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Abstract 

Background: Inherited retinal dystrophies (IRD) and optic neuropathies (ION) are the two major causes world-wide 
of early visual impairment, frequently leading to legal blindness. These two groups of pathologies are highly hetero-
geneous and require combined clinical and molecular diagnoses to be securely identified. Exact epidemiological 
studies are lacking in North Africa, and genetic studies of IRD and ION individuals are often limited to case reports or 
to some families that migrated to the rest of the world. In order to improve the knowledge of their clinical and genetic 
spectrums in North Africa, we reviewed published data, to illustrate the most prevalent pathologies, genes and muta-
tions encountered in this geographical region, extending from Morocco to Egypt, comprising 200 million inhabitants.

Main body: We compiled data from 413 families with IRD or ION together with their available molecular diagnosis. 
The proportion of IRD represents 82.8% of index cases, while ION accounted for 17.8%. Non-syndromic IRD were more 
frequent than syndromic ones, with photoreceptor alterations being the main cause of non-syndromic IRD, repre-
sented by retinitis pigmentosa, Leber congenital amaurosis, and cone-rod dystrophies, while ciliopathies constitute 
the major part of syndromic-IRD, in which the Usher and Bardet Biedl syndromes occupy 41.2% and 31.1%, respec-
tively. We identified 71 ION families, 84.5% with a syndromic presentation, while surprisingly, non-syndromic ION are 
scarcely reported, with only 11 families with autosomal recessive optic atrophies related to OPA7 and OPA10 variants, 
or with the mitochondrial related Leber ION. Overall, consanguinity is a major cause of these diseases within North 
African countries, as 76.1% of IRD and 78.8% of ION investigated families were consanguineous, explaining the high 
rate of autosomal recessive inheritance pattern compared to the dominant one. In addition, we identified many 
founder mutations in small endogamous communities.

Short conclusion: As both IRD and ION diseases constitute a real public health burden, their under-diagnosis in 
North Africa due to the absence of physicians trained to the identification of inherited ophthalmologic presentations, 
together with the scarcity of tools for the molecular diagnosis represent major political, economic and health chal-
lenges for the future, to first establish accurate clinical diagnoses and then treat patients with the emergent therapies.

Keywords: Inherited retinal dystrophies, Inherited optic neuropathies, Molecular diagnosis, North Africa, 
Consanguinity, Phenotypic spectrum, Genetic spectrum
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Background
North Africa encompasses five countries, Morocco, Alge-
ria, Tunisia, Libya and Egypt, which historically and geo-
graphically were at the crossroad between Africa, Europe 
and Asia. This area is delimited by the Mediterranean Sea 
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in the north, and separated from other African countries 
by the Sahara in the south. The North African popula-
tion, today numbering 202 million people [1], is mainly 
occupied by two ethnic groups which are Arab Muslims 
and Berbers, and a minority of Jews and Christians.

Historically, since the earliest times, the Berber people, 
also called Amazigh have populated North Africa, before 
this area became a targeted land of several colonization 
and demographic migratory movements, first by Phoeni-
cians, then by Romans, Vandals, Byzantines, Arabs, Otto-
mans, and finally by Europeans during the eighteenth and 
nineteenth centuries [2].

The interactions between all these populations have 
made the genetic pool of the North African population 
very complex and heterogeneous, even among popula-
tions living in close geographical areas, or within the 
same ethnic groups, which have been described by sev-
eral molecular studies involving mitochondrial DNA, Y 
chromosome and autosomal markers [3–9]. Jews have 
appeared in North Africa since the Phoenician influence. 
Their communities have grown as a result of conversion 
and admixture with the local Berber population at that 
time, in addition to several migrations from the middle 
East and Europe, mainly by the Jews of the Iberian pen-
insula, after their expulsion from Spain and Portugal 
between 1492–1497 [10], and were named Sephardic. In 
1950s, Jews of North Africa have migrated to the current 
Israel [10]. Genome-wide studies defined North African 
Jews as a distinct group, with a strong link to the Euro-
pean and Middle Eastern Jews, and with European non-
Jews, rather than North African non-Jews. In addition, 
they show a high degree of identity of descent segment 
haplotypes, witnessing the high level of endogamy within 
the Jewish diaspora [11] that led to high frequency of 
founder mutations [12].

North African countries show a high rate of endogamy 
and consanguinity, ranging from 20 to 40% [13, 14], and 
up to some 60% in some remote villages [15]. This mar-
riage practice is also conserved within North African 
immigrants who live in other parts of the world, mainly 
in Europe [16]. Consanguinity increases the chance of 
bi-allelic associations of a single mutant allele in an indi-
vidual, and as a consequence, a predominance of dis-
eases related to autosomal recessive transmission. In this 
respect, an epidemiological study of genetic diseases in 
the North African population identified 532 pathologies, 
of which 60% were inherited in an autosomal recessive 
manner [17].

Vision is the most important of the five senses, and 
visual impairment has major impacts on the psycho-
logical, educational and socioeconomic conditions of 
affected individuals. Worldwide, 19 million children 
are estimated to be visually impaired [18]. In developed 

countries, retinal and optic nerve problems are the major 
causes of visual impairments, [19–21], up to 24% and 
23% respectively, in the UK [21]. Exact epidemiological 
studies on these disorders are lacking in North Africa, 
as other vision problems, like refractive errors and cata-
ract are the most common causes of visual impairment 
in these countries, as in many other regions of the world 
[22]. Inherited disorders affecting the retina and the optic 
nerve encompass two heterogeneous groups of diseases 
that lead to visual impairment, and in some cases, to legal 
blindness. They are caused by many genes, with autoso-
mal, X-linked and mitochondrial patterns of inheritance. 
Large cohort studies of inherited retinal dystrophies 
(IRD) or optic neuropathies (ION) with the spectrum of 
causal genes and mutations are absent in North African 
individuals, except for two studies performed on Tunisian 
patients with IRD [23, 24], or some studies conducted 
on specific syndromes [25–28]. The majority of geneti-
cally characterized individuals are reported in a single 
family or in few families, or as a part of cohorts located 
in other countries, mainly in Europe. Recently, a review 
on the genetics of non-syndromic rod-cone dystrophies 
in Arab countries disclosed the spectrum of genes and 
mutations identified in 26 North African Arab fami-
lies, highlighting the major contribution of variants in 
MERTK, RLBP1, RPE65 and PDE6B genes [29]. However, 
in order to access the phenotypic and genetic spectrum 
of all non-syndromic and syndromic IRD and ION within 
North African families, we performed a review of the 
data published in the literature using PubMed and Sco-
pus databases. Different search terms were used (Addi-
tional file  1) in combination with the names of North 
African countries (Morocco OR Algeria OR Tunisia OR 
Libya OR Egypt OR North Africa OR Maghreb), or terms 
that refer to patients’ origin (Moroccan OR Algerian OR 
Tunisian OR Libyan OR Egyptian OR North African OR 
Maghrebian). Abstracts, full-length and additional mate-
rials of articles in English and French published between 
1994 and December 2021  and their references’ listing, 
where both clinical and genetic findings are reported, 
were examined. Genes and mutations found in families 
from North Africa were incorporated and are discussed 
in this review.

Inherited retinal dystrophies (IRD)
IRD describe a large heterogeneous group of disorders 
characterized by the dysfunction of the neural retina 
or retinal pigment epithelium cells [30]. There are at 
least 280 genes involved in one or more IRD disorders 
[31]. Indeed, variants in the same gene may lead to dif-
ferent clinical outcomes between and within families. 
These highly heterogeneous genetic findings gave rise 
to different clinical manifestations that can be classified 
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on their mode of inheritance, the course of the disease 
(progressive or stationary), the predominant phenotype 
(rod-dominant, cone-dominant or macular) and the 
occurrence of additional systemic symptoms (syndromic 
IRD) or exclusively eye related symptoms (non-syndro-
mic IRD). More than 80 syndromic forms are described 
[32], among which, the predominant Usher syndrome, 
accounting for 20 to 40% of the recessive diseases affect-
ing both the visual and hearing capacities [33].

Large cohort studies across the world on patients 
with non-syndromic IRD (NS-IRD) showed that retini-
tis pigmentosa is the most frequent phenotype, followed 
by Stargardt diseases, Leber congenital amaurosis, and 
cone-rod dystrophies/cone dystrophies, whereas phe-
notypes like choroideremia, achromatopsia and Best 
diseases remained at very low frequencies [30, 34–36]. 
ABCA4, USH2A, and EYS are the most frequently 
mutated IRD genes, while their mutation frequencies 
may vary according to the studied populations, their clin-
ical presentations, the recruited cohorts, and their pat-
tern of inheritance [30, 34–36].

Non‑syndromic IRD in North African individuals
One hundred ninety-four families originating from 
North Africa with NS-IRD phenotypes have been char-
acterized and reported in the literature, together with 
the causal genes and mutations. Their phenotypes can be 
classified into three categories; photoreceptors’ diseases, 
maculopathies and others (Fig. 1).

The first group characterized by photoreceptor dys-
functions is the most frequent (83.5%). It includes reti-
nitis pigmentosa (46.9%), Leber congenital amaurosis 
(25.3%), cone and cone-rod dystrophies (11.1%), early 
onset retinal dystrophies (8.6%), retinitis punctata albe-
scens (4.3%), achromatopsia (1.9%), enhanced S-cone 
syndrome (1.2%) and finally congenital stationary 
night blindness (0.6%). The second group, consisting in 
maculopathies, represents 5.7% of the reported fami-
lies, Stargardt disease being the most frequent (72.7%), 
autosomal recessive bestrophinopathy and best vitelli-
form macular dystrophy representing 18.2% and 9.1%, 
respectively. The third group accounting for 10.8% 
includes two phenotypes: oculocutaneous albinism 

Fig. 1 Classification of inherited retinal dystrophies (IRD) and number of affected families (N)
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which has been described in twenty families and cho-
roideremia in a single family (Fig. 2).

Consanguinity has a major impact among North 
African families with NS-IRD. 71.4% of the fami-
lies for whom the relation between parents has been 
investigated were consanguineous, reflecting the pre-
dominance of autosomal recessive (AR) pattern of 
inheritance. Indeed, 93.3% of these families disclosed 
mutations on both alleles, while autosomal dominant 
(AD) transmission has been identified in only three 
families, with variants in PRPH2, NR2E3 and PRPF31, 
respectively. An X-linked pattern was found in only one 
family with a CHM variant.

Retinitis pigmentosa (RP, OMIM: 268,000) is one of 
the most frequent IRD leading to legal blindness, with 
a prevalence estimated at 1:4.000 affected individuals 
worldwide [37]. RP is characterized by a progressive loss 
of photoreceptors, predominantly the rods associated 
to the scotopic system, rather than the cones associated 
to the photopic system. Night blindness or nyctalopia is 
the earliest symptom in RP patients, followed by a grad-
ual loss of the peripheral visual field leading to a tunnel 
vision. In addition, pigmentary deposits in the peripheral 
retina, attenuation of retinal vessels and a waxy pallor of 
the optic disc represent RP hallmarks [38, 39].

With 76 families, RP is the most common IRD reported 
in patients originating from North Africa, among which 

Fig. 2 Distribution of the phenotypes of 194 North African families with non-syndromic IRD. According to disease categories in the center chart, 
and within each category in the outer charts. ACHM: achromatopsia, ARB: autosomal recessive bestrophinopathy, BVMD: Best vitelliform macular 
dystrophy, CHM: choroideremia, CRD: cone-rod dystrophy, CNSB: congenital stationary night blindness, EORD: early onset retinal dystrophy, ESCD: 
enhanced S-cone syndrome, LCA: Leber congenital amaurosis, OCA: oculocutaneous albinism, RP: retinitis pigmentosa, RPA: retinitis punctata 
albescens, STGD: Stargardt disease
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consanguinity rate reaches 63.9%. Almost all RP families 
(96.1%) present an AR pattern of inheritance, with only 
three families presenting an AD pattern, and no mutation 
in an X-linked gene was yet reported.

RP families can be divided in two groups, with differ-
ent ethnic backgrounds. The first group corresponds to 
non-Jewish families, characterized by a high genetic 
heterogeneity, in which variants in twenty different 
genes were identified in 45 families (Fig.  3a). Among 
the 20 genes, 5 of them are responsible for 53.3% of the 
observed phenotypes. MERTK is the most frequent 
gene mutated within 8/45 families, followed by PDE6B 
with 5/45 families and CERKL and RP1 with 4/45 fami-
lies, respectively. CRB1 variants have been identified 

in 3 families, while the other genes were reported only 
once or twice. A single MERTK splice site mutation, 
c.2189 + 1G > T, is responsible for 4 out of the 8 families 
reported (Additional file  2), suggesting a founder effect 
in the North African population [40]. A second fre-
quent mutation c.1133 + 3_1133 + 6delAAGT deletion 
in CERKL seems also to result from a founder effect, as 
it was reported in 4 unrelated Tunisian families from the 
same geographical area, sharing a 5.7  cM homozygous 
region (Additional file  2) [23]. The second group corre-
sponds to a Jewish ethnical background, with 31 reported 
families originating from North Africa, and only seven 
genes affected (Fig.  3a), among which FAM161A and 
EYS are mutated in 80.6% of cases. Two founder variants 

Fig. 3 Distribution of the number of families with non-syndromic IRD per causal genes. A Families with retinitis pigmentosa. B Families with 
cone-rod dystrophy. C Families with Leber congenital amaurosis
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in this community were predominant, the FAM161A 
p.Thr452SerfsTer3 found at homozygous state in 14 out 
of the 18 families, and the EYS p.Thr135LeufsTer7 found 
at homozygous state in 5 of the 7 families (Additional 
file 2). Both founder variants were not identified in other 
ethnical groups [41, 42].

Overall, the relative contributions of RP genes in other 
studies including populations with different ethnical 
backgrounds [30, 34, 35, 39, 43], disclosed that USH2A 
variants are very often encountered in the world, whereas 
only one family form Tunisia disclosed heterozygous 
compound USH2A mutations, indicating that USH2A 
variants are not frequently encountered in RP from 
North Africa.

Retinitis punctata albescens (RPA, OMIM:136,880): 
is a progressive hereditary disease considered to be a 
subtype of RP, since both presentations share various 
common ophthalmological symptoms, among them the 
predominant alteration of rod photoreceptors and night 
blindness, occurring in early childhood. In addition, 
absence or rarity of pigmentary deposits in the periph-
eral retina, moderate narrowing of retinal vessels and fre-
quent macular atrophy are characterizing RPA [44, 45].

A single mutation, corresponding to a 7.36-kb dele-
tion of three exons [7, 8 and 9], within RLBP1 was found 
homozygous in 7 families, 6 of them from Morocco and 
one from Algeria (Additional file 2). Interestingly, a clini-
cal heterogeneity was found in the last family, with a 
phenotype in between cone-rod dystrophy and RP. This 
RLBP1 mutation was found only in individuals from a 
close geographical origin, and most probably results from 
a founder effect [45].

Cone dystrophy (CD)/Cone-Rod dystrophy (CRD) 
(OMIM:120,970) describes a heterogeneous group of 
IRD, characterized by a predominant progressive loss 
of cone photoreceptors and pigmentary deposits, fre-
quently encountered in the macular area [46]. The preva-
lence has been estimated between 1:30.000 and 1:40.000 
[47]. The earliest symptoms are a decreased of visual 
acuity and photophobia, a central vision loss marked 
by a central scotoma in the visual field, and color vision 
defects occurring in childhood or early adulthood [48]. 
Additional abnormalities may occur later in most cases, 
including alterations of rod photoreceptors in CRD and 
nyctalopia [46].

Eighteen families with a CRD phenotype have been 
reported with the causal gene in North Africa, 11 with 
a documented consanguinity (Additional file  2). Fifteen 
homozygous mutations, and two heterozygous com-
pound mutations in 9 different genes were found. ABCA4 
and KCNV2 were affected in 9 families, which represent 
50% of North African CRD families (Fig. 3b), in accord-
ance with other studies reporting that the majority of 

autosomal recessive CD/CRD are related to these two 
genes [48].

Leber congenital amaurosis (LCA, OMIM:204,000) 
is the earliest and most severe retinal dystrophy with a 
prevalence of 1:80.000, manifesting at birth or during the 
first 2  years of life [49]. The main clinical LCA features 
are early blindness or severe visual loss, undetectable 
ERG responses, nystagmus and amaurotic pupils [50, 51]. 
LCA patients may have additional clinical features like 
keratoconus, hypermetropia and cataract [52].

Forty-one families were identified with a LCA pheno-
type, 36 having a homozygous variant and 5 heterozygous 
compound variants (Additional file 2). Thirty-one differ-
ent variants in 12 genes were reported: GUCY2D muta-
tions were found in 19 families and represents 46.3% of 
all cases, followed by LCA5 in 4 families, RPGRIP1, RD3 
and NMNAT1 in 3 families, CEP290 and IQCB1 in 2 fam-
ilies, and AILP1, EYS, RPE65, CRB1 and TULP1, each in 
a single family (Fig. 3c).

GUCY2D variants on chromosome 17p13.1 were first 
identified in LCA individuals from 8 North African con-
sanguineous families [53, 54]. Interestingly, studies con-
ducted on a large French LCA cohort disclosed that the 
majority of LCA families harboring GUYCY2D muta-
tions are originating from North Africa [55, 56]. In this 
respect, the c.389delC, p.Pro130LeufsTer36 mutation 
identified in North Africa, is responsible for 42.1% of 
cases with a GUCY2D mutation and 19.5% of LCA fami-
lies. This variant was homozygous in 7 consanguineous 
families and related to a founder effect (Additional file 2), 
most probably originating from a Jewish ancestry [56]. 
Another GUCY2D variant, the p.Phe565Ser, was found 
homozygous in three Algerian families, in addition to a 
family of Moroccan and Belgian mixed origins (Addi-
tional file 2).

Early onset retinal dystrophy (EORD), together with 
LCA represent the most severe form of retinal dystro-
phies. It is also considered as a moderate and/or delayed 
form of LCA, constituting a single clinical entity with 
very subtle differences [57]. Indeed, LCA patients develop 
symptoms in the first 3 months of life until 1 year of age, 
with unrecordable or severely diminished ERG responses 
[58], while EORD patients disclose similar symptoms, but 
appearing around 5 years of age [59].

Fourteen families were reported with an EORD pheno-
type, 13 being consanguineous with homozygous variants 
(Additional file 2). RPE65 is the most frequently affected 
gene, representing 50% of EORD families. The predomi-
nant c.271C > T (p.Arg91Trp) missense variant was found 
in 6 families, and is widely described in several studies in 
individuals from different ethnical backgrounds [60–63]. 
RDH12 variants come in the second place with 35.7% of 
all EORD families with two mutations: the p.Arg65Ter 
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found in 2 Tunisian families from the same region and 
the p.Leu99Ile found in 3 Jewish North African fami-
lies. The last one is known for its founder effect, and was 
already described among Caucasian patients [64, 65].

Stargardt disease (STGD, OMIM:248,200) is the 
most frequent macular dystrophy characterized by cen-
tral visual loss in childhood, with a prevalence ranging 
from 1:8.000 to 1:10.000 [66]. Clinical features include 
beaten-bronze appearance or bull’s eye maculopathy, 
progressive atrophy of the macula and yellowish flecks 
in the posterior pole of the retina [67]. Ninety-five % 
of STGD cases are inherited as a recessive trait and are 
caused by ABCA4 variants. The remaining 5% cases are 
caused by dominant variants in ELOVL4 and PROM1, 
and are responsible for STGD3 (OMIM:600,110) and 
STGD4 (OMIM:603,786), respectively [66, 68].

Eight Tunisian recessive families were character-
ized with STGD phenotype, and consanguinity was 
reported among 7 of them, with homozygous ABCA4 
variants. 62.5% of cases are explained by two variants, the 
p.Arg681Ter mutation found in three families, twice in a 
homozygous state and once in compound heterozygous 
state, and the p.Glu1087Lys mutation which was found 
homozygous in 2 families (Additional file 2).

Two additional maculopathies were characterized 
within 3 consanguineous families with homozygous 
BEST1 variants, 2 families with autosomal recessive Bes-
trophinopathy (OMIM:611,809) and one with Best vitel-
liform macular dystrophy (BVMD) (OMIM:153,700) 
(Additional file 2). BVMD is the second cause of macu-
lopathies after STGD [69], and is often inherited in an 
AD mode, although the AR mode was also reported [70, 
71].

Other NS-IRD have been also reported, and are 
mainly congenital stationary IRD. Achromatopsia 
(OMIM:216,900), also called rod monochromatism, 
characterized by dysfunction of the cone photoreceptors 
was observed in 3 consanguineous families displaying 
mutations in CNGA3, CNGB3 and GNAT2, respectively 
(Additional file  2). The Enhanced S-cone syndrome 
(OMIM:268,100), in which biallelic variants in NR2E3, 
and more rarely in NRL lead to increased number of 
S-type cone photoreceptors and degeneration of L/M-
type cones and rod photoreceptors. This phenotype dis-
closed by electroretinography measurements [72], was 
described in 2 families with homozygous and heterozy-
gous compound NRL variants (Additional file  2). Con-
genital stationary night blindness (OMIM:613,216) and 
Choroideremia (OMIM:303,100) were also described in 2 
consanguineous families, with a homozygous TRPM var-
iant and a hemizygote CHM variant, respectively (Addi-
tional file 2). Oculocutaneous albinism (OMIM:203,100) 
is also frequent, in particular among Jewish of Moroccan 

origin. Twenty families were reported, one with SLC45A2 
and 19 with TYR  variants, among which 9 with the 
p.Gly47Asp variant in a homozygous state and 4 in a het-
erozygous state (Additional file 2).

Syndromic IRD in North African population
At least, 24 different disorders associated to syndromic 
inherited retinal dystrophies (S-IRD) were reported and 
genetically characterized in individuals originating from 
North Africa. These disorders consist in ciliopathies, in 
which the Usher and Bardet Biedl syndromes occupy 
41.2% and 31.1% of all cases, respectively (Fig.  4a). In 
addition, diseases related to inborn errors of metabolism, 
mitochondrial defects related to mitochondrial DNA var-
iants, and associated to cerebellar ataxia were reported.

Usher syndrome (USH) is the most common syn-
dromic IRD that associates RP to hearing impairment. 
It accounts for 10–20% of all RP cases and up to 50% 
of deaf-blind patients [37, 73]. Three clinical subtypes 
(USH1-3) are described based on the age of onset, degree 
of hearing loss (profound, severe or moderate), pres-
ence or absence of vestibular dysfunction and age of RP 
onset. USH1 (OMIM:276,900) is the most severe form, 
characterized by a profound congenital hearing loss, ves-
tibular dysfunction and prepubescent RP onset. USH2 
(OMIM:276,901) consists in a congenital and less severe 
deafness, without vestibular dysfunction, and a post-
pubescent RP onset. USH3 (OMIM:276,902), is char-
acterized by a progressive and mild deafness, variable 
presentation of vestibular dysfunction and variable age of 
RP onset [74, 75]. Variants in USH genes are character-
ized by high clinical heterogeneity that can cause either 
USH, non-syndromic RP and non-syndromic deafness. 
Many studies including North African individuals with 
non-syndromic deafness have evidenced USH variants, 
but only few associated to RP [76–82].

In North Africa, 61 families have been clinically and 
genetically characterized with Usher syndrome. This 
number might be underestimated because individuals 
have not systematically access to both ophthalmologi-
cal and audiological examinations to confirm the USH 
diagnosis. The consanguinity rate within USH families 
is 77.3%, and 96.7% of them have variants identified on 
both alleles. Distribution of USH phenotypes is predomi-
nated by USH1 (82%). MYO7A is the most prevalent 
gene, with variants identified in 34 families, followed by 
USH2A in 8 families, CDH23 in 6 families, USH1G in 4 
families, ADGRV1, PCDH15 and USH1C in 3 families 
each (Fig. 4b).

Five variants were found routinely, four in MYO7A 
and one in USH2A genes (Additional file 3), with differ-
ent occurrences among non-Jewish and Jewish families. 
Two MYO7A splice site mutations are involved in 10 
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non-Jewish families: one, the c.2283-1G > T mutation was 
found homozygous in 4 families and heterozygous in 2 
families, and is present in Moroccan, Algerian and Tuni-
sian individuals [26, 82–84]. The second MYO7A variant, 
c.470 + 1G > A was found homozygous in 4 families of 
Algerian and Tunisian origins [26, 81, 85, 86]. Together, 
these 2 common variants might reflect founder effects in 
close geographic areas.

Among Jewish families, the p.Ala826Thr MYO7A vari-
ant was described in 8 families of Moroccan and Algerian 
origins, while a large MYO7A deletion p.Gln2119_Lys-
2215del was observed in 3 Tunisian families [85, 87, 88]. 
In addition, the p.Arg334Trp USH2A variant was found 
in several Moroccan and Tunisian Jewish families with a 
possible founder effect [87, 89, 90].

Bardet-Biedl syndrome (BBS, OMIM:209,900), is 
a multisystemic disorder characterized by symptoms 

in several organs that represents 5–6% of syndromic 
RP cases [37]. The wide heterogeneity of symptoms is 
divided into 2 categories based on clinical features and 
frequencies, encountered in patients. Primary features 
present at high frequencies are RP, polydactyly, obe-
sity, genital and renal anomalies and learning difficul-
ties. Secondary less frequent features are speech and/or 
development delay, diabetes mellitus, dental anomalies, 
congenital heart diseases and additional peculiar symp-
toms [91, 92]. The combination of 3 to 4 primary features 
associated to 2 secondary features are required to estab-
lish a BBS clinical diagnosis [91].

Forty-six families originating from North Africa were 
reported, among which 28 in the Tunisian population 
(Additional file  3). Homozygous variants were found in 
the majority (93,5%) of these families. Thirty-four vari-
ants in 9 genes were reported; BBS1 in 10 families, BBS2 

Fig. 4 Genetic and phenotypic spectrum of North African families with syndromic IRD. A Distribution of the phenotypes of 143 families with 
syndromic IRD. B distribution of families with Usher syndrome phenotype per causal gene. C Distribution of families with Bardet-Biedl syndrome 
phenotype per causal gene
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and BBS5 in 8 families each, BBS8 in 6 families, BBS4 in 5 
families, BBS10 and BBS12 in 3 families each, while vari-
ants in BBS6 and BBS7 were only associated twice and 
once to BBS phenotypes, respectively (Fig.  4c). BBS1 is 
the most frequently mutated gene, accounting for 23.2–
33.6% of all BBS families, according to different studies 
performed across the world in multiethnic cohorts [93–
95]. In contrast, BBS2, BBS5 and BBS8 appear more fre-
quently mutated in the North African population than in 
the rest of the world [94–97].

Two recurrent variants are found frequently in Cauca-
sian BBS families, the p.Met390Arg contributing to 73.3–
82.6% of BBS1 families [93, 95, 98], and the p.Cys91fsX95 
contributing to 48.3% to 88.8% of BBS10 families [95, 
96]. The first was found only once in a Tunisian fam-
ily in a homozygous state, while the second one was 
never reported in North Africa. Conversely, some BBS 
variants were frequent in Tunisian families with a com-
mon haplotype [28], the c.459 + 1G > A in BBS8 and the 
p.Arg189Ter in BBS2, the latter also encountered in Alge-
ria, witnessing a migration between these 2 countries. 
In addition, the c.1473 + 4A > G and c.448C > T in BBS1, 
and ex4-5-6del in BBS4 variants were evidenced in Alge-
rian and Tunisian families, whereas the c.149T > G and 
c.123delA in BBS5 variants also frequent, were restricted 
to Tunisia (Additional file 3).

Senior-Loken syndrome (SLS, OMIM:266,900) and 
Joubert syndrome (JBTS, OMIM:213,300) are 2 inher-
ited nephronophthisis related ciliopathies, representing a 
heterogeneous group of disorders characterized by auto-
somal recessive cystic kidney and renal anomalies. SLS 
with a prevalence of 1:1.000.000 is defined by the com-
bination of retinal degeneration ranging from RP to LCA 
associated to nephronophthisis [99]. JBTS is defined by 
primary features including hypotonia/ataxia, develop-
mental delay, oculomotor apraxia, mental retardation 
and breathing anomalies [100], and often associated to 
retinal degeneration [101–103].

Only two SLS families with mutations in NPHP4 and 
IQCB1 have yet been reported. Conversely, individu-
als with JBTS phenotype originating from North Africa, 
especially from Egypt, were well characterized in sev-
eral studies [104–109], although few of them had a reti-
nal dystrophy. Pathological variants (Additional file  3) 
responsible for JBTS associated with retinal dystrophies 
involve AHI1 in 4 families, followed by CEP290 and 
INPP5E in 2 families each, and NPHP1 in one family. 
CEP290 is the most frequent JBTS causative gene, but 
variants in AHI1 and INPP5E are the most frequently 
associated to retinal dystrophies [102–104, 108]. Finally, 
only 10% of variants in NPHP1, were reported to cause 
RP [101]. In addition, Alstom and Cohen syndromes, 2 
other ciliopathies have been reported, but only in one 

family each, harboring mutations in ALMS1 and VPS13B, 
respectively.

Sjogren-Larsson syndrome (SJLS, OMIM:270,200) 
is caused by mutations in ALDH3A2, encoding the fatty 
aldehyde dehydrogenase (FALDH) enzyme, implicated 
in the metabolism of fatty alcohol [110]. SJLS consists 
in 3 main symptoms, ichthyosis, mental retardation and 
spastic diplegia [110], although, additional abnormalities 
including retinal manifestations are widely described [25, 
111–113]. A single study conducted in 25 Egyptian SJLS 
families has evidenced 8 families with retinal abnormali-
ties consisting in yellowish retinal dots [25]. Three recur-
rent variants, p.Ser365Leu, p.Arg9ter and p.Gly400Arg 
contributes for 25%, 12% and 12% of all cases, respec-
tively. Patients harboring the latter 2 variants shared a 
common haplotype, supporting a founder effect. Interest-
ingly, families harboring the same variant exhibited dif-
ferent retinal manifestations, most probably related to a 
genetic modifier effect. Additional North African families 
without retinal defect were further reported [114–118].

Abetalipoproteinemia (ABL, OMIM:200,100) is a 
systemic disease caused by errors in lipid metabolism 
that manifests by the absence of apolipoproteins b, very 
low density of lipoproteins and low density lipoproteins 
in the plasma [119], in addition to diarrhea caused by 
fat mal absorption, acanthocytosis and retinal dystro-
phy [112, 119]. Five ABL families of Tunisian origin were 
reported, 2 of them presenting retinal degeneration and 
homozygous MTTP variants (Additional file 3).

Heimler syndrome (HS) is an autosomal recessive 
peroxisomal biogenesis disorder (PBD) characterized by 
sensorineural deafness, enamel hypoplasia, nail abnor-
malities and occasionally retinal pigmentation [120]. PBD 
represent a group of disorders characterized by anoma-
lies in peroxisome assembly and/or biochemical func-
tions. Peroxisomes are including over 70 enzymes that 
ensure several metabolic pathways critical for normal cell 
functioning [121]. HS, the mildest form of the PBD spec-
trum, is caused by hypomorphic PEX1 variants defin-
ing the Heimler syndrome type 1 (OMIM:234,580) or 
by PEX6 variants defining the Heimler syndrome type 2 
(OMIM:616,617) [120]. Variants in both genes have been 
identified in 2 consanguineous families from Moroccan 
and Egyptian origins, respectively (Additional file 3).

Familial isolated vitamin E deficiency (AVED, 
OMIM:277,460) is an autosomal recessive cerebellar 
ataxia characterized by low vitamin E level in the serum. 
Clinical symptoms are resembling those of Friedreich 
ataxia (FA) with dysarthria, progressive limb and gait 
ataxia, absent tendon reflexes and skeletal abnormali-
ties [122]. Absence of diabetes and cardiomyopathy are 
the main characteristics that differentiate AVED from 
FA [123]. Since the first description by Burk et al. [124], 
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several North African families were described, allowing 
the identification of the causative locus at 8q and later of 
variants in the TTPA gene, as responsible for the pheno-
types [125–128]. A specific TTPA frameshift correspond-
ing to an adenine deletion at position 744 (c.744delA) 
was found in the majority of AVED patients from Medi-
terranean countries, which correlates with an ancient 
founder effect [122, 126, 128–134]. Association between 
AVED and RP has been first described in patients with 
the p.His101Gln variant causing a less severe and a lat-
ter onset presentation [135, 136]. Further studies of 
North African cohorts revealed that individuals with the 
c.744delA variant may also present RP, with an incidence 
varying from 0% in Algeria, 4.4% in Tunisia to 27% in 
Morocco [122, 131–133]. Other variants have been also 
reported in AVED North African individuals, but no reti-
nal abnormality was associated [122, 137].

Spinocerebellar ataxia type 7 (SCA7, 
OMIM:164,500) refers to an entity of progressive cer-
ebellar ataxia associated with a cone-rod macular dystro-
phy, and also known as autosomal dominant cerebellar 
ataxia type II. SCA7 is caused by a CAG triplet expansion 
in ATXN7 at the 3p14.1 locus. The normal allele contains 
7 to 17 repeats, and up to 35 repeats in asymptomatic 
patients, whereas symptomatic patients presents 36 or 
more CAG triplets [138–141]. SCA7 has been described 
in several North African families, with extended CAG 
repeats [139, 142–144].

Other occasional syndromic IRD were identified in 
9 consanguineous families with 7 different syndromes, 
2 families with Stickler syndrome (OMIM:614,134) 
harboring a single COL9A1 variant, 2 families with 
Jalili syndrome (OMIM:217,080) with 2 different 
CNNM4 variants, one family with congenital muscu-
lar dystrophy-dystroglycanopathy with brain and eye 
anomalies (OMIM:616,538), Hermansky-Pudlak syn-
drome (OMIM:614,072), oculoauricular syndrome 
(OMIM:612,109), retinal dystrophy with or without 
extraocular anomalies (OMIM:617,175), retinitis pigmen-
tosa with or without skeletal anomalies (OMIM:250,410), 
harboring variants in DAG1, HPS3, HMX1, RCBTB1 and 
CWC27, respectively (Additional file 3).

Finally, retinal alterations like pigmentary retinopathy 
and maculopathy can be further associated to disorders 
related to mitochondrial genome mutations. Pigmentary 
retinopathy is frequently associated to the Kearns-Sayer 
syndrome (KSS), the neuropathy, ataxia and retinitis pig-
mentosa (NARP), the mitochondrial encephalomyopathy, 
lactic acidosis, and stroke like episodes (MELAS) and the 
maternally inherited deafness and diabetes (MIDD) [145, 
146]. Studies performed on North African individuals 
affected by mitochondrial diseases and retinal manifes-
tations are rare, and only 4 families were reported with 

KSS, MIDD, MELAS and a mitochondrial neuromus-
cular disorder, with mtDNA specific mutations or large 
deletions (Additional file 6).

Inherited optic neuropathies
Inherited optic neuropathies (ION) define a group of dis-
eases characterized by the dysfunction of the optic nerve 
as a result of the loss of retinal ganglion cells and their 
axons [147]. Familial expression of the disease can help 
its diagnosis, although genetic analysis can also reveal the 
etiology of the disease, even in absence of familial his-
tory. Typically, ION manifest as bilateral symmetric cen-
tral visual loss with a central scotoma, resulting from the 
injury of the papillomacular nerve fibers. In this context, 
its always crucial to rule out IRD that can interfere with 
primary IONs, especially the CRD affecting the central 
visual field, in which a pallor of the optic nerve head can 
also be found [148]. Optic atrophy can be the only mani-
festation of the IONs in non-syndromic ION (NS-ION), 
or associated to additional various symptoms, defin-
ing syndromic ION (S-ION) [149, 150]. All patterns of 
inheritance were observed in ION: autosomal dominant 
or recessive, X-linked and maternally transmitted by the 
mitochondrial genome. In general NS-ION are less het-
erogeneous compared to IRD, as only 12 loci have been 
mapped, 6 being dominant, 5 recessive and 1 X-linked, 
with 4 genes still to be identified.

Leber hereditary optic neuropathy 
(LHON;OMIM:535,000) and dominant optic atrophy 
(DOA;OMIM:165,500) are the 2 most common optic 
neuropathies worldwide, with a prevalence ranging 
around 1/15.000 to 1/50.000 for each, depending on the 
geographic area [147, 149, 151, 152]. LHON was first 
described by Leber [153], with a maternal mode of inher-
itance associated to a mitochondrial DNA (mtDNA) vari-
ant [154], then to many additional variants of the mtDNA 
[155]. DOA or Kjer’s optic atrophy was described first in 
1959 [156], as an infantile optic atrophy with autosomal 
dominant mode of inheritance, characterized by a pro-
gressive loss of visual acuity, tritanopia, a pallor of the 
nerve optic heads, mainly in the temporal area, and a cen-
trocoecal scotoma [147, 150, 157]. Genetic studies asso-
ciated DOA to chromosome 3q28 [158], then to OPA1, 
encoding a mitochondrial dynamin-like GTPase essential 
for fusion of the mitochondrial network, the produc-
tion of ATP and the control of apoptosis [157, 159–161]. 
OPA1 is mutated in more than 70% of DOA individuals 
[162], followed by WFS1 and ACO2 genes. Recessive loci 
were also described, as OPA6, OPA7, OPA9, OPA10 and 
OPA11 [163–167].

Interestingly, all DOA genes discovered so far, encode 
proteins involved in mitochondrial physiology, with func-
tions involved in their biogenesis, network structure, 
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calcium homeostasis and respiration [168–171], thus 
emphasizing the frailty of the optic nerve to mitochon-
drial dysfunctions.

In the following section, we present the phenotypic 
and the genotypic spectrums associated with ION in 71 
North African families (Figs. 5 and 6).

Non syndromic inherited optic neuropathies in North 
African families
Leber hereditary optic neuropathy (LHON, 
OMIM:535,000): is the first disease which was associ-
ated to a mtDNA mutation, and now the most frequent 
among mitochondrial diseases [154, 172]. LHON is a 
non-syndromic optic neuropathy affecting predomi-
nantly men, characterized by a subacute, rapid and pain-
less central visual loss in one eye, then of the fellow eye 
within weeks or months in the vast majority of patients. 
Ophthalmological examination discloses a centrocaecal 
scotoma in the visual field, temporal pallor of the optic 
nerve head and frequent dyschromatopsia [172–174]. 

90–95% of patients with LHON phenotype harbor one of 
the 3 common mutations m.11778G > A, m.14484T > C, 
and m.3460G > A affecting the ND4, ND6 and ND1 genes, 
respectively [154, 174–176]. Only, the first 2 mutations 
were identified in individuals from 4 families originat-
ing from North Africa, 3 with the m.11778G > A and one 
with the m.14484T > C variant [177–179] (Additional 
file 6).

Other clinical symptoms, such as ataxia, dystonia, and 
encephalopathy can be associated with LHON, namely 
LHON plus phenotype [180], which was reported associ-
ated to the m.G14459A variant found in an Algerian fam-
ily presenting LHON associated to dystonia [181, 182].

Other reported NS-ION cases are related to nuclear 
DNA variants (Additional file 4). Although the majority 
of ION individuals reported worldwide present an AD 
pattern of inheritance, with OPA1 as the most frequently 
mutated gene, no ION with a dominant transmission has 
yet been reported in North Africa. Indeed, 8 consan-
guineous families with an AR pattern of inheritance were 

Fig. 5 Classification of inherited optic neuropathies (ION) and number of affected families (N)
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reported with variants in TMEM126A and RTN4IP1 
genes. TMEM126A was the first gene identified in a large 
consanguineous Algerian family, harboring a homozy-
gous nonsense mutation p.Arg55Ter. The same muta-
tion was found in two additional Moroccan and one 
Tunisian families [164]. Genotype analyses revealed a 
common haplotype within these families, witnessing a 
founder effect that most probably appeared 80 genera-
tions ago. The same TMEM126A nonsense variant was 
further identified in an Algerian consanguineous fam-
ily with optic atrophy and auditory neuropathy [183] 
and a Moroccan consanguineous family with isolated 
optic atrophy [184]. Two additional families presented 
RTN4IP1 homozygous variants: the p.Arg103His and the 
p.Ile362Phe, respectively [163, 185]. Although RTN4IP1 
variants can cause very severe syndromic diseases, North 
African families presented only a NS-ION phenotype.

Syndromic inherited optic neuropathies in North African 
families
Wolfram syndrome (WFS, OMIM:222,300) describes 
a syndromic neurodegenerative disease characterized by 
optic atrophy, diabetes mellitus, diabetes insipidus and 
deafness, also called (DIDMOAD) [186]. Additional neu-
rological, endocrinological and other peculiar symptoms 
can be associated [186, 187]. Variants in 2 nuclear genes 
WFS1 and CISD2, in addition to heteroplasmic deletions 
of mtDNA were reported to cause this phenotype [188–
191]. Three North African families were reported so far 
with a WFS phenotype, 2 of them are consanguineous 
and carry a homozygous mutation in WFS1 and CISD2 
(Additional file 5). The third family, which presents WFS 
associated to a cardiomyopathy, was reported with mul-
tiple mtDNA deletions in addition to the homoplasmic 
m.3337G > A mitochondrial variant (Additional file  6). 

Fig. 6 Distribution of the phenotypes of the 71 North African families with ION. According to the disease presentation (syndromic or 
non-syndromic) in the center chart, and within each category in the outer charts
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Additional WFS families were also described, but with-
out molecular diagnosis [192–194].

Leigh syndrome (LS, OMIM:256,000): is a syndro-
mic neurodegenerative disease characterized by bilateral 
necrotic lesions in brainstem, basal ganglia, thalamus, 
cerebellum and spinal cord [195]. LS is a very heteroge-
neous disease, with more than 35 nuclear and mitochon-
drial genes involved, thus inherited as AR and maternal 
mitochondrial or X-linked patterns [196]. Most LS genes 
are implicated in mitochondrial energy production, 
encoding proteins involved in the formation of the res-
piratory chain complexes or their assembly. Ophthalmo-
logical abnormalities are frequently described in LS (79% 
to 82%), including refraction errors, ptosis, strabismus, 
nystagmus, optic atrophy and pigmentary retinopathy. 
However the last two abnormalities occur only in 17 to 
22.5% and 15 to 22.5% of all individuals, respectively [197, 
198]. Several studies described North African LS individ-
uals [195, 199–202], but only 2 families had optic atrophy 
with either a SURF1 variant c.516_517delAG (Additional 
file  5), or a heteroplasmic variant m.9478T > C in the 
mitochondrial genome (Additional file 6).

Hereditary motor and sensory neuropathy type 
VI (OMIM:601,152) is a neurological disorder char-
acterized by distal neuropathy and optic neuropathy 
[203]. Mutations in 2 genes, MFN2 and SLC25A46, were 
reported with an AD and AR inheritance pattern. They 
encode outer mitochondrial membrane proteins acting 
on mitochondrial dynamics [204, 205]. Four North Afri-
can families were reported so far, 3 consanguineous fami-
lies with SLC25A46 homozygous variants and one with a 
dominant MFN2 variant (Additional file 5).

Five additional families with 4 different phenotypes 
were reported with variants in genes encoding proteins 
that ensure mitochondrial physiology (Additional file 5). 
They affect FDXR, which encodes a ferredoxin reductase 
implicated in Fe-S cluster formation, [206, 207], MECR, 
which encodes a mitochondrial trans-2-enoyl-Coa reduc-
tase enzyme essential for fatty acid synthesis and res-
piratory competence [208], POLG, which encodes the 
mitochondrial polymerase gamma ensuring mtDNA rep-
lication and repair [209], and ACO2, encoding the mito-
chondrial aconitase converting citrate to isocitrate in the 
Krebs cycle [166].

GAPO syndrome (OMIM:230,740) is a AR dis-
order characterized by growth retardation, alopecia, 
pseudo-anodontia and frequent optic atrophy, caused by 
ANTXR1 variants [210]. Six consanguineous Egyptian 
GAPO families were reported in addition to one family 
without optic atrophy [211], all presenting homozygous 
ANTXR1 variants (Additional file 5).

Infantile neuroaxonal dystrophy (INAD, 
OMIM:256,600) is an early onset AR neurodegenerative 

disorder appearing in the first 2 years of age, character-
ized by axial hypotonia, psychomotor regression, ataxia, 
in addition to several ophthalmological features like, 
nystagmus, strabismus and a frequent optic atrophy 
[212, 213]. Twelve North African INAD families with 
optic atrophy have been reported so far with PLA2G6 
variants, of which 8 were homozygous and 4 compound 
heterozygous (Additional file  5). A particular mutation 
p.Val691del, previously reported in other Mediterra-
nean families, was found in 5 Tunisian and one Libyan 
families, who shared a common haplotype, witnessing a 
founder effect that occurred 12 generations ago [214].

Warburg Micro syndrome (OMIM:600,118) is an 
autosomal recessive disorder combining neurological 
symptoms as microcephaly, mental retardation, hypoto-
nia, and eye abnormalities with severe visual impairment 
with microphthalmia, microcornea, cataract and fre-
quent optic atrophy, in addition to hypogenitalism [215]. 
More than 32 North African families, mainly from Egypt 
were reported by several studies [216–219]. Among 
them, optic atrophy was clearly established in 19 families, 
with 79% of these families presenting RAB3GAP1 vari-
ants, 2 families with RAB3GAP2 variants, and 2 others 
with RAB18 and TBC1D20 variants, respectively (Addi-
tional file 5).

Discussion
The data presented in this review provide an extensive 
overview of IRD and ION phenotypic and genotypic 
spectrums reported in the literature, regarding 413 North 
African families. The respective contributions of these 
2 groups of diseases show a high predominance of IRD 
(82.8%) compared to ION (17.2%); fitting with earlier 
studies from Western countries, suggesting that the ori-
gins of blindness are more frequently associated to reti-
nal dysfunctions than to optic nerve degeneration [220].

Nevertheless, by contrast with Europe, North African 
countries show high rate of consanguinity, as marriage 
practices are maintained by religion, cultural and socio-
economic conditions, in addition to their geographi-
cal isolation delimited by the Mediterranean Sea in the 
North and the Sahara in the South. In this respect, first 
cousin mating is the most frequent consanguineous 
marriage in North Africa [13], and progeny of individu-
als who shared common ancestors are the most likely 
to be autozygous for recessive variants. This is the case 
for 71.4% of NS-IRD families for whom investigations of 
the relationships between parents disclosed a consan-
guinity, with 82.5% presenting homozygous mutations 
in recessive genes. For S-IRD, 84.4% were consanguine-
ous, among which 88.2% presented homozygous vari-
ants. The same observations were found in ION families, 
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with 84.3% presenting homozygous mutations in nuclear 
genes.

This high level of consanguinity has further drastic 
consequences on small endogamous communities, alike 
the North African Jewish ones, leading to the identifica-
tion of founder effects associated to variants unusually 
present at high frequencies in specific genes. For exam-
ple, although FAM161A is not a major cause of RP [39], 
18 out of 31 North African Jewish families present a 
mutation in this gene, among which 14 disclosed with the 
same homozygous mutation c.1355_1356delCA, 13 living 
in Morocco. Similarly, 5 out of the 7 Jewish Moroccan RP 
families presented the same homozygous variant in EYS. 
These peculiarities were also found in non-Jewish North 
African families, with 4 out of 8 RP families related to 
the homozygous c.2189 + 1G > T MERTK mutation; and 
virtually all RP families with CERKL variants presented 
the unique c.1133 + 3_1133 + 6delAAGT mutation at a 
homozygous state, all being of Tunisian ancestry. Simi-
larly, all families reported with RPA were related to the 
same homozygous 7.36  kb deletion in RLBP1. This was 
also true for all autosomal NS-ION families related to 
the OPA7 locus, which presented the same TMEM126A 
recessive variant, and for those related to the OPA10 
locus, presenting the same RTN4IP1 recessive variants, 
both being now encountered respectively in North Afri-
can and Gipsy families living in Europe, respectively [163, 
164, 183–185].

Other biases associated to the clinical spectrum of 
North African IRD and ION consist in the significant 
differences in the time course and severity of the visual 
impairments. Indeed, while S-IRD and S-ION are easily 
early characterized by severe visual impairment associ-
ated to other symptoms, diseases with milder effects on 
the visual acuity, often occurring later in the life-time, 
like some NS-IRD and most NS-ION, might be far less 
clinically diagnosed, as patients can be unaware of their 
visual difficulties.

This might explain why the proportion of each IRD 
among the North African population that we report here, 
is so different compared to what was observed in Western 
countries. Indeed, RP and STGD diseases, which are the 
less severe presentations are under-represented, whereas 
LCA, USH and BBS diseases, which have the worse visual 
prognosis are significantly over-represented (Table 1).

This has obvious consequences on the respective fre-
quency of each gene identified in IRD individuals among 
the North African population, with a lower contribu-
tion of variants in the ABCA4, USH2A and PRPH2 genes 
and a higher contribution of variants in the MYO7A, 
FAM161A, GUCY2D and MERTK genes (Table 2).

The same reasons explain why S-ION are propor-
tionally so frequent (88.7%) in this region of the world, 

while NS-ION are rare (11.3%), and in particular, why 
no case of isolated Dominant Optic Atrophy has yet 
been reported in North Africa, although AD ION are 
at least ten times more frequent than the recessive 
ones in Western countries [220, 222]. Consequently, 
these peculiarities explain why the most prevalent ION 
among the North African families are recessive and 
syndromic, with the Warburg micro syndrome and 
the GAPO syndrome predominating in Egypt, and the 
Infantile neuroaxonal dystrophy 1 predominating in 
Tunisia, while a single family with dominant S-ION has 
been reported, with a hereditary motor and sensory 

Table 1 Frequencies of IRD subtypes across different countries

USA data are from Stone et al., 2017 [221], based on the study of 1000 families

UK data are from Carss et al., 2017 [30], based on 722 individuals

French data are from Bocquet et al., 2013 [220], based on 1957 individuals

North Africa IRD data are from this review, based on 342 families

Data are provided as the number of families or individuals with the disease and 
their relative frequency in-between parenthesis within the cohort

Diseases USA UK France North Africa
Occurrence and frequencies

RP 341 (34.1%) 311 (43.1%) 922 (47.1%) 76 (22.2%)

STGD 189 (18.9%) 45 (6.2%) 118 (6%) 8 (2.3%)

USH 81 (8.1%) 37 (5.1%) 207 (10.6%) 61 (17.8%)

CD/CRD 45 (4.5%) 74 (10.2%) 140 (7.2%) 18 (5.3%)

Other macular 
dystrophies

93 (9.3%) 37 (5.1%) 231 (11.8%) 3 (0.9%)

LCA 14 (1.4%) 18 (2.5%) 52 (2.7%) 41 (12%)

BBS 25 (2.5%) 7 (1%) 23 (1.2%) 46 (13.5%)

Table 2 Frequencies of IRD genes across different countries

USA data are from Stone et al., 2017 [221], based on 760 families

UK data are from Carss et al., 2017 [30], based on 404 individuals

French data are from Bocquet et al., 2013 [220], based on 417 individuals

North Africa data are from this review, based on 342 IRD families

Data are provided as the number of families or individuals and with autosomal 
dominant (AD) or recessive (AR) variants in the gene considered, and their 
frequency in-between parenthesis within the cohort with a molecular diagnosis

Genes USA UK France North Africa
Occurrence and frequencies

ABCA4 (AR) 173 (22.8%) 73 (18.1%) 72 (17.3%) 16 (4.7%)

USH2A (AR) 76 (10%) 61 (15.1%) 59 (14.1%) 9 (2.6%)

RPGR (X-L) 48 (6.3%) 13 (3.2%) 23 (5.5%) –

RHO (AD/AR) 34 (4.5%) 7 (1.7%) 15 (3.6%) –

PRPH2 (AD) 32 (4.2%) 6 (1.5%) 20 (4.8%) 1 (0.3%)

EYS (AR) 6 (0.8%) 16 (4%) – 10 (2.9%)

MYO7A (AR) 8 (1.1%) 8 (2%) 26 (6.2%) 34 (9.9%)

FAM161A (AR) 9 (1.2%) 2 (0.5%) – 20 (5.8%)

GUCY2D (AR) 4 (0.5%) 4 (1%) 1 (0.2%) 19 (5.6%)

MERTK (AR) 3 (0.4%) 4 (1%) 1 (0.2%) 10 (2.9%)
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neuropathy type-VIA, associated to a heterozygous 
ACO2 variant.

Thus, we provided here the first epidemiological data 
regarding IRD and ION in North Africa, combining clini-
cal and molecular data. Our bibliographical review sug-
gests that the North African populations are far from 
been fully characterized, because these two groups of 
diseases are today under-diagnosed, most probably due 
to the remote location of many patients far away from 
an Ophthalmologist, the restricted training of Ophthal-
mologists to rare inherited eye diseases, the difficulties 
to access local high throughput next generation sequenc-
ing, and the limited resources of the population. We also 
believe that the actual IRD and ION clinical and molec-
ular spectrums in the North African countries are frag-
mented, as most reports of such information are limited 
to case reports, or as a part of patient cohorts included in 
studies from other countries.

Nevertheless, the structural peculiarities of the North 
African population, with the high rate of consanguin-
ity and the presence of informative large pedigrees with 
many affected generations, offer outstanding opportu-
nities to identify novel clinical presentations and genes 
responsible for these inherited eye diseases. With these 
perspectives in mind, research priorities should now 
focus on the training of local ophthalmo-geneticists dedi-
cated to the clinical and molecular diagnoses of inherited 
blinding diseases.

Conclusion
Inherited retinal dystrophies and optic neuropathies are 
major causes of early visual impairment that often lead 
to legal blindness, which are individually rare, but col-
lectively frequent. With a population of some 200 mil-
lion inhabitants in North Africa, we can expect that some 
100.000 individuals (1/2.000 persons) are affected by 
one of these diseases, a population nowadays far under-
diagnosed with respect to the 413 North African families 
yet reported in medical databases, and compiled here. 
As both IRD and ION constitute real public health chal-
lenges, with major impacts on the educational, autonomy 
and socioeconomic conditions of affected individuals, 
future politics should invest in the training of physicians 
and biologists to improve the diagnosis of inherited oph-
thalmologic presentations and in equipment dedicated to 
their molecular diagnosis, to first establish accurate clini-
cal diagnoses, and second constitute well clinically char-
acterized cohorts of individuals eligible to treatments 
with the emergent therapies for these eye diseases.
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