S has a “cyclic structure of period h_n on B_n.” The idea of the following argument is to define for each $n > 0$, a transformation S_n extending the cyclic structure of S from B_n to a larger subset in such a way $S_n \to S$ and S_n is conjugate to a cyclic permutation of the finite sequence $W_{-h_n-1}, \ldots, W_{h_n-1}$ that approaches to T as $n \to \infty$: Since the convergence is considered in d_2, we should choose carefully the transformations in these constructions to control their Radon-Nikodym derivatives.

More precisely, we now construct a sequence of μ-preserving transformations $(S_n)_{n=1}^{\infty}$ and a sequence $(B'_n)_{n=1}^{\infty}$ of subsets in X such that

- $S_n \mid B_0 = S$ for each n and $S_n \to S$ weakly (and hence in d_2) as $n \to \infty$,
- $B'_n \supset B_n$, $\mu(B'_n) = \mu(W_{-h_n-1})$, $S_nB'_n \cap S'_nB'_n = \emptyset$ for all $0 \leq i < j < h_n$ and each n.
- If we set $Y_n := \bigcup_{i=0}^{h_n-1} S^i_nB'_n$ and $Y_n' := Y_n \setminus B'_n$ then for each subset $A \subset X$ of finite measure, $\lim_{n \to \infty} \mu(A \cap Y_n') = \mu(A)$.

To see that such a construction is possible, it is convenient to think that $X = [0, +\infty)$, μ is a Lebesgue measure on X, $B_0 = [0, 1)$, $B_n := [0, h^{-1}_n)$. To define B'_n and S_n, we first select a real $\delta_n > 0$ and an integer $D_n > 0$ such that

(a) $\delta_nh_n < n^{-1}$ and
(b) $\mu(B'_n) + \delta_nD_n = \mu(W_{-h_n-1})$.

Now we set $B'_n := B_n \bigcup \bigcup_{i=0}^{D_n-1} [1 + jh_n\delta_n, 1 + (jh_n + 1)\delta_n)$ and

$$S_nx := \begin{cases}
Sx, & \text{if } x \in B_0 \\
x + \delta_n, & \text{if } 1 \leq x < 1 + (D_nh_n - 1)\delta_n \\
(x - (D_nh_n - 1)\delta_n, 1 + (D_nh_n - 1)\delta_n \leq x < 1 + D_nh_n\delta_n) \\
x, & \text{if } x \geq 1 + D_nh_n\delta_n.
\end{cases}$$

It follows from (a) that $S_n \to S$ weakly as $n \to \infty$. (b) implies that $\mu(B'_n) = \mu(W_{-h_n-1})$. The sets $S^i_nB'_n$, $i = 0, \ldots, h_n - 1$, are mutually disjoint and their union Y_n equals $[0, 1 + h_nD_n\delta_n)$. In particular, $Y_n \supset [0, 1 + h_nb/2)$ eventually in n, where $b := \lim_{|n| \to \infty} \mu(W_{-h_n-1})$. Hence $\bigcup_{n \to \infty} Y_n = X$. Since the set $B'_n \setminus B_n$ is “uniformly distributed” along $Y_n \setminus B_0$, we have that $\mu(Y_n' \cap [0, E)) = \mu([0, E))$ for each $E > 1$. Thus, the sequences $(S_n)_{n=1}^{\infty}$ and $(B'_n)_{n=1}^{\infty}$ are as desired.

We now set $X_n := \bigcup_{i=0}^{h_n-1} T_{-i}W_{-h_n-1}$ and $X_n' := X_n \setminus W_{-h_n-1}$. Then $X_n' \subset X_n' \subset \cdots$ and $\bigcup_{n=0}^{\infty} X_n' = X$. For each $n > 0$, we select a measure preserving Borel bijection τ_n of $X \setminus X_n$ onto $X \setminus Y_n$ and define a transformation R_n of X by setting

$$R_nx := \begin{cases}
S^i_nT_{-i}W_{-h_n-1}, & \text{if } x \in W_{-h_n-1}, \ 0 \leq i < h_n \\
\tau_nx, & \text{if } x \notin X_n.
\end{cases}$$

Then $R_n \in \text{Aut}(X, \mu)$, $R_nX_n = Y'_n$ and hence $R_n \in \text{Aut}_1(X, \mu)$. A straightforward verification shows that $R_nT_{-i}R_n^{-1} = S_n^{-i}$ on Y_n'. Therefore $S_nR_nT_{-i}R_n^{-1} \to \text{Id}$ weakly as $n \to \infty$. Next, we note that the Radon-Nikodym derivatives of T^{-1} and R_n are constant on each level W_j, $j \in \mathbb{Z}$. Since S_n preserves μ and $T^{-1}W_j = W_{j-1}$ for each $j \in \mathbb{Z}$, it follows that the Radon-Nikodym derivative of the transformation
\(S_n R_n T^{-1} R_n^{-1}\) is constant on the subset \(R_n W_j\) for each \(j \in \mathbb{Z}\). Hence we compute easily that \((S_n R_n T^{-1} R_n^{-1})'(x)\) equals

\[
\begin{cases}
1, & \text{if } x \in Y_n^0 \\
\frac{\mu(S_n R_n W_{i-h_n-1}^{-1})}{\mu(R_n W_{i-h_n-1}^{-1})}, & \text{if } x \in R_n W_{i-h_n-1}^{-1} \text{ and } i \not\in \{1, \ldots, h_n - 1\}.
\end{cases}
\]

If \(i \not\in \{1, \ldots, h_n\}\) then \(\mu(S_n R_n W_{i-h_n-1}^{-1}) = \mu(W_{i-h_n-1}^{-1})\). If \(i = h_n\) then \(\mu(S_n R_n W_{i-h_n-1}^{-1}) = \mu(S_n S_{n}^{h_n-1} T_{n}^{-1} W_{i-h_n-1}^{-1}) = \mu(W_{i-h_n-1}^{-1})\). Therefore

\[
(S_n R_n T^{-1} R_n^{-1})'(x) = \begin{cases}
1, & \text{if } x \in Y_n^0 \\
\frac{\mu(W_{i-h_n-1}^{-1})}{\mu(W_{i-h_n-1}^{-1})}, & \text{if } x \in R_n W_{i-h_n-1}^{-1} \text{ and } i \not\in \{1, \ldots, h_n\} \\
\frac{\mu(W_{i-h_n-1}^{-1})}{\mu(W_{i-h_n-1}^{-1})}, & \text{if } x \in R_n W_{i-h_n-1}^{-1}.
\end{cases}
\]

Therefore

\[
\left\|\sqrt{(S_n R_n T^{-1} R_n^{-1})'} - 1\right\|^2_{2} = \sum_{i \not\in \{1, \ldots, h_n\}} \left(\sqrt{\mu(W_{i-h_n-1}^{-1})} - \sqrt{\mu(W_{i-h_n-1}^{-1})}\right)^2 + \left(\sqrt{\mu(W_{i-h_n-1}^{-1})} - \sqrt{\mu(W_{i-h_n-1}^{-1})}\right)^2.
\]

Since \(b < \infty\), it follows that \(\sqrt{\mu(W_{i-h_n-1}^{-1})} - \sqrt{\mu(W_{i-h_n-1}^{-1})} \to 0\) as \(n \to \infty\). Utilizing this fact and (5-1) we obtain that

\[
\lim_{n \to \infty} \left\|\sqrt{(S_n R_n T^{-1} R_n^{-1})'} - 1\right\|_{2} = 0.
\]

Therefore \(S_n R_n T^{-1} R_n^{-1} \to \text{Id} \quad \text{as} \quad n \to \infty\). Since \(S_n \to S\) in \(d_2\), we obtain that \(S R_n T^{-1} R_n^{-1} \to \text{Id} \quad \text{as} \quad n \to \infty\). Thus \(S\) belongs to the \(d_2\)-closure of the conjugacy class of \(T\) in \(\text{Aut}_2(X, \mu)\), as desired.

(ii) is proved in a similar way. First, we note that the conditions \(T \in \text{Aut}_1(X, \mu)\) and \(\lim_{|n| \to \infty} \mu(W_n) < \infty\) imply that \(T \in \text{Ker} \chi\). Indeed,

\[
\chi(T) = \int_{X} (T' - 1) d\mu = \sum_{n \in \mathbb{Z}} \int_{W_n} (T' - 1) d\mu = \sum_{n \in \mathbb{Z}} (\mu(W_n) - \mu(W_n)) = 0.
\]

Secondly, we will use (F2) in place of (F1). Instead of (5-1) we now have that \(\sum_{n \in \mathbb{Z}} |\mu(W_{n+1}) - \mu(W_n)| < \infty\). Define \(R_n\) in the same way as in the proof of (i). As was noted there, \(R_n \in \text{Aut}_1(X, \mu)\). Moreover, it is easy to see that \(R_n \in \text{Ker} \chi\).

Slightly modifying the above argument and considering the \(L^1\)-norm instead of the square of the \(L^2\)-norm, we obtain that \(\|\mu(S_n R_n T^{-1} R_n^{-1}) - 1\|_1 \to 0\). The latter yields that \(S R_n T^{-1} R_n^{-1} \to \text{Id} \quad \text{as} \quad n \to \infty\). \(\square\)

We recall two more facts from [DaKoRo]. Let \(\mathcal{E}\) denote the subset of all ergodic transformations of type III_1 in \(\text{Aut}(X, \mu)\).

(F3) \(\mathcal{E} \cap \text{Aut}_2(X, \mu)\) is a dense \(G_\delta\) in \(\text{Aut}_2(X, \mu), d_2\) [DaKoRo, Theorem 5.5].

(F4) \(\mathcal{E} \cap \text{Aut}_1(X, \mu) = \mathcal{E} \cap \text{Ker} \chi\) is a dense \(G_\delta\) in \((\text{Ker} \chi, d_1)\) [DaKoRo, Theorem 5.8(3)].

We now state and prove the main result of the section.
Theorem 5.3.

(i) The subset $E^*_2 := \{ T \in \mathcal{E} \cap \text{Aut}_2(X, \mu) \mid T_\ast \text{ is ergodic and of type } II \} \text{ is also a dense } G_\delta \text{ in } \{ \text{Aut}_2(X, \mu), d_2 \}.$

(ii) The subset $E^*_1 := \{ T \in \mathcal{E} \cap \text{Ker } \chi \mid T_\ast \text{ is ergodic and of type } III \} \text{ is also a dense } G_\delta \text{ in } (\text{Ker } \chi, d_1).$

Proof. (i) Since the set of ergodic transformations of type III is G_δ in $\text{Aut}(X^*, \mu^*)$ endowed with the weak topology [ChHaPr] and the map

\[\text{Aut}_2(X, \mu) \ni T \mapsto T_\ast \in \text{Aut}(X^*, \mu^*) \]

is continuous in view of [DaKoRo, Theorem 4.15 and Definition 4.5], it follows that there exists a transformation T_\ast satisfying the conditions of Proposition 5.2. Hence, by Proposition 5.2, the conjugacy class of T_\ast is dense in $(\text{Aut}_2(X, \mu), d_2).$ Since E_2 is conjugacy invariant, it follows that E_2 is a dense $G_\delta.$ Of course, $E^*_2 = \overline{E_2 \cap \mathcal{E} \cap \text{Aut}_2(X, \mu)}.$ We finally deduce (i) from these facts and (F3).

(ii) is proved in a similar way with usage of (F4) instead of (F3). □

6. Poisson suspensions over dissipative bases

Let (X, \mathcal{B}, μ) be a σ-finite infinite standard nonatomic measure space and let $T \in \text{Aut}_2(X, \mu).$ Let T be totally dissipative. This means that there is a subset $B \in \mathcal{B}$ such that $X = \bigsqcup_{n \in \mathbb{Z}} T^n B.$ Suppose that $\mu(B) < \infty.$ Since $T \in \text{Aut}_2(X, \mu),$ it follows from [DaKoRo, Lemma 3.2] that $\mu(T^n B) < \infty$ for each $n \in \mathbb{Z}.$ Then without loss of generality we can assume that $X = [0, 1] \times \mathbb{Z}$ and $T(y, n) = (y, n+1)$ for all $y \in [0, 1]$ and $n \in \mathbb{Z}.$ Let λ denote the Lebesgue measure on $[0, 1].$ We can also assume that there exist a sequence $(a_n)_{n \in \mathbb{Z}}$ of functions $a_n \in L^1([0, 1], \lambda)$ such that $a_n > 0$ a.e. and for each $F \in L^1([0, 1] \times \mathbb{Z}, \mu),$

\begin{equation}
\int_X F d\mu = \sum_{n \in \mathbb{Z}} \int_{[0, 1]} F(y, n) a_n(y) d\lambda(y).
\end{equation}

It is straightforward to verify that $T \in \text{Aut}_2(X, \mu)$ if and only if

\[\sum_{n \in \mathbb{Z}} \int_{[0, 1]} \left(\sqrt{\frac{a_{n+1}(y)}{a_n(y)}} - 1 \right)^2 a_n(y) d\lambda(y) = \sum_{n \in \mathbb{Z}} \left\| \sqrt{a_{n+1}} - \sqrt{a_n} \right\|_2^2 < \infty. \]

In a similar way, $T \in \text{Aut}_1(X, \mu)$ if and only if $\sum_{n \in \mathbb{Z}} \| a_{n+1} - a_n \|_1 < \infty.$ The latter inequality implies that there exist two nonnegative functions $a, b \in L^1([0, 1], \lambda)$ such that

\begin{equation}
\lim_{n \to \infty} \| a - a_n \|_1 = 0 \quad \text{and} \quad \lim_{n \to -\infty} \| b - a_n \|_1 = 0.
\end{equation}

Since $\chi(T) = \lim_{m \to \infty} (\mu(T([0, 1] \times \{-m, \ldots, m\})) - \mu([0, 1] \times \{-m, \ldots, m\})),$ it follows that

\begin{equation}
\chi(T) = \lim_{m \to \infty} \left(\sum_{j=-m+1}^{m+1} \int a_j d\lambda - \sum_{j=-m}^{m} \int a_j d\lambda \right) = \| a \|_1 - \| b \|_1.
\end{equation}

The following theorem is the main result of this section.
Theorem 6.1. If $T \in \text{Aut}_1(X, \mu)$ and $\chi(T) \neq 0$ then T_* is totally dissipative.

Proof. Consider the Hopf decomposition of X: there are two invariant subsets X_c and X_d of X such that the dynamical system $(X_d, \mu \mid X_c, T \mid X_c)$ is conservative and the dynamical system $(X_d, \mu \mid X_d, T \mid X_d)$ is totally dissipative [Aa, §1.1]. Since $\chi(T) \neq 0$, it follows that T is dissipative [DaKoRo, Proposition 4.13] and hence $\mu(X_d) > 0$. Of course, $T \mid X_d \in \text{Aut}_1(X_d, \mu_d)$, $T \mid X_c \in \text{Aut}_1(X_c, \mu_c)$ and

$$\chi(T) = \chi(T \mid X_d) + \chi(T \mid X_c) = \chi(T \mid X_d).$$

Hence $\chi(T \mid X_d) \neq 0$. Moreover, T_* is isomorphic to the Cartesian product of $(T \mid X_d)_*$ and $(T \mid X_c)_*$. Therefore if $(T \mid X_d)_*$ is totally dissipative then so is T_*. In view of this, we may assume without loss of generality that T is totally dissipative itself. Hence there is a subset $B \subset X$ such that $X = \bigsqcup_{m \in \mathbb{N}} T^nB$. We may also assume that $\mu(B) < \infty$. Indeed, if $\mu(B) = \infty$ then we partition B into countably many subsets B_m, $m \in \mathbb{N}$ of finite measure. For each $m > 0$, let $B'_m := \bigsqcup_{n \in \mathbb{Z}} T^nB_m$. Then B'_m is invariant under T and $\bigsqcup_{m=1}^\infty B'_m = X$. Of course, $T \mid B'_m \in \text{Aut}_1(B'_m, \mu \mid B'_m)$ for each $m > 0$ and $\chi(T) = \sum_{m=1}^\infty \chi(T \mid B'_m)$. Therefore there exists $m_0 > 0$ such that $\chi(T \mid B'_m) \neq 0$. Since T_* is isomorphic to the Cartesian product of $(T \mid B'_m)_*$ and $(T \mid (X \setminus B'_m))_*$, it follows that if $(T \mid B'_m)_*$ is totally dissipative then so is T_*. Thus, it suffices to consider only the case where $\mu(B) < \infty$.

In this case we can consider X as $[0, 1] \times \mathbb{Z}$ and T as the unit rotation along the second coordinate. We will also use the notation $(a_n)_{n \in \mathbb{Z}}$ and λ introduced in the beginning of this section to describe μ via (6-1). Then T_* is the Bernoulli shift on the infinite product space $X^* := \bigotimes_{n \in \mathbb{Z}} ([0, 1]^*, \kappa_n^*)$, where κ_n is a measure equivalent to λ on $[0, 1]$ with $\frac{d\kappa_n}{d\lambda} = a_n$. We are going to apply Lemma 3.9 to prove that T_* is totally dissipative. We will use the following equality:

$$\left(\sqrt{\frac{d\mu \circ T^n}{d\mu}} - 1 \right)^2 = \sum_{k \in \mathbb{Z}} \int_{[0, 1]} \left(\sqrt{\frac{a_{k+n}}{a_k}} - 1 \right)^2 a_k d\lambda = \sum_{k \in \mathbb{Z}} \| \sqrt{a_{k+n}} - \sqrt{a_k} \|_2^2.$$ \hspace{2cm} (6-4)

Since for two nonnegative functions $e, f \in L^1([0, 1], \lambda)$,

$$\|e - f\|_1 = \langle \sqrt{e} - \sqrt{f}, \sqrt{e} + \sqrt{f} \rangle \leq \|\sqrt{e} - \sqrt{f}\|_2 \cdot \|\sqrt{e} + \sqrt{f}\|_2,$$

and $\|\sqrt{e} + \sqrt{f}\|_2 \leq \|\sqrt{e}\|_2 + \|\sqrt{f}\|_2 = \|e\|_1 + \|f\|_1$, we obtain that

$$\|\sqrt{a_{k+n}} - \sqrt{a_k}\|_2 \geq \frac{1}{2D} \|a_{k+n} - a_k\|_1$$

for all k and n, where $D := \sup_{k \in \mathbb{Z}} \|a_k\|_1 < \infty$. It follows from (6-2) and (6-3) that there is $N > 0$ such that

$$\|a_i - a_j\|_1 > \frac{1}{3} \|X(T)\| \quad \text{whenever } i > N \text{ and } j < -N.$$
Taking \(n > 3N \) and utilizing (6-4), (6-5), (6-6) we obtain that

\[
\left\| \sqrt{\frac{d\mu \circ T^n}{d\mu}} - 1 \right\|_2^2 \geq \sum_{k \in \mathbb{Z}} \frac{|a_{k+n} - a_k|^2}{4D^2}
\]

\[
\geq \sum_{-\frac{\sqrt{2}}{2} < k > -\frac{\sqrt{2}}{2}} \frac{|a_{k+n} - a_k|^2}{4D^2}
\]

\[
\geq \frac{|\chi(T)|^2}{108D^2}.
\]

Therefore

\[
\sum_{n > 0} e^{-\frac{1}{2} \left\| \frac{d\mu \circ T^n}{d\mu} - 1 \right\|_2^2} \leq \sum_{n > 0} e^{-\frac{|\chi(T)|^2}{216D^2n}} < \infty.
\]

Hence \(T_* \) is totally dissipative by Lemma 3.9. \(\square \)

Remark 6.2. This theorem can be extended to the case where \(T \in \text{Aut}_2(X, \mu) \) in the following way. Suppose that \(T \) is dissipative. Select a subset \(B \subset X \) of finite positive measure such that \(T^nB \cap T^mB = \emptyset \) if \(n, m \in \mathbb{Z} \) and \(n \neq m \). Then we represent the restriction of \(T \) to \(\bigcup_{n \in \mathbb{Z}} T^nB \) in the same way as in the beginning of this section such that (6-1) holds. If there exist \(\delta > 0 \) and \(N > 0 \) such that for all \(n, m > N \), we have that \(\left\| \sqrt{\alpha_n} - \sqrt{\alpha_m} \right\|_2 > \delta \) then \(T_* \) is totally dissipative. This fact is proved in the very same way as Theorem 6.1. We leave details to the reader.

Section 7. Phase transition for conservativeness when scaling the intensity of Poisson suspensions

Let \((X, \mathcal{B}, \mu)\) be a \(\sigma\)-finite standard measure space with \(\mu\) nonatomic and infinite. For \(t > 0\), let \(\mu_t\) denote the measure on \((X, \mathcal{B})\) given by \(\mu_t(B) := t\mu(B)\).

Definition 7.1. Let \(T \in \text{Aut}_2(X, \mu)\). We say that \(T_*\) is conservatively concrete for intensity scaling (CCIS) if for each \(t > 0\), the Poisson suspension \((X^*, \mathcal{B}^*, \mu_t^*, T_*)\) is either conservative or totally dissipative.

If \(T \in \text{Aut}_1(X, \mu)\) and \(\chi(T) > 0\) then \(T\) is CCIS. On the other hand, if \(T \in \text{Aut}_2(X, \mu)\) and there is a \(T\)-invariant subset \(A \subset X\) of finite positive measure such that \(T \upharpoonright A\) is totally dissipative and \(T \upharpoonright (X \setminus A)\) preserves \(\mu \upharpoonright (X \setminus A)\) then \(T_*\) is not CCIS. Indeed, \((X^*, \mu^*, T_*)\) is isomorphic to the Cartesian product

\[
(A^*, (\mu \upharpoonright A)^*) \times ((X \setminus A)^*, (\mu \upharpoonright (X \setminus A))^*) \times (T \upharpoonright (X \setminus A))^*).
\]

We now set \([A]_j := \{\omega \in X^* \mid \omega(A) = j\}\) for \(j = 0, 1\). Then \([A]_j\) is invariant under \(T_\ast\) and \(\mu^*([A]_j) > 0\) for \(j = 0, 1\). Since \([A]_0\) is a singleton (modulo \((\mu \upharpoonright A)^*\)), it follows that \(T_\ast\) is conservative when restricted to this subset. One can check that \(T_\ast \upharpoonright [A]_1\) is totally dissipative. Since \((T \upharpoonright (X \setminus A))^*\) is conservative (because it is probability preserving), it follows that \((T \upharpoonright A)^* \times (T \upharpoonright (X \setminus A))^*\) is conservative on \([A]_0 \times (X \setminus A)^*\) and dissipative on \([A]_1 \times (X \setminus A)^*\). Hence \(T_\ast\) is not CCIS.

Problem. What are necessary and sufficient conditions on \((X, \mu, T)\) under which \(T_*\) is CCIS?

In this paper we prove CCIS for a certain family of Poisson suspensions. In the proof of the following theorem we use an idea similar to what was used in [Ko2, Theorem 3] (see also [Da, Theorem 3.5]).
Proposition 7.3. Therefore, by Lemma 2.5, now on we assume that \(\chi \).

Proof. In view of the aforementioned remark, it suffices to consider only the case where \(\chi(T) = 0 \).

Let \(\mathcal{S} \) be the subgroup of all \(\mu \)-preserving transformations on \((X, \mu)\) such that for each \(S \in \mathcal{S} \), there is a subset \(A_S \subset X \) of finite measure with \(Sx = x \) whenever \(x \not\in A_S \). Let \(D := \{ \omega \in X^* \mid \sum_{n=1}^{\infty} (T^n\omega)(\omega) < \infty \} \).

We first show that \(D \) is invariant under \(S \), for each \(S \in \mathcal{S} \). Indeed, for each \(n > 0 \), \(\omega \in D \) and \(S \in \mathcal{S} \), we have (utilizing [DaKoRo, Corollary 4.1(3)]) that

\[
(T^n\omega)(S\omega) = \prod_{\omega(\{x\}) > 0} (T^n\omega)(Sx) = \prod_{\omega(\{x\}) > 0} (T^n\omega)(Sx) = (T^n\omega)(\omega) \prod_{\omega(\{x\}) > 0} (T^n\omega)(Sx) \leq (T^n\omega)(\omega) \cdot \alpha^{2\omega(A_S)}.
\]

Hence \(\sum_{n=1}^{\infty} (T^n\omega)(\omega) \leq \alpha^{2\omega(A_S)} \sum_{n=1}^{\infty} (T^n\omega)(\omega) < +\infty \), i.e. \(S\omega \in D \), as desired.

We now prove that the group \(\mathcal{S}_0 := \{ S \mid S \in \mathcal{S} \} \) of \(\mu^s \)-preserving transformations of \(X^* \) is ergodic\(^4\). For that, we select a \(\mu \)-preserving totally dissipative transformation \(Q \) of \(X \) and a sequence \((S_n)_{n=1}^{\infty}\) of transformations from \(\mathcal{S} \) that converges weakly to \(Q \). Then the sequence \((S_n)_{n=1}^{\infty}\) weakly converges to \(Q \), in \(\text{Aut}(X^*, \mu^s) \). If \(A \) is an \(\mathcal{S}_0 \)-invariant subset of \(X^* \) then \(A \) is invariant \(Q \), because

\[\mu^s(Q, A) = \mu^s((S_n)_{n=1}^{\infty}, A) = 0.\]

Since \(Q \) is isomorphic to a probability preserving Bernoulli shift, it is ergodic and hence \(\mu^s(A) = 0 \). Hence \(\mathcal{S}_0 \) is ergodic.

Since \(D \) is \(\mathcal{S}_0 \)-invariant, \(\mu^s(D)(1 - \mu^s(D)) = 0 \) and the assertion of the theorem follows. \(\square \)

We also prove a general result related to CCIS.

Proposition 7.3. Let \(T \in \text{Aut}_1(X, \mu) \).

(i) If \((X^*, \mu^s, T_s) \) is totally dissipative then \((X^*, \mu^s_t, T_s) \) is totally dissipative for each \(t > 1 \).

(ii) If \((X^*, \mu^s, T_s) \) is conservative then \((X^*, \mu^s_t, T_s) \) is conservative for each \(t \in (0, 1) \).

Proof. (i) If \(\chi(T) \neq 0 \) then the assertion of the proposition is trivial. Hence from now on we assume that \(\chi(T) = 0 \). It follows from the condition of the proposition that the Cartesian product \((X^* \times X^*, \mu^s \otimes \mu^s_{t-1}, T_s \times T_s) \) is totally dissipative. Therefore, by Lemma 2.5,\(^5\)

\[
\sum_{n=1}^{\infty} \frac{d\mu^s \circ T^n}{d\mu^s}(\omega) \frac{d\mu^s \circ T^n}{d\mu^s_{t-1}}(\tau) < +\infty
\]

\(^4\)This follows also from [Sh, Theorem 2.3]. However we present here an alternative very short proof.

\(^5\)This follows also from [Sh, Theorem 2.3]. However we present here an alternative very short proof.
at \((\mu^* \otimes \mu^*_{t-1})\)-a.e. \((\omega, \tau) \in X^* \times X^*\). Since \(T^n \in \text{Aut}_1(X, \mu)\), it follows from [DaKoRo, Corollary 4.1(3)] that for each \(n > 0\),
\[
\frac{d\mu^* \circ T^n}{d\mu^*}(\omega) \frac{d\mu^*_{t-1} \circ T^n}{d\mu^*_{t-1}}(\tau) = e^{\int_X \log \frac{d\mu^* \circ T^n}{d\mu^*}d\omega + \int_X \log \frac{d\mu^*_{t-1} \circ T^n}{d\mu^*_{t-1}}d\tau} = e^{\int_X \log \frac{d\mu^* \circ T^n}{d\mu^*}d(\omega + \tau)} = \frac{d\mu^* \circ T^n}{d\mu^*}(\omega + \tau).
\]
Since \(\mu^* \otimes \mu^*_{t-1} = \mu^*_t\), we deduce from (7-1) that \(\sum_{n=1}^{+\infty} \frac{d\mu^* \circ T^n}{d\mu^*}(\omega) < +\infty\) at \(\mu^*_t\)-a.e. \(\omega\). It remains to apply Lemma 2.5.

(ii) Let \(D_t := \{\omega \in X^* \mid \sum_{n=1}^{+\infty} \frac{d\mu^* \circ T^n}{d\mu^*}(\omega) < \infty\}\) stand for the dissipative part of \((X^*, \mu^*_t, T_t)\). Assume in the contrapositive that \(\mu^*_t(D_t) > 0\). Then the set \(D_t \times X^*\) is contained in the dissipative part of the product \((X^* \times X^*, \mu^*_t \otimes \mu^*_{1-t}, T_s \times T_s)\). Hence for \((\mu^*_t \otimes \mu^*_{1-t})\)-a.e. \((\omega, \tau) \in D_t \times X^*\),
\[
\sum_{n=1}^{+\infty} \frac{d\mu^*_t \circ T^n}{d\mu^*_t}(\omega) \frac{d\mu^*_{1-t} \circ T^n}{d\mu^*_{1-t}}(\tau) = \sum_{n=1}^{+\infty} \frac{d\mu^* \circ T^n}{d\mu^*}(\omega + \tau),
\]
i.e. \(\omega + \tau\) is contained in the dissipative part of \((X^*, \mu^*, T_s)\). Since \(\mu^*_t \otimes \mu^*_{1-t} = \mu^*_t\), the dissipative part of \((X^*, \mu^*, T_s)\) is of positive measure, a contradiction.

From Proposition 7.3 and Theorem 7.2 we deduce the main result of this section on a phase transition for conservativeness of Poisson suspensions while scaling the underlying intensity.

Corollary 7.4. Let \(T \in \text{Aut}_1(X, \mu)\). Suppose that there is \(\alpha > 1\) such that \(\alpha^{-1} < (T^n)'(x) < \alpha\) for each \(n > 0\) at a.e. \(x \in X\). Then there is \(t_0 \in [0, +\infty]\) such that the Poisson suspension \((X^*, \mu^*_t, T_s)\) is conservative for each \(t \in (0, t_0)\) and the Poisson suspension \((X^*, \mu^*_t, T_s)\) is totally dissipative for each \(t \in (t_0, +\infty)\).

We call \(t_0\) the bifurcation point. Of course, it is interesting when the bifurcation point is proper, i.e. \(0 < t_0 < +\infty\). A concrete example of such a Poisson suspension was constructed in §4 (see Remark 4.3). Combining it with Corollary 7.4 we obtain the following theorem.

Theorem 7.5. Let \(X = \mathbb{R}\), \(Tx = x + 1\) for all \(x \in X\) and \(\mu\) be an absolutely continuous measure on \(X\) such that \(d\mu(x) = f(x)dx\) with
\[
f(x) = \begin{cases} 1, & \text{if } x < 2 \\ e^{-n - 1/2}, & \text{if } n \leq x < n + 1 \text{ for an integer } n > 1 \end{cases}
\]
Then there exists \(t_0 \in [1/2, 4]\) such that \((X^*, \mu^*_t, T_s)\) is weakly mixing of stable type III \(_1\) for each \(t \in (0, t_0)\) and \((X^*, \mu^*_t, T_s)\) is totally dissipative for each \(t \in (t_0, +\infty)\).

We note that Corollary 7.4 and Theorem 7.5 are the “nonsingular Poisson” analogues of a phase transition phenomenon discovered recently for the nonsingular Gaussian actions introduced by Y. Arano, Y. Isono and A. Marrakchi in [ArIsMa] (see Proposition 5.1 there).

We conclude this section with computing the conservativeness index of the Poisson suspension \((X^*, \mu^*_t, T_s)\) in the case where the bifurcation point is proper.
Proposition 7.6. Let the condition of Corollary 7.4 hold. Suppose that the bifurcation point \(t_0 \) is proper. Then for each \(n \in \mathbb{N} \), if \(\frac{t_0}{n+1} < t < \frac{t_0}{n} \) then \((X^*, \mu^*_t, T_t) \) has conservative index \(n \).

Proof. We have to prove that the \(n \)-th Cartesian power of \((X^*, \mu^*_t, T_t)\) is conservative and the \((n+1)\)-th Cartesian power of \((X^*, \mu^*_t, T_t)\) is dissipative. We first note that the \(n \)-th convolution of \(\mu_t \) is \(\mu^*_{nt} \). Arguing as in the proof of Proposition 7.3(i), we obtain that for each \(m > 0 \),

\[
\frac{d\mu^*_t \circ T^m}{d\mu^*_t}(\omega_1) \cdots \frac{d\mu^*_t \circ T^m}{d\mu^*_t}(\omega_n) = \frac{d\mu^*_{nt} \circ T^m}{d\mu^*_{nt}}(\omega_1 + \cdots + \omega_n)
\]

for \((\mu^*_t \otimes \cdots \otimes \mu^*_t)\)-a.e. \((\omega_1, \ldots, \omega_n) \in X^* \times \cdots \times X^*\). Since \(nt < t_0 \), the system \((X^*, \mu^*_{nt}, T_t)\) is conservative and hence the above equality and Lemma 2.5 yield that the \(n \)-the Cartesian power of \((X^*, \mu^*_t, T_t)\) is conservative. On the other hand, the \((n+1)\)-th convolution power of \(\mu^*_t \) equals \(\mu^*_{(n+1)t} \) with \((n+1)t > t_0 \). Now, for each \(m > 0 \), we have that

\[
\frac{d\mu^*_t \circ T^m}{d\mu^*_t}(\omega_1) \cdots \frac{d\mu^*_t \circ T^m}{d\mu^*_t}(\omega_{n+1}) = \frac{d\mu^*_{nt} \circ T^m}{d\mu^*_{nt}}(\omega_1 + \cdots + \omega_{n+1})
\]

for \((\mu^*_t \otimes \cdots \otimes \mu^*_t)\)-a.e. \((\omega_1, \ldots, \omega_{n+1}) \in X^* \times \cdots \times X^*\). Since \((X^*, \mu^*_{(n+1)t}, T_t)\) is dissipative, the above equality and Lemma 2.5 yield that the direct product of the \((n+1)\)-th Cartesian power of \((X^*, \mu^*_t, T_t)\) is dissipative, as desired. \(\Box \)

Appendix A. Skellam distributions

The Skellam distribution with parameters \((a, b)\) is the distribution \(\chi_{a,b}\) of the difference \(X - Y\) of two independent random variables \(X\) and \(Y\), each Poisson-distributed with respective parameter \((\text{expected value}) a \geq 0\) and \(b \geq 0\). It is known that \(E(X - Y) = a - b\) and \(\sigma^2(X - Y) = a + b\). The characteristic function \(\phi_{X - Y}(t) := E(e^{it(X - Y)})\) of \(X - Y\) is \(e^{-(a+b+ae^{-t}+be^{-t})}\) at each \(t \in \mathbb{R}\). Of course, \(\chi_{a,b}(1) = 1\). For each \(k \in \mathbb{Z}\),

\[
\chi_{a,b}(k) = e^{a-b} \left(\frac{a}{b}\right)^{k/2} I_k(2\sqrt{ab}),
\]

where \(I_k\) is the modified Bessel function of the first kind, i.e.

\[
I_k(z) = I_{|k|}(z) := \left(\frac{z}{2}\right)^{|k|} \sum_{j=0}^{\infty} \frac{(z^2/4)^j}{j!(j + |k|)!}.
\]

From the two above formulas we deduce that for each \(L > 0\),

\[
\sum_{|k| \geq L} \chi_{a,b}(k) \leq e^{a-b} \sum_{|k| \geq L} \left(\frac{a}{b}\right)^{k/2} \frac{(ab)^{k/2}}{|k|!} \sum_{j=0}^{\infty} \frac{(ab)^j}{j!}.
\]

\[
= e^{a-b+ab} \left(\sum_{k \geq L} \frac{a^k}{k!} + \sum_{k \leq -L} \frac{1}{b^k(-k)!}\right) + e^{a-b+ab} \left(\sum_{k \geq L} \frac{a^k}{k!} + \sum_{k \leq -L} \frac{b^k}{k!}\right) + e^{a-b+ab} \frac{a^L e^a + b^L e^b}{L!}.
\]
This yields the following estimation: for each $A > 0$, there is an integer $L > 0$ such that for each $l > L$

\[\sup_{0 < a, b < A} \sum_{|k| \geq l} \chi_{a,b}(k) \leq l^{-8}. \]

References