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ABSTRACT

Surface currents provided, in real time, by operational ocean
models often differ from each other but also from satellite
altimetry observations, especially in terms of mesoscale dy-
namics. Eddies, which play a dominant role on circulation
at the regional scale, have a signature on both altimetry maps
and satellite imagery, such as sea surface temperature. Com-
bining these independent signatures allows for a highly reli-
able detection of reference eddies. To this end, we build a
convolutional neural network capable of detecting the con-
tours of mesoscale eddies on SST maps in real time. Com-
bined with a standard eddy detection algorithm applied to al-
timetry maps, we were able to locate and identify with high
accuracy more than 900 eddies, in the Mediterranean Sea,
over a period of 6 months, and use them as a reference for
numerical model validation. We compare as a case study the
performance of two operational models: MERCATOR and
MES.

Index Terms— Model Validation, Remote Sensing, Deep
Learning, Mesoscale Eddies

1. INTRODUCTION

Operational ocean numerical models simulate, in real-time,
the physical state and the dynamical properties of oceans,
forecasting also their future state. Validation of ocean models
consists of a quality assessment of their operational output.
The quantification of model error is performed by compar-
ing model outputs with observations, from satellite or in-situ
source.

Assimilation of numerical models, seeks to integrate these
observations to produce an optimal estimate of the evolv-
ing state of the system. The mesoscale dynamics, partially
observed through different measured variables, can be thus
assimilated by the numerical model. Albeit the important im-
provements brought by data assimilation methods, the results
of different operational models in the same period and region
can vary significantly on the level of mesoscale dynamics.
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Eddies are coherent structures, that can survive several weeks
or months, with a prevalent role at mesoscale or submesoscale
ocean circulation. These structures can have a signature on
satellite observations such as altimetry, but also on visible
imagery or synthetic aperture radar. Many algorithms use
geometrical properties of the Sea Surface Height (S.SH) field
and/or the streamlines of the derived velocity field to detect
and track in time vortex structures. However, standard al-
timetry (AVISO/CMEMS) products contain large uncertain-
ties due to the spatio-temporal interpolation between satellite
tracks, limiting the reliability of these algorithms [[1].

Satellite imagery provides independent observations of mesoscale

structures. In spite its high resolution, their patterns are too
complex for standard geometric methods to process. Besides,
Convolutional Neural Networks (CNNs) with deep architec-
tures have proven very efficient in detecting eddy signatures
on visible imagery such as Sea Surface Temperature [2],
marking the potential of Deep Learning methods for this task.
We present a novel methodology which employs an Eddy-
Decting Convolutional Neural Network on SST maps, com-
bined with an Altimetric Eddy Tracking Algorithm to provide
a set of highly reliable eddy detections. These reference de-
tections are used to validate the operational output of different
numerical models and serve as a basis for an operator to pick-
and-choose between available models on a certain region.

2. SATELLITE AND MODEL DATA

Working on the Mediterranean Sea as a case study, we use
near real-time altimetry and SST satellite data to validate the
real-time output of two operational numerical ocean models:
MERCATOR and MFS.

Daily, 1/120°resolution, multi-sensor SST maps of the Mediter-
ranean Sea are received from the [CMEMS Ultra High Res
[olution L3S SST Dataset| and are representative of night
time SST. We also utilize daily SSH and derived geostrophic
velocity fields from AVISO/DUACS altimetry products at
1/8°resolution from the [CMEMS [ 4 Sea [ evell dataset.

To retrieve the eddy centers, their corresponding contours
and dynamical properties we use the AMEDA algorithm [3]]
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Fig. 1. Comparison of satellite altimetry (a) and two numerical models (b,c) on the eastern Mediterranean sea on the 22/08/2021.
Sea Surface Height (SSH) obtained by the models and observed by satellite correspondingly is shown on the topmost panels
along with the derrived geostrophic velocity vectors. The eddy contours (blue=anticyclonic, red=cyclonic) detected by AMEDA
on each field are superimposed on the SSH panels. The bottom panels all show the Sea Surface Temperature (SST) measured
by satellite on the same day, on which the aforementioned eddy contours corresponding to each SSH output are superimposed.

applied on the geostrophic velocity field. Daily eddy contours
derived from the geometrical and dynamical properties of the
velocity field are then integrated into eddy tracks which fol-
low the lifetime of an eddy. The contours shown in this work
correspond to the closed streamline of maximum velocity of
the eddy.

Two operational models are considered in this study. The Op-
erational Mercator global ocean analysis and forecast system
(MERCATOR) is routinely operated in real time since early
2001 and updated daily [4]. The Mediterranean Forecast-
ing System (MFS) is a second operational model providing
nowcasting and forecasting specific to the Mediterranean Sea
dynamics (Med-Currents) [5]. Both models run on a rectan-
gular grid with unevenly spaced vertical levels and use data
assimilation schemes: reduced-order Kalman filter for the
MERCATOR and 3DVAR for MFS. Table [Tl summarizes the
differences in the parameters of the two operational mod-
els. The nowcast output of these models was downloaded in
real-time from the CMEMS database.

In Figure([T]the real-time data available from the MERCA-
TOR Model, the MFS Model and Satellite Altimetry are com-
pared on a certain day (22/08/2021) in the Eastern Mediter-

Model Resolution | Assimilation
Horiz. Vert.Lev. In-Situ SSH SST
MERCATOR | 1/12° 50 v’ v’ v’
MFS 1 / 24° 141 N v’

Table 1. Main properties of the two operational models

ranean Sea region. The difference between the eddy con-
tours obtained through the geostrophic velocity field of the
two models and the observations are evident. Through SST
images, an independent validation of the eddy position can
be performed (Figure [T] bottom panels). Both models seem
to miss many eddies with a signature on SST, while also the
eddy contours from the more accurate satellite AVISO fields
on Figure([T] (a) are not aligned with the SST gradients.

3. EDDY-DETECTING CNN ON SST IMAGES

Convolutional Neural Networks (CNNs) have been success-
fully employed in the semantic segmantation of eddies [6].
However, most of the methods in the bibliography train and
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Fig. 2. CNN Reference Eddies: (a) An example of CNN eddy detection on the SST on the 22/08/2021. White contours are CNN
detections on the SST with no corresponding SSH AMEDA detection. Green contours are CNN detections with an overlapping
SSH detection (criterion [T, and retained as reference eddies (b) Positions of 600 anticyclonic (blue dots) and 300 cyclonic (red

dots) reference eddies retained on Spring-Summer 2021.

evaluate the performance of these CNNs on satellite altimetry
data (SSH) which contain inherent uncertainty biases. Thus,
the best of CNNs trained this way will only manage to repli-
cate the best of the standard eddy detection models.

In this work, we introduce a CNN able to detect the position,
size and form of eddies via a contour, on Sea Surface Temper-
ature (SST) images. To perform this semantic segmentation
task, we construct a U-Net type architecture with an upsam-
pling and a downsampling branch composed by convolution
and pooling operations. A dataset of more than 100,000 dis-
tinct eddy signatures on SST images are used to train the net-
work by minimizing cross entropy loss on masks stemming
from the AMEDA contours of maximal velocity. Three pre-
diction channels (No Eddy, Anticyclone, Cyclone) are used to
segment the output map and retain SST contours.

To evaluate the performance of the trained CNN we use a
sample of 30,000 SST patches retained on distinct years from
the ones used for training. Our test is performed on mesoscale
eddies with radii larger than 20km and with a cloud coverage
in the patch of less than 10 %. A comparison between the
performance of the eddy-detecting CNN applied on SST im-
ages and that of standard detection methods applied on the
geostrophic field derived by the SSH (as described in [1]]) is
given in Table 2] The Neural Network on SST overperforms
standard detection on SSH both by a much lower Missed Ed-
dies and Ghost (False Positive) Rate but also through the pre-
cision on the position and the size of detect eddies. This dif-
ference is even more pronounced for cyclonic eddies, which
are less accurately detected on altimetry [[1]].

Method / Data | Miss Ghost Position Size
Standard/SSH | 34 % 10% 7-20km 15-50 %
CNN /SST 3% <1% 7km 20%

Table 2. Error comparison on SSH and SST detection

4. REFERENCE EDDIES

Detections on SSH derived products (velocity) by the AMEDA
are combined with the detections on the SST images by the
Convolutional Neural Network (CNN). We define the agree-
ment of the two detections on independent satellite observa-
tions with a simple Intersection over Union (IoU) threshold:

SSHNSST
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The outputs of the eddy detecting CNN on the SST are
shown on Figure 2] (a). SST detections with no correspond-
ing AMEDA detection on the SSH are shown with a white
contour. SST detections with an overlapping SSH detection
above the IoU threshold of criterion[T]are shown with a green
contour and are retained as reference eddies. A total of 900
reference eddies shown in Figure |Z| (b), of which 600 an-
ticyclones and 300 cyclones, were retained in real-time on
Spring-Summer 2021 by applying the CNN and AMEDA
detection tools, spanning all the Mediterranean sea.

5. MODEL VALIDATION

The reference eddies, cross-detected in real-time on both SSH
and SST observations, serve to validate the accurate repro-
duction of mesoscale dynamics of operational models in real-
time. To retrieve the numerical model eddy contours we ap-
ply the AMEDA algorithm to the geostrophic velocity derived
from the operational model in real-time. As seen in Figure []]
(b) and (c), the MERCATOR and MFS model show diverging
results on the mesoscale field.

To apply our validation scheme we search for a corresponding
numerical model contour for each reference eddy contour. To
perform a colocalization, the distance of the barycenters of
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Fig. 3. Validation of two numerical models on the accuracy of reproduction of anticyclonic (AE) and cyclonic (CE) eddies.
Green bins show accurately detected eddies, orange bins show erroneously detected eddies and red bins show missed eddies.

the two contours should not be bigger than the sum of their
radii:

dpgr "M < Ry + Ratoa @)
If a contour is colocalized, the distance défef Mod) normal-

ized by the reference eddy radius Rg.s represents its posi-
tioning error, plotted on the x axes of Figure[3] When this er-
ror is smaller than the reference radius ([Rr.s) then the eddy
is considered as accurately detected (green bins). When the
error is between Rg.s and 2Rg.s the eddy is considered as
erroneously detected (orange bins). If no model contour in
the vicinity of the reference contour surpasses the criterion 2]
then the eddy is characterized as “missed” by the model.

As seen in Figure 2] the MFS model outperforms the Merca-
tor model with a 41% of accurate detections both for AE and
CE. However both models have a high miss rate of a third or
more of the eddies (higher for CE than AE) and another third
which is erroneously detected.

6. CONCLUSION

Operational oceanic model nowcast errors on mesoscale dy-
namics can be important, despite the assimilation of obser-
vations. Here, we propose a novel scheme to validate oper-
ational models in real-time. The eddy detections of a Con-
volutional Neural Network on SST satellite maps are coupled
with those of standard methods on SSH maps to provide a sub
set of highly reliable reference eddies. The later are then used
to quantify, in real time, the accuracy of different operational
models in the Mediterranean Sea. We show here that reliable
eddy contours can act as topological information for the vali-
dation of numerical models, as also recently shown in [7].

Our CNN detecting eddies on SST images has a very low false
negative (3%) and false positive (< 1%) rate compared that
of standard detection methods. CNNs have proven robust in
processing cloud coverage [8]], and can be thus trained to pro-

vide with reference eddy detections when the local region is
covered with less than < 50% of clouds. Besides, the in-
clusion of other visible (CHL) or radar (SAR) observations
could significantly increase the number of reference eddies.
Harnessing data fusion and deep neural networks to validate
operational ocean models can provide maritime stakeholders
with reliable and accurate nowcast and forecast data.
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