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Abstract: Dominant Optic Atrophy (DOA) is one of the most common inherited mitochondrial
diseases, responsible for sensorineural blindness. It is caused by the chronic
degeneration of the retinal ganglion cells (RGCs), the axons of which form the optic
nerve. Until now, DOA has been mainly associated with genes encoding proteins
involved in mitochondrial network dynamics. Using next generation and exome
sequencing, we identified in five patients with a late onset primary DOA, the first
heterozygous variants in  PMPCA  , which encodes an alpha subunit of the
mitochondrial peptidase (MPP), responsible for the cleavage and maturation of the
mitochondrial precursor proteins imported from the cytoplasm into mitochondria.
Recently,  PMCPA  has been identified as the gene responsible for Autosomal
Recessive Cerebellar Ataxia type 2 (SCAR2) and another severe recessive
mitochondrial disease. In this study, four  PMPCA  variants were identified, two are
frame-shift (c.309delA and c.820delG) classified as pathogenic and two missenses (
c.1363G>A and c.1547G>A  ) classified with uncertain pathological significance.
Functional assays on patient’s fibroblasts show a hyperconnection of the mitochondrial
network and revealed that these variants reduced α-MPP levels, while not significantly
affecting the respiratory machinery was noticed. These results suggest that alterations
of mitochondrial peptidase function can affect the fusion-fission balance, a key element
in maintaining the physiology of retinal ganglion cells, and consequently lead to their
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Abstract 

Dominant Optic Atrophy (DOA) is one of the most common inherited mitochondrial diseases, 

responsible for sensorineural blindness. It is caused by the chronic degeneration of the retinal 

ganglion cells (RGCs), the axons of which form the optic nerve. Until now, DOA has been 

mainly associated with genes encoding proteins involved in mitochondrial network dynamics. 

Using next generation and exome sequencing, we identified in five patients with a late onset 

primary DOA, the first heterozygous variants in PMPCA, which encodes an alpha subunit of 

the mitochondrial peptidase (MPP), responsible for the cleavage and maturation of the 

mitochondrial precursor proteins imported from the cytoplasm into mitochondria. Recently, 

PMCPA has been identified as the gene responsible for Autosomal Recessive Cerebellar Ataxia 

type 2 (SCAR2) and another severe recessive mitochondrial disease. In this study, four PMPCA 

variants were identified, two are frame-shift (c.309delA and c.820delG) classified as pathogenic 

and two missenses (c.1363G>A and c.1547G>A) classified with uncertain pathological 

significance. Functional assays on patient’s fibroblasts show a hyperconnection of the 

mitochondrial network and revealed that these variants reduced α-MPP levels, while not 

significantly affecting the respiratory machinery was noticed. These results suggest that 

alterations of mitochondrial peptidase function can affect the fusion-fission balance, a key 

element in maintaining the physiology of retinal ganglion cells, and consequently lead to their 

progressive degeneration. 
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Highlights  

 We identified four novel PMPCA variant in DOA patient. 

 Hyperconnection of mitochondrial network and reduced PMPCA levels were disclosed. 

 Alterations of mitochondrial peptidase function can affect mitochondrial dynamics.  

Abstract 

Dominant Optic Atrophy (DOA) is one of the most common inherited mitochondrial diseases, 

responsible for sensorineural blindness. It is caused by the chronic degeneration of the retinal 

ganglion cells (RGCs), the axons of which form the optic nerve. Until now, DOA has been 

mainly associated with genes encoding proteins involved in mitochondrial network dynamics. 

Using next generation and exome sequencing, we identified in five patients with a late onset 

primary DOA, the first heterozygous variants in PMPCA, which encodes an alpha subunit of 

the mitochondrial peptidase (MPP), responsible for the cleavage and maturation of the 

mitochondrial precursor proteins imported from the cytoplasm into mitochondria. Recently, 

PMCPA has been identified as the gene responsible for Autosomal Recessive Cerebellar Ataxia 

type 2 (SCAR2) and another severe recessive mitochondrial disease. In this study, four PMPCA 

variants were identified, two are frame-shift (c.309delA and c.820delG) classified as pathogenic 

and two missenses (c.1363G>A and c.1547G>A) classified with uncertain pathological 

significance. Functional assays on patient’s fibroblasts show a hyperconnection of the 

mitochondrial network and revealed that these variants reduced α-MPP levels, while not 

significantly affecting the respiratory machinery was noticed. These results suggest that 

alterations of mitochondrial peptidase function can affect the fusion-fission balance, a key 



 
 
 
 
 
 

element in maintaining the physiology of retinal ganglion cells, and consequently lead to their 

progressive degeneration. 

Abbreviations:  

CS: citrate synthase; DOA: dominant optic atrophy; ION: inherited optic neuropathy; mtDNA: 

mitochondrial DNA; LHON: Leber’s hereditary optic neuropathy; RGC: retinal ganglion cell; 

SCAR2: Autosomal Recessive Cerebellar Ataxia type 2. SCA28: Spinocerebellar ataxia 28. 

Keywords 

Dominant optic atrophy, mitochondrial peptidase, mitochondrial dynamic, heterozygous 

variants, retinal ganglion cell degeneration.  



 
 
 
 
 
 

1. Introduction: 

Dominant optic atrophy (DOA, MIM *605290) is an inherited optic neuropathy with a 

prevalence estimated to 1 in 25,000 (Carelli et al., 2004; Newman and Biousse, 2004; Yu-Wai-

Man et al., 2011; Lenaers et al., 2012). DOA affects the visual acuity by altering the central 

visual field and the color vision, due to a progressive loss of retinal ganglion cells (RGCs) and 

their axons that form the optic nerve, ensuring the transmission of visual information from the 

retina to the brain. Most patients have an age of onset in the first decade of life, some may 

experience functional blindness and others can be relatively asymptomatic (Eleni Bagli, 

Anastasia K Zikou, Niki Agnantis, 2017).  DOA can be also a syndromic disorder called DOA 

plus in 20% of cases, with secondary symptoms affecting auditory, neuronal and muscular 

functions.  

Sixty to seventy percent of DOA cases harbor pathogenic variants in nuclear OPA1 gene (Le 

Roux et al., 2019), which was the first gene identified to cause DOA (Alexander et al., 2000; 

Delettre et al., 2002). But recently, an increasing number of novel DOA genes were identified 

through the introduction of next generation sequencing technologies (Jurkute et al., 2019), 

including OPA3, MFN2, SPG7, AFG3L2, DNM1L, and SSBP1 (Charif et al., 2015; Charif et 

al., 2020; Gerber et al., 2017; Klebe et al., 2012; Piro-Mégy et al., 2020; Reynier et al., 2004; 

Rouzier et al., 2012; Lenaers et al., 2021). These genes are all involved directly in mitochondrial 

function, mostly mitochondrial dynamics, with the exception of SSBP1, which is involved in 

mtDNA replication. In addition, the WFS1 gene, responsible for the Wolfram syndrome, is also 

responsible for DOA associated with neuro-sensorial deafness (Rendtorff et al., 2011), and for 

isolated recessive isolated optic atrophy (Grenier et al., 2016). 



 
 
 
 
 
 

In mitochondria, the mitochondrial processing peptidase (MPP) play the most important role in 

preprotein processing compared to other mitochondrial peptidases (Gakh et al., 2002). PMPCA 

(MIM * 613036), a nuclear gene localized on human chromosome 9q34.3, encodes the a-

subunit of mitochondrial processing peptidase (a-MPP), a protein that participates in the 

cleavage of the mitochondrial targeting peptide of nuclear-encoded mitochondrial precursor 

proteins upon their import into mitochondria (Teixeira and Glaser, 2013). Without its function, 

abnormal nuclear-encoded mitochondrial precursor proteins accumulate inside mitochondria, 

disrupts mitochondrial functions and halts cell growth. In 2015, PMCPA has been identified as 

the gene responsible for Autosomal Recessive Cerebellar Ataxia type 2 (SCAR2), a severe 

mitochondrial diseases and later to a Leigh-like syndrome with spastic ataxia (Jobling et al., 

2015; Choquet et al., 2016; Joshi et al., 2016; Takahashi et al., 2020)  

In the present study, we identified the first heterozygous variants of PMPCA in 5 families with 

primary DOA. Fibroblasts characterization show a tendency to mitochondrial network hyper-

connection in PMPCA patient fibroblasts, and revealed decreased levels of PMPCA protein. 

 

 

 

 

 

  



 
 
 
 
 
 

 

2. Materials and Methods: 

2.1.Consent for Genetic investigations: 

Written informed consent to perform genetic analyses was obtained from each subject involved 

in this study or from the parents of individuals under 18 years of age, according to protocols 

approved by the Ethical Committees of the different Institutes involved in this study, and in 

agreement with the Declaration of Helsinki (Institutional Review Board Committee of the 

University Hospital of Angers, Authorization number: AC-2012-1507). 

2.2.Genetic analysis 

Genomic DNA was extracted from peripheral blood cells from cohorts of DOA and sporadic 

cases of optic atrophy, initially screened for OPA1, OPA3 and WFS1 exonic sequences and all 

mutations in the mitochondrial DNA responsible for LHON. Negative cases were analysed 

using a resequencing gene panel dedicated to the clinical molecular diagnosis of inherited optic 

neuropathies (ION). Further negative samples, among which the first patient with a PMPCA 

variant (Family 3) were analyzed by whole exome sequencing.  Then PMPCA molecular 

screening was included in the ION panel and led to the discovery of family 1, 2, 4 and 5. Library 

preparation, sequencing, bioinformatics and variants analysis were done as previously 

described (Charif et al., 2020; Gerber et al., 2017; Charif et al., 2021) 

2.3.Fibroblasts study 

Fibroblasts from PMPCA individuals P1: I:1 and P2: II:2 from family 1 and 3 respectively, 

were generated from skin biopsies and cultured in 2/3 Dulbecco’s Minimum Essential Medium 

(DMEM, Gibco) supplemented with 1/3 AmnioMAX (Gibco), 10% fetal calf serum (Lonza) 



 
 
 
 
 
 

and 1% Penicillin-Streptomycin-Amphotericin B (Lonza). Respiratory chain enzymatic 

activities and Western blot were assessed as described (Jobling et al.,2015; Gerber et al., 2017). 

2.3.1. Time lapse and Deconvolution microscopy.  

To assess the mitochondrial network dynamic (Codron et al., 2018), cells were incubated during 

20 minutes with MitoTracker green FM (Invitrogen™) to visualize mitochondria (green). 

Coverslips were mounted in housing and placed on the stage of an inverted wide-field 

microscope ECLIPSE Ti-E (Nikon, Tokyo, Japan) equipped with a 100X oil immersion 

objective (Nikon Plan Apo100x, Tokyo, Japan, N.A. 1.45) and an Andor NEO sCOMS camera 

con- trolled by Metamorph7.7 software (Molecular Devices, Sunnyvale, CA). A precision, 

piezoelectric driver mounted underneath the objective lens allowed faster Z-step movements, 

keeping the sample immobile while shifting the objective lens. 35-one image planes were 

acquired along the Z-axis at 0.1mm increments. For mitochondrial network characterization, 

acquired images were iteratively deconvolved using Huygens Essentialsoftware (Scientific 

Volume Imaging, Hilversum, The Netherlands), with a maximum iteration scored 50 and a 

quality threshold at 0.01. Imaris 8.0 ® software (Bitplane) was used for 3D processing and 

morphometric analysis.Time lapse images of 90ms duration (5sec interval) were acquiredat 

fixed temperature 25°C.  

2.3.2. Immunofluorescence 

Human skin fibroblasts were seeded at a density of ~90,000 cells per well in a six-well plate 

containing 20-mm coverslips and incubated overnight. Cells were fixed with 4% 

paraformaldehyde (PFA) in PBS for 15 min. After fixation, cells were quickly washed 3 times 

in PBS and then cells were incubated in the blocking buffer (BF; PBS with 5% BSA) for 15 



 
 
 
 
 
 

min. Coverslips were then washed in PBS three times and were incubated overnight with 

primary antibody diluted in the BF at 4°C on a rocking platform providing a gentle “wave” 

effect. Coverslips were then washed in BF three times for 5 min and subsequently incubated 

for 90 min at room temperature with goat anti-mouse Alexa 647 IgG (H+L) secondary antibody 

diluted in BF in dark chamber. Finally, coverslips were washed in PBS two times for 5 min, 

and keep in PBS at 4 degrees up to the assembly for the STORM acquisition. 

Immunodetection of nucleoids was achieved on fixed fibroblasts using antibodies against DNA 

(clone AC-30-10) Progen GmbH and co-stained with Citrate synthase antibodies. Image 

treatment was performed using Imaris spot detection software (Bitplane) to visualize and 

quantify mtDNA/nucleoid number per cell and mtDNA/nucleoid spacing within mitochondria. 

For mitophagy exploration, co-staining with autophagosomes marker anti-microtubule-

associated protein 1 light chain 3α (LC3, ab48394, 1:500; Abcam) and mitochondrial marker 

citrate synthase were performed. Images acquisitions were performed using deconvolution 

microscopy.  

2.3.3. STORM Acquisition 

For super resolution imaging, the cavity of a clean single depression slide (Paul Marienfeld, 

Lauda-Königshofen, Germany) was filled with 50 μL of switching buffer (Abbelight, Paris, 

France), and covered by the coverslip, the sample side facing downward. The device was placed 

on the stage of an inverted motorized microscope NIKON ECLIPSE Ti-E (Nikon Instruments 

Europe, Amsterdam, The Netherlands) equipped with a CFI SR APO TIRF 100X ON1.49 

objective, a Perfect Focus System, and a total internal reflection fluorescence (TIRF) ILas2 

module (Roper Scientific, Martinsried, Germany).  



 
 
 
 
 
 

Acquisition of images were proceeded using Metamorph 7.7 software (Molecular Devices, CA, 

USA). Image sequences were acquired with a single-photon sensitive camera Evolve 128TM 

EMCCD 512 x 512 imaging array, 16 x 16 μm pixels (Photometrics, Tucson, AZ, USA). 

Acquisitions were performed at fixed temperature 25°C in a dark heating chamber (Okolab NA, 

Pozzuoli, Italy). Phase contrast was first used for orientation and focus adjustment. Prior to 

STORM imaging, a multichannel TIRF fluorescence microscopy image was acquired for 

subsequent comparison with STORM image. Images were acquired with an integration time of 

60 ms per frame. The total acquisition time points for each sequence were adapted to the 

observed structure and to the labelling density (5,000 to 20,000 frames). Images were analyzed 

and reconstructed using the WaveTracer module integrated into Metamorph software (Kechkar 

et al., 2013). 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 

3. Results 

3.1. Identification of PMPCA variants in individuals with primary dominant optic atrophy 

Using whole exome sequencing, we screened for mutations in unrelated patients presenting an 

inherited optic neuropathies (ION) without a negative molecular diagnosis after analyzing 

OPA1, OPA3, WFS1, SPG7, AFG3L2, DNM1L, MFN2 exonic sequences, and mutation in the 

mitochondrial DNA responsible for LHON. After eliminating frequent (>1/10.000) and non-

pathogenic variants, according to the Sift, Polyphen and Mutation-Taster prediction tools, a 

first heterozygous mutation was identified in PMPCA, which led to include this gene in the ION 

panel. Three additional heterozygous PMPCA variants were identified in four families, two 

unreported and two being referenced with an allele frequency of 4,01.e-6 and 8,01.e-6 (Table1). 

Two variants (c.309delA and c.820delG) are pair base deletions causing a frame-shift 

(p.Lys103AsnfsTer74 and p.Val274SerfsTer27); and two are missense mutations (c.1363G>A 

and c.1547G>A) causing the p.Ala455Thr and p.Arg516His amino-acid changes, respectively 

(Table1). These variants were confirmed by Sanger sequencing and analyzed for segregation 

whenever DNA samples were available (Figure 1). 

3.2.Clinical manifestations of PMPCA patients 

All individuals included were referred to ophthalmology departments for poor visual acuity. 

All patients are male aged between 30 and 69 years who were primarily diagnosed with an 

isolated dominant optic atrophy, three had a normal brain MRI imaging. Patients II.1 from 

family 1 and II.1 from family 4 disclosed a severe optic atrophy with visual acuities ranging 

from 0.5/10 to counting fingers (Table 1). Additional symptoms were observed, as a multiple 

sclerosis for patient II.1 from family 4 and a peripheral neuropathy for patient II.1 from family 

2 (Table 1).  



 
 
 
 
 
 

3.3.Functional effects of PMPCA variants 

To evaluate the consequences of PMPCA variants on mitochondrial physiology, two fibroblast 

cell lines were derived from individuals P1: I:1 and P2: II:2 from family 1 and 3. Mitochondrial 

network overlaid on phase contrast revealed hyper-connected structures in cells from PMPCA 

patients, compared to control (Figure 2 A). Western blots experiments, using PMPCA, PMPCB, 

OPA1 and citrate synthase (CS) antibodies revealed a 25% reduction of PMPCA level, lower 

than expected for frame-shift mutations, and equal levels of PMPCB and OPA1 proteins (Figure 

2 B). Enzymatic activities of the respiratory chain complexes did not reveal significant 

difference between control and mutated fibroblasts (Figure 2 C).  In addition, no alteration was 

noticed in the analysis of PMPCA distribution in the mitochondrial network (Figure 2 D). 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 

4. Discussion 

Dominant optic atrophy is a heterogeneous group of diseases caused by selective loss of retinal 

ganglion cells (RGCs) and ascending degeneration of the optic nerve. In this study, we describe, 

the first four PMPCA heterozygous variants in five unrelated families with primary DOA.  

These variants are either novel or referenced with a very low frequency in gnomAD database. 

Recessives mutations in PMPCA have been described in the context of non-progressive 

cerebellar ataxia and a severe Leigh like syndrome associated to spastic ataxia (Jobling et al., 

2015; Joshi et al., 2016; Choquet et al., 2016; Takahashi et al., 2020). Thus, except for OPA1, 

all other DOA genes were identified initially in severe mitochondrial diseases essentially 

recessive, then causing DOA by dominant variants. Again, this is the case for PMPCA, for 

which we disclosed the involvement of heterozygous variants in a rather late onset optic 

atrophy. Because among the four mutations identified, two were frame shifts, it should be 

advised to examine the parents of SCAR2 patients who are carriers of other frame-shift 

mutations.  

Interestingly, among the five patients identified with PMPCA variants, two had additional 

neurological symptoms, as peripheral neuropathy for the index case of family 2 and multiple 

sclerosis for the index case from family 4. This parallels the observations that multisystemic 

manifestations, including neurological symptoms, are reported in up to 20% of OPA1 mutation 

carriers and in LHON patients (Amati-Bonneau et al., 2008; Amati-bonneau and Pasquier, 

2003; Hudson et al., 2008; Yu-Wai-Man et al., 2016; Priglinger et al., 2019). Thus, functional 

alterations of PMPCA might predispose to the emergence of neurological symptoms, in 

addition to jeopardizing RGC function and survival. 

PMPCA encodes the alpha subunit of the mitochondrial processing peptidase (MPP), which 



 
 
 
 
 
 

cleaves the targeting peptide of nuclear-encoded mitochondrial precursor proteins upon their 

import into mitochondria (Teixeira and Glaser, 2013). Our observation of PMPCA fibroblasts 

revealed decreased level of PMPCA protein, although not reaching a 50% decrease, as it would 

be expected for cells with frame-shift mutations, and deeply contrasting with the observation 

of a severe PMPCA depletion in SCAR2 patient lymphoblasts, associated to impaired frataxin 

production and processing (Jobling et al., 2015; Joshi et al., 2016). In addition, a hyper-

connected mitochondrial network, was observed in PMPCA conditions, as already reported in 

fibroblasts from DNM1L and OPA3 patients affected by DOA (Reynier et al., 2004; Gerber et 

al., 2017).  Conversely, we did not disclose alteration of the respiratory chain, nor of PMPCA 

distribution in the mitochondrial network, but well some rare events of mitochondria-

autophagosome contact sites suggestive of increased mitophagy (data not show). 

From these results, we conclude that the identification of PMPCA heterozygous variants points 

to a novel gene responsible for DOA, and a novel pathophysiological mechanism responsible 

for retinal ganglion cell degeneration, most likely milder from the one responsible for SCAR2 

presentation caused by bi-allelic PMPCA mutations. 

5. Conclusion 

In conclusion, we report the first DOA patients with heterozygous PMPCA variants, confirming 

the heterogeneity of these pathologies, and the important role of mitochondrial import in the 

maintenance of retinal ganglion cells integrity. 
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Legends to the figures: 

Figure 1: PMPCA pedigrees and amino acid changes localization 

A: Description of the pedigrees with PMPCA variants and their segregation among the families. 

B: The structure of the PMPCA protein with the amino acid changes associated to DOA on the 

top, and associated to Spinocerebellar ataxia, autosomal recessive 2 (SCAR2) and a progressive 

mitochondrial encephalopathy, on the bottom. 

Figure 2: Mitochondrial dynamic and PMPCA distribution studies of fibroblasts from 

control and PMPCA mutated patient. 

A: Representative fluorescent images of mitochondrial network structure overlaid on phase 

contrast (on the left) showed a mitochondrial network hyper-connection in PMPCA fibroblasts. 

Mitochondrial volume (in purple on black background in the middle) was assessed using the 

mitotracker Green fluorescent signal by Imaris software and color-coded on the right. The inset 

illustrates the classification code. To present the changes in mitochondrial morphology in 

patient's cells, types of mitochondria were classified in 5 groups according to mitochondrial 

length: blobs<1um, fragmented<5um, tubular<10um, filamentous<20um, mitochondrial 

network>20um. Bar graphs show the distribution of the mitochondrial population of Control, 

P1 and P2. Mean ± SEM. Scale bar: 10 μm. 

B: Western blots (left) against PMPCA, PMPCB, OPA1 and citrate synthase (CS) on control 

(C1) and two patients (P1 and P2) fibroblasts reveal decreased levels of PMPCA and equal 

levels of PMPCB and OPA1 in the pathological conditions, as shown on the histogram (right).  

C: Enzymatic activities of the respiratory complexes (CI to CV) from the control and the 

PMPCA mutated fibroblast strains related to the citrate synthase (CS) enzymatic activity, did 



 
 
 
 
 
 

not reveal significant difference between control and mutated fibroblasts. Results are Mean ± 

S.E.M. from four independent experiments. 

D: Single-molecule localization microscopy dSTORM was used to analyze PMPCA 

distribution, correlated to total internal reflection fluorescence TIRF microscopy for 

mitochondrial staining. Using Imaris software, the dSTORM PMPCA immunofluorescence 

signal was used to quantify their mitochondrial surface protein distribution.



 
 
 
 
 
 

Table 1: Clinical and molecular data of the PMPCA patients. 

Family Patient Sex Age VA other symptoms brain MRI ORF mutation protein change rs # 

 
 

gnomAD Freq. ACMG classification 

1 (II.1) M 30 
counting 

fingers 
- normal 

c.309delA p.Lys103AsnfsTer74 unknown - 
PVS1, PM2 and PP3 

Class 5 
2 (II.1) M 53  

peripheral 

neuropathy 
normal 

3 (II.2) M 45 4/10 - normal c.820delG p.Val274SerfsTer27 rs777445198 4,01.e-6 
PVS1, PM2 and PP3 

Class 5 

4 (II.1) M 35 0.5/10 multiple sclerosis ND c.1363G>A p.Ala455Thr unknown - 
PM2, PP2 and BP4 

Class 3 

5 (II.1) M 69 6/10 - ND c.1547G>A p.Arg516His rs768196711 8,01.e-6 
PM2, PP2 and BP4 

Class 3 

  

Abbreviations:  VA: visual acuity; M: male; rs #: reference sequence number; gnomAD Freq.: Frequency in the Genome Aggregation Database, 

ACMG:  American College of Medical Genetics and Genomic. 

 



Abbreviations:  

CS: citrate synthase; DOA: dominant optic atrophy; ION: inherited optic neuropathy; mtDNA: 

mitochondrial DNA; LHON: Leber’s hereditary optic neuropathy; RGC: retinal ganglion cell; 

SCAR2: Autosomal Recessive Cerebellar Ataxia type 2. SCA28: Spinocerebellar ataxia 28. 
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