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Descent modulus and applications

Aris Daniilidis, Laurent Miclo, David Salas

Abstract. The norm of the gradient ‖∇f(x)‖ measures the maximum descent of a real-valued
smooth function f at x. For (nonsmooth) convex functions, this is expressed by the distance
dist(0, ∂f(x)) of the subdifferential to the origin, while for general real-valued functions defined
on metric spaces by the notion of metric slope |∇f |(x). In this work we propose an axiomatic
definition of descent modulus T [f ](x) of a real-valued function f at every point x, defined on a
general (not necessarily metric) space. The definition encompasses all above instances as well
as average descents for functions defined on probability spaces. We show that a large class
of functions are completely determined by their descent modulus and corresponding critical
values. This result is already surprising in the smooth case: a one-dimensional information
(norm of the gradient) turns out to be almost as powerful as the knowledge of the full gradient
mapping. In the nonsmooth case, the key element for this determination result is the break of
symmetry induced by a downhill orientation, in the spirit of the definition of the metric slope.
The particular case of functions defined on finite spaces is studied in the last section. In this
case, we obtain an explicit classification of descent operators that are, in some sense, typical.
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1 Introduction

In [6] the following surprising result was obtained: two C2-smooth convex bounded from below
functions defined on a Hilbert space H are equal up to an additive constant, provided they
have the same modulus of derivative at every point. In other words, for this class of functions,
equality of moduli of derivatives (‖∇f‖ = ‖∇g‖) implies equality of the derivatives (∇f = ∇g).
An alternative way to announce this result is to say that the operator

f 7→ ‖∇f‖ (1)

determines the function f (modulo a constant) for the class of C2-smooth convex and bounded
from below functions defined on the Hilbert space H.

The above result has been extended in [19] to the class of convex continuous bounded from
below functions on a Hilbert space H. A further extension for functions defined on an arbitrary
Banach space X has been achieved in [25]. In both cases, the operator

f 7→ d(0, ∂f(x)) (remoteness of the subdifferential) (2)

determines the function f (modulo a constant) for the class of convex continuous and bounded
from below functions on a Banach space X.

In [9] the authors worked on an arbitrary metric space (X, d). Using the notion of metric slope
|∇f |, they established the following result: two continuous coercive functions f, g : X → R are
equal, provided they have the same metric slope (|∇f | = |∇g|) and coincide on the (common)
critical set S = |∇f |−1(0) = |∇g|−1(0). (We refer to Section 2 for notation and relevant defini-
tions; see also Subsection 2.1 for a more detailed description of the above results.) Denoting by
K(X) the class of continuous coercive functions on X (the exact definition of coercivity will be
given in (4)), we consider the following equivalent relation: f ∼ g if and only if f and g have
the same (metric) critical set and their values coincide there up to a constant, that is,

f ∼ g ⇐⇒ S = |∇f |−1(0) = |∇g|−1(0) and f
∣∣
S
− g
∣∣
S

= c, for some c ∈ R.

Then, the aforementioned result of [9] asserts that the operator

f 7→ |∇f | (3)

is injective on K(X)/∼, that is, it determines functions f ∈ K(X) modulo the equivalent
relation ∼.

We refer to all above results as determination results on a specific class of function (modulo
a natural equivalent relation). Although the last result is formulated in an abstract metric
space and is quite general, we will show in this work that a deeper result is hidden. Namely,
the metric structure is ostensibly required to define the determining operator, but is not really
paramount: the quantities ‖∇f(x)‖ (in the smooth case) and |∇f |(x) (in a metric setting)
express the steepest descent of f at a given point x, however, this is not the only possible choice
to deal with descent properties. For instance, one can also consider average descent (based
on some probability measure on the space X) and emancipate dependence from the metric
structure. The above leads to a definition of an abstract descent operator (which does not rely
on a distance or even a topology). This abstract scheme, developed in Section 3, encompasses
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several instances of descent-type operators, in particular both paradigms of steepest descent and
average descent. In Section 4 we study general diffusion processes in metric spaces and show
that asymmetrization (via downhill orientation) is the key property to obtain a determination
result, in a complete analogy to the asymmetric definitions of (2)–(3). In the last section we
consider the particular case of descent operators in finite dimensional spaces and obtain an
explicit classification of a broad subfamily of these operators.

2 Notation and Preliminaries

We set R = R t {−∞,+∞} and R+ = R+ t {+∞}. For any a ∈ R we set a+ = max{a, 0}. For
two real numbers r, s ∈ R, we write r∧s := min{r, s} and r∨s := max{r, s}. Given a nonempty
set X and a function f : X → R we define the domain of f as follows:

dom(f) := {x ∈ X : f(x) < +∞} .

Given α ∈ R, we write

[f ≤ α] := {x ∈ X : f(x) ≤ α}
[f < α] := {x ∈ X : f(x) < α}

to denote the sublevel set and strict sublevel set of f at value α. The sets [f = α], [f ≥ α] and
[f > α] are defined analogously.

We shall often equip the set X with a topology, denoted by τ . In this case, we denote by B(X)
the σ-algebra of the Borel subsets of the topological space (X, τ).

We say that a function f : X → R∪{+∞} is τ -lower semicontinuous if all sublevel sets [f ≤ a],
a ∈ R, are τ -closed subsets of X. The function f is called τ -coercive if

for every α ∈ (−∞, sup f), the sublevel set [f ≤ α] is τ -compact. (4)

We simply call f lower semicontinuous (respectively, coercive), when no ambiguity on the topol-
ogy occurs. Notice that the above definition of coercivity encompasses in particular all constant
functions.

We further denote by

C(X) the space of continuous functions from X to R (5)

and we define the subclass of coercive continuous functions by

K(X) := {f ∈ C(X) : f is τ -coercive}. (6)

If (X, τ) is compact, then every lower semicontinuous functional is coercive and K(X) = C(X).

Let Ln stand for the usual Lebesgue measure over Rn and let Bn(x, r) (respectively, Bn(x, r))
be the open (respectively, closed) ball centered at x ∈ Rn of radius r > 0. We also denote by Bn
(respectively, Sn) the closed unit ball (respectively, unit sphere) of Rn. If there is no ambiguity,
we omit the subindex n for each of the elements above. It is well known (see, e.g., [23]) that the
n-dimensional volume of the ball of radius r > 0 in Rn is given by

Ln(B(0, r)) =
πn/2

Γ
(
n
2 + 1

)rn , (7)
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where Γ stands for the gamma function. In particular, the volume of the n-dimensional ball
B(0, r) is proportional to rn. For any (affine) subspace W of Rn, we denote by dim(W ) its
(affine) dimension.

We say that a family F of real-valued functions is a cone if for every f ∈ F and r ≥ 0 we have
rf ∈ F . In addition, we say that F is a translation cone if it is closed by translations (that is,
for every f ∈ F and every constant c ∈ R, we have that f + c ∈ F). Clearly, the set K(X) of
coercive continuous functions is a translation cone in C(X).

For an operator T : F → (R+)X , we define its domain

dom(T ) := {f ∈ F : T [f ](x) < +∞, for all x ∈ X}.

If (X, d) is a metric space, we define the metric slope |∇f |(x) of an extended real-valued function
f : X → R ∪ {+∞} at the point x ∈ dom(f) as follows:

|∇f |(x) :=

 lim sup
y→x

{f(x)−f(y)}+
d(y,x) , if x is not isolated,

0, otherwise.
(8)

In the same setting, the global slope G [f ](x) is defined as follows:

G [f ](x) := sup
y∈X

{f(x)− f(y)}+
d(y, x)

.

Notice that G [f ](x) = 0 if and only if x ∈ argmin f (i.e. x is global minimum of f), while
|∇f |(x) = 0 whenever x is a local minimum of f . The notions of metric slope (also known as
strong slope) and global slope are well known in the literature (see, e.g., [1] and the references
therein).

Let us now assume that X is a Banach space with dual X∗. It is well-known that if f : X → R
is a smooth function, then

|∇f |(x) = ‖∇f(x)‖.

In the nonsmooth setting, if f : X → R ∪ {+∞} a lower semicontinuous convex function, its
(Fenchel-Moreau) subdifferential ∂f(x) at x ∈ dom(f) is defined as follows:

∂f(x) = {p ∈ X∗ : ∀y ∈ X, f(y) ≥ f(x) + 〈p, y − x〉}.

It is well-known that ∂f(x) is a closed convex set and it is nonempty if x is a point of continuity
of f (see, e.g., [22]). Moreover, it is known (see, e.g., [1, Proposition 1.4.4]) that for any lower
semicontinuous convex function over a Banach space, one has

|∇f |(x) = G [f ](x) = d(0, ∂f(x)). (9)

2.1 State-of-the-art

The derivative of a smooth function recovers, up to an additive constant, the function through
integration. In the nonsmooth case, Rockafellar [21] showed that every lower semicontinuous
convex function can be represented through its subdifferential by means of a nonsmooth integra-
tion. This result has been refined in [4] for Banach spaces with the Radon-Nikodym property,
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provided the function satisfies a mild coercivity property (namely, the asymptotic cone of its
epigraph is epi-pointed). In this latter case, a partial knowledge of the subdifferential mapping
∂f is sufficient to recover the function up to a constant.

Historically, this integration result was first stated as a determination result: For every two
proper convex lower semicontinuous functions f, g : X → R over a Banach space X, one has
that

(∂f(x) = ∂g(x), ∀x ∈ X) =⇒ f = g + c, for some c ∈ R. (10)

This result was first obtained in Hilbert spaces by Moreau [17], and generalized to Banach spaces
one year later by Rockafellar [20]. A more general result was established by Brezis for monotone
operators [7], where the same determination result can be obtained in Hilbert spaces only in
terms of the element of minimal norm of the subdifferential, that is,

(proj(0, ∂f(x)) = proj(0, ∂g(x)), ∀x ∈ H) =⇒ f = g + c, for some c ∈ R, (11)

where proj(x,A) denotes the metric projection of x onto the set A. Notice that knowledge of a
full gradient ∇f(x) (respectively, subdifferential ∂f(x) ⊂ X∗, or proj(0, ∂f(x)) ∈ H) at many
(all) x ∈ X is already a rich information: at every such point x we need to know a vector
(respectively, a set of vectors). Nonewithstanding, it has recently become clear that much less
information (namely, a scalar) is often sufficient if our objective is only to determine functions
(rather than recovering them via an explicit formula). This is resumed below:

2.1.1 Determination of convex functions

Let H be a Hilbert space and f : H → R be a C2-smooth convex and bounded from below
function. Set V (x) = 1

2‖∇f(x)‖2 and consider the second-order dynamical system

ẍ(t) = ∇V (x(t)), (12)

with initial condition x(0) = x0 ∈ H. It has been shown in [6] that every evanescent solution
of (12) (that is, every solution satisfying ‖ẋ(t)‖ → 0 and ‖∇V (x(t))‖ → 0, as t→∞) is solution
of the first order gradient system: {

ẋ(t) = −∇f(x(t))

x(0) = x0.
(13)

On the other hand, C2-smoothness assumptions guarantees that (13) has unique solution. The
fact that f is bounded from below ensures that this solution is evanescent. By straightforward
differentiation we deduce that this solution is also solution of the second-order system (12),
therefore (12) and (13) have the same solutions. Since (12) depends only on ‖∇f‖ (rather than
on ∇f), the following conclusion has been obtained:

• If f, g : H → R are two C2-smooth convex bounded from below functions, then

‖∇f‖ = ‖∇g‖ ⇐⇒ ∇f = ∇g ⇐⇒ f = g + c, for some c ∈ R. (14)

Notice that C2-smoothness was required in order to define property (12). However, this assump-
tion can be relaxed to C1-smoothness, assuming existence of minimizers [2]. This is based on
the remark that

‖∇f‖ = ‖∇g‖ ⇐⇒ 〈∇(f + g),∇(f − g)〉 (15)
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which ensures in turn that the function f − g is constant among the gradient orbits of the
(convex) function f + g. Since each such orbit lands on the (common) set S of minimizers of
the functions f, g and f + g, and since f − g is constant there (with value min f −min g), the
result follows.

A generalization of (14) has been carried out in [19], where smoothness assumption has been
replaced by continuity.

• If f, g : H → R are two convex continuous and bounded from below functions, then

d(0, ∂f(x)) = d(0, ∂g(x)), for all x ∈ H ⇐⇒ ∂f = ∂g

⇐⇒ f = g + c, for some c ∈ R.
(16)

To achieve the above result, the authors studied the subgradient system ẋ(t) ∈ −∂f(x(t)) and
showed that in this case the assumption d(0, ∂f(·)) ≥ d(0, ∂g(·)) yields f ≥ g+ c. This is proven
based on two key observations: First, the solution x(t) is not only a minimizing curve for f
(i.e., f(x(t)) → inf f as t → +∞), but it is also a minimizing curve for g. Second, the chain
rule of the convex subdifferential entails that (f − g) is nonincreasing along x(t). Thus, one can
consider c = inf f − inf g. After proving this comparison principle, (16) follows by symmetry.

2.1.2 Determination in metric spaces

Convexity assumption was important for the proofs of (14) and (16). However, the outlined
proof via (15) was using convexity for two factors: to conclude that every steepest descent curve
lands on a critical point (i.e. has an accumulation point in the set of critical points), and that
every critical point is global minimizer, that is,

Crit f = {x ∈ X : ∇f(x) = 0} = arg min f. (17)

Assuming (17) and some coercivity condition (instead of convexity), the same argument leads
to the following result:

• If f, g : H → R are two C1-smooth coercive functions, then:

‖∇f‖ = ‖∇g‖ and

Crit f = arg min f = arg min g 6= ∅

}
=⇒ f = g + c, for some c ∈ R.

On the other hand, all results mentioned in the previous subsection are strongly based on
(sub)gradient dynamical systems and the Hilbertian structure of the space. Quite surprisingly,
it turns out that this structure is eventually not required. Indeed, in the recent work [25],
the result (16) has been extended to arbitrary Banach spaces, through a completely different
approach, which was based on the notion of countable orderable sets introduced in [15]. In that
work the authors establish that two continuous and bounded from below functions f, g : X → R
defined on a metric space (X, d) and with finite global slopes are equal up to a constant, provided
they have the same global slopes at every point. In other words:

G [f ] = G [g] < +∞ =⇒ f = g + c, for some c ∈ R. (18)
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The key technique to achieve such a result is the construction of a minimizing sequence by means
of the global slope. The construction is based on the following result (proved in [25]): for every
sequence {xi}i of the metric space (X, d) and for every proper extended real-valued function
f : X → R t {∞} it holds:(

lim
i→∞

G [f ](xi) = 0 and
∞∑
i=1

G [f ](xi)d(xi, xi+1) <∞

)
=⇒ lim inf

i→∞
f(xi) = inf

X
f. (19)

Although the setting is quite general (metric spaces), the notion of global slope is rather restric-
tive, since it does not coincide with the modulus of the derivative in the smooth case. But this
notion is a very good fit for convex functions defined on a general Banach space X. In this case,
combining (9) with (18) yields a generalization of (16).

In an independent work [9], the authors considered the local notion of metric slope and estab-
lished the following comparison result for the class of continuous coercive functions. In what
follows we denote by

Critf = {x ∈ X : |∇f |(x) = 0}

the set of (metrically) critical points.

Proposition 2.1 (slope comparison). Let (X, d) be a metric space and f, g : X → R be two
continuous coercive functions. Assume that

(i). |∇f |(x) > |∇g|(x), for all x ∈ X�Critf. ; and

(ii). f(x) > g(x), for all x ∈ Critf.

Then, f > g.

The proof was obtained by reasoning to contradiction and using discrete iterations and transfi-
nite induction. The following determination result was then obtained as consequence of Propo-
sition 2.1.

Theorem 2.2 (Determination in metric spaces). Let (X, d) be a metric space and f, g : X → R
be two continuous coercive functions. Assume that

(i). |∇f |(x) = |∇g|(x) < +∞, for all x ∈ X ; and

(ii). f(x) = g(x), for all x ∈ Crit f.

Then, f = g.

The above result asserts that information on the metric slope |∇f | and critical values is sufficient
to determine every continuous coercive functions with finite slope (therefore, in particular, every
Lipschitz continuous coercive functions). Taking into account the pathologies that prevail Lips-
chitz functions, the above statement appears close to be optimal: In [9] several counterexamples
are presented to show the pertinence of the assumptions. This being said, there is still room
for improvements: indeed, assuming X is a complete metric space, it seems plausible to relaxe
coercivity/compactness assumption (which is required in the current proof), by an alternative
assumption ensuring the existence of appropriate descent (generalized) sequences that link any
point to the critical set.
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2.2 Description of the current work

Revising the arguments employed in [9] for the proof of Proposition 2.1 and Theorem 2.2 we
observe that continuity and coercivity are topological notions, while the metric structure of
(M,d) is only required in order to define the metric slope, see (8). In particular, one can assume
continuity and coercivity with respect to another topology (not related to the given distance d)
and the topological part of the proof can be completely decoupled.

In this work we show that a similar result to Theorem 2.2 holds for any topological space
equipped with a Borel probability measure µ, if we replace the metric slope |∇f |(x) (corre-
sponding to the steepest descent at x) by the µ-average descent Tµ(f)(x) at x given by

Tµ(f)(x) :=

∫
X
{f(x)− f(y)}+ dµ(y) =

∫
[f≤f(x)]

[f(x)− f(y)] dµ(y).

More generally, we introduce an abstract descent operator T [f ] (see Definition 3.1) that en-
compasses both metric and global slopes (in metric spaces) and average descent (in probability
spaces) as well as many other instances, see Subsection 3.3 for further examples and stability
properties of this operator. We then establish an abstract determination result (Theorem 3.5)
revealing that the metric structure is neither minimal nor optimal framework, as hinted by
the topological and metric decoupling observed in [9]. In Section 4 we study general stochas-
tic processes in metric spaces and define adequate oriented operators (particular instances of
Definition 3.1) that allow to obtain determination results. Finally, in Section 5 we introduce
an equivalence relation among descent moduli for functions f ∈ RV defined in finite spaces V
and show that a typical descent modulus is equivalent to a steepest descent with respect to a
prescribed active neighborhood system (see Theorem 5.8).

3 Descent modulus: definition, properties and main examples

Let F be a family of functions from a nonempty set X to R. For an operator T : F → (R+)X ,
we define its domain

dom(T ) := {f ∈ F : T [f ](x) < +∞, for all x ∈ X}. (20)

We also define the set ZT (f) of T -critical points of f ∈ F as follows:

ZT (f) = {x ∈ X : T [f ](x) = 0}. (21)

(Note that every T -critical point of f is a global minimizer for the function T [f ].)

In this section we give an axiomatic definition of an abstract descent operator, that is, an oper-
ator T acting on (a certain class of) functions f from X to R. This operator associates to each
point x ∈ X an extended nonnegative number T [f ](x) ∈ R ∪ {+∞} which corresponds to an
abstract measure of descent (henceforth called descent modulus) of f at x.

The required properties of this abstract definition will be kept minimal to encompass several
instances stemming from classical and variational analysis, metric geometry and stochastic pro-
cesses: in particular, the metric slope (used in [9]), the global slope (used in [25]) and the notion
of average descent (that will be discussed later in this work) are all captured by the proposed
abstract scheme.
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3.1 Axiomatic definition

Let F be a translation cone in the space of functions from a nonempty set X to R.

Definition 3.1 (Abstract descent modulus). Let T : F → (R+)X be a nonlinear operator.
We say that:

(D1). T preserves global minima, if for every function f ∈ F and x ∈ X we have

x ∈ argmin f =⇒ x ∈ ZT (f) .

(D2). T is monotone at x, if for every f, g ∈ F we have:

∀z ∈ X : (f(x)− f(z))+ ≥ (g(x)− g(z))+ =⇒ T [f ](x) ≥ T [g](x). (22)

(D3). T is scalar-monotone at x, if for every function f ∈ F and r > 1, we have

0 < T [f ](x) < +∞ =⇒ T [f ](x) < T [rf ](x).

The operator T is called (scalar) monotone, if it is (scalar) monotone at every x ∈ X.

We say that T is a descent modulus for the class F if properties (D1)–(D3) hold, that is, if T is
monotone, scalar-monotone and preserves global minima.

Before we proceed, let us have a brief discussion on the above properties:

Property (D1) states that there is no descent at global minima; thus T [f ](x) = 0 holds at every
x ∈ argmin f .

Property (D2) expresses the fact that the amount of descent of f at a point x depends only on
the sublevel set [f ≤ f(x)] and is captured by the function z 7→ (f(x) − f(z))+. Accordingly,
for a fixed x ∈ X, the relation

g �x f ⇐⇒
def

∀z ∈ X : (g(x)− g(z))+ ≤ (f(x)− f(z))+

is a preorder relation on F which roughly reads as follows: “f has more descent than g at x”.
Under this terminology, (D2) requires the mapping F 3 f 7→ T [f ](x) to be monotone with
respect to �x.

Notice further that (22) yields the following: If g �x f , then

z /∈ [f < f(x)] =⇒ g(z) ≥ g(x) (that is, z /∈ [g < g(x)]). (23)

This means that g �x f implies that [g < g(x)] ⊂ [f < f(x)]. Finally, scalar-monotonicity in
(D3) expresses the fact that the descent of the function g = rf should be larger than the one
of f , when r > 1.

In conclusion, the above axioms (D1)–(D3) are natural requirements for an abstract notion of
descent of a function f at a point x. The following proposition reveals further properties that
can be derived from the axioms of Definition 3.1.

Proposition 3.2 (Properties of descent moduli). Let F ⊂ C(X) (as before) and T : F → (R+)X

be an operator. Then:
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(a). (one-step descent property) T is monotone if and only if for every f, g ∈ F and x ∈ X

T [f ](x) > T [g](x) =⇒ ∃z ∈ [f < f(x)] : f(x)− f(z) > g(x)− g(z). (24)

(b). (translation-invariance) If T is a descent modulus for F , then for every c ∈ R and f ∈ F
we have:

T [f ] = T [f + c].

(c). (strict monotonicity) Let T be monotone at x ∈ X. Then the following are equivalent:

– (c1). T is scalar-monotone at x.

– (c2). For every f, g ∈ F with T [f ](x) > 0, T [g](x) < +∞ and [g ≤ g(x)] ⊂ [f ≤ f(x)], the
implication

∃δ > 0 : ∀z ∈ [g ≤ g(x)] =⇒ f(x)− f(z) ≥ (1 + δ)(g(x)− g(z)),

yields
T [f ](x) > T [g](x).

– (c3). For every f ∈ F , x ∈ X and r ∈ (1,+∞) such that 0 < T [f ](x) and T [rf ](x) < +∞,
the mapping

[0, r − 1] 3 δ 7→ T [(1 + δ)f ](x)

is strictly increasing.

Proof. Let us show the above properties separately:

(a). (sufficiency) Reasoning by absurd, assume T verifies the one-step property but it is not
monotone. Then, there exist f, g ∈ F and x ∈ X with (f(x)− f(·))+ ≥ (g(x)− g(·))+ but with
T [f ](x) < T [g](x). By the one-step descent property (24), there exists z ∈ [g < g(x)] such that

g(x)− g(z) > f(x)− f(z).

However, the inequality (f(x)− f(·))+ ≥ (g(x)− g(·))+ yields that [g < g(x)] ⊂ [f ≤ f(x)], and
so the above inequality is a direct contradiction.

(necessity) Assume that T is monotone but the one-step descent property does not hold. Then,
there exist f, g ∈ F and x ∈ X with T [f ](x) > T [g](x) such that for all z ∈ X we either have
f(x) ≤ f(z) or f(x)−f(z) ≤ g(x)−g(z). It is not hard to see that for every z ∈ X one has that

(f(x)− f(z))+ =

 f(x)− f(z) ≤ g(x)− g(z) , if f(x) > f(z)

0 , otherwise.

Thus, in any case, we get that (f(x)− f(z))+ ≤ (g(x)− g(z))+. Then, monotonicity yields that
T [f ](x) ≤ T [g](x), which is a contradiction.

(b). We show that for every f ∈ F and c ∈ R, we have T [f ] = T [f + c].

Notice that [(f(x) + c)− (f(z) + c)]+ ≥ [f(x)− f(z)]+ holds trivially for all x, z ∈ X. By
monotonicity we deduce that T [f ] ≤ T [f + c]. Replacing now f by f ′ = f + c and respectively,
c by c′ = −c, we obtain equality.
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(c). Let us show first that (c1)⇒ (c2):

Reasoning by absurd, assume that there exist f, g ∈ F and δ > 0 satisfying the hypotheses of
the statement and x ∈ X with 0 < T [f ](x) ≤ T [g](x) < +∞. Then for all z ∈ X it holds:

(f(x)− f(z))+ ≥ ((1 + δ)g(x)− (1 + δ)g(z))+ .

By monotonicity, we deduce that T [(1 + δ)g] ≤ T [f ]. Further, using scalar-monotonicity, we get

0 < T [g](x) < +∞ =⇒ T [g](x) < T [(1 + δ)g](x) ≤ T [f ](x) ≤ T [g](x),

which is a contradiction.

Let us now show that (c2)⇒ (c3):

Let f ∈ F , x ∈ X and r > 1 such that 0 < T [f ](x), T [rf ](x) < +∞. Fix δ1, δ2 ∈ [0, r − 1] with
δ1 < δ2. We set g = (1 + δ1)f and h = (1 + δ2)f . Monotonicity yields that 0 ≤ T [g](x) and
T [h](x) < +∞. Then, setting

δ =
1 + δ2

1 + δ1
− 1

we have that for all y ∈ X, [g ≤ g(y)] = [h ≤ h(y)], and for all y, z ∈ X:

h(y)− h(z) = (1 + δ)(g(y)− g(z)).

Thus, (c2) yields that T [h](x) > T [g](x).

Let us finally establish that (c3)⇒ (c1).

To this end, let f ∈ F , r > 1 and x ∈ X such that 0 < T [f ](x) < +∞. We need to show
that T [f ](x) < T [rf ](x). This holds trivially if T [rf ](x) = +∞, therefore we can assume
that T [rf ](x) < +∞. Since T is monotone, we have that T [rf ](x) ≥ T [f ](x) already, and in
particular, T [rf ](x) > 0. Then, by hypothesis, we have that the mapping

[0, r − 1] 3 δ 7→ T [(1 + δ)f ](x)

is strictly increasing, which leads us directly to the desired inequality.

3.2 Determination in topological spaces

Let (X, τ) be a topological space and let T be a descent modulus for K(X). Let us define the
following equivalent relation on the class K(X) of continuous coercive functions: we say that
the functions f, g ∈ K(X) are equivalent (and we denote f ∼ g) if they have the same T -critical
set and they are equal there.
In other words:

f ∼ g ⇐⇒ ZT (f) = ZT (g) = S and f |S = g|S .

In this section, borrowing from techniques developed in [9], we show that properties (D1)–
(D3) of the descent modulus (cf. Definition 3.1) are sufficient to guarantee that the mapping
f 7→ T [f ] is injective on K(X), modulo the above equivalent relation. Therefore, according to
our terminology, the descent modulus determines the class K(X). At this stage, let us also
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outline the topological nature of this result: no linear or metric structure is required.

The results of this section will be stated in a slightly more general framework. We assume,
similarly to the previous section, that F ⊂ K(X) is a translation cone.

We start with the following lemma.

Lemma 3.3 (strict domination of descent modulus). Let T be a descent modulus for the class F .
Let f, g ∈ dom(T ) such that

∀x ∈ X \ ZT (f), T [f ](x) > T [g](x).

Then, for all x ∈ X, we have that

f(x) ≥ g(x) + µ(x),

where
µ(x) := inf{(f − g)(z) : z ∈ [f ≤ f(x)] ∩ ZT (f)} ∈ R ∪ {−∞}.

Proof. Since the set of global minimizers of every function f ∈ F is nonempty and the abstract
descent modulus T preserves global minima, we deduce that ZT (f) 6= ∅ and consequently,
µ(x) < +∞. Let us assume, towards a contradiction, that there exists x ∈ X such that
f(x) < g(x) + µ(x). Then, clearly µ(x) > −∞ which readily yields x ∈ X \ ZT (f). Therefore,
by assumption, T [f ](x) > T [g](x). Applying the one-step descent property (24) of T , we infer
that there exists z0 ∈ X such that

f(z0) < f(x) and (g − f)(z0) = c > (g − f)(x) > −µ(x).

Since z0 is not a T -critical point, we can repeat the above argument to obtain z1 /∈ ZT such that
f(z1) < f(z0) and (g − f)(z1) > c = (g − f)(z0). Following the strategy of [9, Proposition 2.2],
we construct (by means of a transfinite induction over the ordinals) a generalized sequence
{zα}α ⊂ [f ≤ f(z0)] such that {f(zα)}a is decreasing and {(g − f)(zα)}α is increasing:

– If α = β + 1 is a successor ordinal then, since zβ /∈ ZT (f) and g(zβ) ≥ f(zβ) + c, the one-step
descent property (24) yields zβ+1 such that

f(zβ+1) < f(zβ) ≤ f(z0) and (g − f)(zβ+1) > (g − f)(zβ) ≥ c.

– If α is a limite-ordinal and {zβ}β<α ⊂ [f ≤ f(z0)] is defined accordingly, then since the sublevel
set [f ≤ f(z0)] is compact, the ω-limit set

A =
⋂
β<α

{zη : β ≤ η < α},

is nonempty. Pick any zα ∈ A. Clearly, zα ∈ [f ≤ f(z0)], f(zα) ≤ f(zβ) for all β ≤ α, and by
continuity

(g − f)(zβ) = inf{(g − f)(zη) : β ≤ η < α} ≤ (g − f)(zα).

Notice that the above construction never meets a T -critical point of f . Indeed, if zα ∈ ZT (f)
for some ordinal α, then since f(zα) < f(x) we would have that

−µ(x) = sup{(g − f)(z) : z ∈ [f ≤ f(x)] ∩ ZT (f)}
≥ (g − f)(zα) ≥ c > −µ(x),
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which is a contradiction. Due to a cardinality obstruction, we necessarily deduce that zα = zβ
for some ordinals α, β with α > β. This yields

(g − f)(zβ+1) > (g − f)(zβ) = (g − f)(zα) ≥ (g − f)(zβ+1),

which is clearly a contradiction. The conclusion follows.

Theorem 3.4 (Comparison principle). Let T be a descent modulus for F and let f, g ∈ dom(T )
and c ∈ R such that

(i). T [f ](x) ≥ T [g](x), for all x ∈ X; and

(ii). f(x̄) ≥ g(x̄) + c, for all x̄ ∈ ZT (f).

Then, f ≥ g + c.

Proof. Let x ∈ X \ ZT (f) be arbitrarily chosen. Fix ε > 0, set fε = (1 + ε)f and notice that
monotonicity of T yields that ZT (fε) ⊂ ZT (f). Let z ∈ X \ ZT (fε). We have two cases:

Case 1: z ∈ X \ ZT (f). Then scalar-monotonicity of T yields

T [fε](z) = T [(1 + ε)f ](z) > T [f ](z) ≥ T [g](z).

Case 2: z ∈ ZT (f) \ ZT (fε). Then T [fε](z) > 0 = T [f ](z) ≥ T [g](z).

In both cases, T [fε](z) > T [g](z). Thus, by Lemma 3.3, we have that

fε(x) ≥ g(x) + inf{(fε − g)(z) : z ∈ ZT (fε) ∩ [fε ≤ fε(x)]}
≥ g(x) + inf{(fε − g)(z) : z ∈ ZT (f) ∩ [f ≤ f(x)]}
≥ g(x) + c+ ε inf{f(z) : z ∈ ZT (f) ∩ [f ≤ f(x)]}
≥ g(x) + c+ εmin f.

Finally, by taking ε→ 0, we deduce that f(x) ≥ g(x) + c. The proof is complete.

Applying twice Theorem 3.4, we deduce easily the following determination result.

Theorem 3.5 (Determination of continuous coercive functions). Let T be a descent modulus
for a translation cone F of K(X). Let f, g ∈ dom(T ) and c ∈ R be such that

(i). T [f ](x) = T [g](x) for all x ∈ X (whence ZT (f) = ZT (g)); and

(ii). f(x) = g(x) + c, for all x ∈ ZT (f).

Then, f = g + c.

Remark 3.6. A descent modulus T for a class F is meant to assign a quantified measure of
descent at every point of f ∈ F . This quantity is also allowed to be infinite at some points of
some functions and whenever this happens the determination result cannot apply. Therefore, T
does not determine the whole class F , but instead only functions in dom(T ) ⊂ F .
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3.3 Stability properties of descent moduli and examples

The metric slope (used in [1], [10] e.g.) is a natural instance of abstract descent modulus and
the results of the previous section can be seen as a minimal axiomatic presentation of the slope
determination result given in [9]. In this section, we show that the axiomatic descent modules
also captures the notion of global slope (used in [25]) as well as several natural adaptations of
the notion of slope to topological spaces, emancipating from the metric framework.

Throughout this section, F will denote a translation cone of C(X).

Proposition 3.7 (m-slope). Let m : X ×X → R+ be a mapping satisfying:

m(x, y) = 0 ⇐⇒ x = y (separation axiom).

Let further D = {Dx}x∈X be a family of subsets of X satisfying x ∈ Dx for every x ∈ X. Then,
the m-slope

sf (x) :=

{
lim sup
y→x

∆+
f (x, y) if x is not isolated,

0 otherwise,

and the semiglobal (D,m)-slope

GD[f ](x) = sup
y∈Dx

∆+
f (x, y) (25)

are moduli of descent for the class F , where

∆+
f (x, y) =


(f(x)−f(y))+

m(x,y) if y 6= x,

0 if y = x.

(26)

Proof. Let us show that the above operators of (local) m-slope and (semiglobal) (D,m)-slope
satisfy axioms (D1)–(D3) of Definition 3.1. It is straightforward to see that (D1) (preservation of
global minima) is fulfilled. Axiom (D3) (scalar monotonicity) is also fulfilled, since for everyf ∈
F and r > 0 we have

srf (x) = rsf (x) and GD[rf ](x) = rGD[f ](x).

It remains to show that both operators also satisfy axiom (D2) (Monotonicity). To this end, let
f, g ∈ F such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+.

Then for every y ∈ X we have ∆+
f (x, y) ≥ ∆+

g (x, y), which readily yields that sf (x) ≥ sg(x) and
GD[f ](x) ≥ GD[g](x). The proof is complete.

Remark 3.8. When (X, τ) is a metric space and m is the distance function, the m-slope sf (x)
coincides with the usual metric slope |∇f |(x) and the main result of [9] follows directly from
Theorem 3.5. Taking now Dx = X for all x ∈ X, the semiglobal (D,m)-slope GD[f ](x) coincides
with the global slope G [f ](x) (see, e.g., [1, Definition 1.2.4]) which was used in [25].

Notice that the semiglobal slope GD[f ] is intrinsically different from the metric slope (or the
norm of the gradient ‖∇f‖ in the differentiable case), which already reveals that Definition 3.1
represents a much more general setting. The next proposition shows that we can go even further.
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Proposition 3.9 (Constructing descent moduli). (i). Let T1, T2 be descent moduli for the
class F . Then T1 + T2 is also a descent modulus for F , where

(T1 + T2)[f ](x) := T1[f ](x) + T2[f ](x), for all f ∈ F and x ∈ dom f.

(ii). Let T be a descent modulus for F and let φ : R+ → R+ be a strictly increasing function
with φ(0) = 0 and lim supt→+∞ φ(t) = +∞. Then

(φT )[f ](x) := (φ ◦ T [f ])(x), for all f ∈ F and x ∈ dom f,

is also a descent modulus for F , under the convention φ(+∞) = lim supt→+∞ φ(t) = +∞.

In particular, rT , r ≥ 0 is a descent modulus for F , where

(rT )[f ](x) := r · T [f ](x),

under the convention r·(+∞) = +∞ for r > 0, and 0·(+∞) = 0.

Proof. Let T1, T2, T and φ as in the statements (i) and (ii). We show that axioms (D1)–(D3)
of Definition 3.1 are fulfilled:

– (D1) (Preservation of global minima) Let f ∈ F and x ∈ argmin f . Then

T1[f ](x) = T2[f ](x) = T [f ](x) = 0

and consequently (T1 + T2)[f ](x) = 0 and φ(T [f ](x)) = φ(0) = 0. Therefore, T1 + T2 and φT
preserve global minima.

– (D2) (Monotonicity) Let f, g ∈ F and x ∈ X such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+, ∀x ∈ X.

Then, since T1 and T2 are monotone, we have that

(T1 + T2)[f ](x) = T1[f ](x) + T2[f ](x) ≥ T1[g](x) + T2[g](x) = (T1 + T2)[g](x).

Similarly, since T is monotone and φ is non-decreasing, we get that

(φT )[f ](x) = φ(T [f ](x)) ≥ φ(T [g](x)) = (φT )[g](x).

Thus, T1 + T2 and φT are monotone.

– (D3) (Scalar monotonicity) Let f ∈ F , x ∈ X and r > 1 and assume 0 < (T1+T2)[f ](x) < +∞.
Up to a mutual change of T1 and T2, we many assume 0 < T1[f ](x) < +∞. Then, using the
scalar monotonicity of T1 and the monotonicity of T2, we deduce

(T1 + T2)[rf ](x) = T1[rf ](x) + T2[rf ](x) > T1[f ](x) + T2[rf ](x)

≥ T1[f ](x) + T2[f ](x) = (T1 + T2)[f ](x).

Thus, (T1 + T2) is scalar-monotone.

Let us now assume 0 < (φT )[f ](x) < +∞. Since φ(0) = 0 and φ(+∞) = +∞, we obtain again
0 < T [f ](x) < +∞. Thus, T [rf ](x) > T [f ](x) and

(φT )[rf ](x) = φ(T [rf ](x)) > φ(T [f ](x)) = (φT )[rf ](x),

yielding that (φT ) is scalar-monotone. We conclude that both (T1 + T2) and (φT ) are descent
moduli for F .
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Notice that the family of descent moduli for the class F has the structure of a convex cone (i.e.,
it is a cone closed for the sum), with the sum and the scalar multiplication being defined as in
Proposition 3.9.

The following proposition provides other types of operations, based on truncations, that preserve
descent moduli.

Proposition 3.10 (Truncated descents). Let T be a descent modulus for the class F . Then:

(i). For every ε > 0, the operator Tε given by

Tε[f ](x) =

{
T [f ](x), if f(x) > inf f + ε

0, otherwise,

is a descent modulus for F .

(ii). For every K ⊂ X, the operator T
∣∣
K

given by

T
∣∣
K

[f ](x) =

{
T [f ](x), if x ∈ K

0, otherwise,

is a descent modulus for F .

Proof. Let T , ε > 0 and K ⊂ X as in the statement of the proposition. We will show that the
operators Tε and T

∣∣
K

satisfy properties (D1)–(D3) of Definition 3.1. Notice that for every f ∈ F
and x ∈ X we have T [f ](x) ≥ Tε[f ](x) and T [f ](x) ≥ T

∣∣
K

[f ](x). Therefore, if T [f ](x) = 0, the

above readily yields Tε[f ](x) =
∣∣
K

(x) = 0, and (D1) holds trivially.

Let us now prove (D2). To this end, Let f, g ∈ F and x ∈ X such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+, ∀x ∈ X.

Let us first deal with Tε: if f(x) > inf f + ε, then Tε[f ](x) = T [f ](x) ≥ T [g](x) ≥ Tε[g](x). On
the other hand, if f(x) ≤ inf f+ε, then [f(x)−f(z)]+ ≤ ε for all z ∈ X, whence g(x) ≤ inf g+ε
and Tε[f ](x) = Tε[g](x) = 0 (by definition of Tε). We conclude that Tε[f ](x) ≥ Tε[g](x).

Let us now deal with T
∣∣
K

: If x ∈ K, then T
∣∣
K

[f ](x) = T [f ](x) ≥ T [g](x) = T
∣∣
K

[g](x), while if

x ∈ X \K, then T
∣∣
K

[f ](x) = T
∣∣
K

[g](x) = 0. In both cases T
∣∣
K

[f ](x) ≥ T
∣∣
K

[g](x).

It remains to prove (D3). Let f ∈ F , x ∈ X and r > 1. If inf f = −∞, then Tε[f ] = T [f ] and
the result follows. Therefore, we may assume inf f > −∞ and 0 < Tε[f ](x) < +∞. This yields
f(x) > inf f + ε and consequently, Tε[f ](x) = T [f ](x). Noting that

rf(x) > r(inf f + ε) > inf rf + ε,

we conclude that Tε[rf ](x) = T [rf ](x), as well. Then, since Tε[f ](x) = T [f ](x) < T [rf ](x) =
Tε[rf ](x), we conclude that Tε is scalar-monotone.

Let us now assume 0 < T
∣∣
K

[f ](x) < +∞. This yields in particular that x ∈ K and so

T
∣∣
K

[f ](x) = T [f ](x) and T
∣∣
K

[rf ](x) = T [rf ](x). Then, since T
∣∣
K

[f ](x) = T [f ](x) < T [rf ](x) =

T
∣∣
K

[rf ](x), we conclude that T
∣∣
K

is scalar-monotone.

The last stability property that we study is the pointwise limit. In general, this operation does
not preserve moduli of descent, since scalar-monotonicity can be lost in the limit process, as the
following example reveals.

16



Example 3.11 (Axiom (D3) is not preserved under pointwise limits). Let X = Rn and consider
the class F = C1(Rn) of C1-smooth functions. Let us further consider the sequence of descent
moduli

Tn[f ](x) = n
√
‖∇f(x)‖, n ∈ N,

and its pointwise limit operator:

T [f ](x) = lim
n→∞

Tn[f ](x) =

{
0 , if ∇f(x) = 0,

1 , otherwise.

The operator T preserves global minima and is monotone. However, it is not scalar-monotone
(and it clearly fails to determine functions in the sense of Theorem 3.5.) ♦

The following definition introduces a large subclass of abstract descent moduli which provides
a remedy to the above situation.

Definition 3.12 (Homogeneous descent moduli). Let F ⊂ C(X) be a translation cone, and let
p ∈ (0,+∞). An operator T : F → (R+)X is said to be

(i). p–homogeneous if T [rf ](x) = rp T [f ](x), for every f ∈ F and r > 0.

(ii). p–superhomogeneous if T [rf ](x) ≥ rp T [f ](x) , for every f ∈ F and r > 0.

Clearly all p–homogeneous and all p–superhomogeneous operator are also scalar-monotone. The
interest of this class is that every operator T which is defined as a pointwise limit of a sequence
of p-(super)homogeneous descent moduli {Tn}n∈N, that is,

T [f ](x) = lim
n→+∞

Tn[f ](x), for all f ∈ F and x ∈ dom(f),

is itself a p–(super)homogeneous descent modulus. In other words, axiom (D3) (scalar-monotonicity)
is preserved in this context. One can also observe that up to a composition with the strictly
increasing function ϕ(t) := t1/p, p–(super)homogenicity reduces to 1 –(super)homogenicity.

Proposition 3.13. Let (Λ,4) be a directed set, p ∈ (0,+∞) and (Tα)α∈Λ be a generalized
sequence of p –(super)homogeneous descent moduli for the class F . Then the following operators,
defined for every f ∈ F and x ∈ dom(f) , are descent moduli for the class F :

(i).

(
lim sup
α∈Λ

Tα

)
[f ](x) := lim sup

α∈Λ
Tα[f ](x);

(ii).

(
sup
α∈Λ

Tα

)
[f ](x) := sup

α∈Λ
Tα[f ](x);

(iii).

(
lim inf
α∈Λ

Tα

)
[f ](x) := lim inf

α∈Λ
Tα[f ](x) ;

(iv).

(
inf
α∈Λ

Tα

)
[f ](x) := inf

α∈Λ
Tα[f ](x).
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Proof. Let us verify that T := lim supα Tα satisfies axioms (D1)–(D3) of Definition 3.1. (A si-
milar reasoning will apply to the other three operators.)

– (D1) (Preservation of global minima) Choose f ∈ F and x ∈ argmin f . Then, Tα[f ](x) = 0
for all α ∈ Λ and so T [f ](x) = 0. Thus, T preserves global minima.

– (D2) (Monotonicity). Let f, g ∈ F and x ∈ X be such that (f(x)− f(z))+ ≥ (g(x)− g(z))+,
for all z ∈ X. Then, Tα[f ](x) ≥ Tα[g](x) for each α ∈ Λ. Thus, T [f ](x) ≥ T [g](x) as well,
showing that T is monotone

– (D3) (Scalar-monotonicity): Let f ∈ F and x ∈ X. We readily deduce from p-superhomogeneity
that T [rf ](x) = lim supα Tα[rf ](x) ≥ rp lim supα Tα[f ](x) = rp T [f ](x). It follows that T is
also p–superhomogeneous, therefore, in particular, scalar-monotone.

The proof is complete.

3.4 Slope-like operators that are not descent moduli

We finish this section by discussing two examples in the literature that have being introduced as
“slope operators” on a metric space (X, d), but fail to verify Definition 3.1 of descent modulus.
The first concept is the so-called weak slope, introduced in [11, 8]. For a continuous function
f : X → R, the weak slope at a point x ∈ X, denoted by |df |(x), is defined as the supremum of
σ ∈ R+ such that there exist δ > 0 and a continuous map H : [0, δ]×B(x, δ)→ X such that

∀s ∈ [0, δ], ∀y ∈ B(x, δ), d(H(s, y), y) ≤ s and f(H(s, y)) ≤ f(y)− σs. (27)

Notice that |df(x)| ≥ σ whenever it is possible to find a continuous deformation H over a
neighborhood of x, such that the descent of f through that deformation is at least σ for every
point y over which H is acting. Thus, one might interpret the weak-slope as the slowest descent
around x. This concept has been largely studied in the setting of nonsmooth variational analysis
and critical point theory.
The second concept is the limiting slope (see, e.g. [16, Definition 8.4]), which is defined as
the lower semicontinuous envelope (or closure) of the strong slope |∇f |. That is, for a lower
semicontinuous function f : X → R and a point x ∈ X, the limiting slope of f at x is given by

|∇f |(x) := lim
ε→0

inf {|∇f |(y) : d(x, y) ≤ ε, and f(y) ≤ f(x) + ε} . (28)

Since the slope that can be very ill-behaved, the limiting slope provides a regularized alternative.
It is worth to mention that using this notion, Drusvyatskiy, Ioffe and Lewis were able to deal
with the long-standing problem of existence of steepest descent curves [12].

The following example shows that the weak slope and the limiting slope are not descent moduli
for K(X), since they fail to determine coercive continuous functions even in the interval [0, 1].

Example 3.14. Let c : [0, 1] → [0, 1] be the well-known Cantor Staircase and let us consider
the function f : [0, 1] → R given by f(t) = c(t) + t. By construction, it is not hard to see that
|∇f |(t) ∈ {1,+∞} for every t ∈ (0, 1], that |∇f |(0) = 0 (since 0 ∈ argmin f), and that the slope
is +∞ only in a subset of the Cantor set. Thus,

|∇f |(t) = 1(0,1](t) :=

{
1, if t ∈ (0, 1]

0, if t = 0.
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Similarly, we claim that |df |(t) takes the same values as |∇f |(t). Clearly |df |(0) = 0 and
|df |(t) ≥ 1 for all t ∈ (0, 1]. Now, fix t̄ ∈ (0, 1] and take any σ > 0, δ > 0 and H satisfying (27).
Since f is strictly increasing, H(s, t) < t for every t ∈ B(t̄, δ) and every s ∈ [0, δ]. In particular,
0 < t−H(s, t) = d(H(s, t), t) ≤ s. Whence t−s ≤ H(s, t) and consequently, f(t−s) ≤ f(H(s, t)).
Since the Cantor set is totally disconnected, there exists t ∈ (t̄ − δ, t̄) such that |∇f |(t) = 1.
Then,

|∇f |(t) ≥ lim sup
s→0+

f(t)− f(t− s)
s

≥ lim sup
s→0+

f(t)− f(H(s, t))

s
≥ σ.

Thus, σ ≤ 1, which proves that |df(t̄)| = 1. This proves the claim. By taking g : [0, 1]→ R given
by g(t) = t, we get that |∇g|(t) = |dg|(t) = 1(0,1](t), and so, the conclusion of Theorem 3.5 fails
to hold for both the weak and the limiting slope. Since clearly both operators preserve global
minima and are scalar-monotone (by homogeneity), we conclude that both operators fail to be
monotone in the sense of Definition 3.1. �

4 The paradigm of averaged descent

It was shown in [6, Theorem 3.8] that two C2-smooth convex and bounded from below functions
f, g defined on a Hilbert space H are equal up to a constant, provided ‖∇f(x)‖ = ‖∇g(x)‖, for
all x ∈ H. In other words, the operator:

f 7→ Γ[f ] := ‖∇f‖2 (29)

is injective, modulo the constant functions, on the class of C2-smooth convex and bounded
from below functions. Notice that the Γ-operator defined in (29) (also known as carré-du-
champ operator) is strongly related to the Wiener diffusion process, generated by the Laplacian
operator. This hints towards a new important instance of descent modulus, namely the average
descent, giving rise to a determination result of probabilistic nature. This will be developed in
this section, in full generality.

4.1 Extension of dispersion measures

We first recall that for a C1-smooth function f : Rn → R the following formula holds:

‖∇f(x)‖2 = lim
ε→0

n

Ln(Bn(x, ε))

∫
Bn(x,ε)

[
f(x)− f(y)

‖x− y‖

]2

Ln(dy), (30)

where, as mentioned in Section 2, Ln stands for the usual Lebesgue measure on Rn. The above
formula is well-known and can be deduced from the following (also well-known) lemma, for which
we provide a simple proof for completeness.

Lemma 4.1. For any k ≥ 1, any r > 0 and V ∈ Rk it holds:

‖V ‖2 =
k

Lk(Bk(0, r))

∫
Bk(0,r)

〈
V,

u

‖u‖

〉2

du. (31)

Proof. The proof is a consequence of the invariance by rotations of the ball. Consider (ei)
k
i=1

the usual orthonormal basis of Rk. By symmetry, we can restrict to the case where V = ‖V ‖·e1,
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so that ∫
Bk(0,r)

〈
V,

u

‖u‖

〉2

du = ‖V ‖2
∫
Bk(0,r)

〈
e1,

u

‖u‖

〉2

du

= ‖V ‖2
∫
Bk(0,r)

〈
ei,

u

‖u‖

〉2

du

for any i ∈ {1, ..., k}. We deduce∫
Bk(0,r)

〈
V,

u

‖u‖

〉2

du =
‖V ‖2

k

∫
Bk(0,r)

k∑
i=1

〈
ei,

u

‖u‖

〉2

du

=
‖V ‖2

k

∫
Bk(0,r)

∥∥∥∥ u

‖u‖

∥∥∥∥2

du

=
‖V ‖2

k

∫
Bk(0,r)

1 du

=
‖V ‖2Lk(Bk(0, r))

k

leading to the desired equality.

Based on equation (30), we propose an extension of the Γ-operator (29), that we call dispersion
operator, for functions defined on a topological space (X, τ).

To this end, we consider the family β = {βx}x∈X of neighborhood bases: βx is a neighborhood
base at x of the topology τ . We further denote by

µ : X × B(X)→ R+

a mapping that associates to every x ∈ X, a locally finite measure µ(x, ·) ≡ µx (that is, for
every y ∈ X, µx is finite on a neighborhood Vy of y), with positive measure at every element of
βx. Let further m : X ×X → R+ be as in Proposition 3.7, that is,

m(x, y) = 0 ⇐⇒ x = y.

Finally, let us consider the local dimension mapping n : X → R+, where we interpret n(x) to
be the local dimension of X at x. (Obviously, if X = Rn or if X is a manifold of dimension n,
then n(x) ≡ n, for all x ∈ X.)

We are now ready to give the following definition:

Definition 4.2 (Dispersion operator). Let p ∈ (0,+∞). We define the p-dispersion operator
Tµ (depending also on β and n : X → R+) as follows:

Tµ[f ](x) := lim sup
B∈βx

n(x)

µx(B)

∫
B
|∆f (x, y)|p µx(dy) (32)

where the limit-superior is taken over the inductive set βx endowed with the partial order of the
reverse inclusion and

∆f (x, y) :=


f(x)−f(y)
m(x,y) , if y 6= x,

0, if y = x.

(33)
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Remark 4.3. (i). We kept the notation simple and denoted the above dispersion operator by Tµ
(rather than Tµ,β,m,n,p) in order to emphasize that Tµ is the limit-superior of integral operators.
The action at x in these operators is integrated by the measure µx.

(ii). Definition 4.2 is inspired by a construction used in [24] to extend diffusion processes to
metric spaces. The “lim sup” ensures that Tµ is always well-defined, with possibly +∞–values.
When X is a metric space and m is the distance function, the domain dom(Tµ) contains at least
all (locally) Lipschitz functions. This makes the dispersion operator to be a nontrivial extension
of (29) beyond the differentiable setting.

(iii). The family β in Definition 4.2 encompasses several natural choices when the structure of
the space (X, τ) is known. For example, if (X, τ) is a (pseudo)metric space, then we can take the
set of corresponding balls βx = {B(x, r)}r>0, for all x ∈ X. More generally, if the topological
space (X, τ) is first-countable, then a natural choice is βx = {Vn}n∈N, where {Vn}n∈N is any
countable basis of the neighborhoods of x.

If X = Rn, then our default choice will be βx := {B(x, r)}r>0.

We denote by S+
n the set of (n × n)–positive semidefinite matrices, and let us consider a map

R : Rn → S+
n . The following proposition shows that the operators of the form

ΓR[f ](x) = ‖R(x)∇f(x)‖2, x ∈ Rn

can be obtained as particular cases of (32), under suitable choices of the parameter p > 0, the
separation map m, the measure map µ : Rn×B(Rn)→ R+ and a local dimension map x 7→ n(x).

In what follows supp (µx) stands for the support of the measure µx := µ(x, ·). We say that a
measure µ is absolutely continuous with respect to ν (and denote µ << ν) if both measures are
defined on the same measurable space (X,B) and it holds:

ν(A) = 0 =⇒ µ(A) = 0, for all A ∈ B.

We are now ready to state and prove the following result:

Proposition 4.4. Let R : Rn → S+
n and set Wx := x + Ker(R(x))⊥, for each x ∈ Rn. Then

for m(x, y) := ‖x − y‖, and p = 2, there exist a measure map µ : Rn × B(Rn) → R+ and a
dimension map n : X → R+ such that supp (µx) ⊂Wx for all x ∈ Rn and

Tµ[f ](x) = ‖R(x)∇f(x)‖2, for every f ∈ C1(Rn).

Proof. Let us fix x ∈ Rn. We are going to define a positive real value n(x) and a measure µx
whose support is contained in Wx, in a way that:

Tµ[f ](x) = lim sup
r>0

n(x)

µx(B(x, r))

∫
B(x,r)

∆f (x, y)2µx(dy) = ‖R(x)∇f(x)‖2. (34)

Set k = dim (Ker R(x))⊥ , 0 ≤ k ≤ n.
If k = 0, then Ker R(x) = Rn, Wx ≡ x and R(x)∇f(x) = 0. Then (34) holds trivially by setting
µx = δx (the Dirac measure at x) and using the fact that ∆f (x, x) = 0 (cf. (33)).

Let us now assume that 1 ≤ k ≤ n. Let {ej}nj=1 be an orthonormal base of Rn such that

(Ker R(x))⊥ = span (ej)
k
j=1 = Rk
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and

Ker R(x) ≡ Rn−k =

{
span (ej)

n
j=k+1, for k < n

{0} for k = n.

Then there exists R ∈ S+
k (the trace of R(x) ∈ S+

n on the subspace Rk × {0}n−k of Rn) such
that decomposing z ∈ Rn as z = (v, w) ∈ Rk × Rn−k, it holds R(x)z = Rv.

Let Ψ : Rk → Rk be given by

Ψ(u) =

{ ‖u‖
‖Ru‖Ru if u 6= 0

0 otherwise.
(35)

Clearly Ψ is an isometric automorphism of Rk (depending on x, which is fixed) with inverse:

Ψ−1(v) =

{ ‖v‖
‖R−1v‖R

−1v if v 6= 0

0 otherwise.

In particular Ψ(Bk(0, r)) = Bk(0, r), for every r > 0. Furthermore, Ψ is a C1-diffeomorphism of
Rk \ {0}. Following the notation of [14, Chapter 3], let us define the Jacobian operator as

JΨ(u) = |det(DΨ(u))|, (36)

where DΨ is the derivative of Ψ. We define hk : Rk → R (depending on Ψ, therefore on x) such
that

hk(v) =
‖RΨ−1(v)‖2

‖Ψ−1(v)‖2
[
JΨ(Ψ−1(v))

]−1
, v ∈ Rk.

Notice that for v = Ψ(u) the above yields:

hk(Ψ(u)) =
‖Ru‖2

‖u‖2
[JΨ(u)]−1, u ∈ Rk. (37)

We set {
h : Rn → R

h(z) := hk(v), for z = (v, w) ∈ Rn
(38)

and consider the measure λ : B(Rn)→ R+ (depending on k = dim(Wx)) given by the formula

λ(A) = Lk
(
A ∩

(
Rk × {0}n−k

))
, for all A ∈ B(Rn). (39)

Let πk denote the projection of Rn to the first k-coordinates. Notice that λ is the trivial extension
to B(Rn) of the Lebesgue measure Lk on B(Rk). Let us define

κ := κ(x) = Lk(Bk(0, 1))−1

(∫
Bk(0,1)

‖Ru‖2

‖u‖2
Lk(du)

)
. (40)

where Bk(0, r) = πk
(
B(0, r) ∩

(
Rk × {0}n−k

))
. We finally set n(x) := κ(x) dim(Wx) and define

the measure µx : B(Rn) → R+ as follows:

µx(A) :=

∫
A−x

h(z)λ(dz) ≡
∫
πk((A−x)∩(Rk×{0}n−k))

hk(v)Lk(dv), for all A ∈ B(Rn). (41)
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This operation eliminates the last n − k coordinates (which are equal to 0 for all elements of
(A − x) ∩

(
Rk × {0}n−k

)
), adjusting vectors to the right dimension for integration. By means

of a change of variables induced by Ψ (see, e.g., [14, Theorem 3.9]), we deduce

µx(B(x, r)) =

∫
Bk(0,r)

hk(v)Lk(dv) =

∫
Bk(0,r)

hk(Ψ(u))JΨ(u)Lk(du)

= rk
∫
B(0,1)

‖Ru‖2

‖u‖2
Lk(du) = κLk(Bk(0, 1))rk = κLk(Bk(0, r))

Now, using the first-order Taylor approximation of f at x, we deduce from (33) that

∆f (x, y)2 =

[〈
∇f(x),

y − x
‖y − x‖

〉
+ ε(‖y − x‖)

]2

, where lim
r→0

ε(r) = 0.

For any r > 0 we deduce from (41) that:∫
B(x,r)

∆f (x, y)2µx(dy) =

∫
B(0,r)

[
〈∇f(x),

z

‖z‖
〉 + ε(‖z‖)

]2

h(z)λ(dz)

=

∫
B(0,r)

〈∇f(x),
z

‖z‖
〉2 h(z)λ(dz) +

+

∫
B(0,r)

2 〈∇f(x),
z

‖z‖
〉 ε(‖z‖)h(z)λ(dz) +

∫
B(0,r)

ε(‖z‖)2 h(z)λ(dz).

Let M > 0 be an upper bound of the function h on B(0, 1). Since µx(B(x, r)) = κLk(Bk(0, r))
and n(x) = k · κ, it follows that

2n(x)

µx(B(x, r))

∫
B(0,r)

〈
∇f(x),

z

‖z‖

〉
ε(‖z‖)h(z)λ(dz) ≤ 2 kM ‖∇f(x)‖ ε(r) −→ 0 and

n(x)

µx(B(x, r))
.

∫
B(0,r)

ε(‖z‖)2h(z)λ(dz) ≤ kM ε(r)2 −→ 0 (as r → 0).

Denoting by [∇f(x)]k ∈ Rk the vector consisting of the first k-coordinates of ∇f(x) and recalling
the decomposition z = (v, w) ∈ Rk × Rn−k we deduce from (38):∫

B(0,r)

〈
∇f(x),

z

‖z‖

〉2

h(z)λ(dz) =

∫
B(0,r)

〈
∇f(x),

(v, w)

‖(v, w)‖

〉
hk(v)Lk(dv).

Using the change of variables v = Ψ(u) (recall that Ψ(B(0, r)) = B(0, r) for every r > 0) we
obtain from (35) and (37)∫

B(0,r)

〈
∇f(x),

z

‖z‖

〉2

h(z)λ(dz)

=

∫
Bk(0,r)

〈
[∇f(x)]k,

Ψ(u)

||Ψ(u)||

〉2 ‖Ru‖2

‖u‖2
[JΨ(u)]−1JΨ(u)du

=

∫
Bk(0,r)

〈
[∇f(x)]k,

Ru

‖u‖

〉2

du =

∫
Bk(0,r)

〈
R[∇f(x)]k,

u

‖u‖

〉2

du.
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Therefore we deduce from (31) and from the definitions of n(x) and µx:

Tµ[f ](x) = lim sup
r>0

n(x)

µx(B(x, r))

∫
Bk(0,r)

〈
R[∇f(x)]k,

u

‖u‖

〉2

du

= lim sup
r>0

k

Lk(Bk(0, r))

∫
Bk(0,r)

〈
R[∇f(x)]k,

u

‖u‖

〉2

du

= ‖R[∇f(x)]k‖2 ≡ ‖R(x)∇f(x)‖2.

The proof is complete.

4.2 Oriented dispersion operators

The operator Tµ defined in (32) fails to determine continuous coercive functions, and conse-
quently is not a descent modulus outside the differentiable setting. The reason for this failure
will be illustrated in the following example.

Example 4.5. Let X = [−1, 1] and let m be its usual metric. For each x ∈ [−1, 1], let µ(x, ·)
be the usual Lebesgue measure over [−1, 1] and n(x) = 1. Set p = 2.

f(x) = x2 and g(x) = −x2.

By (30), we have that

∀x ∈ (−1, 1), Tµ[g](x) = Tµ[f ](x) = |2x|2.

Furthermore, it is not hard to see that at x = ±1, we have that

Tµ[g](x) = Tµ[f ](x) = lim
ε→0

1

ε

∫ 1

1−ε

(
1− t2

1− t

)2

dt = lim
ε→0

1

ε

∫ 1

1−ε
(1 + t)2dt = 4

Since the only T -critical point of g is 0, we deduce that T does not preserve global minima and
so it is not a descent modulus. Furthermore, since the only T - critical point of f is 0 as well, we
have constructed two different functions with Tµ[f ] = Tµ[g] and that coincide over ZT (f). In
conclusion, T fails to determine continuous coercive functions in general metric spaces, in the
sense of Theorem 3.5. ♦

In the above example, the points x = −1 and x = 1 should have been critical for the func-
tion g(x) = −x2, since they are global minimizers. However, this fails to be the case because
the operator Tµ is not oriented. This leads to the following definition, which induces asymme-
try between descent and ascent directions (by penalizing the latter). As we shall see, this is
particularly relevant in nonsmooth settings.

Definition 4.6 (Oriented dispersion operator). Let µ, β, m, n and p be as in Definition 4.2.
We define the oriented dispersion operator, denoted by T+

µ , as

T+
µ [f ](x) := lim sup

B∈βx

n(x)

µx(B)

∫
B∩[f≤f(x)]

[∆f (x, y)]p µ(x, dy)

= lim sup
B∈βx

n(x)

µx(B)

∫
B

[
∆+
f (x, y)

]p
µ(x, dy),
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where

∆+
f (x, y) :=


(f(x)−f(y))+

m(x,y) if x 6= y

0 if x = y.

(42)

The value T+
µ [f ](x) corresponds to the dispersion of f at x which is exclusively due to the

directions of descent. In the smooth case, the value of the oriented dispersion T+
µ [f ](x) is the

half of the value of the non-oriented dispersion Tµ[f ](x), as expected by symmetry. This is the
content of the following proposition.

Proposition 4.7. Let X = Rn, n(x) ≡ n, βx = {B(x, ε) : ε > 0} and µx be the n-dimensional
Lebesgue measure for every x ∈ Rn. Take p = 2 and m(x, y) = ‖x− y‖. Then

T+
µ [f ](x) =

1

2
‖∇f(x)‖2, for every f ∈ C1(Rn).

Proof. If ‖∇f(x)‖ = 0, then 0 ≤ T+
µ [f ](x) ≤ Tµ[f ](x) = ‖∇f(x)‖2 = 0 and the conclusion

follows trivially.

Let us now consider the case ‖∇f(x)‖ 6= 0. By a change of coordinates, we may assume that
x = 0, f(0) = 0 and ∇f(0) = r en, where r = ‖∇f(0)‖ > 0 and en be the n-th vector of an
orthonormal base of Rn. In this setting, we denote

S := [f ≤ f(0)] and Rn−1 := span{ej}n−1
j=1 ≡ {x ∈ R

n : 〈en, z〉 = 0}.

Following a similar development as in the proof of Proposition 4.4, for the particular case
R(x) = In (the identity map on Rn), we deduce

T+
µ [f ](x) = lim sup

r>0

n

Ln(B(0, r))

∫
B(0,r)∩S

〈
∇f(0),

u

‖u‖

〉2

du.

Consider the semispace H = {x ∈ Rn : 〈en, v〉 ≤ 0}. Then we have:∫
B(0,r)∩S

〈
∇f(0),

u

‖u‖

〉2

du =

∫
B(0,r)∩H

〈
∇f(0),

u

‖u‖

〉2

du+

∫
B(0,r)∩(S4H)

〈
∇f(0),

u

‖u‖

〉2

du .

In what follows we show that Ln(B(0, r)∩ (S4H)) is small, where S4H denotes the symmetric
difference between S and H. To this end, it is easy to see that

B(0, r) ∩ (S4H) ⊂ Bn−1(0, r)× [−d(r), d(r)],

where d(r) stands for the maximal distance between the subspace Rn−1 × {0} and the elements
of the following set (see Figure 4.2)

D(r) = {(y, z) ∈ B(0, r) : y ∈ Bn−1(0, r) and f(y, z) = 0}
⋂

B(0, r).

Using the Implicit Function Theorem, we deduce the existence of an open subset U ⊂ Rn−1

containing 0, an open set V ⊂ Rn containing 0 and a function ϕ : U → R of class C1 such that
its graph coincides with [f = 0] ∩ V and

∇ϕ(0) = −(∂nf(0))−1

 ∂1f(0)
...

∂n−1f(0)

 = 0n−1.
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B(0, r)

0

∇f(0)

[f = f(0)]

d(r)

Rn−1

Figure 1: The gray area corresponds to the asymmetric difference S4H. The dashed line
outlines the set Bn−1(0, r) × [−d(r), d(r)], where the dot depicts the farthest point of the set
D(r) to the linear subspace Rn−1.

Therefore, for r > 0 sufficiently small, we have Bn−1(0, r) ⊂ U and B(0, r) ⊂ V, which yields

{(y, z) ∈ Bn−1(0, r)× R : f(y, z) = 0} = {(y, ϕ(y)) : y ∈ B(0, r)}.

Therefore d(r) = sup{|ϕ(y)| : y ∈ Bn−1(0, r)}. Evoking the mean value theorem we deduce

sup{|ϕ(y)| : y ∈ Bn−1(0, r)} ≤ r · sup{‖∇ϕ(y)‖ : y ∈ Bn−1(0, r)}.

By continuity of ∇ϕ and recalling that ∇ϕ(0) = 0 we deduce that d(r) = o(r). Recalling
formula (7) for the volume of the (n− 1)-dimensional ball Bn−1(0, r), we set

K =
2π(n−1)/2

Γ
(
n−1

2 + 1
)

and we obtain:

Ln(B(0, r) ∩ (S4H)) ≤ Ln−1(Bn−1(0, r)) · 2d(r) = (K · rn−1) o(r) ≡ o(rn)

Therefore,

n

Ln(B(0, r))

∫
B(0,r)∩(S4H)

〈
∇f(0),

u

‖u‖

〉2

du ≤ n ‖∇f(0)‖2 Ln(B(0, r) ∩ (S∆H))

Ln(B(0, r))

=
n‖∇f(0)‖2

Kn

o(rn)

rn
r→0−−−→ 0.

Since B(0, r) ∩H is the south–half of the ball B(0, r), a symmetry argument ensures

T+
µ [f ](0) = lim sup

r→0

n

Ln(B(0, r))

∫
B(0,r)∩H

〈
∇f(0),

u

‖u‖

〉2

du

=
1

2
lim sup
r→0

n

Ln(B(0, r))

∫
B(0,r)

〈
∇f(0),

u

‖u‖

〉2

du =
1

2
‖∇f(0)‖2.

The proof is complete.
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Remark 4.8. The above arguments can be easily adapted to show that when µx and n(x) are
as in Proposition 4.4, then the oriented dispersion operator T+

µ (cf. Definition 4.6) satisfies:

T+
µ [f ](x) =

1

2
‖R(x)∇f(x)‖2, for all f ∈ C1.

The following proposition justifies the introduction of the oriented dispersion in a nonsmooth
setting. Given a metric space (X, d) we denote by Lip(X) the class of real-valued Lipschitz
continuous functions on X.

Theorem 4.9. Let (X, d) be a metric space and µ : X × B(X)→ R+ a measure mapping such
that for every x ∈ X, µx is a locally finite measure with positive measure on open sets and
β = {βx}x∈X be any family of neighborhood bases. Then, the oriented dispersion operator T+

µ is
a descent modulus for K(X) and verifies that K(X) ∩ Lip(X) ⊂ dom(T+

µ ).

Proof. The conditions over µ ensure that K(X)∩ Lip(X) ⊂ dom(T+
µ ). Clearly the operator T+

µ

preserves global minima and is scalar-monotone. Let us now show that it is monotone. Let
f, g ∈ K(X) and let x ∈ X such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+.

Then, ∆+
f (x, z) ≥ ∆+

g (x, z) for all z ∈ X and the conclusion follows.

Remark 4.10. The measure map µ : X × B(X) → R+ is assumed to be locally finite, which
yields in particular that each measure µx is finite on the compact sets of (X, τ). Apart from
this assumption and the existence of a neighborhood system {βx}x∈X where µx takes nonzero
values, no other property is required. In this setting, the superior limit in Definition 4.2 and
Definition 4.6 are well-defined, yielding that the dispersion operators are descent moduli. Even
less will be required to define nonlocal operators (see next section), namely, µx to be finite on
compact sets.

4.3 Oriented nonlocal operators

Apart from the diffusion operators, which are of local nature, one can also consider nonlocal
operators. These latter serve to model jump dynamics, see e.g. [13]. We shall now define
dispersion measures for these processes.

Definition 4.11 (Nonlocal dispersion operators). Let µ : X × B(X) → R+ be a measure
mapping such that for every x ∈ X, µx is finite on all compact sets, and let φ : R+ → R+ be a
strictly increasing function with φ(0) = 0. We define the nonlocal dispersion operator induced
by φ and µ as

Tφ,µ[f ](x) =

∫
X
φ(|f(x)− f(y)|)µ(x, dy),

By construction, Tφ,µ is finite for every measurable bounded function with compact support.
When X = V is a finite space, the nonlocal operators are particularly relevant, due to the fact
that all points are isolated and so diffusion is not possible. In this setting, the measure map µ
can be represented by a matrix L : V × V → R+, in the form of

Tφ,µ[f ](x) =
∑
y∈V

L(x, y)φ(|f(x)− f(y)|)
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Remark 4.12. In the context of Markov generators, the nonlocal operators are of the form

L[f ](x) =

∫
X

(f(y)− f(x))µx(dy),

where µ is assumed to be regular in the sense that x 7→ µx(A) is measurable for every A ∈
B(X). When φ(t) = t2 we are working with the dispersion operator Tφ,µ[f ] := Γ[f ], where Γ is
the carré-du-champ operator associated to L, which in all generally is defined by the identity
Γ[f ] = L[f2]− 2fL[f ] (as soon as f, f2 ∈ dom(L), see e.g. [3]).

In general, a nonlocal operator Tφ,µ might fail to be a descent modulus and to determine functions
in the sense of Theorem 3.5.

Example 4.13. Let φ(t) := t2. Fix N ∈ N even, and set V := ZN ∪ {0̄}, where 0̄ /∈ ZN
and ZN = {0, 1, . . . , N − 1} stands for the usual cyclic additive group modulo N . We define a
nonlocal operator L as follows:

L(x, y) =


1/2, if x ∈ ZN \ {0} and y = x± 1,

1/3, if x = 0 and y ∈ {0̄, 1,−1},
1, if x = 0̄ and y = 0,

0, otherwise.

Now, choose two functions f1, f2 ∈ RV satisfying that

0̄ 0

1 2

3
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1
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1
2

1
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1
2

1
2

1
2

1
2

1
3

Figure 2: Case N = 6.

fi(0̄) = fi(0) = 0 and |f(x± 1)− f(x)| = 1,∀x ∈ ZN .

There is at least
(
N
N/2

)
> 1 functions verifying the above requirements, so we can take f1 6= f2.

However, it is not hard to see that for the measure map µ associated with L, the nonlocal
operator Tµ verifies that

Tµ[fi](x) =


0 if x = 0̄,

2/3 if x = 0,

1 otherwise.

for i = 1, 2. Thus, Tµ does not preserve the global minima since either argmin fi ⊇ {0, 0̄} or
argmin fi ⊂ V \ {0, 0̄}. Furthermore, Tµ fails the determination theorem even for functions with
ZTµ(f) 6= ∅. ♦
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Example 4.13 is very illustrative as concerns the following: when φ(t) = t2, nonlocal operators
do not preserve global minima in general. Indeed, if V is a finite state space, Tµ[f ](x) measures
the dispersion around point x ∈ V, when L(x, y) represents the probability to jump from the
point x to the point y. Therefore it is natural for Tµ[f ](x) to be strictly positive. However, by
imposing f(0) = f(0̄) in Example 4.13 we are forcing a point with no dispersion: starting from
x = 0̄, the only possibility is to jump to 0.

Definition 4.14 (Oriented nonlocal operators). Let φ and µ be as in Definition 4.11. We define
the oriented nonlocal operator induced by φ and µ as

T+
φ,µ[f ](x) =

∫
[f≤f(x)]

φ(f(x)− f(y))µx(dy) =

∫
X
φ((f(x)− f(y))+)µx(dy) (43)

Similarly to the (local) oriented dispersion operator, the above operator is a descent modulus
for K(X), and always determines a suitable subclass of continuous coercive functions K(X). In
the nonlocal case, we do not need to assume Lipschitz continuity, and consequently, X can be a
mere topological space. The class is given by the strictly coercive functions, which is given by

Ks(X) = {f : X → R : ∀x ∈ X, [f ≤ f(x)] is compact} . (44)

The main difference between Ks(X) and K(X) is that the latter class admits functions attaining
their maximum value since the set [f ≤ maxX f ] does not have to be compact. If X is compact,
then the classes K(X) and Ks(X) coincide, however, if X is noncompact, then functions in
Ks(X) cannot attain their supremum.

Theorem 4.15. Let µ : X × B(X) → R+ be a measure mapping such that µx is finite on all
compact sets, for every x ∈ X. Then the oriented nonlocal operator T+

φ,µ is a descent modulus

for K(X) and verifies that Ks(X) ⊂ dom(T+
φ,µ).

Proof. Since µx is finite on all compact sets, for each x ∈ X, we deduce that Ks(X) ⊂ dom(T+
φ,µ).

Furthermore, since φ(0) = 0, it is clear that T+
φ,µ preserves global minima.

Let us show now that T+
φ,µ is monotone: let f, g ∈ K(X) and x ∈ X such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+, ∀z ∈ X.

Then, since φ is non-decreasing, we have that

T+
φ,µ[f ](x) =

∫
X
φ((f(x)− f(z))+)µx(dz) ≥

∫
X
φ((g(x)− g(z))+)µx(dz) = T+

φ,µ[g](x).

We conclude that T+
φ,µ is monotone.

Finally, let us show that T+
φ,µ is scalar-monotone. Let f ∈ K(X), let r > 1 and let x ∈ X such

that 0 < T [f ](x) < +∞. By monotonicity, we have that T+
φ,µ[rf ](x) ≥ T+

φ,µ[f ](x) > 0. Let us
now define the sets

An =

{
z ∈ X : f(x)− f(z) ≥ 1

n

} ⋂ {
z ∈ X : φ(r(f(x)− f(z)))− φ(f(x)− f(z)) ≥ 1

n

}
.

Clearly {An}n is an increasing sequence of µx-measurable sets satisfying:⋃
n≥1

An = [f < f(x)].
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Thus, by monotone convergence theorem, we have that

lim
n

∫
An

φ(f(x)− f(z))µx(dz) =

∫
[f<f(x)]

φ(f(x)− f(z))µx(dz) = T+
φ,µ[f ](x) > 0.

Choose then n ∈ N such that
∫
An
φ(f(x)− f(z))µx(dz) > 0. Then, µ(x,An) > 0 and

T+
φ,µ[rf ](x) =

∫
X
φ(r(f(x)− f(z))+)µx(dz)

=

∫
An

φ(r(f(x)− f(z)))µx(dz) +

∫
X\An

φ(r(f(x)− f(z))+)µx(dz)

≥
∫
An

φ((f(x)− f(z))) +
1

n
µx(dz) +

∫
X\An

φ((f(x)− f(z))+)µ(x, dz)

=

∫
X
φ((f(x)− f(z))+)µ(x, dz) +

1

n
µ(An) > T+

φ,µ[f ](x).

All three properties of Definition 3.1 are satisfied and the proof is complete.

Remark 4.16. Any Γ-operator (carré-du-champ operator) coming from a regular Markov gen-
erator in Rn (with the euclidean distance) has the form

Γ[f ](x) = lim sup
r→0

n(x)

µ1,x(B(x, r))

∫
B(x,r)

[∆f (x, y)]2 µ1,x(dy) +

∫
X

(f(x)− f(y))2µ2,x(dy).

The above operator measures the dispersion of the function f around a point x, when the point
evolves following a local diffusion process linked to (µ1,x)x and a nonlocal jump process given
by (µ2,x)x. The oriented dispersion is only taking into account the descent directions and has
the form

Γ+[f ](x) = lim sup
ε→0

n(x)

µ1,x(B(x, ε))

∫
B(x,ε)

[
∆+
f (x, y)

]2
µ1,x(dy) +

∫
X

[(f(x)− f(y))+]2µ2,x(dy)

The above oriented operator is a descent modulus for K(X). Thus, if we know the oriented
dispersion of a continuous coercive function f (with finite oriented dispersion), and we know
its values on the critical points (that is, points with zero oriented dispersion), we completely
determine the function f , in the spirit of Theorem 3.5.

5 Descent moduli over finite sets

Finite state spaces provide a simple and experimental framework to investigate further properties
of moduli of descent. We shall use the terminology “finite descent modulus” to refer to a descent
modulus over a finite set. In this section we study two particular features of finite descent
moduli:

• an alternative proof, based on a probabilistic approach, of (an enhanced version of) the
determination theorem for descent moduli mimicking Markov generators; and

• a characterization of homogeneous finite descent moduli, up to a natural equivalence rela-
tion based on the corresponding critical map.
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We have already encountered a finite descent moduli in Example 4.13. Let us present a general
procedure generating finite descent moduli: on a finite state space V (neither empty nor a
singleton), consider a Markov generator L := (L(x, y)x,y∈V , namely a matrix satisfying{

∀x, y ∈ V : x 6= y =⇒ L(x, y) ≥ 0

∀x ∈ V :
∑

y∈V L(x, y) = 0

Such a generator acts linearly on any function f ∈ RV (which coincides with K(V)) via

∀ x ∈ V, L[f ](x) =
∑
y∈V

L(x, y)(f(y)− f(x)) (45)

By analogy to Definition 4.6 and Definition 4.14, we consider the non-linear operator TL acting
on any function f ∈ RV via

∀ x ∈ V, TL[f ](x) =
∑
y∈V

L(x, y)(f(x)− f(y))+ (46)

From Theorem 4.15, TL is a descent modulus. In Subsection 5.1, we will recover the determina-
tion theorem for this kind of descent modulus via a probabilistic approach.

More generally, for any m > 0, one can consider TL,m given by

∀ x ∈ V, TL,m[f ](x) =

∑
y∈V

L(x, y)((f(x)− f(y))+)m

1/m

(47)

as well as its limit TL,∞ as m goes to infinity:

∀ x ∈ V, TL,∞[f ](x) = max{(f(x)− f(y))+ : y ∈ Dx} (48)

where for every x ∈ V we set:

Dx := {x} t {y ∈ V : L(x, y) > 0} (49)

Let us recall (see Definition 3.12 for p = 1) that a descent modulus T is said to be homogeneous
(or 1–homogeneous) if for all r ≥ 0 and f ∈ RV we have: T [rf ] = rT [f ].

All the above operators TL,m, m ∈ (0,+∞], are homogeneous descent moduli. It should be
noticed that there are many more homogeneous descent moduli: for instance in (47) we can
allow the exponent m to depend on x ∈ V. Moreover, given n homogeneous descent moduli
T1, ..., Tn, and positive numbers a1, ..., an > 0, the weighted sum a1T1 + · · · + anTn is again a
homogeneous descent moduli. Even fancier constructions are possible. This being said, there
exist non-homogeneous descent moduli. Indeed, for any non-decreasing mapping φ : R+ → R+

with φ(0) = 0, the descent modulus Tφ defined by

∀ x ∈ V, TL[f ](x) =
∑
y∈V

L(x, y)φ((f(x)− f(y))+)

is homogeneous if and only if φ is linear, as long as L 6= 0 .
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Given a descent modulus T we recall from (21) the critical map ZT , which associates to every
function f ∈ RV its set of critical points ZT (f) = (T [f ])−1(0). Notice that the critical maps
ZTL,m related to the moduli TL,m in (47)–(48) are all the same as m varies in (0,+∞].

In Subsection 5.2 we introduce an equivalence relation among homogeneous descent moduli,
using the critical maps. Under this relation, all moduli TL,m in (47) turn out to be equivalent to
each other (for different values of m ∈ N) and also equivalent to TL,∞. The main result of this
section is to show that every homogeneous descent modulus on a general finite set V (without
generator L) is still of the form (48) for some family D = {Dx} which is naturally associated
to T , provided it satisfies a (necessary and sufficient) mild condition.

5.1 A probabilistic approach

Let L := (L(x, y))x,y∈V be a Markov generator on the finite set V.

For every f ∈ RV the associated f -oriented Markov generator Lf := (Lf (x, y))x,y∈V is defined
for x, y ∈ V with x 6= y as follows:

Lf (x, y) :=

{
L(x, y), if f(y) ≤ f(x)

0, otherwise.

The values Lf (x, x) on the diagonal are determined by the fact that the sum of the rows∑
x∈V L(x, y) should vanish.

Let T : RV → RV be defined for every f ∈ RV and x ∈ V as follows:

T [f ](x) := −Lf [f ](x) = −
∑
y∈V

Lf (x, y)(f(y)− f(x)) =
∑
y∈V

L(x, y)(f(x)− f(y))+.

This non-linear operator T coincides with TL defined in (46) and is a descent modulus. For
every f ∈ RV the set of T -critical points is given by the formula

ZT (f) := {x ∈ V : T [f ](x) = 0}. (50)

Given x, y ∈ V, an L-path from x to y is a finite sequence {xk}0≤k≤N with N ≥ 0, x0 = x,
xN = y and such that for all 0 ≤ k < N , L(xk, xk+1) > 0. This path is called an Lf -path from x

to y if in addition {f(xk)}0≤k≤N is a non-increasing finite sequence. We write x
f→ y to indicate

that there exists a Lf -path from x to y. We set:

x �f y ⇐⇒ x
f→ y and x ≈f y ⇐⇒

{
x

f→ y

y
f→ x

It is straighforward to check that �f is an order relation on V and ≈f is its corresponding
equivalence relation (x ≈f y if and only if x �f y and y �f x). The set of minima of �f is
defined as follows:

M(f) := {x̄ ∈ V : ∀x ∈ V, (x̄ �f x ⇒ x̄ ≈f x)} . (51)

Notice that x̄ ∈M(f) if and only if for any y ∈ V with f(y) < f(x̄) and any L-path {xk}0≤k≤N
from x̄ to y, we have max0≤k≤N f(xk) > f(x̄). Moreover, we always have M(f) ⊂ ZT (f) and
the inclusion may be strict.
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Example 5.1. Let V = Z9, and set L such that

L(x, y) > 0 ⇐⇒ y = x± 1.

Consider f = (1, 0, 0, 1, 2, 1, 1, 2, 1). The set V, its connections through L and the level sets of f
are depicted in Figure 3.

f = 1

f = 2

f = 0

0

1 2

3

4

5 6

7

8 0

Figure 3: Node 0 has been replicated at the beginning and end of the representation. Only
connections (x, y) with L(x, y) > 0 have been drawn.

Here, M(f) = {1, 2, 5, 6} and ZT (f) = {1, 2, 5, 6, 8}. The node 8 is critical since L does not
allow to jump to any node with smaller value in one step. However, the path 8 → 0 → 1 is an
Lf -path leading to a point with smaller f -value. Note that 5 and 6 are in M(f) since there is
no Lf -path emanating from any of them and landing at a different node with smaller f -value.�

For x ∈ V, let Xf
x := (Xf

x (t))t≥0 stand for a Markov process starting from x and whose generator
is Lf . For such a process, the function

R+ 3 t 7→ f(Xf
x (t))

is almost surely non-increasing and bounded, thus converging. Furthermore, the finite Markov
process Xf

x (t) is converging in law for large t ≥ 0 toward a distribution which may depend on
the initial point x and whose support is included into the set M(f).

Fix f, g ∈ RV . Since V is finite, the functions f, g are trivially continuous and coercive. There-
fore, Theorem 3.5 directly yields:

T [f ] = T [g]

f = g on ZT (f)

}
=⇒ f = g. (52)

In what follows, we obtain (52) via a probabilistic approach, in a slightly enhanced version,
namely replacing the set ZT (f) = ZT (g) (where f and g are assumed to be equal) by the
(potentially smaller) set M(f)∪M(g). The technical ingredient of the proof is contained in the
following lemma.

Lemma 5.2. For any f, g ∈ RV with T [f ] ≥ T [g], we have Lf [g] ≥ Lf [f ].
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Proof. Indeed, for any x ∈ V, we have

−Lf [g](x) =
∑

y : f(y)≤f(x)

L(x, y)(g(x)− g(y)) =

=
∑

y : f(y)≤f(x), g(y)≤g(x)

L(x, y)(g(x)− g(y)) +
∑

y : f(y)≤f(x), g(y)>g(x)

L(x, y)(g(x)− g(y))

≤
∑

y : f(y)≤f(x), g(y)≤g(x)

L(x, y)(g(x)− g(y)) ≤
∑

y : g(y)≤g(x)

L(x, y)(g(x)− g(y))

= T [g](x) ≤ T [f ](x) = −Lf [f ](x).

We are now ready to give a probabilistic proof of the following comparison result. (Recall
from (51) the definition of M(f).)

Proposition 5.3. Let f, g ∈ RV be two functions satisfying:

(i). T [f ](x) ≥ T [g](x), for all x ∈ V ; and

(ii). f(x) ≥ g(x), for all x ∈M(f) .

Then f ≥ g.

Proof. Due to the martingale problem characterization of Xf
x (see [13] e.g.), there exists a

martingale {Mf
g (t)}t≥0 starting from 0 such that

g(Xf
x (t)) = g(x) +

∫ t

0
Lf [g](Xf

x (s)) ds+Mf
g (t), for all t ≥ 0.

Taking expectations we get

E[g(Xf
x (t))] = g(x) +

∫ t

0
E[Lf [g](Xf

x (s))] ds, for all t ≥ 0. (53)

Denote by πfx the limit law of the distributions of Xf
x (t) for large t ≥ 0. Then πfx is supported

on M(f) and
lim

t→+∞
E[g(Xf

x (t))] = πfx [g]. (54)

Recall that to get this convergence, one must decompose the state space V into its recurrent
and transient sets R and V \ R with respect to Lf . The recurrent set is itself decomposed into
its irreducible components, say R1, ..., Rl. In finite and random time, the process (Xx(t))t≥0

ends up entering in one of these sets R1, ..., Rl and stays there forever. Consider for instance
the case where (Xx(t))t≥0 enters Rk, with k ∈ {1, ..., l}, once in Rk this process behaves as

the irreducible Markov process whose generator is the restriction of Lf to Rk. Denote πf(k) the
corresponding invariant probability on Rk. Let us also introduce

τ B inf{t ≥ 0 : Xx(t) ∈ R}
∀ k ∈ {1, ..., l}, px(k) B P[Xx(τ) ∈ Rk]
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Conditioned on {Xx(τ) ∈ Rk}, with k ∈ {1, ..., l}, the law of Xx(τ + t) converges for large t ≥ 0

toward πf(k). The validity of (54) follows with

πfx B

l∑
k=1

px(k)πf(k)

For more details about the decomposition of the state space and the convergence in law toward
the invariant measure of the finite irreducible Markov processes, one is for instance referred to
the Sections 3.4-3.6 of Norris [18].
In particular the integral of the right hand side of (53) converges for large t ≥ 0 and it holds:

πfx [g] = g(x) +

∫ +∞

0
E[Lf [g](Xf

x (s))] ds. (55)

Applying the above arguments with g replaced by f , we also obtain

πf [f ] = f(x) +

∫ +∞

0
E[Lf [f ](Xf

x (s))] ds. (56)

The assumption (ii) yields πfx [f ] ≥ πfx [g]. On the other hand, from Lemma 5.2, we have

E[Lf [g](Xf
x (s))] ≥ E[Lf [f ](Xf

x (s))], for all s ≥ 0.

Combining the above with (55) we deduce

πfx [f ] ≥ πfx [g] = g(x) +

∫ +∞

0
E[Lf [g](Xf

x (s))] ≥ g(x) +

∫ +∞

0
E[Lf [f ](Xf

x (s))] ds.

Comparing the above inequality with (56) yields f(x) ≥ g(x) and the result follows.

By symmetry we obtain the following corollary:

Corollary 5.4. Let f, g ∈ RV be such that

(i). T [f ](x) = T [g](x), for all x ∈ V ; and

(ii). f(x) = g(x), for all x ∈M(f) ∪M(g) .

Then f = g.

5.2 Classification of descent moduli on RV

Denote P(V)∗ the family of nonempty subsets of V. Given a descent modulus T on V we recall
from (50) the critical map

ZT : RV → P(V)∗.

In the context of the determination of functions, Theorem 3.5 shows that the critical map is an
important object. Below we will investigate it further through the following equivalence relation
relative to the mapping T 7→ ZT .

Definition 5.5 (equivalence of descent moduli). Let T , S be two descent moduli on V. We say
that the moduli T and S are equivalent (and denote T ∼ S) if ZT = ZS .
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A family D := {Dx}x∈V is called an active neighborhood system, provided x ∈ Dx ⊂ V for every
x ∈ V. An example of such system has been defined in (49) in the particular case where the set
V is equipped with a generator L.

We henceforth denote by E(V) the set of active neighborhood systems on V. Then for any such
system D ∈ E(V) we associate a descent modulus TD defined for f ∈ RV and x ∈ V as follows
(compare with (25) in Proposition 3.7):

TD[f ](x) := max
y∈Dx

(f(x)− f(y))+ (57)

Conversely, given any (abstract) descent modulus T we set:{
Kx(T ) B {K ⊂ V : x ∈ K ∩ ZT (1K)}

Dx(T ) B
⋂
K∈Kx(T )K

(58)

where 1K denotes the characteristic function of the set K, that is:

1K(x) =

{
1, if x ∈ K
0, if x /∈ K.

The interest of these notions is illustrated by the following result:

Theorem 5.6 (classification of moduli). If a homogeneous descent modulus T satisfies

∀ x ∈ V : Dx(T ) ∈ Kx(T ) (H)

then there exists a family D ∈ E(V) such that T is equivalent to TD given in (57).

Before we proceed, let us introduce the following definition.

Definition 5.7. For a critical map Z : RV → P(V)∗ and for each x ∈ V, we define{
Kx(Z) B {K ⊂ V : x ∈ K ∩ Z(1K)}

Dx(Z) B
⋂
K∈Kx K

(59)

If there is no confusion, we might simply write Kx and Dx, respectively. We extend the assump-
tion (H) from homogeneous descent modulus to critical maps Z via

∀ x ∈ V : Dx(Z) ∈ Kx(Z) (H)

In particular this condition is the same for a homogeneous descent modulus T and for its critical
map ZT .

The proof of Theorem 5.6 is based on a characterization of those maps Z : RV → P(V)∗ for
which there exists a descent modulus T such that Z = ZT . More precisely, let Z : RV → P(V)∗

be an abstract critical map satisfying the following conditions :

(Z1) for every f ∈ RV and r ∈ R: Z[f + r] = Z[f ]

(Z2) for every f ∈ RV and r > 0: Z[rf ] = Z[f ]

(Z3) for every f ∈ RV and r ∈ R: Z[f ] = (Z[φr(f)] ∩ [f ≤ r]) t (Z[ϕr(f)] ∩ [f > r])
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where

∀ r ∈ R, ∀ s ∈ R,
{
φr(s) B r ∧ s
ϕr(s) B r ∨ s.

We also assume

(Z4) for every K ⊂ V we have: Kc ⊂ Z(1K); and

(Z5) for every x ∈ V :
Kx = {K ⊂ V : Dx ⊂ K}.

The announced characterization of critical maps is the following:

Theorem 5.8 (characterization of critical maps). An abstract critical map Z : RV → P(V)∗ is
associated to some homogeneous descent modulus T (that is, Z = ZT ) if and only if conditions
(Z1)–(Z5) hold.
In this case Z = ZTD , where TD is defined by (57) for D := {Dx}x∈V constructed in (59).

The last assertion of Theorem 5.8 is implicitly assuming that D ∈ E(V). The following lemma
confirms that this is indeed the case:

Lemma 5.9. Let Z : RV → P(V)∗ be an abstract critical mapping that satisfies conditions
(Z1)–(Z4). Let further D := {Dx}x∈V be constructed as in (59). Then Z[1V ] = V and D ∈ E(V).

Proof. Applying (Z4) with K = ∅, we get V ⊂ Z(1∅) = Z[0], where 0 denotes the null function
on V. We deduce from (Z1) (for r = 1) that Z[1V ] = Z[0] = V. Recall that the family
D := (Dx)x∈V belongs to E(V) if and only if it satisfies

x ∈ Dx, ∀x ∈ V.

Fix x ∈ V. Since Z[1V ] = V, we have x ∈ Z[1V ], which in conjunction with x ∈ V yields
V ∈ Kx. It follows that Kx 6= ∅. By definition of Kx, for any K ∈ Kx, we have x ∈ K, so that
x ∈

⋂
K∈Kx K = Dx. Therefore D ∈ E(V).

Let us postpone for a while the proof of Theorem 5.8 and show instead that Theorem 5.8
implies Theorem 5.6. To this end, let T be a homogeneous descent modulus on V. Then using
Theorem 5.8, it is easy to see that T is equivalent to TD for some active neighborhood system
D ∈ E(V) provided the following proposition is proven:

Proposition 5.10. Under Assumption (H), the critical map ZT satisfies (Z1)–(Z5).

Proof. We verify successively that conditions (Z1)–(Z5) hold. Indeed, condition (Z1) comes from
the translation invariance property of T , see Proposition 3.2, while (Z2) is consequence of the
homogeneity assumption for T .

Verifying (Z3) requires some extra work: fix f ∈ RV and r ∈ R. Since (Z3) holds trivially for
constant functions, we may assume that f takes at least two different values. Then for any
s, s′ ∈ R we have

(φr(s)− φr(s′))+ ≤ (s− s′)+

(ϕr(s)− ϕr(s′))+ ≤ (s− s′)+
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and monotonicity yields

T [φr(f)] ≤ T [f ]

T [ϕr(f)] ≤ T [f ]

Consequently:
ZT [f ] ⊂ ZT [φr(f)] ∩ ZT [ϕr(f)]

so that

ZT [f ] = (ZT [f ] ∩ [f ≤ r]) t (ZT [f ] ∩ [f > r])

⊂ (ZT [φr(f)] ∩ [f ≤ r]) t (ZT [ϕr(f)] ∩ [f > r]) .

To get the reserved inclusion, consider x ∈ V with f(x) ≤ r, in particular φr(f(x)) = f(x). For
any z ∈ V with φr(f(z)) < φr(f(x)), we have φr(f(z)) = f(z), so that

(φr(f(x))− φr(f(z)))+ = (f(x)− f(z))+

For any z ∈ V with φr(f(z)) ≥ φr(f(x)), we must have f(z) ≥ f(x), thus

(φr(f(x))− φr(f(z)))+ = 0 = (f(x)− f(z))+

From the monotonicity property, we deduce T [φr(f)](x) = T [f ](x). These considerations show
that

ZT [φr(f)] ∩ [f ≤ r] ⊂ ZT [f ] (60)

Finally, consider x ∈ V with f(x) > r, in particular ϕr(f(x)) = f(x). Since f is not constant,
we can define

a :=
f(x)− (r ∨min f)

max f −min f
> 0.

Now, on the one hand, for any z ∈ V with ϕr(f(z)) ≥ ϕr(f(x)), we must have f(z) ≥ f(x), thus

(ϕr(f(x))− ϕr(f(z)))+ = 0 = (f(x)− f(z))+ = (af(x)− af(z))+

On the other hand, for any z ∈ V with ϕr(f(z)) < ϕr(f(x)), we have

ϕr(f(x))− ϕr(f(z)) ≥ f(x)− (r ∨min f) ≥ a(f(x)− f(z))

We deduce that

∀ z ∈ V, (ϕr(f(x))− ϕr(f(z))+ ≥ (af(x)− af(z))+

and by monotonicity T [ϕr(f)](x) ≥ T [af ](x) = aT [f ](x), by homogeneity. It follows that

ZT [ϕr(f)] ∩ [f > r] ⊂ ZT [f ].

Combining with (60), we get the reverse inclusion

ZT [f ] ⊃ (ZT [φr(f)] ∩ [f ≤ r]) t (ZT [ϕr(f)] ∩ [f > r]) ,

therefore (Z3) holds.
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Condition (Z4) is a consequence of the preservation of global minima, since the set of global
minima of 1K coincides with Kc.

It remains to show (Z5). Set

K̃x = {K ⊂ V : Dx ⊂ K}.

Then for every K ∈ Kx we have Dx ⊂ K, that is, K ∈ K̃x and Kx ⊂ K̃x. To prove the reverse
inclusion, consider K ⊂ V with Dx ⊂ K. We need to verify that K ∈ Kx. Since x ∈ Dx, we get
x ∈ K. Furthermore, for every z ∈ V we have:

(1K(x)− 1K(z))+ = 1− 1K(z) ≤ 1− 1Dx(z) = (1Dx(x)− 1Dx(z))+

and thus by monotonicity, T [1K ](x) ≤ T [1Dx ](x) = 0, where the last equality is obtained via (H).
It follows that x ∈ ZT (K) whence K ∈ Kx.

The proof is complete.

For D ∈ E(V), denote for simplicity by ZD the critical map ZTD associated to the homogeneous
descent modulus TD. The following lemma shows how to recover the active neighborhood system
D ={Dx}x from ZD:

Lemma 5.11. For any x ∈ V, we have

Dx =
⋂

K∈Kx

K

where
Kx := {K ⊂ V : x ∈ K ∩ ZD(1K)}.

Proof. For any f ∈ RV , recall that

ZD[f ] = {x ∈ V : TD[f ](x) = 0} = {x ∈ V : max
y∈Dx

(f(x)− f(y))+ = 0}

= {x ∈ V : ∀ y ∈ Dx, f(y) ≥ f(x)}.

In particular taking f = 1K with K ∈ P(V)∗, we get

ZD(1K) = {x ∈ V : ∀ y ∈ Dx, 1K(y) ≥ 1K(x)} = {x ∈ K : Dx ⊂ K} ∪Kc.

Fix x ∈ V and consider K ∈ Kx. Since x ∈ K and x ∈ ZD(1K), we deduce that Dx ⊂ K. It
follows that

Dx ⊂
⋂

K∈Kx

K.

To get the reverse implication, it is sufficient to check that Dx ∈ Kx. Note that

ZD[1Dx ] = {y ∈ Dx : Dy ⊂ Dx} ∪ Dcx.

Therefore, x ∈ ZD[1Dx ]. Since we also have x ∈ Dx, we deduce that Dx ∈ Kx.
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The above lemma justifies the introduction of the objects Kx, Dx, for x ∈ V, for any mapping
Z : RV → P(V)∗ in (59) by analogy to (58). Denote by Ẑ the set of mappings Z : RV → P(V)∗

satisfying Z[1] = V and by ẐE the set of critical maps ZD associated to TD with D ∈ E(V). Let
Q be the mapping Ẑ 3 Z 7→ ZD ∈ ẐE considered above. Lemma 5.11 shows that Q2 = Q, that
is, Q is a kind of non-linear projection.

Let us show that in Proposition 5.10 we don’t need to assume (H) if the critical map is of the
form ZD:

Lemma 5.12. For any D ∈ E(V), ZD satisfies (H) and thus (Z5).

Proof. Thanks to Lemma 5.11, the family {
⋂
K∈KxK}x∈V constructed in (59) coincides with the

active neighborhood system D ={Dx}x∈V in the definition of ZD. Thus to check (H), it suffices
to show that x ∈ ZD[1Dx ], for any x ∈ V, or equivalently TD[1Dx ](x) = 0. A direct computation
gives:

TD[1Dx ](x) = max
z∈Dx

1Dx(x)− 1Dx(z) = 0

Condition (Z5) then follows from Proposition 5.10.

Here is the first step towards Theorem 5.8:

Proposition 5.13. Let Z : RV → P(V)∗ satisfying (Z1)–(Z3) and Z[1V] = V. Let D be
constructed as in (59) and define ZD the critical map associated to TD given in (57). Assume
that

∀ K ⊂ V, Z(1K) = ZD(1K)

Then we have Z = ZD.

Proof. From Proposition 5.10 and Lemma 5.9, ZD also satisfies (Z1)–(Z3) and ZD[1V] = V.
Let f ∈ RV . We prove that Z[f ] = ZD[f ] via induction over the number n ∈ N of values taken
by f .
• We begin with the case where n = 1, that is, f is constant. Denote by a ∈ R the value of f .
Taking into account condition (Z1) and the fact that Z[1V] = V, we obtain

Z[f ] = Z[f − a+ 1] = Z[1V ] = ZD[1V ] = V = ZD[f ]

• Consider the case where n = 2 and let f(V) = {a, b} with a < b. Set K := [f = b]. Using (Z1)
and (Z2), we get

Z[f ] = Z
[
f − a
b− a

]
= Z(1K) = ZD(1K) = ZD[f ].

• Consider the case where n > 2, assuming that Z[g] = ZD[g] for all g ∈ RD taking at most
n − 1 values. Write f1 < f2 < · · · < fn the values taken by f . Take k = bn+1

2 c (integer part),
set r = fk and

g− B φr ◦ f
g+ B ϕr ◦ f

By the choice of r, both g− and g+ take at most n− 1 values.

40



Condition (Z3) then yields

Z[f ] = (Z[g−] ∩ [f ≤ r]) t (Z[g+] ∩ [f > r])

= (ZD[g−] ∩ [f ≤ r]) t (ZD[g+] ∩ [f > r]) = ZD[f ].

as desired.

Having established Proposition 5.13, the following result finishes the proof of Theorem 5.8:

Proposition 5.14. Let Z : RV → P(V)∗ be a mapping satisfying (Z1)–(Z5) and let D =
(Dx)x∈V ∈ E(V) be as in (59). Then we have

∀ K ⊂ V : Z[1K ] = ZD[1K ]

Proof. From (Z4), we have

Kc ∩ Z(1K) = Kc = Kc ∩ ZD(1K).

Now, let K ′ = {x ∈ K : Dx ⊂ K}. For every x ∈ K ′, due to (Z5), we have K ∈ Kx, so
x ∈ Z[1K ]. Since this is true for any x ∈ K ′, we get K ′ ⊂ Z[1K ].
According to Lemma 5.12, ZD also satisfies (Z5), and it follows as above that K ′ ⊂ ZD[1K ]. We
deduce

K ′ ∩ Z(1K) = K ′ = K ′ ∩ ZD(1K).

Finally, let K�K ′ = {x ∈ K : Dx \K 6= ∅}. For every x ∈ K�K ′, since Dx 6⊂ K, we have
K /∈ Kx, due to the definition of Kx in (59). Since x ∈ K, the only possibility is that x /∈ Z(1K).
The same reasoning applies to ZD (recalling Lemma 5.11) and we get

K�K ′ ∩ Z(1K) = ∅ = K�K ′ ∩ ZD(1K)

Since V = Kc tK ′ t (K�K ′), we conclude that

Z(1K) = Kc tK ′ = ZD(1K),

finishing the proof.

Remark 5.15. Note that (Z5) was only used to prove that K ′ ⊂ Z(1K). Thus, when (Z5)
is not verified, the constructed modulus of descent TD might enlarge the critical map ZD with
respect to Z, as illustrated by Example 5.17 below.

The following two examples show that homogeneity and (Z4) are necessary assumptions.

Example 5.16 (A non-homogeneous descent modulus failing (Z2)). Let ε > 0 and consider the
operator Tε : RV → RV+ given by

Tε[f ](x) B

{
f(x)−min f if f(x) > min f + ε

0 if f(x) ≤ min f + ε.
= φε(f(x)−min f)

where the mapping φε is defined for r ≥ 0 by

φε(r) B

{
0, if r ∈ [0, ε]
r, if r > ε.

We claim that Tε is a descent modulus.
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• Let f ∈ RV . For every x ∈ argmin f , we have that Tε[f ](x) = 0, and so Tε preserves global
minima.

• Let f, g ∈ RV and x ∈ V such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+, ∀z ∈ V.

On the one hand, if f(x) ≤ min f + ε, we have that

ε ≥ (f(x)− f(z))+ ≥ (g(x)− g(z))+, ∀z ∈ V,

and so, g(x) ≤ min g + ε as well. Then Tε[f ](x) = Tε[g](x). On the other hand, if
f(x) ≥ min f + ε, by taking z∗ ∈ argmin g, we have that

Tε[f ](x) = f(x)−min f ≥ (f(x)− f(z∗))+

≥ (g(x)− g(z∗))+ = g(x)−min g ≥ Tε[g](x).

Thus, Tε is monotone.

• Let f ∈ RV and r > 1. Then, for every x ∈ V,

Tε[f ](x) > 0 =⇒ ε ≤ Tε[f ](x) = f(x)−min f < r(f(x)−min f) = rf(x)−min rf = Tε[rf ](x).

Thus, Tε is scalar-monotone.

Then, by definition, Tε is a descent modulus. However, choose f ∈ RV such that α = max f −
min f > ε, and choose r = ε

α . Then, we have that ZT (f) 6= V but

∀x ∈ V, rf(x)−min rf ≤ r(max f −min f) = ε =⇒ ZT (rf) = V.

�

Example 5.17 (A family of homogeneous moduli of descent failing (Z4)). Let D′ = (D′x)x∈V ∈
E(V) such that there exists x̄ ∈ V where |D′x̄| ≥ 3, and let T : RV → RV+ be the operator given
by

T [f ](x) B


(
f(x)− max

y∈D′x\{x}
f(y)

)
+

if D′x 6= {x}

0 if D′x = {x}.
Clearly T is homogeneous and preserves global minima. Let us prove that T is monotone: let
f, g ∈ RV and x ∈ V such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+, ∀z ∈ V.

If D′x = {x}, then T [f ](x) = 0 ≥ 0 = T [g](x). If D′x 6= {x}, then there exist y∗ ∈ D′x \ {x} such
that f(y∗) = maxy∈D′x\{x} f(y). Then,

T [f ](x) = (f(x)− f(y∗))+ ≥ (g(x)− g(y∗))+ ≥
(
g(x)− max

y∈D′x\{x}
g(y)

)
+

= T [g](x).

Thus, T is monotone and therefore it is a descent modulus. Now, let (Kx)x∈V and D = (Dx)x∈V
constructed as in (59) for ZT . Then:
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• If D′x = {x}, then Kx = {K ∈ P(V)∗ : x ∈ K} and so Dx = D′x.

• If D′x = {x, y} for some y 6= x, then Kx = {K ∈ V : {x, y} ⊂ K}. Indeed, consider
K ∈ Kx, we have x ∈ K and x ∈ ZT (K). We compute

T (1K)(x) = (1K(x)− 1K(y))+ = 1− 1K(y)

so for this expression to vanish, we must have y ∈ K. Conversely, if {x, y} ⊂ K, then
x ∈ K and

T (1K)(x) = (1K(x)− 1K(y))+ = 0

so K ∈ Kx. We deduce Dx = {x, y} and so Dx = D′x.

• If |D′x| ≥ 3, we have that there is y, z ∈ D′x \ {x} with y 6= z such that {x, y}, {x, z} ∈ Kx.
Thus, Dx ⊂ {x, y} ∩ {x, z} = {x} 6= D′x, it follows that Dx = {x}. Furthermore, {x} /∈ Kx
since T [1{x}](x) = 1.

Thus, since |D′x̄| ≥ 3, T fails (Z4). �
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