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Abstract (248 words) 28 

Sleep deprivation has an ever-increasing impact on individuals and societies. Yet, to date, there 29 

is no quick and objective test for sleep deprivation. Here, we used automated acoustic analyses 30 

of the voice to detect sleep deprivation. Building on current machine-learning approaches, we 31 

focused on interpretability by introducing two novel ideas: the use of a fully generic auditory 32 

representation as input feature space, combined with an interpretation technique based on 33 

reverse correlation. The auditory representation consisted of a spectro-temporal modulation 34 

analysis derived from neurophysiology. The interpretation method aimed to reveal the regions 35 

of the auditory representation that supported the classifiers’ decisions. Results showed that 36 

generic auditory features could be used to detect sleep deprivation successfully, with an 37 

accuracy comparable to state-of-the-art speech features. Furthermore, the interpretation 38 

revealed two distinct effects of sleep deprivation on the voice: a change in prosody and a change 39 

in timbre. Importantly, the relative balance of the two effects varied widely across individuals, 40 

even though the amount of sleep deprivation was controlled, thus confirming the need to 41 

characterize sleep deprivation at the individual level. Moreover, while the prosody factor 42 

correlated with subjective sleepiness reports, the timbre factor did not, consistent with the 43 

presence of both explicit and implicit consequences of sleep deprivation. Overall, the findings 44 

show that individual effects of sleep deprivation may be observed in vocal biomarkers. Future 45 

investigations correlating such markers with objective physiological measures of sleep 46 

deprivation could enable “sleep stethoscopes” for the cost-effective diagnosis of the individual 47 

effects of sleep deprivation.   48 

  49 
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Author summary (125 words) 50 

Sleep deprivation has an ever-increasing impact on individuals and societies, from accidents to 51 

chronic conditions costing billions to health systems. Yet, to date, there is no quick and objective 52 

test for sleep deprivation. We show that sleep deprivation can be detected at the individual level 53 

with voice recordings. Importantly, we focused on interpretability, which allowed us to identify 54 

two independent effects of sleep deprivation on the voice: a change in prosody and a change in 55 

timbre. The results also revealed a striking variability in individual reactions to the same 56 

deprivation, further confirming the need to consider the effects of sleep deprivation at the 57 

individual level. Vocal markers could be correlated to specific underlying physiological factors in 58 

future studies, outlining possible cost-effective and non-invasive “sleep stethoscopes”.  59 

  60 
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Introduction 61 

In the last decade or so, insufficient sleep has become a prominent public health issue, 62 

with one third of the adult population sleeping less than six hours per night (1–3). This chronic 63 

sleep debt is associated with an increased risk of chronic disease, such as obesity, type 2 64 

diabetes, cardiovascular diseases, inflammation, addictions, accidents and cancer (4–8). Sleep 65 

debt also increase the risk of developing multiple comorbidities (9). Moreover, more than one 66 

worker out of five operates at night and suffers from a high level of sleep deprivation (10), which 67 

causes accidents in the workplace or when driving (11). In the present study, we use automated 68 

acoustic analyses of the voice to detect sleep deprivation. The aim is not to improve the accuracy 69 

of current machine-learning approaches (12–14), but, rather, to build on them to introduce a new 70 

focus on interpretability. Ideally, our method should not only detect whether an individual is sleep 71 

deprived or not, but also help to formulate specific hypotheses as to the physiological 72 

consequences of sleep deprivation for a given individual at a given moment in time.    73 

Currently, there are several techniques aiming to measure sleep deprivation and its 74 

associated physiological consequences. First, sleep deprivation may be simply assessed in 75 

terms of the loss of sleep time, as measured in hours. Remarkably, however, the impact of a 76 

given amount of sleep deprivation varies massively across individuals. In laboratory settings 77 

where the amount of deprivation could be precisely controlled, up to 90% of the variance in 78 

cognitive performance was related to individual traits and not to the actual time spent asleep 79 

(15, 16). Second, sleep deprivation may also be measured through subjective sleepiness, which 80 

participants can explicitly report using rating scales (17–19). However, subjective sleepiness 81 

could be influenced by other factors than sleep deprivation, such as the time of the day, 82 

motivation, or stress. Besides, it is not clear whether reported subjective sleepiness captures 83 

the full physiological impact of sleep deprivation, given the variety of the potentially implicit 84 

processes involved (20). Third, objective methods have been developed to measure tangible 85 
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consequences of sleep deprivation. The multiple sleep latency test (21), the gold standard in 86 

clinical settings, uses electro-encephalography (EEG) to estimate sleep latency (e.g. the amount 87 

of time to go from wake to sleep) along five successive naps sampled every two hours during 88 

daytime. The psychomotor vigilance test (22), often used in research settings, tests for the ability 89 

to respond quickly to infrequent stimuli, with slower reaction times assumed to be markers of 90 

attentional lapses. More recently, new approaches have attempted to measure the concentration 91 

of key molecules in the urine, saliva or breath (23). Although these objective methods are 92 

complementary to subjective reports, they are often costly, time consuming, or difficult to deploy 93 

outside of laboratories. So, whereas there are cheap and fast objective diagnosis tools for other 94 

causes of temporary cognitive impairment, such as alcohol or drug abuse, there is currently no 95 

established means to estimate sleep deprivation effects, at the individual level, in real-life 96 

settings.  97 

If sleep deprivation could be detected through voice recordings, this would fill this gap by 98 

providing a quick, non-invasive, and cost-effective objective measure of sleep deprivation. 99 

Indeed, because the voice is easy to record with off-the-shelf equipment, there is a growing 100 

interest in finding vocal biomarkers to diagnose a variety of medical conditions (24, 25). For 101 

sleep, the idea was first explored by Morris et al. (26). Free speech was produced by sleep 102 

deprived participants and rated by the authors. A slowing down of speech and a “flatness of the 103 

voice” were noted after deprivation. These observations were extended by Harrison and Horne 104 

(27), who found that raters blind to the amount of deprivation of the speakers could detect effects 105 

on the intonation of speech after deprivation. More recently, an experiment using a larger 106 

database found that, indeed, raters could detect sleepy versus non sleepy voices with an 107 

accuracy above 90% (28). So, it does seem that there are acoustic cues in the voice that reflect 108 

sleep deprivation and/or sleepiness. 109 
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Machine learning has been applied to automate the detection of sleep deprivation and/or 110 

sleepiness from the voice. In an early study (29), sleep deprivation was inferred with high 111 

accuracy from vocal recordings (86%) but it should be noted that the deprivation was extreme, 112 

consisting of 60 hours without sleep, with unknown applicability to the much more common 113 

situation of mild sleep deprivation. Two “computational paralinguistic challenges” have since 114 

been launched, with sub-challenges aimed at assessing sleepiness from vocal recordings (30, 115 

31). We will not review all of the entries to these challenges here, as they are quite technical in 116 

nature. To summarize, all of them used a similar framework: i) selection of a set of acoustic 117 

features, such as pitch, spectral and cepstral coefficients, duration estimates, and functionals of 118 

those features; ii) dimensionality reduction of the feature set; iii) supervised learning of target 119 

classification using various machine learning techniques, such as support vector machines or 120 

neural networks. The best results varied depending on the challenge. Subjective sleepiness 121 

proved difficult to predict (28), but the binary categorization of sleepy versus non-sleepy voices 122 

could be achieved with high accuracy (over 80%) in the best performing classifiers (32).  123 

The framework described above will be familiar -and effective- for many machine learning 124 

problems, but it has two major limitations from a neuroscientific perspective. First, the initial 125 

selection of features is based on a somewhat arbitrary choice. Often, the choice of features was 126 

guided by the “voice flatness” hypothesis (26, 27). However, other, perhaps more subtle acoustic 127 

markers of sleep deprivation or sleepiness may have been overlooked by human raters. Second, 128 

the acoustic features discovered by the classifiers are not necessarily interpretable and can be 129 

difficult to relate to plausible mediating mechanisms (14). Interestingly, the best-performing 130 

system so far used a carefully hand-crafted small feature set inspired from auditory processing 131 

models, suggesting that “perceptual” features may be a promising route for sleepiness detection 132 

in the voice (32). A more recent study has again attempted to focus on “simple” acoustic 133 

descriptors for one of the databases of the paralinguistic challenge, with the explicit aim to 134 
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facilitate interpretation (33). Accurate classification was possible with the simpler feature set of 135 

about 20 features, with a resulting accuracy of 76%. 136 

Here, we aim to extend these findings in several ways. First, we use our own vocal 137 

database, which has been collected in a controlled laboratory setting where the amount of sleep 138 

deprivation could be precisely controlled. Vocal recordings were obtained from reading out loud 139 

the same texts for all participants, in random order across participants. This is important to avoid 140 

biases confounding sleep deprivation with e.g. participant identity, which is easily picked up by 141 

classifiers (28, 34). Second, we use a fully generic acoustic feature set, derived from an 142 

established model of auditory processing (35). Our audio input representation is based on so-143 

called spectro-temporal modulations (STMs). Sounds are first split into separate frequency 144 

bands, to simulating peripheral auditory filtering, and joint modulations over time and frequency 145 

are then estimated, to simulate cortical neural receptive fields (see Methods for further details). 146 

While the STM representation was initially motivated by neurophysiological results, it has been 147 

successfully applied to various machine-learning problems such as musical instruments 148 

classification (36), timbre perception (36, 37), or speech detection and enhancement (38). Third, 149 

we apply our own technique to interpret the cues discovered by the classifier (39). This 150 

technique, similar in spirit to the reverse correlation method used in neuroscience and 151 

psychophysics, identifies the parts of the input representation that have the most weight in the 152 

classifiers’ decisions. The main outcome of the analysis is thus the parts of auditory feature 153 

space impacted by sleep deprivation. Fourth, by fitting classifiers to individual participants, we 154 

aim to uncover the physiological factors underlying the large and as of yet unexplained variability 155 

observed in the responses to mild sleep deprivation in normal healthy adults.  156 

 157 

 158 

 159 
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Results  160 

Twenty-two healthy women between 30-50 years of age (42.7 ± 6.8) were sleep deprived 161 

during a controlled laboratory protocol. An all-female experimental group was chosen because 162 

the current experiment took place in parallel with a dermatology study (40), but also because 163 

such a choice was expected to homogenize the vocal pitch range across participants. After a 164 

first “Control night” spent in the laboratory, participants were restricted to no more than 3 hours 165 

of sleep per night during two subsequent “Restriction nights”, also monitored in the laboratory. 166 

Such a sleep restriction is both more ecological than total sleep deprivation and better controlled 167 

than observational paradigms. Vocal recordings were obtained throughout the protocol, during 168 

reading sessions sampled at different times of the day. These reading sessions occurred either: 169 

i) right after the control night (no sleep deprivation); or ii) right after the second restriction night 170 

(see Methods for details). All participants read 10 minutes of different chapters of the same 171 

French classic book: “Le Comte de Monte Christo” (Alexandre Dumas, 1844).. The order of the 172 

excerpts was randomized across sessions for each participant to avoid a confound with 173 

deprivation. In total, our database consists of 22 healthy participants producing about half an 174 

hour of vocal recordings (M=31min, SD=5min) evenly split between before and after two nights 175 

of mild sleep deprivation. 176 

 177 

Subjective sleepiness reports are variable 178 

Sleepiness was self-reported by participants at different times during the day (see 179 

Methods) using the Stanford Sleepiness Scale (SSS) questionnaire (19). Figure 1A shows the 180 

distributions of SSS ratings. On average, sleep deprivation had an effect on self-reported 181 

sleepiness: sleepiness was low right after the control night, but increased after the deprivation 182 

nights. This was confirmed by an ANOVA on the SSS, with factors Day (2 levels, before and 183 

after deprivation) and Time of Report (4 levels). Both factors had a significant effect, but with a 184 
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much larger effect size for Day (F(1,46) = 52.14, p<0.001, 𝜂p2 = 0.221) compared to Time of 185 

report (F(3,92) = 3.07, p=0.029, 𝜂p2 = 0.048). Moreover, there was no interaction between Day 186 

and Time of report (F(3,92) = 0.59, p=0.621). Because of this lack of interaction, we now 187 

consider average SSS values for all Times of Reports in a Day, to focus on the effect of sleep 188 

deprivation.  189 

Figure 1B illustrates the data aggregated in that way, with individual changes in 190 

sleepiness now identified across the control and sleep deprived day. A remarkable individual 191 

variability was obvious in reported sleepiness. Note that this was in spite of our precise control 192 

of the amount of sleep deprivation, which was equated across all participants. Even so, some 193 

participants showed little effect of sleep deprivation, with even cases of decreases in subjective 194 

sleepiness after deprivation. Such unexpected effects were observed for all baseline sleepiness, 195 

low or high, as measured before deprivation. This striking variability is in fact consistent with 196 

previous observations involving objective measures of sleep deprivation (16). It also further 197 

justifies that vocal biomarkers of sleep deprivation should be investigated at the individual level. 198 

 199 

 200 

Fig. 1. A. Subjective sleepiness. Sleepiness was evaluated by self-reports on the Stanford 201 

Scale before sleep deprivation (Control) and after two nights of mild sleep deprivation (Sleep 202 
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deprived). The abscissa indicates the time of day when sleepiness reports were collected. B. 203 

Average reported sleepiness before and after sleep restriction. Lines connect data points 204 

for each participant. 205 

 206 

Acoustic features of speech before and after sleep deprivation are broadly similar 207 

To get a first qualitative overview of the effects of sleep deprivation on the acoustic 208 

features of speech, and in particular to test whether deprivation and any obvious average effect 209 

on the voice, we first computed STM representations before and after deprivation.  210 

Let us briefly describe the STM representation. At each moment in time, STMs contain 211 

the dimensions of frequency, rate, and scale. The frequency dimension, in Hz, reflects the 212 

spectral content of the sound, similar to a wavelet transform of the temporal waveform. The rate 213 

dimension, in Hz, reflects the modulations in sound amplitude in the time domain. Slow 214 

modulations have low rates, whereas fast modulations have high rates. Positive rates indicate 215 

temporal modulations coupled with downward changes in frequency, whereas negative rates 216 

indicate temporal modulations coupled with upward changes in frequency. The scale dimension, 217 

in cycle per octave, reflects modulations in the spectral domain. Sounds with fine spectral 218 

envelopes have high scale values, while sounds with relatively flat spectral shapes have low 219 

scale values. For speech, the dominant rates are between 2 Hz and 8 Hz (41), while dominant 220 

scales, related to the harmonic structure of vowels, are around 2 cyc/oct (42). 221 
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 223 

Fig. 2. Acoustic analyses. A. Spectro-Temporal Modulations before sleep deprivation. 224 

Projections on the rate-scale and rate-frequency plane are shown. Arbitrary model units. B. As 225 

in A., but after sleep deprivation. C. Acoustic difference before and after sleep deprivation, 226 

shown as 2 * abs(B-A) / (A+B). Units of percent. D. Speech features before (green) and after 227 

(orange) sleep deprivation. Displayed are four openSMILE features related to average pitch 228 

(mean of the fundamental frequency f0), pitch variation (standard deviation of f0), voice 229 

creakiness (Jitter) and voice breathiness (logarithm of the Harmonic to Noise Ratio). Lines 230 

connect data points for each participant. 231 

 232 

The full STMs thus have four dimensions of time, frequency, rate, and scale. To have a 233 

look at the overall effect of sleep deprivation on acoustic features, we averaged the STMs along 234 

the time dimension, separately before and after deprivation. Average STMs before (Fig. 2A) and 235 

after (Fig. 2B) deprivation were qualitatively similar. The rate-scale projections showed that, 236 

unsurprisingly, high energy in the STMs was focused in regions associated to speech (38). The 237 

frequency-rate projection simply showed the average spectrum of our vocal recordings.  238 

To further investigate the candidate acoustic differences caused by deprivation, we 239 

subtracted STMs before and after deprivation (Fig. 2C for the population-level results, Fig. S1 240 

for individual-level results). At the population level, maximal differences in the rate-scale 241 

projection were less than 3%, while differences up to 11% were observed in the frequency-rate 242 

projection. At the subject level, differences in the rate-scale projection were around 24.68% on 243 

average (SD=6), while differences up to 40.83% on average (SD=12) were observed in the 244 

frequency-rate projection. Larger differences seem therefore observable at individual level but 245 

there is no obvious structure to the differences: they appear noisy and do not necessarily match 246 

the STM regions of high energy in speech (see Figure S1).  247 

 248 
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For comparison with the state-of-the art of sleepiness detection from the voice (33), we 249 

also computed speech features using the openSMILE library (43). The full 4368 speech features 250 

suggested in (33) were extracted (see Methods). Four of them are illustrated in Fig. 2D, 251 

averaged before and after deprivation. These features were selected according to the “voice 252 

flatness” hypothesis. According to this hypothesis, it could be that sleep deprivation lowered the 253 

average pitch of the voice and reduced with its variation. It could also be that the quality of the 254 

voice, described with such adjectives as “creakiness” or “breathiness”, could systematically 255 

change after deprivation. The closest openSMILE correlates of such perceptual descriptors are 256 

shown in Figure 2D. Visually, no obvious change was induced by sleep deprivation, with 257 

increases or decreases for all four features.  258 

At this point, it is unclear whether the raw acoustic differences illustrated in Figure 2 are 259 

meaningful compared to the within- and across-participant variability. Also, the choice to 260 

illustrate 4 features out of 4368 is somewhat arbitrary. So, it remains to be tested whether the 261 

STM or openSMILE features have any predictive power to detect sleep deprivation. To address 262 

this point in a principled manner, we now turn to machine-learning, for the new STM 263 

representation and also for the openSMILE feature set.   264 

 265 

Detection of sleep deprivation from the voice is possible based on generic auditory 266 

features 267 

A first question raised by the present study is whether fully generic auditory features can 268 

be used to detect sleep deprivation from the voice. To address this question, the STM 269 

representation was used as the input feature space for a standard machine-learning pipeline 270 

(13, 14, 36). The dataset was first transformed into train and test splits. We then reduced the 271 

high dimensionality of the feature space by means of a principal component analysis (PCA) on 272 

the training set (see Methods). The PCA spaces were then fed to a support vector machine 273 
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classifier (SVM) with a Gaussian kernel (radial basis function). We opted for an SVM and not a 274 

deep-learning architecture mainly because of the relatively modest size of our dataset, but also 275 

because SVMs have been shown to outperform more complex classifiers in similar tasks (14). 276 

The performance of the SVM was evaluated with Balanced Accuracy (BAcc, see Methods). 277 

At the population level, two cross-validation strategies were used. First, a Leave-One-278 

Subject-Out (LOSO) strategy, in which one subject was left out of the training set and constituted 279 

the test set. The procedure was repeated for each participant. This procedure is the most 280 

stringent test of generalization of prediction for unknown participants. However, in small datasets 281 

with a large amount of individual variability, it has been argued that LOSO may be inappropriate 282 

(44). This is likely the case for our dataset, with 22 participants and a large expected variability 283 

for the effects of sleep deprivation. Thus, we also report cross-validation using a 50-times 284 

repeated splitting of 25% of the data (50-splits, 25% test) randomly selected among the whole 285 

pool of participants, as suggested in (44). At the participant level, the LOSO strategy does not 286 

make sense, so only the 50-splits, 25% test validation was applied. 287 

 288 

 289 

Fig. 3. Machine learning classification results with STM input features. A. Balanced 290 

Accuracies for the population-level classifier using the generic STM representation as input 291 

50-splits, 25% test LOSO
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feature space. Two cross-validation procedures are reported (see text). Error bars show 292 

standard deviations. Stars indicate the significance level of t-tests against chance level (** < .01; 293 

*** < .001). B. Balanced Accuracies for the classifiers tuned to individual participants, obtained 294 

with the 50-splits, 25% test cross-validation procedure.  Participants are ranked according to 295 

classification accuracy.  296 

 297 

Classification performance is shown in Figure 3. At the population level, the classifier was 298 

able to detect sleep deprivation significantly above chance (50-splits, 20% test: BAcc, M=.77, 299 

SD=.01, t-test against .5: t(49) = 145.27 p < 0.001; LOSO: BAcc, M=.56, SD=.09, t-test against 300 

.5: t(21) = 3.01, p = .006). This seems on par with the state of the art obtained with different 301 

speech databases (32, 33). Interestingly, and as expected from the sizeable individual variability 302 

observed in the SSS reports, the same machine-learning pipeline was more accurate when 303 

applied at the individual level (BAcc, M=.86, SD=.09). Noticeably, for half of the participants, the 304 

classifiers’ accuracies displayed BAccs above .9, outperforming the state of the art and matching 305 

human performance on a similar task (28). For two participants, the classifiers’ accuracies were 306 

relatively poor. Participant #1 displayed a decrease in sleepiness after deprivation (-0.75 for the 307 

sleepiness ratings averaged after and before deprivation), and was the only participant to exhibit 308 

such a trend in the group for which vocal recordings were available (another participant exhibited 309 

such a decrease in Figure 1B, but was could not be included in the vocal analysis). This may 310 

have contributed to the poor accuracy of the classifier. Participant #2 did exhibit an increase in 311 

sleepiness after deprivation (+0.75), so there are no obvious reasons for the classifier’s poor 312 

performance in this case.   313 

Overall, this shows that there is enough information in the fully generic STM 314 

representation of vocal recordings to detect mild sleep deprivation in otherwise normal and 315 

healthy participants. The classification performance at the population level is poor using a LOSO 316 
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cross-validation procedure, so the generalizability of our approach across speakers is not 317 

warranted. However, performance is generally excellent at the individual level, strengthening the 318 

idea that individual variability is key when considering vocal correlates of sleep deprivation. 319 

 320 

Using standard speech features does not improve sleep deprivation detection accuracy 321 

Even if the STM representation successfully supported sleep detection at the individual 322 

level, it could be that it missed important speech features such as “pitch” or “pitch variation”, 323 

which are at the core of the “voice flatness” hypothesis and are part of most automatic sleepiness 324 

detection pipelines.  325 

To investigate this possibility, we used the full openSMILE feature set (4368 features) as 326 

input feature space. We then applied the same classification pipeline as for the STM 327 

representation, consisting of dimensionality reduction followed by a Gaussian kernel SVM. This 328 

resulted in a pipeline matching the state-of-the art for sleepiness (33) while allowing comparison 329 

between the two input spaces. 330 

Results are displayed in Figure 4. At the population level, the openSMILE classifier 331 

accuracy was similar to the STM classifier (50-splits, 20% test: BAcc, M=.70 SD=.01, t-test 332 

against .5: t(49)=91.6, p < 0.01; LOSO: BAcc, M=.56, SD=.09, t-test against .5: t(21)=2.98, p = 333 

.007). At the individual level, the accuracies of the openSMILE classifiers were on average 334 

poorer than those observed with the STM classifiers (BAcc, M=0.67, SD=0.9). The correlation 335 

between classification performance using STM or openSMILE feature was low (r(20) = .34, 336 

p=.11). Interestingly, however, participants #1 and #2 for whom poor classification performance 337 

was observed using the STM input feature space also displayed poor classification using the 338 

openSMILE input feature space.  339 

These results show that, for our voice database at least, using standard speech features 340 

decreased the accuracy of sleep deprivation detection. The relevant information to detect sleep 341 
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deprivation from the voice was thus better expressed in the STM representation, with the added 342 

benefit, from our perspective, that generic auditory features should be easier to interpret. We 343 

thus now focus on the STM representation to interpret the features used for classification.   344 

 345 

 346 

Fig. 4. Machine learning classification results with openSMILE input features. Format as 347 

in Fig. 3. In particular, for B., participants’ labels (#) are identical to Fig. 3.  348 

 349 

Interpreting classifiers to identify vocal biomarkers of sleep deprivation  350 

To gain insight about the nature of the acoustic features distinguishing speech before and 351 

after sleep deprivation, we probed the trained classifiers with STM using a recent interpretation 352 

technique based on reverse correlation (39). Briefly, the technique consists in randomly 353 

perturbing the input to the trained classifier, over thousands of trials, and then averaging all of 354 

the noisy representations leading to correct classification. This aims to identify the portion of the 355 

input that participates the most to the classifier’s performance. The input representation was 356 

perturbed using additive noise in the PCA-reduced feature space (45). Averaging all masks 357 

leading to a correct classification decision revealed, in our case, the discriminative features of a 358 

voice after deprivation compared to before deprivation (for details, see Methods and 39).   359 
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As a preliminary step, we evaluated the consistency of the interpretation masks. Because 360 

of our cross-validation technique, 50 classifiers were fitted either for the whole dataset for the 361 

population-level classifier or for each participant’s classifier. To check internal consistency, we 362 

computed the pairwise Pearson’s correlation coefficients between all 50 interpretation maps. At 363 

the population-level, this “consistency correlation” was low albeit significantly above chance 364 

(r(22527): M = .20, SD=.34; all but 28 over 1225 pairwise correlations were significant, p<.05) 365 

which is consistent with the large variability suspected across listeners. At the participant-level, 366 

however, consistency correlations were very high (r(22527): M=.91, SD=.06, min=.73; all but 3 367 

over 26950 pairwise correlations were significant, p<.05). Furthermore, because individual 368 

classifiers varied in accuracy, we could check whether the consistency of the interpretation 369 

improved with accuracy. As expected, the correlation between BAccs and consistency 370 

correlation was strong (r(20)=.71, p=.0003). These consistency results confirm that caution 371 

should be applied when considering population-level interpretations, but that individual results 372 

are robust and can be interpreted.  373 

Figure 5 shows the interpretation maps for the population-level classifier. Maps should 374 

be read as follows: red areas correspond to STM features where the presence of energy is 375 

associated with sleep deprivation for the classifier, whereas blue areas represent STM features 376 

where the absence of energy is associated to sleep deprivation for the classifier. For the 377 

population-level map, the rate-scale projection resembles the raw difference before and after 378 

deprivation, although less noisy, whereas the frequency-rate projection does not match such 379 

raw acoustic differences (compare with Fig. 2C). As these population-level interpretations are 380 

not robust, we simply show them for illustrative purposes and refrain from further description of 381 

their features. 382 

 383 



Page 19 of 40 
 

 384 

Fig. 5. Interpretation of the population-level classifier. Discriminative features (see main 385 

text) are shown in the input STM space, for the rate-scale and frequency-scale projections. Red 386 

areas indicate features positively associated to sleep deprivation by the classifier. Blue areas 387 

correspond to features negatively associated to sleep deprivation by the classifier. Color bar 388 

indicate the averaged value of the reverse correlation mask. Values are low because of the 389 

relative low consistency of the interpretation masks for this population-level classifier. 390 

 391 

Figure 6A shows all individual classifiers on the rate-scale projection, ordered along 392 

increasing accuracy (BAcc) of the corresponding classifier. We chose to interpret in priority the 393 

rate-scale projections, as is done in most speech applications (38). The frequency-rate 394 

projections are provided as Figure S3. The main feature of the results is the striking diversity of 395 

the individual maps, which is not related to classifier accuracy in any obvious manner. For some 396 

participants, sleep deprivation was detected through a reduction in energy over a range of STM 397 

features (blue color), consistent with a “flattening” of speech modulations. But the opposite was 398 

also observed for other participants (red color). Moreover, the details of the discriminative 399 

features also varied across participants. As shown before, these details are robust and warrant 400 

interpretation. 401 
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 402 

 403 

 404 

Fig. 6. Interpretation of the participant-level classifiers. A. As for Figure 5, but for individual 405 

participants identified by their participant #. B. Projection of participants # in the interpretation-406 

PCA space of all participant’s masks (see text for details). C. and D.  Variance of the idealized 407 

masks along the first two dimensions of the interpretation-PCA. Idealized masks are obtained 408 

by first sampling the PCA latent space between -2 and 2 for the two first dimensions with 30 409 

values and then inverting the latent space into the input feature space by using the inverse 410 

transform of the PCA. Red areas show the discriminative features that vary the most along each 411 

interpretation-PCA dimension. Units: variance in the feature space. 412 

 413 



Page 21 of 40 
 

To get a better understanding of this variability across individual maps, we performed a 414 

PCA on the maps themselves, which we will term interpretation-PCA for clarity. A first 415 

interpretation-PCA dimension explained 35.9% of the variance, while a second dimension 416 

explained 24.2% of the variance. There is a drop for all other dimensions (N=3) which explain 417 

less that 13% of the variance, see Figure S4. Participants ordered on the first two interpretation-418 

PCA dimensions are shown in Figure 5B. We computed the variance of all STM features along 419 

each interpretation-PCA dimension, to visualize the features that distinguished the interpretation 420 

maps along these main axes of variation. Results are shown in Figure 6C, D. The features 421 

defining the first interpretation-PCA dimension were clustered between rates of about 2 Hz to 422 

8 Hz, which is exactly the amplitude modulation range corresponding to speech prosody and 423 

syllabic rate (41). This shows that the amplitude modulation characteristics of speech was 424 

affected by sleep deprivation. Importantly, depending on the individual, the classifiers used the 425 

presence or absence of energy around these rates to detect sleep deprivation. This shows that 426 

while some participants spoke in a “flattened” voice after deprivation, consistent with classic 427 

hypotheses (26, 33), others instead spoke in a more “animated” voice after deprivation. The 428 

features defining the second interpretation-PCA dimension clustered at very low rates and 429 

covered a broad scale range, peaking at about 2 cyc/oct. This corresponds to long-term spectral 430 

characteristics of speech and vowel sounds. In speech, such timbre-like features are determined 431 

by the precise shape of the various resonators inside the vocal tract, such as the throat and 432 

nasal cavities: by filtering the sound produced by the vocal folds, resonators impose formants 433 

that impact the timbre of vowels and other speech sounds. 434 

 435 

Correlation with subjective sleepiness reports 436 

All participants were subjected to the exact same amount of sleep deprivation. 437 

Nevertheless, their subjective sleepiness reports varied widely (Fig. 1). We investigated whether 438 
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the variability in subjective sleepiness reports could be accounted for by characteristics of the 439 

individual machine-learning classifiers.  440 

First, we simply correlated the individual classifier’s accuracies to the individual SSS 441 

reports after sleep deprivation. If subjective sleepiness was a full measure of the impact of sleep 442 

deprivation, we would expect a high correlation between the classifier’s accuracy and SSS 443 

reports. Results are shown in Fig. 7A. There was no significant correlation between BAccs and 444 

SSS reports (r(20)=.32, p=.14, BF10=.47), suggesting that subjective sleepiness did not express 445 

all of the objective effects of sleep deprivation, at least as captured by our voice classifiers.  446 

  Next, we investigated whether the classifier’s interpretation maps could account for the 447 

SSS reports variability. In particular, we reasoned that the prosodic and rhythmic changes 448 

captured by the first interpretation-PCA dimension could be due to cognitive factors, inducing 449 

flattened or animated speech. Such factors could be explicit to participants – if only by self-450 

monitoring their own speech rate and intonation. In contrast, the timbre cues captured by the 451 

second interpretation-PCA dimension could be more subtle and remain implicit. Results are 452 

shown in Fig. 7B & 7C. Consistent with our hypothesis, we observed a moderate but significant 453 

correlation between the location of participants on the first interpretation dimension and 454 

sleepiness reports (r(20)=-.44, p=.03, BF10=1.34). In contrast, the location of participants on the 455 

second interpretation dimension did not show any significant correlation with sleepiness reports 456 

(r(20)=.19, p=.38, BF10=.23). 457 

Finally, to assess the full information contained in the interpretation maps, we fitted a 458 

linear model that used coordinates on both interpretation-PCA dimensions to predict SSS scores 459 

after deprivation (see Methods). Results showed that it was possible to predict sleepiness from 460 

interpretation maps (R2: M=.29, SD=.18) significantly above chance (two-sample t-test to 0: 461 

p<.00001). The correlation remained moderate, however, with still a sizeable part of the variance 462 

unexplained.  463 

 464 
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 465 

Fig. 7. Relation between subjective sleepiness and voice classifiers. A. Subjective 466 

sleepiness is plotted as a function of balanced accuracy of each participant-level classifier. B. 467 

Subjective sleepiness is plotted as a function of the coordinate of each participant-level classifier 468 

on the first dimension of the interpretation-PCA space. C. As in B., but for the second dimension 469 

of the interpretation-PCA space. 470 

 471 

Discussion  472 

Summary of findings 473 

We ran a sleep deprivation protocol with normal and healthy participants, collecting 474 

subjective reports of sleepiness plus vocal recordings before and after deprivation. After two 475 

nights of mild sleep deprivation, subjective sleepiness increased on average, although with 476 

striking individual differences—including some participants even reporting decreases in 477 

subjective sleepiness after deprivation. Nevertheless, sleep deprivation could be detected 478 

accurately by means of machine-learning analysis of vocal recordings. Classification was most 479 

accurate at the individual level, with 85% balanced accuracy on average. Importantly, such a 480 

classification was based on a fully generic auditory representation. This allowed us to interpret 481 

the discriminative features discovered by classifiers to detect sleep deprivation. Two broad 482 

classes of features were revealed: changes in temporal modulations within the rhythmic range 483 
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characteristic of speech sentences, and changes in spectral modulations within the timbre range 484 

of speech sounds. Furthermore, the interpretation maps could account for some of the variability 485 

in subjective sleepiness reports, which were correlated to the changes in temporal modulations 486 

(“flattened” or “animated” voice). 487 

 488 

Candidate mechanisms underlying the vocal biomarkers of sleep deprivation  489 

The individual classifiers using the STM input features learnt to detect sleep deprivation 490 

with a high accuracy, matching human performance, based on two classes of auditory features: 491 

temporal modulations in the 2 Hz to 8 Hz range, and spectral modulations around 2 cyc/oct. We 492 

now speculatively relate these vocal features to two classes of well-established 493 

neurophysiological effects of sleep deprivation.  494 

The temporal modulation features associated to sleep deprivation were in a range which 495 

has been robustly found as characteristic of speech across a variety of languages, to the extent 496 

that they have been described as “universal rhythmic properties of human speech” (41). Such a 497 

universal rhythm is imposed by the biomechanical constraints of the vocal apparatus and by the 498 

neurodynamics of its control and perception systems. The changes in speech rhythms observed 499 

after sleep deprivation could thus result from a temporary impairment of the cognitive control of 500 

the speech production process. Sleep deprivation impacts cognitive function (20), presumably 501 

through changes in glucose consumption in frontal and motor brain regions (46, 47). 502 

Accordingly, previous studies showed lower activity in the dorsolateral prefrontal cortex and in 503 

the intraparietal sulcus in cognitive tasks requiring attention, with large inter-individual variability 504 

(48). A reduced connectivity was also observed within the default mode network, the dorsal 505 

attention network, and the auditory, visual and motor network following sleep deprivation (47, 506 

49, 50). Finally, extended wakefulness has been associated with an increase in the intrusion of 507 

sleep-like patterns of brain activity in wakefulness (51, 52). All these results suggest that sleep 508 
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deprivation is akin to a minor cognitive frontal dysfunction, and may thus plausibly affect the 509 

fluency of vocal production. Interestingly, compensatory responses were also observed in 510 

cognitive tasks, which may explain why some of our participants responded to deprivation with 511 

less speech modulation, consistent with the classic “flattened voice” hypothesis (26, 27), 512 

whereas others unexpectedly responded with speech over-modulation and instead produced an 513 

“animated voice” after deprivation.  514 

The spectral modulation changes detected by our classifiers were consistent with 515 

changes in the timbre of speech sounds, and in particular vowel sounds (35, 38, 42). Such 516 

sounds acquire their distinctive spectral envelopes by means of the resonances of the vocal 517 

tract, including the throat and nasal cavities. Inflammation of the throat and nose could be 518 

responsible for these changes in timbre. Sleep deprivation is known to trigger an immune 519 

response leading to inflammation. A cortisol increment can be observed after a single night of 520 

sleep deprivation (8, 53, 54), so is plausible in our protocol that included two nights of mild sleep 521 

deprivation. In terms of mechanisms, sleep restriction and deprivation disturb the normal 522 

secretion of hormones like cortisol or testosterone, and is associated with increased rates of 523 

interleukin-6 and CRP as assessed on salivary samples in normal subjects. This inflammatory 524 

response could be linked to an elevated blood pressure following sleep deprivation (55) and 525 

could affect the vocal tract and plausibly impact the spectral envelope of speech. It should be 526 

noted that other variables, such as changes in hydration or food intake due to deprivation, might 527 

also impact characteristics of the vocal apparatus and induce timbre changes instead or in 528 

addition to putative inflammation. Such additional variables were not controlled in our protocol   529 

 530 

Limitations of the study 531 

There are both technical and conceptual limitations to the present study. We chose to 532 

use a controlled protocol to precisely equate sleep deprivation in our participants, but this came 533 
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at the expense of a relatively small dataset compared to the online databases used by machine-534 

learning challenges (30, 31). Our protocol prevented biases in the database, such as associating 535 

the identity of speakers with the amount of sleep deprivation (28), but also limited our choice of 536 

possible machine-learning techniques to perform the classification. We thus used an SVM 537 

classifier, and not potentially more powerful deep-learning architectures. We note however that 538 

in the studies that compared SVMs with other classifier types, SVM performed best, including in 539 

state-of-the-art studies (14, 32, 33). In any case, the interpretation method we used could be 540 

applied to any kind of classifier (39), including more complex ones.  541 

All participants were female, mainly for practical reasons. Sleep deprivation might affect 542 

females and males differently, in particular with respect to inflammation, although the evidence 543 

is still mixed (56). The generalizability of our findings to males thus remains to be tested 544 

experimentally. In addition, the modest performance observed for population-level classifiers 545 

limits the generalization of our approach to unknown speakers, which would be desirable for 546 

practical use cases involving pre-trained classifiers.  However, this also confirms the interest to 547 

apply interpretation techniques at the indivi` dual level, to capture the variability that seems 548 

inherent to the effects of speech deprivation.  549 

The feature set we used was a generic auditory representation, which is a major 550 

difference with previous machine-learning oriented studies. On the one hand, some studies were 551 

fully data-driven and selected the best-performing features from thousands of speech 552 

descriptors. The resulting features were often difficult to interpret. On the other hand, there were 553 

also studies using a small set of features, but these features were carefully hand-crafted and 554 

potentially lacked genericity. Our approach represents a trade-off between these two ideas: we 555 

applied a data-driven approach to select a small subset of features, but because these features 556 

were from a generic representation, they remained interpretable. A clear limitation is that we did 557 

not include features related to pitch or functionals of pitch such as contour features, which have 558 
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been repeatedly shown to be useful for sleepiness detection (14, 32, 57). However, average 559 

estimates of pitch and pitch variation (Fig. 2D) suggested that there were no obvious effect on 560 

these features in our database. Furthermore, our classification pipeline applied to standard 561 

speech features performed worse than using the STM representation. We believe that these 562 

omissions were compensated by the richness of the STM representation. Pitch and pitch 563 

functionals will in fact be indirectly reflected in the STMs, which analyses sounds over a broad 564 

range of temporal scales simultaneously. 565 

The possible physiological mechanisms that we put forward as a mediation between 566 

sleep deprivation and vocal features have to be considered as fully speculative for now. We did 567 

not collect the objective measures required to confirm or infirm these interpretations. The 568 

cognitive factor could be assessed with objective behavioral measures, such as the 569 

psychomotor vigilance test (22), or with brain imaging data (46, 47). The inflammatory factor 570 

could be assessed by biological analyses of e.g. cortisol in the saliva (8, 54). Because we have 571 

not gathered such measurements, we can only argue that both minor cognitive dysfunction and 572 

inflammation effects are likely for our participants as a group. In any case, the present study is 573 

the first one to suggest that such factors may be measured at the individual level from voice 574 

biomarkers, and it raises the possibility for future investigations to confirm or reject this 575 

hypothesis by actually correlating vocal features with more invasive objective markers. 576 

The classification task we investigated consisted only in detecting whether a vocal 577 

recording was performed before or after sleep deprivation. We did not attempt to decode the 578 

effect of more subtle factors on the voice, such as the time of the day, which would reflect the 579 

interactions between circadian rhythms and sleep deprivation. These interactions have been 580 

shown in a recent study (58), albeit using a more more severe deprivation protocol (60 hours 581 

without sleep). Unfortunately, our experimental design does not provide the statistical power to 582 

examine within-day variations before sleep deprivation (half the dataset) or the interaction 583 
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between within-day variations and deprivation (second-order effect). In the same study, a 584 

regression approach was implemented to provide predictions beyond binary classification. 585 

Interestingly, this approach was successful only for predicting objective measures, such as sleep 586 

latency, but failed for subjective reports. This is consistent with the claim that subjective scales 587 

incompletely characterize the full effects of sleep deprivation and can usefully be complemented 588 

by objective measures such as voice analysis. In any case, as we did not collect objective 589 

measures of sleepiness beyond the voice, we did not attempt a regression analysis.  590 

Finally, on a conceptual level, we wish to raise a basic but inescapable limitation of any 591 

study of sleep deprivation. Sleep deprivation may be defined, as we did, by the amount of sleep 592 

available to each individual. However, as has been repeatedly pointed out and again observed 593 

here, there is a remarkable diversity of responses to the same amount of sleep deprivation. 594 

Thus, it should not be expected that any one measure will capture all of the effects of sleep 595 

deprivation. Subjective reports may capture explicit feelings of fatigue, but be blind to implicit 596 

effects (58). With objective measures, which are by necessity indirect, there is an issue with 597 

interpreting negative outcomes. In our case for instance, how to interpret a relatively poor 598 

accuracy for a sleep deprivation classifier, such as was observed for two participants? It cannot 599 

be decided whether this poor accuracy showed that sleep deprivation had no effect on these 600 

participants, or that sleep deprivation had effects that were not expressed in the voice, or that 601 

the classifiers simply failed for technical reasons. Measuring multiple markers of sleep 602 

deprivation, including the novel ones we suggest, and incorporate them into a holistic model of 603 

the neurophysiological effects of sleep deprivation seems to be a promising way forward.  604 

 605 

Perspectives 606 

Keeping these limitations in mind, the demonstration of vocal biomarkers for sleep 607 

deprivation could have major clinical implications. Subjective sleepiness reports do not capture 608 



Page 29 of 40 
 

the whole effect of a lack of sleep (58). Moreover, such reports rely on the honest cooperation 609 

of participants, which is not a given if self-reports of excessive sleepiness can have negative 610 

work-related or financial consequences for the individual. Objective correlates of sleepiness 611 

exist (21, 22), but vocal biomarkers would represent a considerably cheaper and faster 612 

alternative, requiring no specialized equipment and increasing their practicality for real-life 613 

clinical assessment. Crucially, our technique also goes beyond the simple binary detection of 614 

sleep deprivation: thanks to the application of interpretability techniques (39), we suggest that 615 

different neurophysiological processes related to sleep deprivation may be untangled through 616 

the voice alone. Such measures could in turn be used to design interventions tailored to each 617 

individual and situation, if the effects of sleep deprivation needed to be temporarily alleviated for 618 

instance. More generally, there is a growing realization that interpretability is key to future clinical 619 

applications of artificial intelligence, as both patients and clinicians would understandably want 620 

to understand the reason for a diagnostic (59). For application to real-life settings, it is particularly 621 

interesting to identify features that do not correlate with subjective sleepiness, as one of the 622 

biggest dangers of sleep loss is the partial agnosia for one’s own sleepiness. 623 

To finish, it is useful to point out that the methodological pipeline we introduced here is 624 

fully generic, as the audio features representation used is itself generic and the interpretation 625 

method can be applied to any classifier. Therefore, the present study could pave the way for 626 

future investigations of vocal biomarkers over the broad range of fundamental or clinical 627 

applications that are currently only starting to be considered (24, 25). 628 

 629 

Materials and Methods 630 

Ethics statement 631 

The study was conducted according to French regulations on human research including 632 

agreements from the Hotel-Dieu Hospital Ethics Committee (CPP Ile de France 1 - N° 2017-633 
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sept.-13690), with signed consent from participants who received financial compensation. Our 634 

protocol was conducted in accordance with the 2016 version of the Declaration of Helsinki and 635 

the ICH guidelines for Good Clinical Practice. 636 

Experimental design 637 

A group of twenty-four healthy women between 30-50 years old (42.7 ± 6.8) took part in 638 

the experiment. This study was part of a dermatological study and only Caucasian phototypes 639 

I-IV (Fitzpatrick classification) were recruited. Participants were non-smokers and did not report 640 

a history of substance abuse. They had a Body Mass Index (BMI) between 19 and 25, no sleep 641 

disorders or chronic disease, no daytime vigilance issues (Epworth Sleepiness Scale ≤ 10), and 642 

were not under any medical treatment (exclusion criteria).  643 

Before the experiment, participants wore an actigraph for 7 days and were instructed to 644 

maintain a regular sleep-wake behavior with their usual 7-8 h of sleep (i.e., in bed from 23:00-645 

01:00 until 07:00-09:00). The compliance with these recommendations was verified through the 646 

actigraphic recordings (MW8, CamTech; UK) that were inspected by the research team at the 647 

participant’s arrival the morning before the first night of sleep restriction (day 1). No sleep 648 

episodes were detected outside of the scheduled experimental time in bed (see 40 for details). 649 

The protocol lasted for 3 days (day 1: before sleep restriction; day 2: during sleep restriction; 650 

day 3: after sleep restriction), which included 2 night of sleep deprivation (at the end of day 1 651 

and 2). During the “sleep restriction” session, the participants were instructed to restrict their 652 

sleep time to 3h for 2 consecutive nights (i.e., in bed from 03:00 to 06:00) and to follow their 653 

usual routine outside the laboratory. After the second sleep-restricted night (day 3), the 654 

participants went to the laboratory on the morning and their actigraphy recordings were 655 

immediately analysed to ensure their compliance with the imposed sleep-wake hours. During 656 

day 1 (after habitual sleep and before sleep restriction: baseline condition) and day 3 of each 657 

session, the participants remained in the sleep laboratory from 09:00 to 19:00 under continuous 658 
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supervision. In order to help the participants stay awake, from the moment they left the laboratory 659 

at the end of day 1 until their return to the laboratory at the beginning of day 3 at 09:00, two 660 

investigators exchanged text messages with the participants at random times during the entire 661 

period outside of the laboratory. Text messages were sent throughout the night (except during 662 

the period where participants were instructed to sleep, that is between 3 and 6 a.m.). Participants 663 

had to respond right after receiving these messages. In case of an absence of response, 664 

participants were immediately called on their personal phone. For lunch in the laboratory (day 1 665 

and 3), participants received controlled meals consisting of a maximum of 2,500 calories/day 666 

with a balanced proportion of nutrients (protein, fat, and carbohydrates).  667 

Voice recordings 668 

During day 1 (before sleep deprivation) and day 3 (after), at three different times during the day 669 

(9am, 3pm, 5 pm), participants were seated and instructed to read 10 minutes of different 670 

chapters of the same French classic book: “Le Comte de Monte Christo” (Alexandre Dumas, 671 

1844). Their voice was recorded with a portable recorder (Zoom H1/MB, stereo-recording). 672 

Then, during one minute, participants produced free speech, but these recordings were not used 673 

in the present analyses. Two participants had to be discarded at this stage, as technical issues 674 

prevented the completion of all recording sessions.  675 

Baseline Speech Feature Set 676 

We computed basic speech features using the openSMILE library (43), in the configuration 677 

recommended for the Interspeech 2011 challenge. This feature set has been used for in state-678 

of-the-art studies detecting sleepiness from voice recordings (33). It consists of 59 low-level 679 

descriptors, including 4 energy descriptors, 50 spectral descriptors, and 5 voice descriptors. 680 

These descriptors were then combined with 33 base functionals and 5 f0 functionals, resulting 681 

in a total of 4,368 features. 682 

Spectro-Temporal Modulations (STM) 683 
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The sound files, initially sampled at 44.1 kHz, were down-sampled to 16 kHz. Spectro-Temporal 684 

Modulations (STMs) were computed with our own toolkit which is directly adapted from the 685 

standard NSL Toolbox (35). Sounds were processed through a bank of 128 constant-Q 686 

asymmetric bandpass filters equally spaced on a logarithmic frequency scale spanning 5.3 687 

octaves, which resulted in an auditory spectrogram, a two-dimensional time-frequency array. 688 

The STM were then computed by applying a spectro-temporal modulation filterbank to the 689 

auditory spectrogram. We generally followed the procedure detailed in (36), with minor 690 

adaptations. A 2D Fourier transform was first applied to the spectrogram resulting in a two-691 

dimensional array, also called Modulation Power Spectrum (MPS) (60) whose dimensions were 692 

spectral modulation (scale) and temporal modulation (rate). Then, the STM representation was 693 

derived by filtering the MPS according to different rates and scales and then transforming back 694 

to the time-frequency domain. We chose the following scale (s) and rate (r) center values as 2D 695 

Gaussian filters to generate the STMs: s = [0.71, 1.0, 1.41, 2.00, 2.83, 4.00, 5.66, 8.00] cyc/oct, 696 

r = ±[.25, .5, 1, 2, 4, 5.70, 8, 11.3, 16, 22.6, 32] Hz. Such a range covers the relevant spectral 697 

and temporal modulations of speech sounds as already used in different studies (61). The 698 

resulting representation thus corresponds to a 4D matrix with dimensions of time, frequency, 699 

scale, and rate.  700 

Classification pipeline 701 

For all recordings, STMs were computed and used as the input feature space. The STM 702 

feature space was sampled with 22 rates * 8 scales * 128 frequencies per 3841 temporal frames 703 

corresponding to epochs of 15 seconds, amounting to 22528 features for every sample. 704 

Standard machine-learning pipeline were used (13, 14, 36) to evaluate the ability to predict a 705 

whether a voice sample is from the sleep deprived class. 706 

First, the whole dataset was randomly separated into a training set and a testing set, 707 

either by randomly holding 25% of the data into the testing set or, only at population level, by 708 
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holding-out the data from one subject to define the training and the testing in a Leave-One-709 

Subject-Out (LOSO) cross-validation procedure. We then reduced this high dimensionality of 710 

the feature space by means of a principal component analysis (PCA). At the population level, 711 

we trained a PCA on the whole dataset and retained the 250 main dimensions, explaining 99% 712 

of the variance. We further checked that the exact choice of PCA dimensions did not affect our 713 

conclusions, about the performance but also about the interpretation of the classifiers (see 714 

Figure S2). At the participant level, for each participant we trained a PCA on the data from all 715 

other participants, to reduce a possible contamination of the reduced space by peculiarities of 716 

the considered participant. We next retained the 30 main dimensions of the PCA. The number 717 

of PCA dimensions in this case was chosen empirically, so that the reduced feature space still 718 

explained more than 90% of the variance and provided a dimensionality lower than the number 719 

of samples available for each participant (between 98 and 194 samples of 15 sec. each), to 720 

avoid overfitting. We checked that the exact choice of PCA dimensions did not affect our 721 

conclusions, in particular on the interpreted features that are consistent for PCA dimensions 722 

above 30. 723 

The PCA spaces were then fed to a support vector machine classifier (SVM) with a 724 

gaussian kernel (radial basis function). The training set was used to fit the SVM through an 725 

hyperparameter grid-search, using a stratified 5-folds cross-validation. The fitted SVM was then 726 

evaluated on the testing set by computing Balanced Accuracy (BAcc, defined as the average of 727 

true positive rate, or sensitivity, with true negative rate, or specificity). For the randomly selected 728 

train/test split, we repeated the fitting procedure 50 times, generating 50 distinct train/test sets 729 

for both the population and individual levels (denoted 50-splits, 25% test). In the Leave-One-730 

Subject-Out (LOSO) approach, we replicated the fitting procedure with 22 subjects, each 731 

excluded once and designated as the testing set. In each instance, we computed the final 732 

balanced accuracies and then averaged them across either the 50 different train/test splits (int 733 
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the case of 50-splits, 25% test) or across the 22 subjects (in the case of LOSO). Lastly, for each 734 

cross-validation procedure, we conducted a t-test against the threshold of 0.5 using the 735 

distributions of balanced accuracies. This allowed us to evaluate the classifier's capability to 736 

predict sleepiness from voice, assessing its performance compared to random chance. All the 737 

classification pipelines from PCA to RBF + SVM are implemented with the sci-kit learn library 738 

(Pedregosa et al., 2011). 739 

 740 

Interpretation of the classifiers 741 

Each classifier fitted in the study is probed with the reverse correlation technique which 742 

provides an interpretation of which features are relevant in the sense of the classifier. 743 

Theoretically, for each feature of the input space, a correlation is made between the array of 744 

random values from each noise sample with the array of decision values, 0 or 1, 0 corresponding 745 

to excerpts classified as before sleep restriction and 1 to excerpts recorded after sleep 746 

restriction. Here, as the noise were of null average in the feature space, we simply subtracted 747 

the average values of the noises that led to a classification in the class ‘after restriction’ with the 748 

average values that led to classification in the class ‘before restriction’ (62). We refer to our 749 

method paper for a full description of the method (39). Here, we used the version of the method 750 

which consists of pseudo-random noise as perturbation at the input of the system. Pseudo-751 

random noises allow to accurately fool the classifier while using a white noise may implicate 752 

complication as the classifier can tend to classify all the stimuli + noise excerpt in only one class. 753 

One specificity of this method is that it requires a large number of trials to provide an accurate 754 

description of the importance of each feature in the input space. Here we chose to use a number 755 

of trials equal to 100 times the number of samples which represents between 9800 and 20000 756 

trials. Each interpretation provides a “interpretation mask” which are composed of positive and 757 
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negative values, positive values correspond to features which are diagnostic of sleep loss and 758 

negative ones conversely.  759 

For each classification task, 50 classifiers were fitted. In order to test the independence 760 

of the prediction accuracy from the 50 different random training set. Each of these 50 classifiers 761 

were interpreted with the previously described method and a second test was then performed in 762 

order to test the similarities between the 50 interpretations. Pairwise Pearson’s correlation 763 

coefficients between all 50 interpretation maps were computed and then averaged. 764 

 765 

Data availability 766 

The analyses and figures of the manuscript can be replicated with the scripts openly 767 

available at https://github.com/EtienneTho/privavox  768 

 769 

The Spectro-Temporal Modulations (STMs) model adapted from the NSL toolbox (33) is 770 

available at: https://github.com/EtienneTho/strf-like-model  771 
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