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Abstract. A quasi-static chain drive model is proposed. This model, consistent with single speed cycling
application, applies to simple two sprocket drives. The kinematics of the transmission is determined, including
the capture and release positions of the rollers and the influence of the polygonal effect. The tensions into the
links and the contact forces (between rollers and sprocket) are then calculated based on the results of the
kinematic analysis. Both chain strands are assumed to be straight and their tension are considered as imposed.
An estimate of the roller displacement is proposed using existing studies on the relationship between loading
conditions and roller positions along the sprocket tooth profile. The presented model, is then used to assess the
contribution of both meshing and roller motion on the global efficiency of the drive. Calculations show that
the magnitude of both loss sources is similar for a wide range of gear ratios and loading conditions. According to
the presented results, the relative motion between the rollers and the sprocket tooth profile should be considered
in future studies dedicated to chain drive efficiency.
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1 Introduction

Modern roller chains were introduced byHans Renold in the
late 19th century. Since then, they have widely been used in
mechanical applications, from handling to internal combus-
tionengines [1–3].Theyarealsoused inbicycledrives inorder
to transmit power from the pedals to the rear wheel.

Although chain drives are known for their high
energetic efficiency (about 99% for single speed trans-
missions, [4,5]), several studies have been presented to
explain the phenomena responsible for power losses [4–9].
Among these works, different potential sources of dissipa-
tion have been considered.

Meshing losses have been the subject of most studies in
this field. These losses are caused by a rotational movement
experienced by each link when it is captured or released by
a sprocket (Fig. 1). This phenomenon is assumed to be
preponderant in [7] on power losses in heavy cranked link
chain. With the same hypothesis, Lodge and Burgess [4]
presented efficiency predictions for simple two-sprocket
drive using a new model for link tension and contact force
calculation.

Work by Spicer et al. [6], Kidd [5], and Zhang and Tak
[9] focused on bicycle transmissions. They evaluate the
influence of derailleur and offset conditions on the
erengere.guilbert@insa-lyon.fr
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performance. However, these effects should be negligible
for single speed applications.

Chain drive are also subjected to strand vibrations. An
experimental example can be found in [10]. The first effort to
model this phenomenon was by Binder [11]. Further works
considering the chain strands as a uniform string with
movingboundary conditions have been conducted in [12,13].
Impacts are also known to occur between the rollers and the
sprockets, with a significant influence on the drive noise. An
experimental observation of this phenomenon ispresented in
[14]. First modelling attempts can be found in [11,15]. These
phenomena (i.e. vibration and roller impacts) are very
complex and their influence, in term of power losses, is still
unquantified. Possible non-linearities in the elastic behav-
iour of the links have also been explored by Spicer [8] and
could be responsible for limitation of efficiency.

Finally, studies have also been presented on the motion
of rollers along their corresponding tooth profile (Fig. 1).
A first approach on this subject can be found in [11]. Naji
and Marshek extended the analysis to evaluate the
influence of chain elongation on chain-sprocket interactions
[16,17]. Later, Kim and Johnson [18] and Troedsson and
Vedmar [19] studied the influence of loading conditions on
the relative position between each roller and its corre-
sponding tooth profile. However, the influence of the
induced roller motion on efficiency have not yet been
investigated.
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Fig. 1. Meshing and roller motion on a sprocket.

Fig. 2. Vocabulary for cycling chain drive.
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This paper focuses on losses due to friction between
parts (i.e. meshing and roller motion losses). The aim is to
estimate the contribution of each phenomenon to the
transmission efficiency.

First, a quasi-static model dedicated to two sprocket
drive is presented. The kinematics of the transmission is
determined using a new numerical procedure. The
geometrical fluctuations caused by the polygonal shape
of a chain wrapping on a given sprocket (i.e. polygonal
effect [20]) are considered. The loads (link tension and
roller/sprocket contact force) are calculated from the
kinematics using the existing tension model presented by
Lodge [4]. Both the tight and slack strand are assumed to
be straight.

The resulting drive model is then used to estimate the
contribution of each power loss source. The contribution of
the roller motion is compared to the magnitude of meshing
losses to determine the relative influence of this dissipation
source on the global transmission efficiency.

This study focuses on single speed cycling application
(bicycle drive with no derailleur system). In this type of
chain drive, the driver sprocket is called chainring and the
driven sprocket is called rear cog (respectively denoted 1
and 2). The tight and slack strands of the drive are
respectively denoted t and s.

A typical single speed drive is represented in Figure 2
along with a schematic of chain.

2 Chain drive model

The presented model assumes that all bodies are rigid. This
includes the tight and the slack strands considered as one
straight body each. This hypothesis is not very restrictive
in the context of single speed cycling as the drives are
usually set with non-negligible tension in the slack strand
which significantly constrains its trajectory. Moreover, as
bicycle chains are usually relatively light (≈3.5 g/link), and
with low rotational speed (150 rpm on the chainring at
most), dynamic effects are considered negligible. Thus, the
presented model is quasi-static, and is therefore not subject
to any speed or inertia effects. Both sprockets are assumed
to be perfectly aligned and their pitch are identical to the
chain pitch (denote p). The kinematics is considered
independent from the loads and only the global motions of
the bodies are modelled. Therefore, backlashes, as well as
relative motions between each roller and its corresponding
tooth profile are neglected. Consequently, the centre of
every roller in contact with a sprocket is assumed to lie on
the pitch circle (Fig. 3). Finally, the effect of gravitation is
also neglected with regard to the loads involved.

The transmission behaviour of the resulting model is
cyclic. Its angular period corresponds to a rotation of both
sprockets by their respective angular pitch (a1 on the
chainring and a2 on the rear cog, see Fig. 3).

The modelling strategy is divided into two main
steps. First, the drive kinematics is established (i.e. the
location of each components) for agiven set ofdrivepositions.
Then, loads are calculated depending on the determined
locations.

2.1 Chain drive kinematics
2.1.1 Kinematic parameters

According to [15], the basics of chain drive geometry is
defined in Figure 3 using the following parameters.

–
 L= [O1O2], the centre distance between the chainring
and rear cog.
–
 aj=2p/Zj, the tooth angle for sprocket j (Zj stands for
the number of teeth).
–
 at,1 (at,2), the angle between the tight strand and the
closest link with both rollers contacting the chainring
(rear cog).
–
 Rj= p/[2 sin(aj/2)], the pitch circle radius.

Index j designates a specific sprocket (1 for the
chainring, 2 for the rear cog).
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The direction of the common tangent to both pitch
circles is given by the angle b and the two tangency points
are M1 on the chainring and M2 on the rear cog, see
Figure 3a.

b ¼ sin�1 R1 �R2

L

� �
ð1Þ

The tight strand tips are defined geometrically as the
centres of the first and last roller in contact with the
chainring and the rear cog respectively. As the strand is
considered straight, articulation between links only occur
at these points.

The strand tips positions vary during the transmission
operation. Therefore, the direction of the tight strand is
distinct from the direction of the common tangent. To
account for these variations, the following angles are
introduced:

–
 Angle bt measures the tight strand direction (relatively
to direction O1O2).
–
 Angles ct,j track the strand tip positions (measured
relatively to the tangency points Mj).

Figure 4 gives the definition of bt and ct,1 for the
chainring. ct,2 is defined in a similar way on the rear cog.

Yet, angles ct,1 and ct,2 are not independent variables
as the tight strand induces a relationship between
the rotations of the chainring and rear cog. This
dependence can be modelled using a four-bar mechanism
(Fig. 5) [20,21].

Developing the chain closure condition leads to the
following equations:

xt sinðbtÞ þR2 cosðct;2 þ bÞ �R1 cosðb� ct;1Þ ¼ 0
xt cosðbtÞ �R2 sinðct;2 þ bÞ þR1 sinðb� ct;1Þ ¼ L

�
ð2Þ

with:

xt ¼ nt:p; ð3Þ
nt being the number of links into the tight strand.

The resulting system of equations consists of four
variables (ct,1, ct,2, bt, and xt) and two equations.

For the tight strand, bt and ct,2 are computed from ct,1
and xt using a Newton-Raphson algorithm.

Oncebothstrandtippositionsareknown(i.e.anglesct,j),
the corresponding values for the angles at,j are obtained.

The equation for at,1 is given below (using Fig. 6).
Similar equations can be obtained for at,2.

at;1 ¼ bt � u ð4Þ
with:

cosðuÞ ¼ R1½sinðb� ct;1Þ � sinðb� ct;1 � a1Þ�
p

sinðuÞ ¼ R1½cosðb� ct;1 � a1Þ � cosðb� ct;1Þ�
p

8>><
>>:

ð5Þ

Expressions for u are obtained considering the scalar
product of the vector c1c2

! with ~x and ~y.
The specific values of at,j allow to characterise
remarkable drive positions. Indeed, the strand tip position
(Fig. 7) moves along the pitch circle during transmission
operation. Figure 7 illustrates the two extreme tight strand
tip positions (for the chainring). In Figure 7a, the chainring
orientation is such that roller B just makes contact (i.e. the
roller B is captured). At this specific moment, the angle at,1
is 0+. On the contrary, in Figure 7b, the chainring is
positioned right before the capture of a new roller from the
tight strand (roller A), and at,1 =a1. The tight strand tip
then jumps to roller A and the movement starts over.

Hence, for any chainring orientation, the values of at,1
are restricted to [0,a1]. Similarly, the values of at,2 are
restricted to [0, a2], and the rear cog positionwhere at,2 =a2
marks the release of a new roller into the tight strand.

Finally, the slack strand is modelled as the tight
one. Hence, parameters as,j, cs,j, bs and xs are defined by
a similar method as, respectively, at,j, ct,j bt and
xt. Therefore, the dependencies detailed above for
the tight strand parameters are also valid for the slack ones.

However, the slack and tight strand tip positions are
intertwined as the angles ct,j and cs,j are related by
equation (6).

p� 2 � ð�1Þjb ¼ ct;j þ ajnj þ cs;j ð6Þ
with nj the number of links with both rollers contacting
sprocket j (j=1 or 2 for the chainring and the rear cog
respectively).

2.1.2. Computation procedure

This section details the computation procedure used to
determine the positions of all the chain parts (i.e. the
kinematics of the drive).

The initial chainring orientation is given by the angle
ct,1,init.

The transmission motion is discretised into a number of
chainring orientations and the numerical procedure
detailed hereafter is used separately for each.

First, the geometry of the tight strand (i.e. angles at,j,
ct,j, bt, and nt) is computed using the algorithm given in
Figure 8.

The algorithm is initialized for ct,1 and nt.Values are
predicted based on the global geometrical characteristics of
the drive (distance L, number of teeth Zj, etc.). Then, ct,2
and bt are calculated using equation (2). Finally, the
induced angles at,1 and at,2 are calculated from equation (4)
and are compared with the interval [0,aj]. If their values lie
outside the interval, the initial predictions are modified
accordingly until an acceptable configuration is found.

The slack strand is then solved using the algorithm from
Figure 9.

The general principle is the same, but the initial
parameters differ. Indeed, for the tight strand, ct,1 and xt
are predicted while ct,2 and bt are calculated from
equation (2). Yet, for the slack strand, the numbers of links
n1 andn2 are the initializationvariables.Their valuesdirectly
constrain cs,1 and cs,2 via equation (6). Then, as for
the tight strand, bs, xs and as,j are calculated using
equations (2) and (4) before the obtained value for as,j are



Fig. 3. Basic definition of chain drive geometry.
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compared to the interval ] 0, aj]. In the sameway as the tight
strand, if anglesas,j lie outside ] 0,aj], thepredictions onnj are
changed.

Due to the construction of the model, the slack strand
tip positions are fully constrained by the tight strand and
the numbers of links n1 and n2. Therefore, the length of the
slack strand xs cannot be exactly a multiple of the chain
pitch, as it would be in reality. It is then assumed that the
slack strand can withstand little variations of xs. In
practice, the distance L between sprockets (Fig. 5) is
chosen so that the ratio xs/p is very close to an integer
(details will be given in Sect. 3.2).

For all tested drive configurations, the solution
obtained with the given procedure was unique and
independent from the starting predictions.
2.2 Load calculation

The kinematic parameters are now used to calculate the
loads in the drive.

For this purpose, the tension model presented by Lodge
and Burgess [4] is used. This model is a synthesis of
previous work by Binder [11] and Naji and Marshek [22,23]
as well as new features, specific to cases where slack strand
tension is low. It allows the calculation of the tension forces
Ti in each link as well as the contact forces Pi between
each roller and its corresponding contacting sprocket.
The tension forces in both the tight and slack strand
(respectively Tt and Ts) are assumed to be known (relation
between tensions and torque apply on a sprocket is given
in Sect. 3.1.2).



Fig. 4. Definition of ct,1 and bt.

Fig. 5. Four-bar modelling of the tight strand.

Fig. 6. Calculation of at,1.
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For each roller in contact with a given sprocket, the
equilibrium of the corresponding articulation (i.e. set of
pin, bush and roller, see Fig. 2) is considered. Thus, each
articulation is subjected to only three external forces:

–
 The tension forces in the previous and in the following
link (respectively Ti and Ti+1).
–
 The contact force between the roller and the sprocket Pi.

In addition, it is assumed that a roller has only three
possible positions along its corresponding tooth profile. The
main difference between these three possibilities being the
value of the angle f (call pressure angle). This angle is
defined between the direction of Pi and either Ti or Ti+1
depending on the roller position (see Fig. 10).

For the first two cases, the roller is seated (i.e. at the
bottom of the tooth profile), and can contact either the
slack or the tight side of the profile, respectively (a) and (b)
in Figure 10. For both seated positions, the point of contact
(either on the tight side or on the slack side) is such that the
pressure angle f is equal to the value given in the standards
[11,18]. This value is only valid for the ASA profile. For the
third case, it is assumed that the roller climbs the tight side
of the tooth profile (see (c) in Fig. 10). In this position, the
pressure angle is set to fmin [11,18].

No intermediate locations are possible and all the
transitions are assumed to be instantaneous.

Moreover, the variations in the positions of the rollers
along their tooth profile are considered small compared to
the global transmission kinematics determined previously.
Thus, the roller centres are still assumed to be on the pitch
circle, and the angle between the direction of two
consecutive links, with both rollers in contact with the
sprocket, is always a (i.e. the angles between directions Ti
and Ti+1).

Furthermore, the model assumes that sliding occurs at
the contacts between rollers and sprocket. Therefore,
neglecting the moment at the roller centre, friction is
introduced using the angle d=atan(m), m being the
friction coefficient at the roller/tooth contact. This angle
is used to correct the value of the pressure angle f. The sign
of the correction (±d) is related to the direction of the
friction force Fi (Fig. 11). This force opposes the movement
of the roller along its corresponding tooth profile. Its
direction depends on the considered sprocket (chainring
or rear cog), and on the roller position along its tooth
profile (in contact with the tight or slack side). This method
was first proposed by Naji and Marshek [22].

In the following developments, the sign of d is taken for
a driven sprocket (rear cog). The equations for the
chainring can be obtained by reversing this sign.

For all the equations detailed in this section, a, as, at,
and n stand respectively for aj, as,j, at,j, and nj, as defined in
Section 2.1.

Forces acting on an articulation with roller contacting
the tight side of its tooth profile are represented in
Figure 11. It is assumed that all the forces are concurrent at
the roller centre (the moment induced by friction is
neglected [22]). The equilibrium of the articulation leads to
the following equations (details are given in Appendix A):

Tiþ1 ¼ Ti
sin f� dð Þ

sin f� dþ að Þ
Pi ¼ Ti

sin að Þ
sin f� dþ að Þ

8>><
>>:

ð7Þ

Using symmetry considerations, the equations between
Ti, Ti+1 and Pi for articulations with roller in contact with
the slack side are obtained by reversing the sign of d and
swapping Ti and Ti+1 in the equations (7).



Fig. 7. Extreme positions for the tight strand tip on the chainring at,1 = 0+ for (a) and at,1 =a1 for (b).

Fig. 8. Flow chart for the tight strand computation.

Fig. 9. Flow chart for the slack strand computation.
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Lodge’s model is composed of three sub-models
[4,11,22,23]. The choice is made according to the tension
ratio Ts/Tt. The Geometric Progressive Load Distribution
(GPLD) sub-model is relevant for most real cases. Thus,
only this one is described here.

In this sub-model, it is considered that the first rollers
(as numbered in Fig. 12) are in contact with the tight side
of their tooth profile. Conversely, those closer to the slack
strand are in contact with the slack side of their profile. In
both positions, the rollers are seated (Fig. 10) and the
transition from tight to slack contact is assumed to be
instantaneous, as mentioned above.

The first roller to come into contact with the slack side
is called transition roller. Its position on the sprocket
depends on the loading conditions.



Fig. 10. Three possible roller positions in Lodge’s model.

Fig. 11. Introduction of the friction angle d.

Fig. 12. Roller and link numbering.
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Based on the link and roller numbering presented in
Figure 12, T1=Tt and Tn+2=Ts, n being the number of
links with both rollers contacting the considered sprocket.

For the remaining links, those located before the
transition roller (with rollers in contact with the tight side
of their toothprofile) are consideredfirst.Using equation (7),
with q� the ratio between Ti+1 and Ti, gives:

Tiþ1 ¼ Tt
sin f� dþ a� atð Þ

sin f� dþ að Þ q�ð Þ i�1ð Þ ð8Þ

with:

q� ¼ sin f� dð Þ
sin f� dþ að Þ ð9Þ

Similarly, for the links beyond the transition roller,
including itself (i.e. roller in contact with the slack side of
their tooth profile), the following equation is used:

Tiþ1 ¼ Ts
sin fþ dþ a� asð Þ

sin fþ dþ að Þ qþ
� � n�ið Þ ð10Þ
with:

qþ ¼ sin fþ dð Þ
sin fþ dþ að Þ ð11Þ

Finally, by combining the equations (8) and (10), the
following expression for Ti+1 is obtained (i∈ [1, n]).



Fig. 13. Chain drive kinematics, comparison with Fuglede et al. [21].

Fig. 14. Theorical and experimental link tension for a torque of
53Nm.
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See equation (12) below.

In equation (12), the two ratios of sine are related to
the equilibrium of the first and last contacting rollers
(i.e. rollers 1 and n+1 respectively). They are
modified with respect to q± as angles at and as are distinct
from a.

Once all the tensions Ti are known, values of Pi are
obtained using equation (7).

As explained in Section 2.1, the angles at and as vary
during one system period (i.e. chainring rotation of a1).
Consequently, equation (12) must be used for each
sprocket position.

3 Preliminary calculations

3.1 Elements of validation
3.1.1 Chain drive kinematics

The procedure used for the kinematic calculation is
compared to the results presented by Fuglede and
Thomsen [21]. They studied particular drives where the
sprocket arrangements are chosen such that the common
tangent related to the tight strand is horizontal.

In [21], the considered number of teeth is Z1|Z2= 6|9
(i.e. 6 teeth for the driver sprocket and 9 for the driven).
Three different drives are studied, characterised by the
value of the parameter f (f=0 ;0.5 ; 0.75). This parameter is
defined as the rest of the Euclidian division between the
length of the common tangent and the chain pitch,
Tiþ1 ¼ max Tt
sin f� dþ a� atð Þ

sin f� dþ að Þ q�ð
�

expressed as a fraction of the chain pitch. Therefore, f is
related to the distance L by the following equation

L cos bð Þ ¼ N þ fð Þp ð13Þ
with:

N ∈ ℕ
f ∈ ½0; 1�

�
ð14Þ

The evolution of ct,2, the angular velocity ratio
€ct;2= _ct;1, and the rear cog angular acceleration €ct;2, are
plotted in Figure 13, versus the chainring rotational angle
(as a fraction of a1). The instantaneous derivatives are
Þ i�1ð Þ;Ts
sin fþ dþ a� asð Þ

sin fþ dþ að Þ qþ
� � n�ið Þ

�
ð12Þ



Table 1. Characteristics of the studied single speed transmission.

Z1|Z2 Ts/Tt L (mm) Number of links Pitch (mm)

60|15 0.1 386 100 12.7
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computed numerically from the displacement between
positions (obtained Sect. 2.1) using a central difference.
The chainring angular velocity is set to 100 rpm.

The initial chainring orientations are such that a roller
has just been captured by the chainring. The corresponding
ct,1,init values are calculated as detailed in [21].

The two models are consistent for all tested variables.
Remarkably, the roller capture and release positions
(characterised by the discontinuities in the graphs) are
well predicted.

The velocity transmission error ( _ct;2= _ct;1) curves show
that the velocity ratio between the chainring and the rear cog
varies throughoutachainringperiod.Thisdeviation iscaused
by themodification of the tight stranddirection and is part of
the polygonal effect. The highest velocity ratio deviation
(compared to the theoretical value Z1/Z2) is obtained for
f=0.5. This configuration corresponds to cases where the
instant of roller capture by the chainring and the instant of
roller release by the rear cog occur in opposing phase.

Themodel is also consistent for driveswithZ1|Z2=12|18
and 21|63 [21].Thus, the procedure for kinematic calculation
is validated for a wide range of chain drives (see Fig. B1 in
Appendix B).

3.1.2 Loads computation

The loads predicted by the model are compared to the
measurements presented by Stephenson et al. [1].

The drive configuration used for the experiments is
Z1|Z2= 18|36 and the chain pitch is p=9.525mm (3/8}).
A torque C=53Nm is applied on the driver sprocket. Due
to the specific application, a tensioner rail compels the slack
strand tension at 200N. Moreover, both strands trajecto-
ries are constrained by guide rails. Therefore, the procedure
detailed in Section 2.1 for the chain drive kinematics
cannot be used on this transmission. As a consequence, the
chain drive model is modified in a similar way as in [4] to
allow the comparison with the experiments. Thus, the
number of links contacting each sprocket (nj) are set with
the values provided in [1], and the angles at,j and as,j are
assumed to be constant and equal to aj/2. Due to these
modifications, the geometric effects (e.g. polygonal effects)
are not modelled.

Inorder to calculate the loadsusing themodel fromLodge,
the tight strand tensionTtmust be known (see Sect. 2.2). It is
calculated from the values ofTs andC (torque applied on the
driver sprocket). Indeed, considering the equilibrium of
theequivalenceclassconstitutedbythedriversprocketandall
the links with both rollers in contact with it leads to the
following relation between C, Ts and Tt.

C ¼ Rj Tt cos at;j � aj=2
� �� Ts cos as;j � aj=2

� �	 

; ð15Þ
⇔Tt ¼ C

Rj
þ Ts cos as;j � aj=2

� �� �

� 1

cos at;j � aj=2
� � ð16Þ

with j=1 for the driver sprocket (the relation can also
be used for a driven sprocket provide that subscript j is
set to 2).

Comparison of the obtained link tensions is presented in
Figure 14. Tensions calculated with this model are on graph
(a). Graphs (b) and (c) show the prediction of the original
Lodge’s model [4] and the experimental data from [1].

The linkspositiononX-coordinateare setaccordingto [1].
As expected, the agreement between (a) and (b) is very

good. Despite the noise on the measurements, the
correlation is also quite good with (c). The tension
variation in the strands, noticed in the experimental data,
is probably a consequence of the guide rails which are not
considered in the model. Moreover, some of the high-
frequency fluctuations might also be due to kinematic
effects (e.g. variations in the value of angles at,j and as,j)
which are also neglected.

Based on this comparison, the loads computed using the
chain drive model are considered valid and can therefore be
used for loss calculations (Sect. 4).

3.2 Preliminary results

The parameters of the studied drive are presented in
Table 1. They are chosen to be representative of a single
speed transmission.

To characterise the load distribution, since no load-
related effects (e.g. deformation of the parts) are taken into
account, the definition of the tension ratio (Ts/Tt) is
sufficient.

Using the procedure detailed in Section 2.1, the
evolutions of nj, at,j and as,j are computed over a chainring
rotation of a1. The results are shown in Figure 15. The
starting position is taken at ct,1,init=0.

The discontinuities in the evolution of angles at,j and
as,j are the manifestation of the capture/release of a roller
by either one of the sprockets. The leap value is always a1
for the chainring and a2 for the rear cog. As
these particular phenomena are generally not synchron-
ised, the number of links in contact with a given
sprocket (i.e. nj) varies throughout a chainring angular
period. The phase shift between these events depends on
geometrical characteristics (distance L, total number of
links, number of teeth Zj, etc.). An appropriate
choice of these parameters can lead to specific config-
urations where the captures and releases of rollers occur
simultaneously.

https://www.meca.org/10.1051/meca/2022026/olm
https://www.meca.org/10.1051/meca/2022026/olm


Fig. 15. Evolution of the main kinematic parameters for the 60|
15 drive.

Fig. 16. Evolution of xs/p .

Fig. 17. Variation of Pi and Ti (ct,1=a1/2).
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As explained in Section 2.1, the length of the slack
strand cannot be forced to equal a whole number of chain
pitch. However, the distance L can be chosen so that the
ratio xs/p is numerically close to an integer (corresponding
to drives where the assumption of straight slack strand is
realistic). In the studied example, xs is compared to the
length of a hypothetical slack strand, xhyp constituted of a
number of links ns=round (xs/p).

xhyp ¼ p: round xs=pð Þ ð17Þ
Figure 16 shows that the error between the two lengths

(with xhyp as reference) is about 0.01%.
Using the presented values of nj, at,j and as,j into the

tension model gives the evolution of Ti and Pi for any drive
positions.
An example of load evolution for the rear cog is given in
Figure 17. The rollers and links numbering on X-axis are as
defined in Figure 12.

In the drive position of Figure 17, the transition roller
(i.e. the first roller to contact the slack side of its tooth
profile) is roller 7. As a consequence, the link tension first
decreases up to link 6 (rollers in contact with the tight side
of their profile). An increase is then observed until Ti
reaches the slack strand tension (Ts=0.1Tt in this
example).

The same behaviour is observed for the evolution of Pi.
The contact force decreases until the transition roller and
then increases again slightly. The first rise between rollers 1
and 2 is a consequence of the at,2 value in this specific drive
position (at,2≈ 0.45a2 for this example). The main outcome
being that the load is not evenly distributed among the
teeth in contact with a roller.

The chain drive model has been shown able to calculate
the kinematics and the load distribution for a given
transmission. These results can now be used to compute the
contribution of roller motion and link meshing to the
overall transmission efficiency.

4 Estimation of the losses

4.1 Location of loss sources

The location of each loss source is presented in Figure 18.
Meshing loss occurs each time a link is captured or released
by a sprocket (chainring or rear cog). There is then a total
of four meshing loss points (two for each sprocket). In
addition, the dissipation due to roller motion occurs during
the contact of each roller with the considered sprocket.

In order to compare the contribution of both type of
losses, a single articulation between two links is considered
(i.e. one pin, bush and roller). As this articulation travels
its way throughout a full transmission rotation, it
goes through the four meshing points and the two roller
loss zones. The full dissipation caused by this articulation is
then calculated as the sum of the contribution in all loss
locations.



Fig. 18. Location of loss sources.

Fig. 19. Definition of j for ASA tooth profile [18].

Fig. 20. Evolution of j for various Ts/Tt ratio [18].
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4.2 Frictional motions

During link meshing, the angles of interest are at,j or as,j,
depending on the considered meshing point. Figure 15
shows that each link experiences an articulation angle of aj
during its meshing motion (with j being set to the value
corresponding to the appropriate sprocket).

The phenomenon of roller motion has been studied by
Kim and Johnson [18] and Troedsson and Vedmar [19].
However, Kim and Johnson based their study on the ASA
profile (such as Lodge et al. in [4]) while Troedsson and
Vedmar considered a DIN profile. As the tooth profile can
have an influence on the roller motion, the results of Kim
are used here in agreement with the Lodge’s tension model
used in Section 2.2.

Kim and Johnson introduced the coordinate j, to locate
the position of the contact point between each roller and its
corresponding tooth profile (Fig. 19). j ranges in the
interval [� 4, 4] and is an integer at the transition points
between two distinct curve sections.

In [18] it is shown that, for a wide range of tension ratio
Ts/Tt, the rollers tend to go from j=1 to j=�1 (Fig. 20).

Knowing the definition of the ASA tooth profile [11,18],
it is, possible to calculate the distance Ltravel, travelled by
the contact point during the rotation of a given sprocket
(see Fig. 19).
4.3 Loss calculation
4.3.1 Meshing loss

The meshing phenomenon depends on the type of
articulation involved (i.e. pin or bush articulation
[4,18,24]). For a pin articulation, friction only occurs at
the pin/bush contact while it occurs at both pin/bush and
bush/roller contacts for a bush articulation (see Fig. 2). In
this study, the differences between pin and bush articu-
lations are neglected [5,6,15] and Coulomb’s law of friction
is assumed. Therefore, the losses associated with the
meshing motion can be estimated with the following
expression:

Wmesh ¼ mpbaRpinT ð18Þ

with:

–
 Wmesh, the amount of dissipated energy during the
meshing of one link at the considered articulation point
(Fig. 18).
–
 mpb, the friction coefficient for the pin/bush contact.

–
 T=Tt or Ts, and a=a1 or a2, depending on the
considered meshing point.

4.3.2 Roller loss

When a roller moves along its tooth profile, friction can
occur at two contacts, between roller and tooth and
between bush and roller (see Fig. 2). As explained above
(Sect. 4.2), the distance travelled by the contact point
between each roller and its corresponding tooth profile is
known. However, the conditions (i.e. sliding or rolling) at
both roller/tooth and roller/bush contacts are not
determined during this movement.

In order to evaluate the influence of these contact
conditions on losses, two extreme cases are considered:

–
 Pure sliding occurs at the roller/profile contact while
pure rolling (i.e. no loss) occurs at bush/roller contact.
–
 Pure rolling occurs at roller/profile contact and pure
sliding at bush/roller contact.



Table 2. Characteristics of the tested drive configurations.

Z1|Z2 Ts/Tt L(mm) Number of links Pitch (mm)

60|15 0.5 386 100 12.7
0.1
0.01

30|15 0.5 389 84
0.1
0.01

15|15 0.5 387 76
0.1
0.01

Table 3. Chain characteristics.

Pitch (mm) Rpin (mm) Rbush (mm) Rroller (mm)

12.7 1.83 2.591 3.875
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Case (b) seems more likely due to the smaller bush
radius (compared to roller radius), inducing a larger
tangential force for a given torque. However, considering
the two extreme cases allows to estimate the result
variability with respect to the contact conditions.

Forbothcases,asafirstestimate,eachroller is assumedto
travel the distanceLtravelwhile being subjected to a constant
forcePj . This force is computed as themeanvalue ofPi for all
rollers(andforall transmissionpositions).Consequently, two
values of Pj are obtained, one for each sprocket.

Thus, still assuming Coulomb’s law of friction, the
followingequationsareusedforthecalculationofroller losses:

Case ðaÞ : Wroller ¼ mrpPjLtravel

CaseðbÞ : Wroller ¼ mbrPjurollerRbush

�
ð19Þ

with:

–
 Wroller, the quantity of energy dissipated by the
movement of one roller during its travel within a given
sprocket.
–
 mrp, the friction coefficient for the roller/profile contact.

–
 mbr, the friction coefficient for the bush/roller contact.

–
 uroller=Ltravel/Rroller, the angle travelled by a roller when
rolling over the distance Ltravel on the tooth flank.
–
 Pj , the mean value of Pi for the considered sprocket.

5 Results and discussion

According to Section 4, the proportion of each power loss
source is calculated for three different gear and tension
ratios for a total of nine cases (Tab. 2).

For the loss computation, the chain dimensions are
given Table 3.

The friction angle d (Fig. 11) is equal to 5° (0.0873rad),
corresponding to a friction coefficient of about 0.09 [23].
Moreover, all the friction coefficients are assumed to be
identical (m ¼ mpb ¼ mrp ¼ mrb). Therefore, the obtained
proportions are independent from this parameter.
The relative contribution, for case (b), of meshing and
roller losses are shown in Figure 21. Both contributions are
of the same order of magnitude for all the tested
configurations (see Fig. C1 for case (a) in Appendix C).

Figure 22 compares the variation induced by the
contact conditions (case (a) or (b)). The proportions are
calculated for Z1|Z2= 60|15 and Ts/Tt=0.1.

The roller losses have a larger contribution for case
(a) than for case (b). This is consistent with the longer
slip distance for case (a) (Rroller>Rbush). However, the
obtained proportions are equivalent in terms of order of
magnitude.

It is also possible to further distinguish the different
contributions. The meshing losses can be divided between
the four meshing points and the roller motion losses can be
split between the contribution of the chainring and the rear
cog (Fig. 18). The obtained proportions are presented
in Table 4 and Figure 23. (For case (b), Z1|Z2= 60|15 and
Ts/Tt=0.1.)

For this particular configuration, both the roller motion
and the tight meshing point for the rear cog are responsible
for most part of the losses (about 76%, Table 4 and Fig. 23).
Indeed, the relatively low slack tension leads to smaller loss
in the correspondingmeshing points (compared to the tight
strand contribution). Furthermore, the high number of
teeth of the chainring reduces the angle a1 and the
corresponding P1 value.

A general outline for chain drives is that, the smaller the
number of teeth, the bigger the problems. Indeed, a small
number of teeth tends to increase losses, but also polygonal
effect and, at a lesser extent, transmission error (i.e.
deviation of _ct;2= _ct;1 from the mean ratio Z1/Z2), which
may lead to vibration issues.

As all the losses are directly dependent to the friction
coefficient m, it can be used as a fitting parameter to obtain
99% of efficiency for a two sprocket drive (see Introduc-
tion). For the considered single speed drive (Z1|Z2= 60|15
and Ts/Tt=0.1), 99% of global efficiency is obtained for a
value of m ¼ 0:05. This seems low for usual bicycle chain

https://www.meca.org/10.1051/meca/2022026/olm


Fig. 21. Pie charts for case (b).

Fig. 22. Comparison between case (a) and (b).
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(friction coefficients of about 0.1 are claimed in [25]). Thus,
the model probably tends to overestimate the losses. This
overestimation could be caused by the assumptions stated
in Section 4.3. Mainly, Pj is calculated as the mean value of
all thePiwhile it seems fromFigure 20 thatmost part of the
roller motion is performed under the smaller values of
contact forces (see Fig. 17).

However, the order of magnitude of m is still acceptable
for the considered application. Therefore, the model can be
used for a first loss estimation in chain drives.

Besides, the aim of the model presented in this paper is
to compare in a simplified way the magnitude of the losses
caused by meshing and roller motion. Therefore, the
conclusions based on this study are only valid to give
estimates and orders of magnitude. The reality of the
phenomena at stake in a real chain articulation is very
complex and requires deeper investigations to be computed
with more precision.

Furthermore, although Naji and Marshek claimed that
their influence on the load distribution should be minimal
[22], the deformations of the drive components (mainly link
elongation and tooth deflection), neglected in the presented
model could have an influence on the global behaviour of
the drive. For instance, the elongation of the tight strand



Table 4. Detailed proportion for 60|15; Ts/Tt=0.1; case (b).

Meshing loss 51%

Tight � rear cog 37%
Tight � chainring 9%
Slack � rear cog 4%
Slack � chainring <1%

Roller loss 49%
Rear cog 39%
Chainring 10%

Fig. 23. Split pie chart for 60|15; Ts/Tt=0.1; case (b).
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will change the phasing of chainring and rear cog rotations
(i.e. relation between ct,1 and ct,2).

In this paper, friction is modelled at the scale of the
mechanism. Therefore, the study did not focus on the
tribological status of the contacts but rather on the global
influence of friction on the drive behaviour. Going to the
contact scale could exhibit differences between the
different involved contacts. For instance, if the roller/
sprocket contact is relatively easy to lubricate, the bush/
roller and specially the pin/bush contact could be quite
difficult to access for lubricant. Therefore, the friction
coefficients can differ depending on the contact and this can
affect the loss proportions.
6 Conclusion

A model of roller chain drive is presented. Quasi-static
evolution and straight chain strands are assumed. This
model determines the kinematic evolution as well as the
load distribution (in the links and at roller/sprocket
contact) throughout the transmission operation. The
stated hypotheses are consistent for applications to single
speed transmissions. However, the model can be general-
ised to any chain drive application as long as the
assumptions remain valid.
Using Coulomb’s law of friction, this model is then used
to estimate the contribution of the meshing and roller
motions to the global drive efficiency. The meshing
articulation angle is deduced from the model results
while the roller motion is obtained from previous
works. The latter is assumed to be independent from the
loading conditions and performed under a constant contact
force.

The results show that, for a wide range of gear and
tension ratios, the two sources of loss have contributions of
similar order of magnitude. Thus, it does not seem justified
to neglect one over the other when considering chain drive
efficiency.

Based on this statement, the phenomenon of roller
motion should be studied in detail and possibilities for
optimisation should be investigated. In particular, the
distance travelled by each roller depending on the loading
conditions should be characterised. A tribological study of
the different contacts involved (pin/bush, bush/roller and
roller/profile) considering their specific characteristics
(lubrication, sliding speed, etc.) would also provide a good
estimation of the different friction coefficients. This would
help to increase the accuracy of theobtained loss predictions.
In addition, this tribological study could help the under-
standing of the sliding/rolling conditions in the contacts,
thus improving the reliability of the associated assumptions.
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Nomenclature
f [�]
 Parameter for the phasing of the chainring
and rear cog rotations (related to L) in [21]
L (m)
 Distance between the chainring and rear cog
axes
Ltravel (m)
 Distance covered by the roller/tooth profile
contact point
ns,t [�]
 Number of links in a chain strand

nj [�]
 Number of links with both rollers contacting

sprocket j

Pi (N)
 Contact force between sprocket and roller i

Pj (N)
 Mean value of Pi for sprocket j (for all rollers

and all transmission positions)

p (m)
 Chain and sprocket pitch

q+ [�]
Appendix A: Solving the equilibrium of an

Ratio between Ti and Ti+1 with positive d
correction
q� [�]
 articulation with seated roller
Ratio between Ti and Ti+1 with negative d
correction
As presented in Figure A1, the ~x axis is defined as
Rj (m)
 Pitch radius of sprocket j

~x ¼ ~Ti=jj ~Ti jj. ~y is then chosen so that the ~z axis of the
Rbush (m)
 Outside bush radius

direct basis based on ~x and ~y is the outgoing normal.
Rpin (m)
 Outside pin radius
All the forces are considered concurrent at the roller
Rroller (m)
 Outside roller radius

centre (friction torque is neglected). Therefore, the
Ti (N)
 Tension force into link i

equilibrium is only projected along the ~x and~y directions.
Ts,t (N)
 Tension force in a chain strand
Wmesh (J)

Ti � Pi cos feq

� �� Tiþ1 cos að Þ ¼ 0
�
Dissipated energy for a considered meshing

motion
P sin f
� �� T sin að Þ ¼ 0

ðA:1Þ
Wroller (J)

i eq iþ1
Dissipated energy for a considered roller
motion
which can be rearranged as
xs,t,hyp (m)
 Length of a chain strand

Zj [�]
 Number of teeth of sprocket j
sin f
� �8>
aj [rad]
Tiþ1 ¼ Ti
eq� �>><
Angular pitch and articulation angle of
sprocket j
sin feq þ a ðA:2Þ
as,t,j [rad]
P ¼ T
sin að Þ� �>>>
Angle between a chain strand and the closest
link with both rollers contacting sprocket j
i i
sin feq þ a

:
b [rad]
 Tilt angle of the pitch circles common
tangent
The value of feq can then be set to f± d depending on
bs,t [rad]
 Tilt angle of a chain strand

the side in contact (tight or slack) and on the considered
d [rad]
 Friction angle

sprocket.
uroller [rad]
 Roller rotation angle when rolling a distance

of Ltravel

m [�]
 Friction coefficient for the computation of

the friction angle

mpb [�]
 Friction coefficient for the pin/bush contact

mbr [�]
 Frictioncoefficient for thebush/roller contact

mrp [�]
 Friction coefficient for the roller/profile

contact

m [�]
 Unique friction coefficient for the loss

proportion calculation

j [�]
 Roller/tooth profile contact point coordinate

[18]

f [rad]
Fig. A1. Articulation equilibrium with ~x and ~y axis.

f=(35 °� 120 °/Z)� (p/180), pressure an-
gle for seated roller [11]
fmin [rad]
 fmin=(17 °� 64 °/Z)� (p/180), pressure
angle for roller climbing the tight side of
the tooth profile [11]
cs,t,j [rad]
 Angle between a strand tip on sprocket jand
the point of tangential contact
_ct;j rad:s
�1½ �
 Time derivative of ct,j
ct;j rad:s
�1½ �
 Second time derivative of €ct;j
ct,1,init [rad]
 Initial value for angle ct,1

i
 Subscript for links and rollers numbering

j
 Subscript for sprocket numbering; 1 for the

chainring and 2 for the rear cog

s
 Subscript for slack strand attributes

t
 Subscript for tight strand attributes
Acknowledgements. This work is founded by INSA Lyon and is
part of the THPCA2024 project supported by ANR (Grant
No. ANR-2020-STHP2-000). The authors thank Jérôme
CAVORET and Martin BEST for their relevant remarks and
ideas during the conception of this studies. The authors would
also like to thank Jean-Christophe PERAUD for is support during
the study as part of the THPCA2024 project.

https://www.meca.org/10.1051/meca/2022026/olm


Appendix B: Comparison with Fuglede et al. [21]

Fig. B1. Chain drive kinematics, comparison with Fuglede et al. [21].
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Appendix C: Pie charts for case (a)

Fig. C1. Pie charts for case (a).
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