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Simple Summary: Age-related macular degeneration (AMD) is a disease affecting the macula of 

individuals older than 50 years of age and is a cause of irreversible vision loss. The disease can be 

broken into three sub-categories: early, intermediate, and late-stage AMD. The late stage of AMD 

affects 9.64 million individuals worldwide, and this prevalence is predicted to increase to 18.57 mil-

lion cases by the year 2040. The late stage of the disease is further divided into two major sub-groups: 

geographic atrophy (GA, formation of holes in the eye) and neovascular AMD (nAMD, abnormal 

growth of blood vessels in the eye). While treatment is available for nAMD in the form of injections 

known as anti-vascular endothelial growth factor (anti-VEGF)—treatments designed to regress the 

growth of abnormal blood vessels—some patients fail to maintain vision despite treatment. In this 

study, we created a model designed to predict responses to treatment in nAMD. The significance of 

our model is two-fold. Firstly, the model identifies the clinical, lifestyle, and demographic features 

which play a part in prediction response. Secondly, the model prioritises features based on their 

impact on treatment response. The work provided in this study supports the development of per-

sonalised treatments for nAMD sufferers. 

Abstract: Age-related macular degeneration (AMD) is a heterogeneous disease affecting the macula 

of individuals and is a cause of irreversible vision loss. Patients with neovascular AMD (nAMD) are 

candidates for the anti-vascular endothelial growth factor (anti-VEGF) treatment, designed to re-

gress the growth of abnormal blood vessels in the eye. Some patients fail to maintain vision despite 

treatment. This study aimed to develop a prediction model based on features weighted in order of 

importance with respect to their impact on visual acuity (VA). Evaluations included an assessment 

of clinical, lifestyle, and demographic factors from patients that were treated over a period of two 

years. The methods included mixed-effects and relative importance modelling, and models were 

tested against model selection criteria, diagnostic and assumption checks, and forecasting errors. 

The most important predictors of an anti-VEGF response were the baseline VA of the treated eye, 

the time (in weeks), treatment quantity, and the treated eye. The model also ranked the impact of 

other variables, such as intra-retinal fluid, haemorrhage, pigment epithelium detachment, treatment 

drug, baseline VA of the untreated eye, and various lifestyle and demographic factors. The results 

identified variables that could be targeted for further investigation in support of personalised treat-

ments based on patient data. 

Keywords: age-related macular degeneration; anti-VEGF treatment; explainability; statistical modelling 

 

1. Introduction 

Research in age-related macular degeneration (AMD) can be traced back as far as 

1855, according to published accounts [1,2]. For example, Donders described one of the 
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earliest cases of AMD using microscopy and post-mortem data [2]. He noticed obliquely 

orientated rods that were accommodating small drusen and discovered that the rods and 

cones were missing above the drusen. These drusen were rarely absent in the eyes of aged 

individuals, especially those who were from 70 to 80 years of age. Despite many years of 

research into possible treatments, AMD continues to remain a progressive, chronic, and 

degenerative eye disease that is most prevalent in the aging population (i.e., 50 years or 

older) [3,4]. It is not only one of the leading causes of central and irreversible vision loss, 

but affected patients are at risk of developing legal blindness [5–7]. AMD manifests as a 

result of a sub-clinical inflammatory process [8] that is characterised by damage or loss of 

photoreceptors (i.e., cells which respond to light) and the retinal pigment epithelium 

(RPE; i.e., a support system for photoreceptor cells that deliver essential nutrients, such as 

oxygen and clear cellular debris) within the macular region [9,10]. 

Due to the rapid growth of the aging population, the prevalence of AMD is increasing 

at a significant rate [11] and is predicted to increase to 288 million by 2040 [6,12,13]. Visual 

impairment poses a considerable global health and economic burden due to increasing 

life expectancy and a growing cohort of older adults. Estimates of global vision costs for 

AMD were first released in 2010 which suggested a financial burden of nearly USD $3 

trillion for 733 million people who were living with low vision and blindness in 2010 [14]. 

The disease can be broken into three sub-categories: early, intermediate, and late-

stage AMD. The late-stage of AMD affects 9.64 million individuals worldwide at the time 

of publication, and the prevalence of late-stage AMD is predicted to increase to 18.57 mil-

lion cases by the year 2040 [6]. Late-stage AMD is composed of two types: non-exudative 

(dry) AMD and exudative (wet) AMD; these are more commonly known as geographic 

atrophy (GA) and neovascular AMD (nAMD), respectively [15]. The development of GA 

is characterised by the death of the RPE and photoreceptor cells, as well as the closure of 

the underlying choriocapillaris [16]. nAMD is typified by choroidal neovascularisation 

(CNV), RPE or retinal detachment, retinal haemorrhage, and fibrous scarring [4,17,18]. 

Much of the severe vision loss occurs in the nAMD form. A Deloitte report revealed that 

a much greater number of patients across Australia suffered from severe nAMD than se-

vere dry AMD [7,19]. Furthermore, the biology of nAMD is better understood as com-

pared to GA, and thus, appropriate treatments are readily available for nAMD in the form 

of anti-vascular endothelial growth factor (anti-VEGF) injections designed to block and 

regress the growth of abnormal blood vessels in the eye that causes vision loss. The nAMD 

treatments include (anti-VEGF) treatments such as ranibizumab (Lucentis®), bevacizumab 

(Avastin®), and aflibercept (Eylea®). Anti-VEGF agents are injected intravitreally to stop 

neovascularisation [20]. While anti-VEGF treatments are available for nAMD, there have 

been several trials underway for other conditions [15,21]. While the response to these 

treatments is well-received, there remains a cohort of patients who do not respond to the 

treatment as expected; these patients continue to lose vision and worsen over time, poten-

tially leading to blindness. 

An exploration into the efficacy of anti-VEGF treatments can be undertaken through 

the evaluation of potential risk factors that trigger a lack of response. These include as-

sessing previously implicated factors in AMD disease progression. Although age is con-

sidered the primary contributor to the development of AMD, other modifiable lifestyle 

risk factors, such as smoking and diet, have also been noted as important environmental 

insults in the progression of AMD [12,22]. Genetic risk factors are also known to play a 

large role in the aetiology of AMD [23]. Similarly, both modifiable and genetic factors have 

been implicated in the patient response to anti-VEGF treatments. Previous studies have 

suggested the following non-genetic factors as potential predictors in anti-VEGF response: 

age, baseline visual acuity (VA), the delay between symptom onset and treatment initia-

tion, subfoveal choroidal thickness, CNV type, the location of fluid in the retina, and the 

presence of subretinal hyperreflective material (SHRM) [24–26]. There appears to be a 

need for continuing research relating to the hierarchy of importance of potential 
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predictors while simultaneously producing a well-fitted prediction model to understand 

anti-VEGF effectiveness in AMD patients. 

Biological and medical data are complex, and care needs to be taken to avoid spuri-

ous or inflated associations. There are several possible causes of confounding, including 

population structure (the existence of major subgroups in the population), cryptic relat-

edness (the existence of small groups of related individuals), and environmental factors 

(environmental differences between sub-populations or geographic locations) [27–30]. 

Several methods have been suggested to control these confounders, one of which in-

cludes mixed-effects modelling—where a set of random effects is fitted for each individual 

[30]. Mixed-effects models are well suited for the analysis of biological/medical data [31] 

and are flexible and powerful statistical models for controlling stratification, relatedness, 

and confounding factors [32–34]. 

A machine learning approach is investigated in the current study for the prediction of 

VA outcomes from anti-VEGF treatment subject to clinical data, lifestyle, and demographic 

factors. A variety of machine learning approaches have been the subject of past research, 

such as predictive regression models, including artificial neural networks, random forests, 

and mixed-effects models [35,36]. Many models have been applied to medical problems in 

ophthalmology but have limited explainability [37–39]. A challenge to machine learning is 

to develop models that are not black box in nature but incorporate explainability in their 

predictions. In this study, a machine learning approach was developed that incorporates 

statistical features and metrics to produce a degree of explainability. 

Potential predictor variables can be ranked by weights in the order of importance 

using the relative importance of variables (RIV) method. Larger predictor weights are con-

sidered the most important, while those with smaller weights are considered the least im-

portant [40]. 

This paper has two objectives: (1) to apply machine learning to develop mathematical 

models to predict vision outcomes for anti-VEGF-treated AMD patients; and (2) to rank 

variables that are available to the ophthalmologist, in order of importance (i.e., largest to 

smallest weights). The best models were selected based on model selection techniques, 

along with diagnostic and forecasting evaluations. The aim was to develop a prediction 

model to include the features most responsible for treatment response and to optimise 

prediction accuracy. 

2. Materials and Methods 

2.1. Study Design 

A retrospective analysis was conducted as a case study using anonymised data from 

patients who attended the retina clinics at the Royal Victorian Eye and Ear Hospital 

(RVEEH). The study was approved by the Human Research Ethics Committee of RVEEH. 

The study was conducted in accordance with the International Conference on Harmoni-

sation Guidelines for Good Clinical Practice and tenets of the Declaration of Helsinki Eth-

ics approval was provided by the Human Research Ethics Committee (HREC: Project No. 

95/283H/15) by the RVEEH. Written informed consent was obtained from all participants. 

2.2. Patient Data 

The patient dataset consisted of 150 treatment-naïve eyes, with patients >50 years of 

age who were diagnosed with subfoveal CNV secondary to AMD and who had attended 

the RVEEH between 2006 and 2010. Clinical diagnoses were based on a retinal examina-

tion, fundus photography, fundus fluorescein angiography, time-domain optical coher-

ence tomography (OCT) with Stratus OCT version 5.0.1 (Carl Zeiss Meditec, Dublin, CA, 

USA) or Cirrus HD-OCT version 6.0.0.599 (Carl Zeiss Meditec). VA scores were obtained 

using the early treatment diabetic retinopathy study (ETDRS) chart performed at 4 m. The 

presence of intra-retinal fluid (IRF), sub-retinal fluid (SRF), macular thickness, macular 
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scar, atrophy, and haemorrhage were analysed using OCT. Results were collated for base-

line at three, six, twelve, and twenty-four months treatment intervals. 

Patients with CNV secondary to non-AMD conditions, such as angioid streaks, se-

vere myopia, central serous retinopathy, or hereditary retinal disorders, and those who 

received any previous treatment for nAMD, such as an anti-VEGF, photodynamic ther-

apy, or laser photocoagulation were excluded. 

2.3. Data Format 

The time-series data followed the treatment schedule and clinical manifestations of 

all 150 eyes over the course of a two-year treatment. The dataset included general demo-

graphic information, such as age, gender, and ethnicity, along with several clinical varia-

bles (Table S1, Supplementary Materials). We identified whether each variable was bi-

nary, categorical, or continuous as part of our exploratory analysis. 

The data were initially presented in the “wide” format, which contained approxi-

mately 156 variables across all 150 eyes. The data were converted into a “long” format, 

amalgamating variables across multiple time points into a single variable. For example, 

rather than having five variables for the VA at baseline at three, six, twelve, and twenty-

four months, a single VA variable with a time variable as a reference was used. 

2.4. Treatment Protocol 

Patients were treated with either ranibizumab or bevacizumab, with most receiving 

ranibizumab, where bevacizumab was used occasionally for the first injection whilst 

awaiting approval for the subsidised use of ranibizumab (aflibercept was not available at 

the time). A total of 140 patients were treated for either the left eye (LE) or the right eye 

(RE), and five patients had both eyes treated. All patients received 3 initial monthly injec-

tions followed by a flexible (as required) period. The decision to re-treat in the flexible 

period was at the discretion of the treating retinal specialist at each follow-up visit on the 

basis of re-treatment criteria, including the VA loss of 5 letters, increased central retinal 

thickness of 100 µm, or the presence of retinal fluid on OCT (intraretinal or subretinal) or 

ophthalmic examination findings of new or persistent haemorrhage. The extension of 2 

weeks was considered for the subsequent clinic visit if the clinical situation was stable and 

OCT was free of intra-retinal or sub-retinal fluid. This evolved into a treat-and-extend 

protocol in the latter half of the time period, where if the patient showed no signs of ac-

tivity, the time between the injections was extended by two weeks. Individuals with per-

sistent signs of activity continued to receive monthly injections. 

2.5. Statistical Analysis 

All statistical analyses were run using the statistical software R version 3.2.2. [41]. 

The null hypothesis for the RIV analysis was that the parameter estimates for all variables 

were identical and had the same level of importance in their contribution to vision out-

comes in anti-VEGF-treated AMD patients. 

2.5.1. Modelling Mixed-Effects 

Mixed-effects models are used to describe relationships between response and pre-

dictor variables in data that are grouped based on one or more classifications [42]. Mixed-

effects models explicitly specify the mean and covariance structure, incorporating two 

types of parameters: fixed and random effects [43,44]. Fixed effects refer to predictors that 

affect a response variable. Random effects, however, refer to effects on a response variable 

generated by variation within and among the levels of a predictor variable [43]. Popula-

tion structure is the fixed effect in a mixed-effects model, while relatedness among indi-

viduals is incorporated as a variance-covariance structure of the random effect [45]. Mixed 

effects models have gained considerable popularity and are considered useful in the 
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analysis of longitudinal data, the modelling of complex clustered data, penalised log-like-

lihood, etc. [31,46]. There are advantages to using mixed models in medical applications. 

A medical study may be carried out at multiple locations, clinics, or hospitals, and 

therefore, medical data may often be clustered. The design of a medical study may be 

described as hierarchical and wider inferences can be made by fitting the clustering effect 

as a random effect. Repeated measurements are also common in medical studies, and it is 

not uncommon for several observations to be missing. The advantage of using a mixed-

effects model is that it makes allowance for missing data and hierarchical clustering [47]. 

The RVEEH dataset is from a longitudinal study and consists of repeated observa-

tions by individual subjects over a time series. The research interest lies in the effects that 

are common and different among all individuals in the study [48]. The mixed-effects 

model allows the capture of among-subject variations. The use of mixed-effects modelling 

is that it assists in explaining variability in the patient response to anti-VEGF treatment 

and helps to identify other factors that may contribute to treatment response. 

Linear mixed-effects models are an extension of regular linear models. Traditional 

linear models use only a single random term, the residual error. A linear mixed-effects 

model allows the specification of more than one random term [49], a useful feature, as it 

is more accurate to think of an effect coming from a specific normal distribution rather 

than that of a fixed value [50]. 

With N independent sampling units (i.e., the patients), the linear mixed-effects model 

for the 𝑖th person may be written as follows: 

𝑌𝑖 = 𝑋𝑖𝛽𝑖 + 𝑍𝑖𝑢𝑖 + 𝜀𝑖 (1) 

where 𝑌𝑖 represents the response variable for the 𝑖th person, 𝑋𝑖 is a 𝑛𝑖  ×  𝑝 design matrix 

for the 𝑝-vector of the fixed effects 𝛽, and 𝑍𝑖 is a 𝑛𝑖 ×  𝑞 design matrix associated with the 

𝑞-vector of random effects 𝑢𝑖 that represent subject-specific regression coefficients. The 

error term, 𝜀𝑖, is assumed to be normally distributed with a mean zero and to be inde-

pendent of the random effects [51]. 

The use of linear mixed-effects models counters the multiple drawbacks that are nor-

mally associated with traditional random effects modelling, such as [52]: 

(a) Deficiencies in statistical power with the use of repeated observations; 

(b) Lack of adaptability around dealing with missing data; 

(c) Disparate methods for treating continuous and categorical responses;  

(d) Unproven methods for modelling heteroscedasticity and non-spherical error vari-

ance. 

There are multiple measurements for each subject thus, we need to incorporate ran-

dom effects into the model to account for the variation in outcomes. To account for within-

subject dependencies, a subject-specific latent variable (i.e., random effects) must be in-

cluded in the model. Typically, an additional random effect is included for each regression 

coefficient that is expected to vary among the subjects. For example, in dose–response 

settings, one may account for baseline heterogeneity through a random intercept and for 

heterogeneity in susceptibility through a random slope, with these two factors potentially 

correlated [53]. To account for this heterogeneity, the random effect used across all our 

tested models included time (in weeks) and subject. This is represented in the analysis as 

(time|subject). The use of the random effect subject accounts for the random intercept. The 

random effect time accounts for the random slope. Software for data analytics was devel-

oped for this project and also sourced for linear mixed-effects models from the work of 

Bates and Maechler, as maintained by Ben Bolker [54]. 
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2.5.2. Measure of Outcome 

For our response variable, we preferred the use of follow-up VA measurements for 

both the LE and RE as the outcome/dependent variable (i.e., 𝑌𝑖). All remaining variables, 

including the baseline VAs, were considered potential predictors. The responses were ad-

ditionally divided into LE and RE. 

Sometimes, change scores (i.e., post-treatment outcomes minus pre-treatment meas-

urements) were used in place of follow-up scores as a way of accounting for chance im-

balances at the baseline between treatment groups. Baseline imbalances can include fac-

tors such as age or disease severity; they can occur either due to (i) a true biological vari-

ability within the individual, or (ii) due to a measurement error, or even a combination of 

the two [55,56]; these imbalances are referred to as a regression to the mean [57]. While it 

may seem intuitive to use change scores to control for any chance imbalances at the base-

line, as outcomes may occur due to regression to the mean, we opted to use follow-up 

scores in place of change scores instead. 

2.5.3. Model Selection 

The information criteria, such as the Akaike Information Criterion (AIC) and Schwartz 

or Bayesian Information Criterion (BIC), were used in the model selection process. Although 

a plethora of information criteria are available for model comparison, they are modifica-

tions or generalisations of the AIC or BIC [58]. The AIC and BIC criteria are defined as 

[59]: 

𝐴𝐼𝐶 = 2[ℓ(�̂�2) − ℓ(�̂�1)] − 2(𝑝2 − 𝑝1) (2) 

𝐵𝐼𝐶 = 2[ℓ(�̂�2) − ℓ(�̂�1)] − log𝑛(𝑝2 − 𝑝1) (3) 

where 2[ℓ(�̂�2) − ℓ(�̂�1)] is the likelihood ratio test statistic that is asymptotically distrib-

uted as 𝜒2 with 𝑝2 − 𝑝1 degrees-of-freedom. AIC and BIC theories have the same objec-

tive: to find the best model via comparison. However, each theory has a different motiva-

tion. While AIC compares models using a measure of similarity in the expected predictive 

performance, BIC compares the probabilities that each of the models tested is the true 

model [58]. 

The main idea behind the selection criteria is to compare models based on their max-

imised log-likelihood value, while penalising for the number of parameters. The model 

with the smallest AIC or BIC values is deemed the best [60]. Additionally, in finding the 

smallest AIC and BIC values, the model chosen needs to provide a good fit to the data, 

using 𝑅2, also known as the coefficient of determination, which relates to the impact of the 

predictor variable X [61].Values for 𝑅2 range from 0 ≤ 𝑅2 ≤ 1. Values closer to 1 indicate 

a better fit. 

For mixed-effects models, 𝑅2 can be categorised into two types: marginal 𝑅2 and con-

ditional 𝑅2. Marginal 𝑅2 accounts for the variance explained by fixed factors: 

𝑅𝑀
2 =

𝜎𝑓
2

𝜎𝑓
2 + ∑ 𝜎𝑙

2 + 𝜎𝑒
2 + 𝜎𝑑

2𝑢
𝑙=1

 (4) 

and conditional 𝑅2 is concerned with the variance explained by both fixed and random 

factors [27]: 

𝑅𝐶
2 =

𝜎𝑓
2 + ∑ 𝜎𝑙

2𝑢
𝑙=1

𝜎𝑓
2 + ∑ 𝜎𝑙

2 + 𝜎𝑒
2 + 𝜎𝑑

2𝑢
𝑙=1

 (5) 

where 𝜎𝑓
2 = the variance calculated from the fixed effects component; 𝑢 = the number of 

random factors in the model; 𝜎𝑙
2  = the variance component of the 𝑙 th random factor; 

(𝜎𝑒
2 + 𝜎𝑑

2) = the sum of an additive dispersion component and the distribution-specific 

variance. 
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2.5.4. Model Diagnostics 

Once a suitable model has been identified and fitted, the key assumptions of the 

model can be tested. These assumptions include (i) linearity, (ii) homoscedasticity or con-

stancy of the error variance, and (iii) normality of the errors. Discrepancies between the 

assumed model and data can be identified by studying the residuals (also known as the 

error component). The residuals represent the differences between observed and pre-

dicted values for the assumed model. Visual aids, such as residual plots, help identify 

whether the assumptions of the model have been satisfied. Typically, a good residual plot 

would be one with an even horizontal distribution of residuals or symmetry; whereas 

those that contain distinguishable patterns, such as being clustered to one side of the plot, 

usually indicate a violation of the model assumption and warrant a further review of the 

model (e.g., appropriate transformation of dependent or independent variables) [62]. Nor-

mal probability plots additionally allowed us to determine the fit of our model. 

Using both residual plots and normal probability plots, we could identify any unu-

sual or outlying observations based on large deviations in the observed 𝑌 values from that 

of the fitted line. Inferences drawn from the model can be potentially influenced by only 

a few cases in the data. The fitted model may reflect the unusual characteristics of those 

cases rather than the overall relationship between the dependent and independent varia-

bles [63]. 

Influence analysis consists of investigating whether observations (or a group of ob-

servations) are given disproportionate importance in the model estimation. The simple 

inclusion or exclusion of an influential case may lead to substantially different regression 

estimates [64]. DFBETAS is a standardised measure that indicates the level of influence 

observations have on single parameter estimates [65]. For mixed-effects models, this re-

lates to the influence of a higher-level unit on the parameter estimates. DFBETAS is calcu-

lated as the difference in parameter estimate  between the model included and the model 

excluding the higher-level case. This absolute difference is divided by the standard error 

of the parameter estimate excluding the higher-level case [66]: 

𝐷𝐹𝐵𝐸𝑇𝐴𝑆𝑖𝑗 =
𝛾𝑖 − 𝛾𝑖(−𝑗)

𝑠𝑒(𝛾𝑖(−𝑗))
 (6) 

in which 𝑖 refers to the parameter estimate and 𝑗 the higher-level group, so 𝛾𝑖 represents 

the original parameter estimate 𝑖, and 𝛾𝑖(−𝑗) represents the estimate of the parameter 𝑖 af-

ter the higher-level group 𝑗 has been excluded from the data. We used the influence.ME 

package in R to run these analyses [66]. As a rule of thumb, the cut-off value for DFBETAS 

is given as [67]: 

 𝐶𝑜𝑉 =  2/√𝑛 (7) 

in which 𝑛 is the number of observations under evaluation. Values exceeding this cut-off 

are regarded as potentially influencing the regression outcomes for that specific estimate. 

As DFBETAS provides a value for each parameter and for each higher-level unit that 

is evaluated, this can result in a large number of values to review. An alternative method 

for identifying influence is Cook’s distance. Cook’s distance provides a summary of 

measures for the influence that a higher-level unit exerts on all parameter estimates sim-

ultaneously. A formula for Cook’s distance is [66]: 

𝐶𝑗
𝑂𝐹 =

1

𝑟 + 1
(𝛾 − 𝛾(−𝑗))′∑̂(𝛾 − 𝛾(−𝑗)) (8) 

where 𝛾 represents the vector of the original parameter estimates 𝛾(−𝑗) the parameter esti-

mates of the model excluding the higher-level unit 𝑗, and ∑̂ represents the covariance ma-

trix. As a rule of thumb, cases are regarded as potentially influential if the associated value 

for Cook’s distance exceeds the cut-off value of [68]: 

 𝐶𝑜𝑉 = 4/𝑛 (9) 
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where 𝑛 refers to the number of groups in the grouping factor under evaluation. 

To test for changes in statistical significance, we employed the sigtest() function. This 

is used to test for changing levels of significance after the deletion of each of the potentially 

influential data points identified using DFBETAS. For the Cook’s distance, we carried out 

similar functions using the exclude.influence() function. While there could be many poten-

tially influential points, those that created statistically significant changes upon deletion 

were considered overly influential. 

2.5.5. Prediction Accuracy 

Past data allows the identification of a pattern that can be extrapolated or extended 

into the future in order to prepare a prediction or forecast. Forecasting techniques rely on 

the assumption that the patterns which have been identified in the past will continue in 

the future. Good predictions cannot be expected unless this assumption is valid. Forecast-

ing is subject to uncertainty analysis. There may be an irregular component that may be 

substantial and cause fluctuations in the data. Hence, we reviewed forecasting errors in 

an attempt to ascertain whether an irregular component was so large as to completely 

invalidate any forecasting technique or perhaps the forecasting technique used was not 

capable of accurately predicting the trend, seasonal, or cyclical components of the data, 

thus rendering the technique inappropriate [69]. 

The first metric to assess forecast quality is the mean error (ME), which is simply the 

average of past errors between the n observed and forecast values: 

𝑀𝐸 =
1

𝑛
∑ 𝑒𝑡

𝑛
𝑡=1   (10) 

where we used the following notation [70]: 

𝑒𝑡 = 𝑌𝑡 − �̂�𝑡 is the forecast error for a particular at time 𝑡; 

�̂�𝑡 = the forecast value generated in period 𝑡 (i.e., the fitted/predicted value); 

𝑌𝑡 = the observed value at time 𝑡. 

The ME metric reveals whether the forecasting process, on average, tends to under-

forecast (i.e., ME would be positive) or over-forecast (i.e., ME would be negative); it was, 

in fact, a metric of bias. We, therefore, needed other metrics for forecast accuracy that 

could capture the proximity between the prediction produced using our model and the 

actual observed values. 

The first metric for forecast accuracy is the mean absolute deviation (MAD). MAD 

uses the absolute error to ensure that negative and positive errors do not cancel when 

averaged: 

𝑀𝐴𝐷 =
1

𝑛
∑ |𝑒𝑡|𝑛

𝑡=1   (11) 

The second metric for forecast accuracy is the root mean square error (RMSE)—this 

measure squares errors to the sum of positive and negative ones. The RMSE is similar to 

the standard deviation (except that the deviations are not around the mean value): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑡

2𝑛
𝑡=1   (12) 

The previous metrics are measured in the same units as the data and are not scale-

independent. The normalisation of accuracy requires expression as a proportion or per-

centage. The metrics which accommodate for this are the mean percentage error (MPE) 

and mean absolute percentage error (MAPE), which measure percentage bias and per-

centage accuracy, respectively. 

Our objective was to find a model that would have a prediction error rate of less than 

10% (i.e., our prediction accuracy was not off by more than 10%): 

𝑀𝑃𝐸 =
1

𝑛
∑

𝑒𝑡

𝑌𝑡

𝑛
𝑡=1   (13) 
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𝑀𝐴𝑃𝐸 = (
1

𝑛
∑

|𝑒𝑡|

𝑌𝑡

𝑛
𝑡=1 ) × 100  (14) 

As these measures are percentages, no further scaling is required and interpretation 

is straight forward [69]. 

2.5.6. The RIV Method 

The RIV method ranks predictor variables by weights, where larger predictor 

weights are considered more important, while those with lower weights are considered 

less important [71]. The advantage of this method is that it ensures that the variables are 

not evaluated as if all are equally important. By appropriate variable weighting, our 

model can determine which factors will have the most influence on the outcome. The 

ranking and weighting of variables improves the model accuracy, as the weighting reflects 

the contribution of each parameter to the outcome. A package for AIC determination was 

used to identify the level of importance for each variable using the RIV method [72]. 

To estimate the RIV of variable 𝑥𝑗, the sum of all Akaike weights is required (i.e., AIC) 

across all the models in the set where 𝑗 occurs; the sum of 𝑤+(𝑗) reflects the importance of 

the variable. This sum is denoted as a numerical value between 0 and 1. The larger the 

sum 𝑤+(𝑗) (i.e., closer to 1), the more important the variable is relative to other variables 

tested. Using 𝑤+(𝑗), all the variables can be ranked in order of their importance. 

The effect size is based on model-averaged estimates. It is, therefore, important to 

ensure a balance in the number of models which include the variable 𝑗. In other words, to 

ensure an accurate reflection of the importance of one variable versus another, a combi-

nation of models is required, which contain all prospective variables in equal proportion 

across all models, allowing each variable to be tested on an equal footing. Otherwise, if 

one variable were to be found more frequently across our test models, as compared to 

another, it may inadvertently give the more frequently occurring variable the advantage. 

Typically, to calculate the Akaike weights, the following formulae are used: 

AIC = −2 log (ℒ(�̂�|𝑑𝑎𝑡𝑎)) + 2𝐾 (15) 

∆𝑖= AIC𝑖 − AIC𝑚𝑖𝑛 (16) 

ℒ(𝑔𝑖|𝑑𝑎𝑡𝑎) = exp (−
∆𝑖

2
) = likelihood of model g

i
 (17) 

𝑤𝑖 =
exp (−

∆𝑖

2
)

∑ exp (−
∆𝑟

2
)𝑅

𝑟=1

 (18) 

Alternatively, the weights can be viewed as a proportion of evidence, 

𝑤+(𝑗) = ∑ 𝑤𝑖𝑖 for 𝑋𝑗∈𝑔𝑖
  (19) 

which is the sum of the model weights for the subset of the models that contain the pre-

dictor variable 𝑥𝑗. The sum of the models for the subset of all the models that did not con-

tain the predictor variable 𝑥𝑗 is: 

𝑤−(𝑗) = ∑ 𝑤𝑖𝑖 for 𝑋𝑗∉𝑔𝑖
  (20) 

Hence, the importance of predictor 𝑥𝑗 is associated with the contrast between 𝑤+(𝑗) 

and 𝑤−(𝑗), with 𝑤+(𝑗) +  𝑤−(𝑗) = 1. The larger the 𝑤+(𝑗) value is, the more important the 

predictor 𝑥𝑗. 

2.5.7. Treatment of Missing Data 

Generally, mixed-effects models are more flexible in the treatment of missing data 

than fixed-effects models. It is reasonable to assume that a mixed model is capable of 
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handling the imbalance caused by missing observations, provided that the data points are 

missing at random. When data cannot be considered to be missing at random, ad hoc 

approaches, such as the “last value carried forward” (i.e., where the last observed value 

of the response variable is substituted for every subsequent missing observation), are used 

[47]. 

For the selection of the mixed-effects model, we opted to use two methods to correct 

for missing data: the multiple imputation (MI) method to identify potential predictor var-

iables and the stacked MI method to validate (or possibly further investigate) our original 

findings. For the RIV analysis, we simply used the MI method. Both methods aimed to 

restore the dataset from its incomplete state to that of completeness by substituting rea-

sonable estimates for each missing data point. 

The MI method, which was proposed by Rubin in 1978, rectifies the major disad-

vantage of single imputation—the under-representation of uncertainty [73–75]. While MI 

has the appeal of restoring the full dataset, we realise that there is no way to recover the 

actual unknown missing values. It is, therefore, important to note that imputed datasets 

are not to be treated as substitutes for true completed datasets but rather designed to pro-

duce valid overall inferences from the original incomplete dataset [76].  

2.5.8. The Multiple Imputation (MI) Method 

Generate an 𝑚 number of copies of the incomplete dataset, using an appropriate pro-

cedure to impute the missing values in each copy. As we do not know the true values, the 

imputed values used in each copy are different from each other. The 𝑚 values are ordered 

in the sense that the first components of the vectors for the missing values are used to 

create one completed data set, the second components of the vectors are used to create the 

second complete data set, and so on. Each completed dataset is analysed using standard 

complete-data methods [77]. The repetition of 𝑚 times accounts for variability due to un-

known values [78,79]. We opted to produce 𝑚 = 5 imputed datasets, producing five sepa-

rate (and complete) datasets, each with 150 rows of data. 

(a) For each imputed copy of the dataset, standard analysis is performed, and the pa-

rameter estimates of interest are stored. 

(b) Using “Rubin’s rules”, a combined estimate of the parameter is generated as the av-

erage of the 𝑚 separate estimates [76]. 

Step 1, the imputation step, predicts or fills in the missing values multiple times using 

the conditional distribution of the observed data. Although several imputation methods 

exist, such as predictive mean matching, the Markov Chain Monte Carlo (MCMC), or 

chained equations, the preferred method is one that matches that missing data pattern 

[80]. 

In the process of model selection, the MI method generally yields different predictor 

variables across each dataset. Three strategies have been proposed which “combines” and 

identifies the single most suitable model across all imputed datasets [81]: 

(a) Select predictors that appear in any model; 

(b) Select predictors that appear in at least half of the models; 

(c) Select predictors that appear in all of the models. 

In this study, it was found that the second of the proposed methods was preferred, 

as it allowed us to find commonalities between each imputed dataset and provided the 

flexibility to assess the discrepancies in variables that appeared infrequently across all the 

datasets. 

We additionally used the stacked weighted regression method to validate the model 

findings using the MI method. Rather than reviewing each imputed dataset separately, 

the five imputed datasets were “stacked” to create one large dataset of length 𝑚 × 𝑛 in 

place (𝑚 imputed datasets for 𝑛 individuals). While fitting models to single-stacked data 

yields and valid parameter estimates, standard errors may end up being too small. To 

correct this issue, we scaled the log-likelihood for the stacked data using weights in our 
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regression models, which additionally accounted for the degree of missing information in 

the dataset: 

𝑤𝑖 =
1 − 𝑓

𝑚
 (21) 

where 𝑓 is the fraction of missing data across all variables—the total number of missing 

data divided by 𝑛𝑝, with 𝑛 being the number of individuals (150), and 𝑝 is the number of 

predictor variables (19) [81,82]. 

For both our MI and stacked MI methods, we used the R package Amelia [83]. Amelia 

resamples the original data using a bootstrap algorithm while implementing an expectation-

maximisation (EM) algorithm—an iterative method for maximum likelihood or maximum 

a posteriori estimates [84]. Amelia uses all observed data to estimate the missing values, 

then creates several complete datasets that include the original data points plus slightly dif-

ferent imputed points to account for uncertainty (Figure 1). For stacked MIs, the same 

method of imputation takes place, with the addition of including the command separate = 

FALSE to ensure the imputed datasets are not separated and kept as one (Figure 2). 

 

Figure 1. Schematic illustration of multiple imputation method (adapted from Molenberghs et al, 

2015 [76]). This illustration demonstrates the imputation of an incomplete dataset. Each dataset was 

then analysed and the results were combined. (√) refers to imputed portions of dataset. 

 

Figure 2. Schematic illustration of multiple imputation and stacked dataset method. This illustration 

demonstrates the imputation of an incomplete dataset five times. The imputed datasets are then 

“stacked” together to form one large dataset. Rather than carrying out multiple analyses and comb-

ing the results, this method allows the analysis of one single dataset. * refers to imputed portions of 

dataset. 
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3. Results 

3.1. Summary Statistics 

Our cohort of 150 eyes consisted of 85 eyes (56.7%) from females and 65 eyes (43.3%) 

from males (Table 1). The mean age, with standard deviation (SD) at the baseline, was 78.9 

± 7.3 years. The mean baseline VA for the LE was 53.5 ± 24.0 letters, while the RE was 48.4 

± 24.3. At the baseline, ranibizumab was injected 122 times (81.3%) and bevacizumab 28 

(18.7%). 

Most patients were treated for the RE, with 86 (57.3%) patients being treated in the 

RE, while 64 (42.6%) were treated in the LE. Ten (6.7%) patients were treated in both the 

LE and RE. A total of 102 (68%) patients had hypertension, and 25 (16.7%) had diabetes. 

Table 1. Summary statistics: patient demographics and clinical characteristics collected at baseline. 

Sex, n (%) 

Female 85 (56.7) 

Male 65 (43.3) 

Age (years) 

Mean ± SD 78.9 ± 7.3 

Range 54–102 

Baseline VA, LE 

Mean ± SD 53.5 ± 24.0 

Range 0–88 

Baseline VA, RE 

Mean ± SD 48.4 ± 24.3 

Range 2–90 

Number of injections at baseline, n (%) 

Ranibizumab 122 (81.3) 

Bevacizumab 28 (18.7) 

Smoking Status, n (%) 

No 53 (35.3) 

Yes—Past 64 (42.7) 

Yes—Present 19 (12.7) 

Yes—Virtually Never 8 (5.3) 

Missing 6 (4.0) 

Smoker Packs (years) 

Mean ± SD 39.1 ± 28.7 

Range 2–126 

Treated Eye, n (%) 

LE 64 (42.7) 

RE 86 (57.3) 

Hypertension, n (%) 

No 48 (32) 

Yes 102 (68) 

Diabetes, n (%) 

No 118 (78.7) 

Yes 25 (16.7) 

Missing 7 (4.6) 

OCT IRF, n (%) 

Absent 24 (16) 

Present 85 (56.7) 

Missing 41 (27.3) 

OCT SRF, n (%) 
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Absent 24 (16) 

Present 84 (56) 

Missing 42 (28) 

OCT PED, n (%) 

Missing Values 

Figure 3 displays a Heatmap which highlights missing values. Variables with no 

missing data included: the treated eye, age, gender, hypertension, smokerpacks, and base-

line VA. Variables with a few missing data included: paternal (2%) and maternal ethnicity 

(1.33%), smoking status (4%), diabetes (4.67%), time (in weeks) (4.8%), and treatment 

quantity (5.2%). Finally, variables that contained a substantial amount of missing values 

included: OCT derived SRF (18.13%), IRF (18.27%), CMT (19.47%), PED (20.67%), haem-

orrhage (24.8%), and the treatment drug (35.6%). We assumed that greater variability in 

our outcomes would be found in the last set of variables and anticipated consistent results 

for all other variables. 

 

Figure 3. Missing map for original dataset. The map illustrates missing values across all variables 

tested for the treatment duration of 24 months. Those marked with dark red represent observed and 

available data, while the light pink represents missing data. Most of the missing information can be 

found in OCT derived variables. We found that treatment drug had the most missing values (35.6%), 

followed by haemorrhage (24.8%), and PED (20.67%). 
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3.2. The Mixed-Effects Model 

3.2.1. Identifying Predictor Variables 

We tested for all possible combinations of all 19 predictor variables (i.e., 524,288 mod-

els, including null models) for each imputed dataset and stacked imputed datasets. Pos-

sible combinations were tested in the following format: 

1. Inspect the 𝑖th combination of predictor variables; 

2. Add the 𝑖th combination into a mixed-effects formula, which includes the random 

effects variables for time and subject; 

3. Store the AIC; 

4. Store the BIC; 

5. Once all possible combinations have been tested, list the combinations that produce 

the smallest AIC and BIC values. 

Each tested model followed the format below: 

Response = ith combination of predictor variables + random effects (22) 

Using the MI method with five separate datasets (Table S2, Supplementary Materi-

als), we initially identified the following predictors as producing the models with the low-

est AIC/BIC for both the LE and RE. 

In our methods (Treatment of Missing Data), our process of selecting the most appro-

priate predictors for a model included finding variables that appeared in at least half of 

the imputed dataset outcomes, with the flexibility to explore other predictor variables that 

occurred less frequently. 

We then proceeded to repeat our analysis using the single stacked imputed dataset 

(Table S3, Supplementary Materials) in place of five separate imputed datasets. 

Following the results from both methods, we proceeded to test models that included 

any of the predictors included in Tables S2 and S3 in the Supplementary Materials. The 

final model choice was additionally based on: (1) diagnostic outcomes and (2) prediction 

accuracy. The following model for both the LE and RE provided the most consistent pre-

diction outcomes, in line with model assumptions: 

𝑌𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
𝑗=10
𝑗=1 + 𝑍𝑖𝑢𝑖 + 𝜀𝑖  (23) 

𝑌𝑖 = VA at time 𝑡 (LE or RE); 𝑋1 = LE baseline VA; 𝑋2 = RE baseline VA; 𝑋3 = OCT IRF; 𝑋4 

= OCT CMT; 𝑋5  = time (in weeks); 𝑋6  = treatment quantity; 𝑋7  = treatment drug; 𝑋8  = 

treated eye; 𝑋9 = OCT haemorrhage; and 𝑋10 = OCT PED. 

While other potential variables such as age, hypertension, and OCT SRF were also 

tested, it was found that the addition of these variables to the model neither added nor 

subtracted from the accuracy of the model. The preference was for an efficient model, with 

the least variables needed to produce an accurate outcome and to guard against over-

fitting with the ten selected variables forming the basis of the final model. 

3.2.2. Model Diagnostics 

Residual versus fitted plots for both LE and RE models (Figure 4) demonstrated a 

relatively even distribution. Some data points which were located considerably further 

out than most other data points could be considered potential outliers. The normal prob-

ability plots (Figure 5) for both these models were generally normally distributed, with 

some deviation noted at the tail ends. While these plots suggested that the models were a 

good fit for the data, we must consider the possibility of influential data points. 

Using DFBETAS plots for both the LE (Figure 6) and RE (Figure 7) models, several 

data points for both models exceeded the cut-off value of 
2

√𝑛
= 0.17. Using the sigtest(), 

which identified the statistical changes in the model that may be caused by the removal 

of a potentially influential data point, the removal of the DFBETAS, which exceeded the 

cut-off values, did not cause changes in the outcome for either the LE or RE models. 



Life 2022, 12, 1926 15 of 30 
 

 

Using Cook’s distance plots for both the LE (Figure 8) and RE (Figure 9), several plot 

points exceeded the cut-off 
4

𝑛
= 0.027. We reviewed these points by momentarily exclud-

ing them using exclude.influence() and re-assessing our models; we found that the exclu-

sion of these points did not affect or change our model outcomes. 

These results suggest that, while there are several potentially influential data points, 

no data points appeared to be overly influential on our models. Additionally, we noticed 

that the original outliers we had noted in the residual versus fitted plots (Figure 4) ap-

peared in our potentially influential analysis. However, similar to all the other potential 

data points, we noticed that the originally identified outliers had no bearing on the model 

(or prediction) accuracies. While we opted not to delete outlier points for posterity, we 

modified the dimensions of the residual versus fitted plots to demonstrate that, sans the 

outliers, we could clearly see evenly distributed and well-spaced data points of our resid-

ual plot (Figure 10), further validating that our model assumptions had been met. 

 

Figure 4. Residual versus fitted value plots. (a) LE model and (b) RE model. The residual plots ap-

pear to be evenly distributed, with no particular patterns emerging; this suggests the models are 

generally good fits to the data. 
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Figure 5. Normal probability plot of residuals. (a) LE model and (b) RE model. The normal proba-

bility plot of residuals appears to be generally and normally distributed, except for some deviation 

around the tails. 

 

Figure 6. DFBETAS for LE models for all variables. Using the cut-off value of 2/√𝑛, our plot suggests 

that there are several potential influential points (indicated in red). However, using sigtest(),we 

found that the removal of the DFBETAS had no bearing on the model outcomes.  
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Figure 7. DFBETAS for RE models for all variables. Using the cut-off value of 2/√𝑛, the plots sug-

gested that there are several potential influential points (indicated in red). However, using sigtest(), 

we found that the removal of the DFBETAS had no bearing on the model outcomes. 
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Figure 8. Cook’s distance for LE models for all variables. Using the cut-off value of 4/𝑛, the plot 

revealed potential influential points (indicated in red). Statistical tests revealed the impacts were 

not significant. 

 

Figure 9. Cook’s distance for RE models for all variables. Using the cut-off value of 4/𝑛, the plot 

reveals potential influential points (indicated in red), but the tests revealed that there was no signif-

icant impact. 
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Figure 10. Residual versus fitted value plot. (a) LE model and (b) RE model without outliers. It is 

evident that the model assumptions include evenly distributed and randomly spaced plot points. 

3.2.3. Prediction Accuracy 

The forecasting accuracy for the prediction model was evaluated for both the LE and 

RE models (Table 2). Very low ME results were evident in both LE and RE models. Both 

sets of MAD results were quite low, with the LE model having a MAD of 1.70–1.87 and 

the RE model with a MAD value of 1.48–1.55. The RMSE ranged from 3.54 to 3.95 for the 

LE model and from 3.54 to 3.95 for the RE model. 

With respect to the MPE and MAPE, the aim was to identify models which had a 

MAPE of less than 10%. MAPE for the LE model ranged from 5.56 to 6.39%, and for the 

RE model, from 7.02 to 7.41. Both models met the MAPE objective. Both LE and RE model 

MPE results were very low, being −0.02 and −0.03, respectively. 

Finally, for goodness-of-fit, which included both the marginal and conditional 𝑅2, 

both models had values close to 1, suggesting that the models were a good fit to the data. 

Figures 11 and 12 provide a visual demonstration of the proximity between the observed 

and predicted values. The forecasting errors, along with the visual aids, suggest that the 

models, in general, have very good prediction accuracy, and the approach is suitable for 

predicting VA outcomes during anti-VEGF treatment for AMD patients. 



Life 2022, 12, 1926 20 of 30 
 

 

 

Figure 11. Observed versus predicted value for LE model. The plot suggests most observed and 

predicted values are overlapping, suggesting a good prediction technique. 

 

Figure 12. Observed versus predicted value for RE model. The plot shows most observed and pre-

dicted values are overlapping, suggesting a good prediction technique. 

Table 2. Metrics for model performance. 

 ME MAD RMSE MPE MAPE (%) Marginal R2 Conditional R2 

LE Model 

0.016 1.70 3.54 −0.02 5.56 0.80 0.92 

0.004 1.87 3.94 −0.02 6.37 0.80 0.92 

−0.002 1.87 3.95 −0.02 6.39 0.80 0.92 

RE Model 

−0.002 1.48 3.54 −0.03 7.02 0.75 0.95 

0.016 1.53 3.94 −0.03 7.01 0.75 0.95 

−0.005 1.55 3.95 −0.03 7.41 0.75 0.95 

3.3. Relative Variables of Importance 

We computed two sets of RIV analyses: (1) for all nineteen variables that were avail-

able (i.e., clinical variables available to ophthalmologists) and (2) for the ten predictor var-

iables found only in our LE and RE models. We ran analyses across the five imputed da-

tasets produced using Amelia. RIVs were weighted for both the LE (Table 3 for the full 

list of variables; Table 4 for model-only variables) and RE (Table 5 for the full list of vari-

ables; Table 6 for model-only variables), with the outcome set as the follow-up VA scores 

over the course of 24 months. 
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Generally, results across all the imputed datasets were consistently similar. We did, 

however, note a single anomaly in the LE outcomes (Table 3): the IRF in the fifth imputed 

dataset had a 𝑤+ of 0.77 and 𝑤− of 0.23, which contrasted with the previous four imputed 

dataset outcomes. We repeated our analysis for this measure, and the weight scores re-

mained the same. To account for any uncertainties, we averaged the results across all five 

imputed sets for each variable. 

Once averaged, the weights were identified for each eye, and the variables were then 

ranked based on their average weighted scores across both eyes (Table 7 for the full list of 

variables; Table 8 for model-only variables). The top four variables were always classified 

as “Highly Important” and with average 𝑤+ scores of at least 0.9 were: the treated eye, the 

baseline VA of the treated eye, the time (measured in weeks), and the number of injections 

received throughout the 24 months. No variables were classified as “Important”, which 

included weight scores of between ≥0.7 and <0.9. 

For the full list of variables, four variables were identified as “Moderate” based on a 

weighted score of between ≥0.5 and <0.7; these were: age, smoking status, the treatment 

drug, and CMT. It is worth noting that the moderate score for the treatment may purely 

be due to the use of either ranibizumab or bevacizumab in our studies; both anti-VEGFs 

were categorised as having similar treatment profiles. Diabetes and the baseline VA of the 

untreated eye were classified as “Low to Moderate” in importance based on weight scores 

of between ≥0.4 and < 0.5. Finally, variables with the lowest ranks (i.e., 𝑤+ < 0.4) were 

gender, IRF, SRF, haemorrhage, PED, smokerpacks, hypertension, and ethnicity (both ma-

ternal and paternal). 

For the model-only variables, those that were identified as “Moderate” included 

CMT and PED. Those in the “Low to Moderate” categories were the baseline VA of the 

untreated eye, and IRF. Treatment drug and haemorrhage in this instance was noted as 

being “Low.” 

When comparing the rank of variables between the full list of variables available and 

those of our model, we noticed for the most part the rank/order of the variables were 

similar. Minor differences were evident. However, this is unsurprising given that the RIV 

method ranks variables as relative to the presence of other variables. Overall, though, the 

rank/order generally appears to remain the same across the board. 

Table 3. Relative variables of importance across five imputed datasets for treated LE of all variables. 

Variable Weights 
1st Imputed 

Data 

2nd Imputed 

Data 

3rd Imputed 

Data 

4th Imputed 

Data 

5th Imputed 

Data 
Average 

Age 
𝒘+ 0.33 0.32 0.31 0.34 0.35 0.33 

𝒘− 0.67 0.68 0.69 0.66 0.65 0.67 

Baseline VA (LE) 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

Baseline VA (RE) 
𝒘+ 0.42 0.39 0.43 0.42 0.4 0.412 

𝒘− 0.58 0.61 0.57 0.58 0.6 0.588 

CMT 
𝒘+ 0.35 0.27 0.31 0.33 0.31 0.314 

𝒘− 0.65 0.73 0.69 0.67 0.69 0.686 

Diabetes 
𝒘+ 0.71 0.61 0.61 0.73 0.71 0.674 

𝒘− 0.29 0.39 0.39 0.27 0.29 0.326 

Ethnicity (mater-

nal) 

𝒘+ 0.32 0.32 0.34 0.27 0.31 0.312 

𝒘− 0.68 0.68 0.66 0.73 0.69 0.688 

Ethnicity (paternal) 
𝒘+ 0.32 0.31 0.37 0.29 0.29 0.316 

𝒘− 0.68 0.69 0.63 0.71 0.71 0.684 

Gender 
𝒘+ 0.3 0.31 0.38 0.32 0.3 0.322 

𝒘− 0.7 0.69 0.62 0.68 0.7 0.678 

Haemorrhage 𝒘+ 0.29 0.29 0.27 0.27 0.29 0.282 
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𝒘− 0.71 0.71 0.73 0.73 0.71 0.718 

Hypertension 
𝒘+ 0.35 0.32 0.29 0.33 0.33 0.324 

𝒘− 0.65 0.68 0.71 0.67 0.67 0.676 

IRF 
𝒘+ 0.33 0.29 0.34 0.27 0.77 0.4 

𝒘− 0.67 0.71 0.66 0.73 0.23 0.6 

PED 
𝒘+ 0.27 0.5 0.77 0.27 0.38 0.438 

𝒘− 0.73 0.5 0.23 0.73 0.62 0.562 

Smokerpacks 
𝒘+ 0.28 0.3 0.28 0.28 0.3 0.288 

𝒘− 0.72 0.7 0.72 0.72 0.7 0.712 

Smoking status 
𝒘+ 0.49 0.43 0.45 0.39 0.44 0.44 

𝒘− 0.51 0.57 0.55 0.61 0.56 0.56 

SRF 
𝒘+ 0.27 0.34 0.37 0.35 0.31 0.328 

𝒘− 0.73 0.66 0.63 0.65 0.69 0.672 

Time (weeks) 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

Treated eye 
𝒘+ 0.99 0.99 0.99 0.99 0.96 0.984 

𝒘− 0.01 0.01 0.01 0.01 0.04 0.016 

Treatment drug 
𝒘+ 0.27 0.33 0.42 0.27 0.28 0.314 

𝒘− 0.73 0.67 0.58 0.73 0.72 0.686 

Treatment quantity 
𝒘+ 0.91 0.85 0.95 0.88 0.96 0.91 

𝒘− 0.09 0.15 0.05 0.12 0.04 0.09 

CMT: Central macular thickness; IRF: Intra-retinal fluid; PED: Pigment epithelium detachment; SRF: 

Sub-retinal fluid; VEGF: Vascular endothelial growth factors. 

Table 4. RIV across five imputed datasets for LE prediction model only. 

Variable Weights 
1st Imputed 

Dataset 

2nd Imputed 

Dataset 

3rd Imputed 

Dataset 

4th Imputed 

Dataset 

5th Imputed 

Dataset 
Average 

Treated eye 
𝒘+ 1 0.99 0.99 0.99 0.99 0.99 

𝒘− 0 0.01 0.01 0.01 0.01 0.01 

Baseline VA (LE) 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

Time (weeks) 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

Treatment quantity 
𝒘+ 0.91 0.84 0.84 0.84 0.84 0.85 

𝒘− 0.09 0.16 0.16 0.16 0.16 0.15 

Treatment Drug 
𝒘+ 0.3 0.29 0.29 0.29 0.29 0.29 

𝒘− 0.7 0.71 0.71 0.71 0.71 0.71 

IRF 
𝒘+ 0.51 0.54 0.54 0.54 0.54 0.53 

𝒘− 0.49 0.46 0.46 0.46 0.46 0.47 

CMT 
𝒘+ 0.29 0.27 0.27 0.27 0.27 0.27 

𝒘− 0.71 0.73 0.73 0.73 0.73 0.73 

Haemorrhage 
𝒘+ 0.32 0.46 0.46 0.46 0.46 0.43 

𝒘− 0.68 0.54 0.54 0.54 0.54 0.57 

Baseline VA (RE) 
𝒘+ 0.41 0.4 0.4 0.4 0.41 0.40 

𝒘− 0.59 0.6 0.6 0.6 0.59 0.60 

PED 
𝒘+ 0.93 0.65 0.65 0.65 0.65 0.71 

𝒘− 0.07 0.35 0.35 0.35 0.35 0.29 

CMT: Central macular thickness; IRF: Intra-retinal fluid; PED: Pigment epithelium detachment; SRF: 

Sub-retinal fluid; VEGF: Vascular endothelial growth factors. 
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Table 5. Relative variables of importance across five imputed datasets for treated RE for all varia-

bles. 

Variable Weight 
1st Imputed 

Dataset 

2nd Imputed 

Dataset 

3rd Imputed 

Dataset 

4th Imputed 

Dataset 

5th Imputed 

Dataset 
Average 

Age 
𝒘+ 0.87 0.86 0.87 0.78 0.7 0.816 

𝒘− 0.13 0.14 0.13 0.22 0.3 0.184 

Baseline VA (RE) 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

Baseline VA (LE) 
𝒘+ 0.3 0.28 0.28 0.28 0.31 0.29 

𝒘− 0.7 0.72 0.72 0.72 0.69 0.71 

CMT 
𝒘+ 1 1 1 1 0.99 0.998 

𝒘− 0 0 0 0 0.01 0.002 

Diabetes 
𝒘+ 0.26 0.26 0.37 0.28 0.26 0.286 

𝒘− 0.74 0.74 0.63 0.72 0.74 0.714 

Ethnicity (maternal) 
𝒘+ 0.35 0.38 0.39 0.37 0.34 0.366 

𝒘− 0.65 0.62 0.61 0.63 0.66 0.634 

Ethnicity (paternal) 
𝒘+ 0.4 0.45 0.44 0.42 0.42 0.426 

𝒘− 0.6 0.55 0.56 0.58 0.58 0.574 

Gender 
𝒘+ 0.3 0.27 0.3 0.29 0.29 0.29 

𝒘− 0.7 0.73 0.7 0.71 0.71 0.71 

Haemorrhage 
𝒘+ 0.34 0.27 0.34 0.27 0.26 0.296 

𝒘− 0.66 0.73 0.66 0.73 0.74 0.704 

Hypertension 
𝒘+ 0.28 0.29 0.27 0.28 0.27 0.278 

𝒘− 0.72 0.71 0.73 0.72 0.73 0.722 

IRF 
𝒘+ 0.28 0.26 0.27 0.27 0.34 0.284 

𝒘− 0.72 0.74 0.73 0.73 0.66 0.716 

PED 
𝒘+ 0.26 0.3 0.27 0.28 0.48 0.318 

𝒘− 0.74 0.7 0.73 0.72 0.52 0.682 

Smokerpacks 
𝒘+ 0.36 0.45 0.38 0.47 0.53 0.438 

𝒘− 0.64 0.55 0.62 0.53 0.47 0.562 

Smoking status 
𝒘+ 0.74 0.73 0.82 0.49 0.31 0.618 

𝒘− 0.26 0.27 0.18 0.51 0.69 0.382 

SRF 
𝒘+ 0.27 0.26 0.27 0.27 0.36 0.286 

𝒘− 0.73 0.74 0.73 0.73 0.64 0.714 

Time (weeks) 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

Treated eye 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

Treatment drug 
𝒘+ 0.95 1 0.43 0.58 0.98 0.788 

𝒘− 0.05 0 0.57 0.42 0.02 0.212 

Treatment quantity 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

CMT: Central macular thickness; IRF: Intra-retinal fluid; PED: Pigment epithelium detachment; SRF: 

Sub-retinal fluid; VEGF: Vascular endothelial growth factors. 
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Table 6. RIV across five imputed datasets for RE prediction model only. 

Variable Weights 
1st Imputed 

Dataset 

2nd Imputed 

Dataset 

3rd Imputed 

Dataset 

4th Imputed 

Dataset 

5th Imputed 

Dataset 
Average 

Treated eye 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

Baseline VA (LE) 
𝒘+ 0.3 0.27 0.27 0.27 0.27 0.28 

𝒘− 0.7 0.73 0.73 0.73 0.73 0.72 

Time (weeks) 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

Treatment quantity 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

Treatment Drug 
𝒘+ 0.49 0.44 0.44 0.44 0.44 0.45 

𝒘− 0.51 0.56 0.56 0.56 0.56 0.55 

IRF 
𝒘+ 0.29 0.27 0.27 0.27 0.27 0.27 

𝒘− 0.71 0.73 0.73 0.73 0.73 0.73 

CMT 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

Haemorrhage 
𝒘+ 0.29 0.33 0.33 0.33 0.33 0.32 

𝒘− 0.71 0.67 0.67 0.67 0.67 0.68 

Baseline VA (RE) 
𝒘+ 1 1 1 1 1 1 

𝒘− 0 0 0 0 0 0 

PED 
𝒘+ 0.28 0.32 0.32 0.32 0.32 0.31 

𝒘− 0.72 0.68 0.68 0.68 0.68 0.69 

CMT: Central macular thickness; IRF: Intra-retinal fluid; PED: Pigment epithelium detachment; SRF: 

Sub-retinal fluid; VEGF: Vascular endothelial growth factors. 

Table 7. Classification of all 19 variables into groups. 

Variables Level of Importance 

Baseline VA of treated eye Highly Important 

Treated eye Highly Important 

Time (weeks) Highly Important 

Number of injections Highly Important 

Age Moderate 

Smoking Status Moderate 

Treatment drug Moderate 

CMT Moderate 

Baseline VA of untreated eye Low to Moderate 

Diabetes Low to Moderate 

Gender Low 

IRF Low 

SRF Low 

Haemorrhage Low 

PED Low 

Smokerpacks Low 

Hypertension Low 

Ethnicity (maternal) Low 

Ethnicity (paternal) Low 

Level of importance was based on the following criteria: Highly important: 𝑤+ ≥ 0.9; Important: 

𝑤+ ≥ 0.7 and <0.9; Moderate 𝑤+ ≥ 0.5 and <0.7; Low to Moderate: 𝑤+ ≥ 0.4 and <0.5; Low: 𝑤+ <

0.4. 
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Table 8. Rank of all nine variables found in LE and RE models. 

Variables Level of Importance 

Baseline VA of treated eye Highly Important 

Treated eye Highly Important 

Time (weeks) Highly Important 

Number of injections Highly Important 

CMT Moderate 

PED Moderate 

IRF Low to Moderate 

Baseline VA of untreated eye Low to Moderate 

Haemorrhage Low 

Treatment drug Low 

Level of importance was based on the following criteria: Highly important: 𝑤+ ≥ 0.9; Important: 

𝑤+ ≥ 0.7 and <0.9; Moderate 𝑤+ ≥ 0.5 and <0.7; Low to Moderate: 𝑤+ ≥ 0.4 and <0.5; Low: 𝑤+ <

0.4. 

4. Discussion 

Many AMD patients have variable responses to anti-VEGF injections due to medical 

issues, lifestyle, and demographic factors. A machine learning approach was developed 

for the prediction of VA outcomes that accounted for these modifying factors and also 

ranked the predictors in order of importance. The prediction model included age, treated 

baseline VA, the time of treatment, treatment quantity, the treated eye, baseline of the 

untreated eye, treatment drug, CMT, IRF, PED, and haemorrhage. 

The analytic approach combined a mixed-effects (ME) model and RIV methods, to-

gether with the treatment of missing values with the multiple imputation (MI) method 

and various statistical diagnostic tests to confirm the validity of the model assumptions, 

such as the normality of residuals. 

The variables with the highest rankings included the baseline VA of the treated eye, 

the time of treatment, treatment quantity, and the treated eye. Given that these variables 

are important aspects of the anti-VEGF response, their high rankings are unsurprising. 

The presence of variables, such as age, hypertension, and SRF, had a less significant im-

pact on the accuracy of the model predictions of VA. The analytic approach had a number 

of strengths and weaknesses, which are described as follows. 

4.1. Strengths of the Study 

Incorporating mixed-effects modelling as part of a machine learning approach is con-

sistent with the analysis of biological and medical data [31], as it provides flexible and 

powerful statistical tools for controlling stratification, relatedness, and confounding fac-

tors [32–34]. Features that support statistical confidence in the methodology include the 

use of the ME and RIV methods to aid in the assessment of predictor importance and the 

multiple imputation (MI) treatment of missing values. Statistical diagnostics produced 

very good support for the model with respect to the analysis of residuals and outliers, 

using methods such as Q–Q plots and Cook’s distance. 

There were two noteworthy features of the machine learning approach described in 

this investigation. First, the use of time as an explicit variable in the model is often absent 

in other machine learning approaches, especially in classification studies comparing train-

ing data with test data. This means that no assumptions were necessary on the issue of 

non-stationarity in the time-series statistics for function approximation, and there was no 

confounding of the time in either the training or test data, thus reducing error and uncer-

tainty. 

The second feature of note is that the weighting and ranking of predictors, as de-

scribed by the methods in this study, provides information on the relative impact of each 

predictor on visual acuity and, therefore, adds a degree of explainability to the results. In 
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machine learning research, there is currently a strong interest in improving explainability 

in order to reveal the reasoning used in decision-making and to avoid a black-box analysis 

by AI algorithms [38]. In the case of explainable AI research, there is a class of approaches 

commonly referred to as ‘attribution’ methods, which assign to each input feature a score 

representing its contribution to the response function [85,86]. The machine learning 

method in this study is an example of such an attribution approach. 

4.2. Limitations of the Study 

The study also has several limitations. With respect to the collection of clinical data. 

The data were collected retrospectively, and the treatment protocol varied according to a 

clinician’s choice. The cohort was collected early in the history of anti-VEGF treatment, 

and as such, individual clinician treatment protocols may have evolved in more recent 

cases. Similarly, the OCT quality was lower compared to the current advances in spectral 

domain OCT technology. As such, the ability to judge the presence of SRF and IRF scar-

ring was not as accurate as it could have been if the cohort had been collected more re-

cently. Missing data, particularly relating to retinal characteristics identified by OCT, were 

most likely due to poor-quality OCT images. 

To account for the missing data, we created both multiple and separately imputed 

and stacked imputed versions of the original dataset, with the latter being created for 

model validation purposes. The objective of the multiply imputed datasets was to account 

for uncertainty by generating imputed values that not only mimicked the distribution of 

the original data but were also slightly different for each imputed dataset to account for 

any potential uncertainty. Our second limitation was the use of RIV itself. We assessed 

these variables as relative to each other; their values may have changed if they were tested 

against other, stronger predictor variables. 

We believe that the model weights 𝑤𝑖  summed over all the models that included a 

given variable provided a better weight of evidence for the importance of each variable in 

the context of the set models considered. Using the predictor variables that were consid-

ered of interest, the rank of the aforementioned predictors (Tables 5 and 8) provided a 

good indication of the relative importance of the variables considered in determining the 

treatment response. However, with improved imaging technology, new variables, and 

new data, it is feasible that the relative importance of some variables may need updating—

which can be accomplished using the proposed approach. 

5. Conclusions 

This study developed a methodology and prediction model for visual acuity (VA) 

response following anti-VEGF therapy in nAMD patients. The analysis provided an ap-

proach for targeting and prioritising contextual factors that may have an impact on the 

degree of success in the treatment of wet AMD with anti-VEGF treatments. The evaluation 

of visual responses included the assessment of clinical, lifestyle, and demographic factors. 

The approach combined mixed-effects modelling with the relative importance of variables 

(RIV) modelling, together with statistical learning approaches and data processing with 

diagnostic tests. The most important predictors were confirmed as the baseline VA, time 

to treatment, treatment quantity, and the treated eye involved. There were also impacts 

from OCT features, such as CMT, IRF, PED, and the presence of haemorrhage, together 

with lifestyle and demographic factors, such as age and ethnicity. 

There are several noteworthy features of the study. The incorporation of mixed-ef-

fects modelling as part of the machine learning approach is compatible with the analysis 

of biological and medical data. The approach provided powerful statistical tools for con-

trolling stratification, relatedness, and confounding factors. Statistical confidence in the 

methodology is highlighted by the use of mixed-effects modelling and RIV methods for 

the assessment of predictor importance and the multiple imputation (MI) treatment of 

missing values. Statistical diagnostics underpinned the model performance with respect 
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to the analysis of residuals and outliers, using methods such as Q–Q plots and Cook’s 

distance. 

The study provided support for the use of machine learning in personalised medi-

cine. The machine learning approach investigated had some notable attributes. First, the 

use of time as an explicit variable avoids issues of non-stationarity and confounding in 

statistics that may be a problem in classification studies. Second, the approach had a de-

gree of explainability because of its inclusion of attribution analysis. 

The flexibility of the approach allowed for extending the model to investigate other 

potential predictors from personal electronic health records and also updating weights 

with new training data. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/life12111926/s1, Table S1: Description of potential predictor 
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based on multiple imputed datasets; Table S3: Potential predictor variables for LE and RE modelling 

based on stacked imputed dataset. 
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