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Abstract 

Using our voice represent an exquisitely intricate act, recruiting a host of cognitive and 

motor functions. As such, the voice is bound to reflect many aspects of the internal state of the 

speaker: personality, infections, stress, emotions. Here, we investigate whether sleep deprivation 

in otherwise normal and healthy persons can be detected through machine-learning analysis of 

vocal recordings. In contrast to previous approaches, we use fully generic acoustic features, 

derived from auditory-inspired models of sound processing, together with recently-developed 

machine learning interpretation techniques. Our results show that sleep deprivation can be 

accurately detected from generic acoustic features of vocal recordings. Two main different types 

of features were impacted by sleep deprivation: one related to speech rhythms, the other related to 

the timbre of the voice. We speculate that these features reflect two distinct physiological 

processes: the cognitive control of speech production and an inflammatory effect of the vocal 

apparatus. Crucially, the relative balance of these two effects varied widely for each individual, 

suggesting that the voice may be used as a “sleep stethoscope” to better understand the variety of 

idiosyncratic responses to sleep deprivation. Moreover, the method we outline is fully general and 

could be applied to the future investigation of any type of vocal biomarkers using machine-learning 

techniques. 
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Introduction 

In the last decade or so, insufficient sleep in adults with sleep debt has become an 

increasing prominent public health issue, with one third of the adult population sleeping less than 

six hours per night (1–3). This chronic sleep debt in adults is associated with an increased risk of 

chronic disease such as obesity, type 2 diabetes, cardiovascular diseases, inflammation, addictions, 

accidents and cancer (4–8). Short sleep duration and sleep debt also increase the risk of developing 

multiple comorbidities (9). Moreover, more than one worker out of five operates at night and 

suffers from a high level of sleep deprivation (10). Such a level of sleep deprivation can cause 

accidents in the workplace or when driving (11) with a severe impact on quality of life, sociability 

and economics. 

Currently, there are several techniques aiming to measure sleep deprivation and its 

associated physiological consequences. From the outset, a core issue needs to be considered: the 

most appropriate measure of sleep deprivation and its associated adverse consequences is far from 

being obvious. Sleep deprivation may be simply assessed in terms of the loss of sleep time, but, 

remarkably, the impact of a given amount of sleep deprivation varies massively across individuals. 

In laboratory settings where the amount of deprivation could be precisely controlled, it has been 

shown that up to 90% of the variance in cognitive performance was related to individual traits and 

not to the actual time spent asleep (12, 13). Sleep deprivation may also be measured with subjective 

sleepiness, which participants can explicitly report using sleepiness scales (14–16). However, 

subjective sleepiness is influenced by other factors than sleep deprivation, such as the time of the 

day, motivation, or stress. Besides, it is not at all obvious whether reported subjective sleepiness 

captures the full physiological impact of sleep deprivation, given the variety of processes involved 

(17). Given the practical importance of quantifying precisely how sleep deprivation affects 

behavior (e.g., for truck or train drivers), objective methods have also been developed. The 

multiple sleep latency test (18), the gold standard in clinical settings, uses electro-encephalography 

(EEG) to estimate sleep latency (e.g. the amount of time to go from wake to sleep) along five 

successive naps sampled every two hours during daytime. The psychomotor vigilance test (19), 

often used in research settings, tests for the ability to respond quickly to infrequent stimuli, with 

slower reaction times being used as a marker of attentional lapses. More recently, new approaches 

have attempted to leverage the concentration ok key molecules in the urine, saliva or breath to 

quantify sleepeiness (20). Although these objective methods are complementary to subjective 
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reports, they are often costly, time consuming, or difficult to deploy outside of laboratories. So, 

whereas there exists cheap and fast objective measures for other causes of temporary cognitive 

impairment, such as alcohol or drug abuse, there is currently no established means to estimate 

sleep deprivation effects at the individual level in real-life settings.  

If sleep deprivation could be detected reliably through voice recordings, this would provide 

a quick, non-invasive, and cost-effective objective measure of sleep deprivation. Indeed, because 

the voice is easy to record with off-the-shelf equipment, there is a growing interest in finding vocal 

biomarkers to diagnose a variety of medical conditions (The Lancet Digital 21, 22). An early report 

suggesting an impact of sleep deprivation on the voice was provided by Morris et al. (23). Based 

on subjective evaluations by the experimenters of free speech produced by sleep deprived 

participants, a slowing down of speech and a “flatness of the voice” were noted after deprivation. 

These observations were extended by Harrison and Horne (24), who used a word fluency task and 

asked raters, blind to the amount of deprivation, to evaluate speech quality on five scales 

(intonation, errors, volume, fatigue, pace average). Effects of deprivation were found on the 

“intonation” and “fatigue” scales. More recently, an experiment using more raters on a large 

recorded database found that indeed, raters could detect sleepy versus non sleepy voices with an 

accuracy above 90% (25), even though the precise degree of self-reported sleepiness was not well 

estimated by raters. So, it does seem that there are acoustic cues in the voice that reflect sleep 

deprivation and/or sleepiness. 

In recent years, the field of machine learning has taken up the challenge to automate the 

detection of sleep deprivation or sleepiness from the voice. In an early study (26), sleep deprivation 

was inferred with high accuracy from vocal recordings (86%) but it should be noted that the 

deprivation was extreme, consisting of 60 hours without sleep in a setting involving military 

personnel, with debatle applicability for mild sleep deprivation. Two “computational paralinguistic 

challenges” have since been launched, with sub-challenges aimed at assesing sleepiness from vocal 

recordings (27, 28). We will not review all of the entries to these challenges, as they are quite 

technical in nature. To summarize, all of them used the same framework: i) selection of a set of 

acoustic features, such as pitch, spectral and cepstral coefficients, duration estimates, and 

functionals of those features; ii) dimensionality reduction of the feature set;  iii) supervised 

learning of target classification using various machine learning techniques, such as support vector 

machines or neural networks. The best results varied depending on the challenge. Subjective 
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sleepiness proved difficult to predict (25), but the binary categorization of sleepy versus non-

sleepy voices could be achieved with high accuracy (over 80%) in the best performing classifiers 

(29).  

The computational framework described above will be familiar and effective for many 

machine learning problems, but it has two major limitations in a neuroscientific perspective. First, 

the initial selection of features is based on a somewhat arbitrary choice. Often, the choice of 

features was guided by the “voice flatness” hypothesis (23, 24). However, there is no guarantee 

that other, perhaps more subtle acoustic markers of sleep deprivation or sleepiness may not have 

been overlooked. Second, the acoustic features discovered by the classifier to achieve its task are 

not necessarily interpretable and difficult to relate to plausible physiological mechanisms that 

could mediate the effects of sleep deprivation on the voice (30). Interestingly, the best-performing 

system used a carefully hand-crafted small feature set inspired from auditory processing models, 

suggesting that “perceptual” features may be a promising route for sleepiness detection in the voice 

(29). A more recent study has again attempted to focus on “simple” acoustic descriptors for one of 

the databases of the paralinguistic challenge, with the explicit aim to facilitate interpretation (31). 

Accurate classification was possible with the simpler feature set of about 20 features, with a 

resulting accuracy of 76%. 

Here, we aim to extend these findings in several important ways. First, we use our own 

vocal database, which has been collected in a controlled laboratory setting where the amount of 

sleep deprivation could be precisely controlled. Vocal recordings were obtained from reading out 

loud the same texts for all participants, in random order across participants, thus avoiding biases 

confounding e.g. participant identity and sleep deprivation observed in previous databases (25, 

32). Second, we use a fully generic acoustic feature set, derived from an established model of 

auditory processing (33). Our audio input representation is based on so-called spectro-temporal 

modulations (STMs). To compute STMs, a sound is first split into separate frequency bands (in 

our case on a log-frequency scale) to produce a cochleagram, simulating peripheral auditory 

processing. The joint modulations over time and frequency in the cochleagram are then estimated 

with an analysis akin to a 2D-Fourier transform. While the STM representation was initially 

motivated by neurophysiological results, it has been found to be sufficiently rich to successfully 

support various machine-learning tasks like musical instruments classification (34), timbre 

perception (34, 35), or speech detection and enhancement (36). Third, we apply a recently-
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developed machine-learning technique to interpret the cues discovered by our classifier (37). This 

technique, similar in spirit to the reverse correlation method broadly used in neuroscience and 

psychophysics, identifies the parts of the input representation that have the most weight in the 

classifiers’ decisions. Finally, by fitting classifiers to each participants, we can hope to uncover 

the individual physiological factors underlying the large and as yet unexplained variability 

observed in the responses to mild sleep deprivation in normal healthy adults.  

As will be seen, our results show that sleep deprivation can be detected in generic acoustic 

features of vocal recordings, with two main different acoustic cues that vary across individuals: 

one related to speech rhythms, the other related to the timbre of the voice. Speech rhythm mainly 

relies on the “melody of speech”, i.e., the slow temporal variations, and timbre of the voice mainly 

relies on the spectral content of the voice signal. A moderate correlation with subjective sleepiness 

reports is observed for rhythmic cues only. On the basis of these acoustic signatures, we propose 

that the classifiers distinguish two distinct neurophysiological effects of sleep deprivation: a 

cognitive control effect on speech rhythms, which is partially reflected in subjective sleepiness 

reports, and an inflammatory effect of the vocal apparatus, which will impact timbre but may 

escape subjective report techniques. Crucially, the relative balance of these two effects varies 

widely for each individual, suggesting that the voice may be used as a “sleep stethoscope” to better 

understand the variety of responses that each and everyone of us displays after sleep deprivation.  
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Results 

Twenty-two healthy women between 30-50 years of age (42.7 ± 6.8) were sleep deprived 

during a controlled laboratory protocol. An all-female experimental group was chosen because the 

current experiment took place in parallel with a dermatology study (38), and also because such a 

choice was expected to homogenize the vocal pitch range across participants. After a first “Control 

night” spent in the laboratory, participants were restricted to no more than 3 hours of sleep per 

night during two subsequent “Restriction nights”, also monitored in the laboratory. Sleep 

restriction is a more ecological manipulation of sleep time than total sleep deprivation. Vocal 

recordings were obtained throughout the protocol, during reading sessions sampled at different 

times of the day. These reading sessions occurred either: i) right after the control night (no sleep 

deprivation); or ii) right after the second restriction night (see Methods for details). All participants 

read the same excerpts from a French classic novel (“Le Comte de Monte-Cristo”). The order of 

the excerpts was randomized across sessions  for each participant to avoid a confound with 

deprivation. In total, our database consists of 22 healthy participants producing about half an hour 

of vocal recordings (M=31min, SD=5min) evenly split between before and after two nights of mild 

sleep deprivation. 

Subjective sleepiness reports 

[Insert Figure 1 about here] 

Sleepiness was also self-reported by participants by means of a Stanford Sleepiness Scale 

questionnaire (16) sampled at different times during the day (see Methods). Figure 1A shows the 

distributions of SSS ratings. On average, sleep deprivation had an effect on self-reported 

sleepiness: sleepiness was low right after the control night, but increased after the deprivation 

nights. This was confirmed by an ANOVA on the SSS, with factors Day (2 levels, before and after 

deprivation) and Time of report (4 levels). Both factors had a significant effect, but with a much 

larger effect size for Day (F(1,46) = 52.14, p<0.001, !p2 = 0.221) compared to Time of report 

(F(3,92) = 3.07, p=0.029, !p2 = 0.048). Moreover, there was no interaction between Day and Time 

of report (F(3,92) = 0.59, p=0.621). Because of this lack of interaction, we will now consider 

average SSS values for all Times of reports per Day, to focus on the effect of sleep deprivation. 

Figure 1B illustrates the data aggregated in that way, with individual changes in sleepiness now 

identified across the control and sleep deprived day. A remarkable individual variability was 



8 
 

obvious in reported sleepiness. Note that this was in spite of our precise control of the amount of 

sleep deprivation, which was equated across all participants. Even so, some participants showed 

little effect of sleep deprivation, with even cases of decreases in subjective sleepiness after 

deprivation. Such unexpected effects were observed for all baseline sleepiness, low or high, as 

measured before deprivation. This striking variability is in fact consistent with previous 

observations involving objective measures of sleep deprivation (13). It also confirms that vocal 

biomarkers of sleep deprivation should be investigated at the individual level. 

Spectro-Temporal Modulations of speech before and after sleep deprivation 

We computed STMs for all speech recordings. At each moment in time, STMs were 

computed along the dimensions of frequency, rate, and scale. The frequency dimension, in Hz, 

reflects the spectral content of the sound. The rate dimension, in Hz, reflects the modulations in 

sound amplitude in the time domain. Slow modulations have low rates, whereas fast modulations 

have high rates. Positive rates indicate temporal modulations coupled with downward changes in 

frequency, whereas negative rates indicate temporal modulations coupled with upward changes in 

frequency. The scale dimension, in cycle per octave, reflects modulations in the spectral domain. 

Sounds with fine spectral envelopes have high scale values, while sounds with relatively flat 

spectral shapes have low scale values. For speech, the dominant rates are between 2 Hz and 8 Hz 

(39), while dominant scales, presumably to the harmonic structure of vowels, are around 2 cyc/oct 

(40). 

[Insert Figure 2 about here] 

The full STMs have four dimensions of time, frequency, rate, and scale. To have a first 

look at the gross effect of sleep deprivation on acoustic features, we averaged the STMs along the 

time dimension, for all recordings obtained before (Fig. 2A) and after deprivation (Fig. 2B). 

Average STMs before and after deprivation were qualitatively similar. The rate-scale projections 

showed that, unsurprisingly, high energy in the STMs was focused in regions associated to speech 

(36). The frequency-rate projection simply showed the average spectrum of our vocal recordings. 

 To further highlight the candidate acoustic differences caused by deprivation, we 

subtracted STMs before and after deprivation (Fig. 2C for the population-level results, Fig. S1 for 

individual-level results). At the population level, maximal differences in the rate-scale projection 

were less than 3%, while differences up to 11% were observed in the frequency-rate projection. 
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At the subject level, differences in the rate-scale projection were around 24.68% on average 

(SD=6), while differences up to 40.83% on average (SD=12) were observed in the frequency-rate 

projection. Larger differences seems therefore observable at individual level but there is no 

obvious structure to the differences: they appear noisy and do not necessarily match the STM 

regions of high energy in speech (see Supplemental Figure S1). Crucially, it is unclear at this point 

whether such raw acoustic differences are meaningful, for instance compared to the within- and 

across-participant variability. To address this point in a principled manner, and with the aim to 

predict sleep deprivation from the voice, we now turn to machine-learning.   

Machine-learning classification of speech before and after sleep deprivation 

A standard machine-learning pipeline was used to identify sleep deprivation in vocal 

recordings (30, 34, 41). For all recordings, STMs were computed and used as the input feature 

space. The dataset was first transformed into random train/test splits. We then reduced the high 

dimensionality of the feature space by means of a principal component analysis (PCA) on the 

training set (see Methods for more details). The PCA spaces were then fed to a support vector 

machine classifier (SVM) with a gaussian kernel (radial basis function). We opted for an SVM 

and not a deep-learning architecture because of the relatively modest size of our dataset, but also 

because SVMs have been shown to outperform more complex classifiers in similar tasks (30). The 

performance of the SVM was evaluated with Balanced Accuracy (BAcc, see Methods). 

[Insert Figure 3 about here] 

The classifiers’ balanced accuracies are shown in Figure 3. At the population level, the 

classifier was able to detect sleep deprivation well above chance (BAcc, M=.77, SD=.01). This is 

on par with the state of the art (29, 31). Interestingly, and as expected from the sizeable individual 

variability observed in the SSS reports, the same machine-learning pipeline was more accurate 

when applied at the individual level (BAcc, M=.85, SD=.09). In this case, the classification for 

two participants displayed relatively poor BAccs, whereas about half of the remaining participants 

displayed BAccs above .9, outperforming the state of the art and matching human performance on 

a similar task (25). This shows, for the first time, that there is enough information in the fully-

generic STM representation of vocal recordings to detect mild sleep deprivation in otherwise 

normal and healthy participants, at the population level and at the individual level.  

Vocal biomarkers of sleep deprivation  
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To gain insight about the nature of the acoustic features distinguishing speech before and 

after sleep deprivation, we probed the trained classifiers using a recent interpretation technique 

based on reverse correlation (37). Briefly, the technique consists in randomly perturbing the input 

to the trained classifier over thousands of trials and then averaging all of the noisy representations 

leading to correct classification in order to identify the portion of the input that participates the 

most to the classifier’s performance. The input representation was perturbed using additive noise 

in the PCA-reduced feature space (42). Averaging all masks leading to a correct classification 

decision revealed, in our case, the discriminative features of a voice after deprivation compared to 

before deprivation (for details, see Methods and 37).   

As a preliminary step, we evaluated the consistency of the interpretation masks. Because 

of our cross-validation technique, 50 classifiers were fitted either for the whole dataset for the 

population-level classifier or for each participant’s classifier. To check internal consistency, we 

computed the pairwise Pearson’s correlation coefficients between all 50 interpretation maps. At 

the populationl-level, this “consistency correlation” was low (r(22527): M = .20, SD=.34, 

BF10>216) which is coherent with the large variability suspected across listeners. At the participant-

level, however, consistency correlations were very high (r(22527): M=.91, SD=.06, min=.73; All 

BF10 are high > 216). Furthermore, because individual classifiers varied in accuracy, we could 

check whether the consistency of the interpretation improved with accuracy. As expected, the 

correlation between BAccs and consistency correlation was strong (r(20)=.71, p=.0003, 

BF10=130.67). These consistency results suggest that caution should be applied when considering 

population-level interpretations, but that individual results are robust and can be interpreted.  

Figure 4 shows the interpretation maps for the population-level classifier. Maps should be 

read as follows: red areas correspond to STM features where the presence of energy is associated 

with sleep deprivation for the classifier, whereas blue areas represent STM features where the 

absence of energy is associated to sleep deprivation for the classifier. For the population-level 

map, the rate-scale projection resembles the raw difference before and after deprivation, although 

less noisy, whereas the frequency-rate projection does not match such raw acoustic differences 

(compare with Fig. 2C). As these population-level interpretation are not robust, we simply show 

them for illustrative purposes and refrain from further description of their features. 
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Figure 5A shows all individual classifiers on the rate-scale projection, ordered along 

increasing accuracy (BAcc) of the corresponding classifier. We chose to interpret in priority the 

rate-scale projections, as is done in most speech applications (36), but the frequency-rate 

projections are provided as Supplemental Figure S3. The main feature of the results is the striking 

diversity of the individual maps, which is not related to classifier accuracy in any obvious manner. 

For some participants, sleep deprivation was detected through a reduction in energy over a range 

of STM features (blue color), consistent with a “flattening” of speech modulations. But the 

opposite was also observed for other participants (red color). Moreover, the details of the 

discriminative features also varied across participants. As shown before, these details are robust 

and warrant interpretation. 

To get a better understanding of this variability across individual maps, we performed a 

PCA on the maps themselves, which we will term interpretation-PCA for clarity. A first 

interpretation-PCA dimension explained 35.9% of the variance, while a second dimension 

explained 24.2% of the variance. There is a drop for all other dimensions (N=3) which explain less 

that 13% of the variance, see Supplemental Figure S4. Participants ordered on the first two 

interpretation-PCA dimensions are shown in Figure 5B. We computed the variance of all STM 

features along each interpretation-PCA dimension, to visualize the features that distinguished the 

interpretation maps along these main axes of variation. Results are shown in Figure 5C. The 

features defining the first interpretation-PCA dimension were clustered between rates of about 

2 Hz to 8 Hz, which is exactly the amplitude modulation range corresponding to speech prosody 

and syllabic rate (39). This shows that the amplitude modulation characteristics of speech was 

affected by sleep deprivation. Importantly, depending on the individual, the classifiers used the 

presence or absence of energy around these rates to detect sleep deprivation. This shows that while 

some participants spoke in a “flattened” voice after deprivation, consistent with classic hypotheses 

(23, 31) others instead spoke in a more “animated” voice after deprivation. The features defining 

the second interpretation-PCA dimension clustered at very low rates and covered a broad scale 

range, peaking at about 2 cyc/oct. This corresponds to long-term spectral characteristics of speech 

and vowel sounds. In speech, such timbre-like features are determined by the precise shape of the 

various resonators inside the vocal tract, such as the throat and nasal cavities: by filtering the sound 

produced by the vocal cords, resonators impose formants that impact the timbre of vowels and 

other speech sounds. 
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Correlation with subjective sleepiness reports 

All participants were subjected to the exact same amount of sleep deprivation. 

Nevertheless, their subjective sleepiness reports varied widely (Fig. 1). We investigated whether 

the variability in subjective sleepiness reports could be accounted for by characteristics of the 

individual machine-learning classifiers.  

First, we simply correlated the individual classifier’s accuracies to the individual SSS 

reports after sleep deprivation. If subjective sleepiness was a full measure of the impact of sleep 

deprivation, we would expect a high correlation between the classifier’s accuracy and SSS reports. 

Results are shown in Fig. 6A. There was no significant correlation between BAccs and SSS reports 

(r(20)=.32, p=.14, BF10=.47), suggesting that subjective sleepiness did not express all of the 

objective effects of sleep deprivation, at least as captured by our voice classifiers.  

  Next, we investigated whether the classifier’s interpretation maps could account for the 

SSS reports variability. In particular, we reasoned that the prosodic and rhythmic changes captured 

by the first interpretation-PCA dimension could be due to cognitive factors, inducing flattened or 

animated speech. Such factors could be explicit to participants – if only by self-monitoring their 

own speech rate and intonation. In contrast, the timbre cues captured by the second interpretation-

PCA dimension could be more subtle and remain implicit. Results are shown in Fig. 6B & 6C. 

Consistent with our hypothesis, we observed a moderate but significant correlation between the 

location of participants on the first interpretation dimension and sleepiness reports (r(20)=-.44, 

p=.03, BF10=1.34). In contrast, the location of participants on the second interpretation dimension 

did not show any significant correlation with sleepiness reports (r(20)=.19, p=.38, BF10=.23).  

Finally, to assess the full information contained in the interpretation maps, we fitted a linear 

model that used coordinates on both interpretation-PCA dimensions to predict SSS scores after 

deprivation (see Methods). Results showed that it was possible to predict sleepiness from 

interpretation maps (R2: M=.29, SD=.18) significantly above chance (two-sample t-test to 0: 

p<.00001). The correlation remained moderate, however, with still a sizeable part of the variance 

unexplained.  
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Discussion  

Summary of findings 

We ran a sleep deprivation protocol with normal and healthy participants, collecting 

subjective reports of sleepiness plus vocal recordings before and after deprivation. After two nights 

of mild sleep deprivation, subjective sleepiness increased on average, although with striking 

individual differences—including some participants reporting decreases in subjective sleepiness 

after deprivation. Nevertheless, sleep deprivation could be detected accurately in all participants 

by means of machine-learning analysis of their vocal recordings. Classification was most accurate 

at the individual level, with 85% balanced accuracy on average. Importantly, such a classification 

was based on a fully generic auditory representation of sound. This allowed us to interpret the 

discriminative features discovered by classifiers to detect sleep deprivation. Two broad classes of 

features were revealed: changes in temporal modulations within the rhythmic range characteristic 

of speech sentences, and changes in spectral modulations within the timbre range of speech sounds. 

Furthermore, the interpretation maps could account for some of the variability in subjective 

sleepiness reports, which were correlated to the changes in temporal modulations (“flattened” or 

“animated” voice). 

As discussed below, we propose that these two classes of features titrate two independent 

physiological processes that are known to be triggered by sleep deprivation and that could 

plausibly impact vocal production: impaired cognitive control of the speech production process 

revealed by temporal modulations, and an inflammatory response of the vocal tract revealed by 

spectral modulation. If, as our results suggest, the relative balance between the two processes can 

assessed through the voice, this opens up clinical perspectives for a future rapid and cheap 

assessment of the individual neurophysiological consequences of sleep deprivation, akin to a 

“sleep stethoscope”. Moreover, because of its generality, the method we developed could be easily 

extended to interpret any vocal biomarker in a broad range of conditions.   

Physiological interpretation of the vocal biomarkers of sleep deprivation  

Our individual classifiers learnt to detect sleep deprivation with a high accuracy, matching 

human performance, based on two classes of auditory features: temporal modulations in the 2 Hz 

to 8 Hz range, and spectral modulations around 2 cyc/oct. We now relate these features to two 

classes of well-established neurophysiological effects of sleep deprivation.  
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The temporal modulation features associated to sleep deprivation were in a range which 

has been robustly found as characteristic of speech across a variety of languages, to the extent that 

they have been described as “universal rhythmic properties of human speech” (39). According to 

the same authors, such a universal rhythm is imposed by the biomechanical constraints of the vocal 

apparatus and by the neurodynamics of its control and perception systems. We suggest that the 

changes in speech rhythms observed after sleep deprivation result from a temporary impairment 

of the cognitive control of the speech production process. Sleep deprivation impacts cognitive 

function (17), presumably through changes in glucose consumption in frontal and motor brain 

regions (43, 44). Accordingly, previous studies showed lower activity in the dorsolateral prefrontal 

cortex and in the intraparietal sulcus in cognitive tasks requiring attention, with large inter-

individual variability (45). A reduced connectivity was also observed within the default mode 

network, the dorsal attention network, and the auditory, visual and motor network following sleep 

deprivation (44, 46, 47). Finally, extended wakefulness has been associated with an increase in the 

intrusion of sleep-like patterns of brain activity in wakefulness(48, 49). All these results suggest 

that sleep deprivation is akin to a minor cognitive frontal dysfunction, and may thus plausibly 

affect the fluency of vocal production. Interestingly, compensatory responses were also observed 

in cognitive tasks, which may explain why some of our participants responded to deprivation with 

less speech modulation, consistent with the classic “flattened voice” hypothesis (23, 24), whereas 

others unexpectedly responded with speech over-modulation and instead produced an “animated 

voice”.  

The spectral modulation changes detected by our classifiers were consistent with changes 

in the timbre of speech sounds, and in particular vowel sounds (33, 36, 40). Such sounds acquire 

their distinctive spectral envelopes by means of the resonances of the vocal tract, including the 

throat and nasal cavities. We suggest that inflammation of the throat and nose may be responsible 

for these changes in timbre. Sleep deprivation is known to trigger an immune response leading to 

inflammation. A cortisol increment can be observed after a single night of sleep deprivation (8, 

50, 51), so is plausible in our protocol that included two nights of mild sleep deprivation. In terms 

of mechanisms, sleep restriction and deprivation disturb the normal secretion of hormones like 

cortisol or testosterone, and is associated with increased rates of interleukin-6 and CRP as assessed 

on salivary samples in normal subjects. This inflammatory response could be linked to an elevated 
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blood pressure following sleep deprivation (52) and could affect the vocal tract and plausibly 

impact the spectral envelope of speech. 

Limitations of the present study 

There are both technical and conceptual limitations to the present study. We chose to use 

a controlled protocol to precisely equate sleep deprivation in our participants, but this costly 

protocol came at the expense of a relatively small dataset compared to the online databases used 

by machine-learning challenges (27, 28). This removed biases in the database, such as associating 

the identity of speakers with the amount of sleep deprivation (25), but it also limited our choice of 

possible machine-learning techniques to perform the classification. We thus used an SVM 

classifier, and not potentially more powerful deep-learning architectures. We note however that in 

the studies that compared SVMs with other classifiers types, SVM performed best, including in 

state-of-the-art studies (29–31). In any case, the interpretation method we used could be applied 

to any kind of classifier (37), including more complex ones. We believe that the robustness of the 

interpretation maps, shown by our various consistency checks, makes it unlikely that our 

qualitative conclusions depend on the details of the classifiers.  

The feature set we used was a generic and familiar auditory representation, which is a major 

differences with previous machine-learning oriented studies. On the one hand, some studies were 

fully data-driven and extracted features from thousands of speech descriptors. The resulting 

features were often difficult to interpret. On the other hand, there were also studies using a small 

set of features, but these features were carefully hand-crafted and potentially lacked genericity. 

Our approach represents a trade-off between these two ideas: we applied a data-driven approach 

to select a small subset of features, but because these features were from a generic representation, 

they remained interpretable. A clear limitation is that we did not include features related to pitch 

or functionals of pitch such as contour features, which have been repeatedly shown to be useful 

for sleepiness detection (29, 30, 53). Given the high accuracy of our classifiers, we believe that 

such omission was compensated by the richness of the STM representation. Pitch and pitch 

functionals will in fact be indirectly reflected in the STM, which analyses sounds over a range of 

temporal scales simultaneously. 

Another methodological consideration is that we do not have any independent measure of 

either the cognitive factor nor of the inflammatory factor that, we speculate, are the 
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neurophysiological bases of our vocal biomarkers. The cognitive factor could be assessed with 

objective behavioral measures, such as the psychomotor vigilance test (19), or with brain imaging 

data (43, 44). The inflammatory factor could be assessed by biological analyses of e.g. cortisol in 

the saliva (8, 51). Because we have not gathered such measurements, we can only argue that both 

minor cognitive dysfunction and inflammation effects are extremely likely for our participants as 

a group. The present study being the first one to suggest that such factors may be measured at the 

individual from voice biomarkers, it is left for future investigations to correlate them with other 

objective markers. 

On a conceptual level, we finally need to raise a basic but inescapable limitation of any 

study of sleep deprivation. Sleep deprivation may be objectively quantified, as we did, by the 

amount of sleep available to each individual. However, as has been repeatedly pointed out and 

again observed here, there is a remarkable diversity of responses to the same amount of sleep 

deprivation. Thus, it should not be expected that any one measure will capture all effects of sleep 

deprivation. Subjective reports may capture explicit feelings of fatigue but be blind to more elusive 

effects such as inflammation. With objective measures, which are by necessity indirect, there is an 

issue with interpreting negative outcomes. In our case for instance, how to interpret a relatively 

poor accuracy for a sleep deprivation classifier, such as we observed for two participants? It cannot 

be decided whether this poor accuracy shows that sleep deprivation had no effect on these 

participants, or that sleep deprivation had effects that were not expressed in the voice, or that the 

classifiers failed simply for technical reasons. Measuring multiple markers of sleep deprivation, 

including the novel ones we suggest, and incorporate them into a holistic model of the 

neurophysiological effects of sleep deprivation seems to be a promising way forward.  

Perspectives 

Keeping these limitations in mind, the demonstration of vocal biomarkers for sleep 

deprivation could have major clinical implications. Subjective sleepiness reports may not capture 

the whole effect of a lack of sleep. Moreover, such reports rely on the honest cooperation of 

participants, which is not a given if self-reports of excessive sleepiness can have negative work-

related or financial consequences for the individual. Objective correlates of sleepiness exist to 

alleviate these concerns (18, 19), but vocal biomarkers would represent a considerably cheaper 

and faster alternative, requiring no specialized equipment and increasing their practicality for real-
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life clinical assessment. Crucially, our technique also goes beyond the simple binary detection of 

sleep deprivation: thanks to the application of interpretability techniques (37), we suggest that 

different neurophysiological processes related to sleep deprivation may be untangled through the 

voice alone.  

Another potential appeal of teasing apart different effects of sleep deprivation at the 

individual level is to try to understand the well-documented variability in responses to the same 

amount of deprivation. Vocal biomarkers could be used to titrate the amount of cognitive vs 

inflammatory responses to sleep deprivation, to objectivate the individual trait assumed to underlie 

responses to deprivation (12). Such measures could in turn be used to design interventions tailored 

to each individual and situation, if the effects of sleep deprivation needed to be temporarily 

alleviated for instance. More generally, there is a growing realization that interpretability is key to 

future clinical applications of artificial intelligence, as both patients and clinicians would 

understandably want to understand the reason for a diagnostic (54). For application to real-life 

settings, it is particularly interesting to have identified features that correlate with subjective 

sleepiness but also features that do not correlation with such subjective assessments as one of the 

biggest danger of sleep loss is the partial agnosia for one’s own sleepiness. 

Finally, it is useful to point out that the methodological pipeline we introduced is fully 

generic, as the audio features representation we used is itself generic and the interpretation method 

we developed be applied to any classifier, irrespective of its architecture or complexity. Therefore, 

the present study could pave the way for future investigations of vocal biomarkers over the broad 

range of fundamental or clinical applications that are currently only starting to be considered (21, 

22). 
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Experimental methods 

Experimental design. 

A group of twenty-four healthy women between 30-50 years old (42.7 ± 6.8) took part in 

the experiment. This study was part of a demartological study and only Caucasian phototypes I-

IV (Fitzpatrick classification) were recruited. Participants were non-smokers and did not report a 

history of substance abuse. They had a Body Mass Index (BMI) between 19 and 25, no sleep 

disorders or chronic disease, no daytime vigilance issues (Epworth Sleepiness Scale ≤ 10), and 

were not under any medical treatment (exclusion criteria).  

Before the experiment, participants wore an actigraph for 7 days and were instructed to 

maintain a regular sleep-wake behavior with their usual 7-8 h of sleep (i.e., in bed from 23:00-

01:00 until 07:00-09:00). The compliance with these recommendations was verified through the 

actigraphic recordings (MW8, CamTech; UK) that were inspected by the research team at the 

participant’s arrival the morning before the first night of sleep restriction (day 1). No sleep episodes 

were detected outside of the scheduled experimental time in bed (see 38 for details). The protocol 

lasted for 3 days (day 1: before sleep restriction; day 2: during sleep restriction; day 3: after sleep 

restriction), which included 2 night of sleep deprivation (at the end of day 1 and 2). During the 

“sleep restriction” session, the participants were instructed to restrict their sleep time to 3h for 2 

consecutive nights (i.e., in bed from 03:00 to 06:00) and to follow their usual routine outside the 

laboratory. After the second sleep-restricted night (day 3), the participants went to the laboratory 

on the morning and their actigraphy recordings were immediately analysed to ensure their 

compliance with the imposed sleep-wake hours. During day 1 (after habitual sleep and before sleep 

restriction: baseline condition) and day 3 of each session, the participants remained in the sleep 

laboratory from 09:00 to 19:00 under continuous supervision. In order to help the participants stay 

awake, from the moment they left the laboratory at the end of day 1 until their return to the 

laboratory at the beginning of day 3 at 09:00, two investigators exchanged text messages with the 

participants at random times during the entire period outside of the laboratory. Text messages were 

sent throughout the night (except during the period where participants were instructed to sleep, 

that is between 3 and 6 a.m.). Participants had to respond right after receiving these messages. In 

case of an absence of response, participants were immediately called on their personal phone. For 

lunch in the laboratory (day 1 and 3), participants received controlled meals consisting of a 
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maximum of 2,500 calories/day with a balanced proportion of nutrients (protein, fat, and 

carbohydrates).  

Voice recording 

During day 1 (before sleep deprivation) and day 3 (after), at three different times during the day 

(9am, 3pm, 5 pm), participants were seated and  instructed to read 10 minutes of different chapters 

of the same French classic book: “Le Comte de Monte Christo” (Alexandre Dumas, 1844). Their 

voice was recorded with a portable recorder (Zoom H1/MB, stereo-recording).  Then, during one 

minute, participants produced free speech, but these recordings were not used in the present 

analyses. Two participants had to be discarded at this stage, as technical issues prevented the 

completion of all recording sessions.  

Spectro-Temporal Modulations (STM) 

The sound files, initially sampled at 44.1 kHz, were down-sampled to 16 kHz. Spectro-Temporal 

Modulations (STMs) were computed with our own toolkit (https://github.com/EtienneTho/strf-

like-model) which is directly adapted from the standard NSL Toolbox (33). Sounds were processed 

through a bank of  128 constant-Q asymmetric bandpass filters equally spaced on a logarithmic 

frequency scale spanning 5.3 octaves, which resulted in an auditory spectrogram, a two-

dimensional time-frequency array. The STM were then computed by applying a spectro-temporal 

modulation filterbank to the auditory spectrogram. We generally followed the procedure detailed 

in (34), with minor adaptations. A 2D Fourier transform was first applied to the spectrogram 

resulting in a two-dimensional array, also called Modulation Power Spectrum (MPS) (55) whose 

dimensions were spectral modulation (scale) and temporal modulation (rate). Then, the STM 

representation was derived by filtering the MPS according to different rates and scales and then 

transforming back to the time-frequency domain. We chose the following scale (s) and rate (r) 

center values as 2D Gaussian filters to generate the STMs: s = [0.71, 1.0, 1.41, 2.00, 2.83, 4.00, 

5.66, 8.00] cyc/oct, r = ±[.25, .5, 1, 2, 4, 5.70, 8, 11.3, 16, 22.6, 32] Hz. Such a range covers the 

relevant spectral and temporal modulations of speech sounds as already used in different studies 

(56). The resulting representation thus corresponds to a 4D matrix with dimensions of time, 

frequency, scale, and rate.  
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Classification framework 

A standard machine-learning pipeline was used (30, 34, 41). First, at subject/population 

level the whole dataset was randomly separated into a training set (75%) and a testing set (25%). 

For all recordings, STMs were computed and used as the input feature space. The STM feature 

space was sampled with 22 rates * 8 scales * 128 frequencies per 3841 temporal frames 

corresponding to epochs of 15 seconds, amounting to 22528 features for every sample.  

We then reduced this high dimensionality of the feature space by means of a principal 

component analysis (PCA). At the population level, we trained a PCA on the whole dataset and 

retained the 250 main dimensions, explaining 99% of the variance. We further checked that the 

exact choice of PCA dimensions did not affect our conclusions, about the performance but also 

about the interpretation of the classifiers (see Supplemental Figure S2). At the participant level, 

for each participant we trained a PCA on the data from all other participants, to reduce a possible 

contamination of the reduced space by peculiarities of the considered participant. We next retained 

the 30 main dimensions of the PCA. The number of PCA dimensions in this case was chosen 

empirically, so that the reduced feature space still explained more than 90% of the variance and 

provided a dimensionality lower than the number of samples available for each participant 

(between 98 and 194 samples of 15 sec. each), to avoid overfitting. We checked that the exact 

choice of PCA dimensions did not affect our conclusions, in particular on the interpreted features 

that are consistent for PCA dimensions above 30. 

The PCA spaces were then fed to a support vector machine classifier (SVM) with a 

gaussian kernel (radial basis function). The training set was used to fit the SVM through an 

hyperparameter grid-search, using a stratified 5-folds cross-validation. The fitted SVM was then 

evaluated on the testing set by computing Balanced Accuracy (BAcc, defined as the average of 

true positive rate, or sensitivity, with true negative rate, or specificity). The fitting procedure was 

repeated 50 times with 50 different train/test sets, at the population and at the individual level. All 

the classification pipelines from PCA to RBF + SVM are implemented with the sci-kit learn library 

(Pedregosa et al., 2011). 
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Interpretation of the classifiers 

Each classifier fitted in the study is probed with the reverse correlation technique which 

provides an interpretation of which features are relevant in the sense of the classifier. Theoretically, 

for each feature of the input space, a correlation is made between the array of random values from 

each noise sample with the array of decision values, 0 or 1, 0 corresponding to excerpts classified 

as before sleep restriction and 1 to excerpts recorded after sleep restriction. Here, as the noise were 

of null average in the feature space, we simply substracted the average values of the noises that 

led to a classification in the class ‘after restriction’ with the average values that led to classification 

in the class ‘before restriction’ (57). We refer to our method paper for a full description of the 

method (37). Here, we used the version of the method which consists of pseudo-random noise as 

perturbation at the input of the system. Pseudo-random noises allow to accurately fool the classifier 

while using a white noise may implicate complication as the classifier can tend to classify all the 

stimuli + noise excerpt in only one class. One specificity of this method is that it requires a large 

number of trials to provide an accurate description of the importance of each feature in the input 

space. Here we chose to use a number of trials equal to 100 times the number of samples which 

represents between 9800 and 20000 trials. Each interpretation provides a “interpretation mask” 

which are composed of positive and negative values, positive values correspond to features which 

are diagnostic of sleep loss and negative ones conversely.  

For each classification task, 50 classifiers were fitted. In order to test the independence of 

the prediction accuracy from the 50 different random training set. Each of these 50 classifiers were 

interpreted with the previously described method and a second test was then performed in order to 

test the similarities between the 50 interpretations. Pairwise Pearson’s correlation coefficients 

between all 50 interpretation maps were computed and then averaged. 

 

Data availability 

The analyses and figures of the manuscript can be replicated with the scripts openly available at 

https://github.com/EtienneTho/privavox   
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Figure 1: A. Subjective sleepiness. Sleepiness was evaluated by self-reports on the Stanford Scale before sleep 
deprivation (Control) and after two nights of mild sleep deprivation (Sleep deprived). The abscissa indicates the time 
of day when sleepiness reports were collected. B. Average reported sleepiness before and after sleep restriction. Lines 
connect the data for individual participants.  
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Figure 2. Acoustic analyses. A. Spectro-Temporal Modulations before sleep deprivation. Projections on the rate-
scale and rate-frequency plane are shown. Arbitrary model units. B. As in A., but after sleep deprivation. C. Acoustic 
difference before and after sleep deprivation: 2 * abs(B-A) / (A+B). Units in percents. 
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Figure 3. Machine learning classification results. Balanced Accuracies for the population-level classifier (red) and 
the participant-level classifiers (blue). Participants here and throughout the text are identified by their ranking # in 
classification accuracy. Error bars show the standard deviation of accuracies across 50 independent crossfold 
validations of each classifier.   
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Figure 4. Interpretation of the population-level classifier. Discriminative features (see main text) are shown in the 
input STM space, for the rate-scale and frequency-scale projections. Red areas indicate features positively associated 
to sleep deprivation by the classifier. Blue areas correspond to features negatively associated to sleep deprivation by 
the classifier. Color bar indicate the averaged value of the reverse correlation mask. Values are low because of the 
relative low consistency of the interpretation masks for this classifier.  
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Figure 5. Interpretation of the participant-level classifiers. A. As for Figure 4, but for individual participants 
identified by their participant #. B. Projection of participants # in the interpretation-PCA space of all participant’s masks 
(see text for details). C. Variance of the idealized masks, in correlation value, along the first two dimensions of the 
interpretation-PCA. Idealized masks are obtained by first sampling the PCA latent space between -2 and 2 for the two 
first dimesions with 30 values and then inverting the latent space into the input feature space by using the inverse 
transform of the PCA. Red areas show the discriminative features that vary the most along each interpretation-PCA 
dimension. Units: variance in the feature space. 
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Figure 6. Relation between subjective sleepiness and voice classifiers. A. Subjective sleepiness is plotted as a 
function of balanced accuracy of each participant-level classifier. B. The coordinate of each participant-level classifier 
on the first dimension of the interpretation-PCA space is plotted as a function of subjective sleepiness. C. As in B., but 
for the second dimension of the interpretation-PCA space.  
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