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Abstract

Actor-critic methods integrating target net-
works have exhibited a stupendous empirical
success in deep reinforcement learning. How-
ever, a theoretical understanding of the use
of target networks in actor-critic methods is
largely missing in the literature. In this pa-
per, we reduce this gap between theory and
practice by proposing the first theoretical anal-
ysis of an online target-based actor-critic al-
gorithm with linear function approximation
in the discounted reward setting. Our algo-
rithm uses three different timescales: one for
the actor and two for the critic. Instead of
using the standard single timescale temporal
difference (TD) learning algorithm as a critic,
we use a two timescales target-based version
of TD learning closely inspired from practical
actor-critic algorithms implementing target
networks. First, we establish asymptotic con-
vergence results for both the critic and the
actor under Markovian sampling. Then, we
provide a finite-time analysis showing the im-
pact of incorporating a target network into
actor-critic methods.

1 INTRODUCTION

Actor-critic algorithms
[Barto et al., 1983, Konda and Borkar, 1999,
Konda and Tsitsiklis, 2003b, Peters and Schaal, 2008,
Bhatnagar et al., 2009] are a class of reinforce-
ment learning (RL) [Sutton and Barto, 2018,
Bertsekas and Tsitsiklis, 1996] methods to find
an optimal policy maximizing the total expected
reward in a stochastic environment modelled by a
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Markov Decision Process (MDP) [Puterman, 2014].
In this type of algorithms, two main processes
interplay: the actor and the critic. The actor updates
a parameterized policy in a direction of performance
improvement whereas the critic estimates the current
policy of the actor by estimating the unknown state-
value function. In turn, the critic estimation is used
to produce the update rule of the actor. Combined
with deep neural networks as function approxima-
tors of the value function, actor-critic algorithms
witnessed a tremendous success in a range of challeng-
ing tasks [Heess et al., 2015, Lillicrap et al., 2016,
Mnih et al., 2016, Fujimoto et al., 2018,
Haarnoja et al., 2018]. Apart from using neural
networks for function approximation (FA), one of the
main features underlying their remarkable empirical
achievements is the use of target networks for the
critic estimation of the value function. Introduced by
the seminal work of Mnih et al. [Mnih et al., 2015] to
stabilize the training process, this target innovation
consists in using two neural networks maintaining two
copies of the estimated value function: A so-called
target network tracking a main network with some
delay computes the target values for the value function
update.

Despite their resounding empirical success in deep RL,
a theoretical understanding of the use of target net-
works in actor-critic methods is largely missing in the
literature. Theoretical contributions investigating the
use of a target network are very recent and limited to
temporal difference (TD) learning for policy evaluation
[Lee and He, 2019] and critic-only methods such as Q-
learning for control [Zhang et al., 2021]. In particular,
these works are not concerned with actor-critic algo-
rithms and leave the question of the finite-time analysis
open.

In the present work, we reduce this gap between theory
and practice by proposing the first theoretical analysis
of an online target-based actor-critic algorithm in the
discounted reward setting. We consider the linear FA
setting where a linear combination of pre-selected fea-
ture (or basis) functions estimates the value function
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in the critic. An analysis of this setting is an insightful
first step before tackling the more challenging nonlinear
FA setting aligned with the use of neural networks. We
conduct our study in the multiple timescales framework.
In the standard two timescales actor-critic algorithms
[Konda and Tsitsiklis, 2003b, Bhatnagar et al., 2009],
at each iteration, the actor and the critic are updated
simultaneously but the critic evolves faster than the
actor which uses smaller stepsizes. We face two main
challenges due to the integration of the target vari-
able mechanism. First, in contrast to standard two
timescales actor-critic algorithms, our algorithm uses
three different timescales: one for the actor and two
for the critic. Instead of using the single timescale TD
learning algorithm as a critic, we use a two timescales
target-based version of TD learning closely inspired
from practical actor-critic algorithms implementing tar-
get networks. Second, incorporating a target variable
into the critic results in the intricate interplay between
three processes evolving on three different timescales.
In particular, the use of a target variable significantly
modifies the dynamics of the actor-critic algorithm and
deserves a careful analysis accordingly.

Our main contributions are summarized as follows.
First, we prove asymptotic convergence results for both
the critic and the actor. More precisely, as the actor
parameter changes slowly compared to the critic one,
we show that the critic using a target variable tracks
a slowly moving target corresponding to a TD-like
solution [Tsitsiklis and Van Roy, 1997]. Our develop-
ment is based on the ordinary differential equation
(ODE) method of stochastic approximation (see, for
e.g., [Benveniste et al., 1990, Borkar, 2008]). Then, we
show that the actor parameter visits infinitely often a
region of the parameter space where the norm of the pol-
icy gradient is dominated by a bias due to linear FA. Sec-
ond, we conduct a finite-time analysis of our actor-critic
algorithm which shows the impact of using a target vari-
able on the convergence rates and the sample complex-
ity. Loosely speaking, up to a FA error, we show that
our target-based algorithm converges in expectation to
an ε-approximate stationary point of the non-concave
performance function using at most O(ε−3 ln3( 1

ε )) sam-
ples compared with O(ε−2 ln( 1

ε )) for the best known
complexity for two timescales actor-critic algorithms
without a target network. All the proofs are deferred
to the appendix.

2 RELATED WORK

In this section, we briefly discuss the most relevant
related works to ours. Existing theoretical results in
the literature can be divided into two classes.

Asymptotic results. Almost sure convergence re-

sults are referred to as asymptotic. Konda & Tsit-
siklis [Konda and Tsitsiklis, 2003b, Konda, 2002] pro-
vided almost sure (with probability one) convergence
results for a two timescales actor-critic algorithm
in which the critic estimates the action-value func-
tion via linear FA. Our algorithm is closer to an
actor-critic algorithm introduced by Bhatnagar et
al. [Bhatnagar et al., 2009] in the average reward set-
ting. However, unlike [Bhatnagar et al., 2009], we in-
tegrate a target variable mechanism into our critic
and consider the discounted reward setting. Moreover,
as previously mentioned, the target variable for the
critic adds an additional timescale in comparison to
[Konda and Tsitsiklis, 2003b, Bhatnagar et al., 2009]
which only involve two different timescales. Re-
garding theoretical results considering target net-
works, Lee & He [Lee and He, 2019] proposed a fam-
ily of single timescale target-based TD learning algo-
rithms for policy evaluation. Our critic corresponds
to a two timescales version of the single timescale
target-based TD learning algorithm of Lee & He
[Lee and He, 2019, Algorithm 2] called Averaging TD.
In [Lee and He, 2019, Th. 1], this single timescale algo-
rithm is shown to converge with probability one (w.p.1)
towards the standard TD solution solving the projected
Bellman equation (see [Tsitsiklis and Van Roy, 1997]
for a precise statement). Besides the timescales dif-
ference with [Lee and He, 2019], in this article, we are
concerned with a control setting in which the policy
changes at each timestep via the actor update. Yang et
al. [Yang et al., 2019] proposed a bilevel optimization
perspective to analyze Q-learning with a target network
and an actor-critic algorithm without any target net-
work. More recently, Zhang et al. [Zhang et al., 2021]
investigated the use of target networks in Q-learning
with linear FA and a target variable with Ridge reg-
ularization. Their analysis covers the average and
discounted reward settings and establishes asymptotic
convergence results for policy evaluation and control.
This recent work [Zhang et al., 2021] focuses on the
critic-only Q-learning method with a target network
update rule, showing the role of the target network in
the off-policy setting. In particular, this work is not
concerned with actor-critic algorithms.

Finite-time analysis. The second type of results
consists in establishing time-dependent bounds
on some error or performance quantities such as
the average expected norm of the gradient of the
performance function. These are referred to as
finite-time analysis. In the last few years, several
works proposed finite-time analysis for TD learning
[Bhandari et al., 2018, Srikant and Ying, 2019] for
two timescales TD methods [Xu et al., 2019] and
even more generally for two timescales linear stochas-
tic approximation algorithms [Gupta et al., 2019,
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Dalal et al., 2018, Kaledin et al., 2020]. These works
opened the way to the recent development of a
flurry of nonasymptotic results for actor-critic
algorithms [Yang et al., 2018, Qiu et al., 2019,
Kumar et al., 2019, Hong et al., 2020,
Xu et al., 2020b, Xu et al., 2020a, Wang et al., 2020,
Wu et al., 2020, Shen et al., 2020]. Regarding on-
line one-step actor-critic algorithms, Wu et al.
[Wu et al., 2020] provided a finite-time analysis
of the standard two timescales actor-critic algo-
rithm [Bhatnagar et al., 2009, Algorithm 1] in the
average reward setting with linear FA. Shen et al.
[Shen et al., 2020] conducted a similar study for a revis-
ited version of the asynchronous advantage actor-critic
(A3C) algorithm in the discounted setting. None of the
mentioned works uses a target network. In this work,
we conduct a finite-time analysis of our target-based
actor-critic algorithm. Such new results are missing in
all theoretical results investigating the use of a target
network [Lee and He, 2019, Zhang et al., 2021].

The summary table 1 compiles some key features of
our work to situate it in the literature and highlights
our contributions with respect to (w.r.t.) the closest
related works. We also mention that alternative update
rules are also possible for actor-critic algorithms. Other
common variants in practice use different policy gra-
dients estimates based directly on the critic estimate
instead of using it for bootstrapping (see for e.g. a
recent discussion in [Wen et al., 2021]). Such a modifi-
cation of the actor would not impact our critic analysis
but would induce a different bias for the policy gradient
estimate (impacting namely Th. 5.4 and Th. 6.2 below).
Our analysis can also be adapted to this setting with a
suitable analysis of the induced bias.

3 PRELIMINARIES

Notation. For every finite set X , we use the nota-
tion P(X ) for the set of probability measures on X .
The cardinality of a finite set Y is denoted by |Y|.
For two sequences of nonnegative reals (xn) and (yn),
the notation xn = O(yn) means that there exists a
constant C independent of n such that xn ≤ Cyn for
all n ∈ N . For any integer p, the euclidean space Rp
is equipped with its usual inner product 〈·, ·〉 and its
corresponding 2-norm ‖ · ‖. For any integer d and any
matrix A ∈ Rd×p, we use the notation ‖A‖ for the
operator norm induced by the euclidean vector norm.
For a symmetric positive semidefinite matrix B ∈ Rp×p
and a vector x ∈ Rp, the notation ‖x‖2B refers to the
quantity 〈x,Bx〉 . The transpose of the vector x is
denoted by xT and Ip is the identity matrix.

3.1 Markov decision process and problem
formulation

Consider the RL setting [Sutton and Barto, 2018,
Bertsekas and Tsitsiklis, 1996, Szepesvári, 2010]
where a learning agent interacts with an environment
modeled as an infinite horizon discrete-time discounted
MDP. We denote by S = {s1, · · · , sn} the finite
set of states and A the finite set of actions. Let
p : S × A → P(S) be the state transition probability
kernel and R : S × A → R the immediate reward
function. A randomized stationary policy, which
we will simply call a policy in the rest of the paper,
is a mapping π : S → P(A) specifying for each
s ∈ S, a ∈ A the probability π(a|s) of selecting
action a in state s. At each time step t ∈ N, the RL
agent in a state St ∈ S executes an action At ∈ A
with probability π(At|St), transitions into a state
St+1 ∈ S with probability p(St+1|St, At) and observes
a random reward Rt+1 ∈ [−UR, UR] where UR is
a positive real. We denote by Pρ,π the probability
distribution of the Markov chain (St, At) issued from
the MDP controlled by the policy π with initial
state distribution ρ. The notation Eρ,π refers to the
associated expectation. We will use Eπ whenever there
is no dependence on ρ. The sequence (Rt) is such that
(s.t.) Eπ[Rt+1|St, At] = R(St, At) . Let γ ∈ (0, 1) be
a discount factor. Given a policy π, the long-term
expected cumulative discounted reward is quantified
by the state-value function Vπ : S → R and the
action-value function Qπ : S × A → R defined for all
s ∈ S, a ∈ A by Vπ(s) := Eπ[

∑∞
t=0 γ

tRt+1|S0 = s]and
Qπ(s, a) := Eπ[

∑∞
t=0 γ

tRt+1|S0 = s,A0 = a] .We
also define the advantage function ∆π : S × A → R
by ∆π(s, a) := Qπ(s, a) − Vπ(s). Given an initial
probability distribution ρ over states for the initial
state S0, the goal of the agent is to find a pol-
icy π maximizing the expected long-term return
J(π) :=

∑
s∈S ρ(s)Vπ(s) . For this purpose, the agent

has only access to realizations of the random variables
St, At and Rt whereas the state transition kernel p
and the reward function R are unknown.

3.2 Policy Gradient framework

From now on, we restrict the policy search to the
set of policies π parameterized by a vector θ ∈ Rd
for some integer d > 0 and optimize the performance
criterion J over this family of parameterized policies
{πθ : θ ∈ Rd}. The policy dependent function J can
also be seen as a function of the parameter θ. We use
the notation J(θ) for J(πθ) by abuse of notation. The
problem that we are concerned with can be written as:
maxθ∈Rd J(θ) .Whenever it exists, define for every θ ∈
Rd the function ψθ : S ×A → Rd for all (s, a) ∈ S ×A
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Table 1: Comparison to closest related works.
Discounted Actor Markovian Target Asymptotic Finite-time Timescales
reward critic sampling1 variable results analysis

[Lillicrap et al., 2016] 3 3 8 3 8 8 1
[Lee and He, 2019] 3 8 8 3 3 32 1
[Wu et al., 2020] 8 3 3 8 8 3 3
[Shen et al., 2020] 3 3 3 8 8 3 2
[Zhang et al., 2021] 3 8 3 3 3 8 2
This paper 3 3 3 3 3 3 3
1 refers to the use of samples generated from the MDP and the acting policy, this excludes experience replay as
in [Lillicrap et al., 2016] and identically independently distributed (i.i.d.) samples used in theoretical analysis.

2 [Lee and He, 2019] provide a finite-time analysis for a target-based TD-learning algorithm (for policy evaluation) based
on the periodic update style of the target variable used in [Mnih et al., 2015] involving two loops. They highlight that
a finite-time analysis of the Polyak-averaging style update rule [Lillicrap et al., 2016] is an open question. Here, we
address this question in the control setting.

by:
ψθ(s, a) := ∇ lnπθ(a|s) ,

where ∇ denotes the gradient w.r.t. θ. We intro-
duce an assumption on the regularity of the parameter-
ized family of policies which is a standard requirement
in policy gradients (see, for eg., [Zhang et al., 2020a,
Assumption 3.1][Konda and Tsitsiklis, 2003b, Assump-
tion 2.1]). In particular, it ensures that ψθ is well
defined .

Assumption 3.1. The following conditions hold true
for every (s, a) ∈ S ×A .

(a) For every θ ∈ Rd, πθ(a|s) > 0 .
(b) The function θ 7→ πθ(a|s) is continuously differen-

tiable and Lπ-Lipschitz continuous.
(c) The function θ 7→ ψθ(s, a) is bounded and Lψ-

Lipschitz.

Assumption 3.1 is satisfied for instance by the Gibbs
(or softmax) policy and the Gaussian policy (see
[Zhang et al., 2020a, Sec. 3] and the references therein
for details). Under Assumption 3.1 , the policy gradient
theorem [Sutton et al., 2000][Konda, 2002, Th. 2.13]
with the state-value function as a baseline provides an
expression for the gradient of the performance metric J
w.r.t. the policy parameter θ given by:

∇J(θ) =
1

1− γ
· E(S̃,Ã)∼µρ,θ [∆πθ (S̃, Ã)ψθ(S̃, Ã)] .

(1)
Here, the couple of random variables (S̃, Ã) follows
the discounted state-action occupancy measure µρ,θ ∈
P(S,A) defined for all (s, a) ∈ S ×A by:

µρ,θ(s, a) := dρ,θ(s)πθ(a|s) (2)

where dρ,θ(s) := (1− γ)

∞∑
t=0

γtPρ,πθ (St = s) (3)

is a probability measure over the state space S known
as the discounted state-occupancy measure. Note that
under Assumption 3.1 , the policy gradient ∇J is Lips-
chitz continuous (see [Zhang et al., 2020a, Lem. 4.2]).

4 TARGET-BASED
ACTOR-CRITIC ALGORITHM

In this section, we gradually present our actor-critic
algorithm.

4.1 Actor update

First, we need an estimate of the policy gradient ∇J(θ)
of Eq. (1) in view of using stochastic gradient ascent to
solve the maximization problem .Given Eq. (1) and
following previous works, we recall how to sample
according to the distribution µρ,θ. As described in
[Konda, 2002, Sec. 2.4], the distribution µρ,θ is the
stationary distribution of a Markov chain (S̃t, Ãt)t∈N
issued from the artificial MDP whose transition kernel
p̃ : S × A → P(S) is defined for every (s, a) ∈ S × A
by

p̃(·|s, a) := γ p(·|s, a) + (1− γ) ρ(·) , (4)

and which is controlled by the policy πθ generating
the action sequence (Ãt) . We will later state condi-
tions to ensure its existence and uniqueness. There-
fore, under suitable conditions, the distribution of the
Markov chain (S̃t, Ãt)t∈N will converge geometrically
towards its stationary distribution µρ,θ. This justifies
the following sampling procedure. Given a state S̃t
and an action Ãt, we sample a state S̃t+1 according to
this artificial MDP by sampling from p(·|S̃t, Ãt) with
probability γ and from ρ otherwise. For this purpose,
at each time step t, we draw a Bernoulli random vari-
able Bt ∈ {0, 1} with parameter γ which is independent
of all the past random variables generated until time t.
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Then, using the definition of the advantage function,
Eq. (1) becomes:

∇J(θ) =
1

1− γ
·E[(R(S̃, Ã)+γVπθ (S)−Vπθ (S̃))ψθ(S̃, Ã)] ,

(5)
where (S̃, Ã) ∼ µρ,θ and S ∼ p(·|S̃, Ã) . From this
equation, it is natural to define for every V ∈ Rn the
temporal difference (TD) error

δVt+1 = Rt+1 + γ V (St+1)− V (S̃t) , (6)

where St+1 is drawn from the distribution p(·|S̃t, Ãt)
and (S̃t, Ãt)t∈N is the Markov chain induced by the
artificial MDP described in Eq. (4) and controlled by
the policy πθ. Notice here from Eq. 5 that we need two
different sequences (St) and (S̃t) respectively sampled
from the kernels p and p̃. In our discounted reward
setting, using only the sequence (S̃t) issued from the
artificial kernel p̃ would result in a bias with a sampling
error of the order 1−γ (see [Shen et al., 2020, Eq. (14)
and Lem. 7]).

Supposing for now that the value function Vπθ is known,
it stems from Eq. (5) that a natural estimator of the
gradient ∇J(θ) is δVπθt+1ψθ(S̃t, Ãt)/(1 − γ). This esti-
mator is only biased because the distribution of our
sampled Markov chain (S̃t, Ãt)t is not exactly µρ,θ
but converges geometrically to this one. However, the
state-value function Vπθ is unknown. Given an esti-
mate Vωt ∈ Rn of Vπθt and a positive stepsize αt, the
actor updates its parameter as follows:

θt+1 = θt + αt
1

1− γ
δ
Vωt
t+1ψθt(S̃t, Ãt) . (7)

4.2 Critic update

The state-value function Vπθ is approximated for ev-
ery state s ∈ S by a linear function of carefully cho-
sen feature vectors as follows: Vπθ(s) ≈ Vω(s) =
ωTφ(s) =

∑m
i=1 ωiφ

i(s) ,where ω = (ω1, · · · , ωm)T ∈
Rm for some integer m � n = |S| and φ(s) =
(φ1(s), · · · , φm(s))T is the feature vector of the
state s ∈ S. We compactly represent the feature vec-
tors as a matrix of features Φ of size n × m whose
ith row corresponds to the row vector φ(s)T for some
s ∈ S .

Now, before completing the presentation of our
algorithm, we motivate the use of a target variable
for the critic. As previously mentioned, instead of a
standard TD learning algorithm [Sutton, 1988] for the
critic, we use a target-based TD learning algorithm.
We follow a similar exposition to [Lee and He, 2019,
Secs. 2.3, 2.4 and 3] to introduce the target variable
for the critic. Let us introduce some additional
notations for this purpose. Fix θ ∈ Rd. Let Pθ

be the transition matrix over the finite state space
associated to the Markov chain (St), i.e., the ma-
trix of size n × n defined for every s, s′ ∈ S by
Pθ(s

′|s) :=
∑
a∈A p(s

′|s, a)πθ(a|s) .Consider the vector
Rθ = (Rθ(s1), · · ·Rθ(sn)) whose ith coordinate is pro-
vided by Rθ(si) =

∑
a∈A πθ(a|si)R(si, a) . Let Dρ,θ be

the diagonal matrix with elements dρ,θ(si), i = 1, · · ·n
along its diagonal. Define also the Bellman operator
Tθ : Rn 7→ Rn for every V ∈ Rn by TθV := Rθ+γPθV .
The true value function Vπθ satisfies the celebrated
Bellman equation Vπθ = TθVπθ . This naturally
leads to minimize the mean-square Bellman error
(MSBE) [Sutton et al., 2009, Sec. 3] defined for
every ω ∈ Rm by Eθ(ω) := 1

2‖TθVω − Vω‖
2
Dρ,θ

where
Vω = Φω . The gradient of the MSBE w.r.t. ω can
be written as ∇ωEθ(ω) = ES̃∼dρ,θ [(TθVω(S̃) −
Vω(S̃))(ES∼Pθ(·|S̃)[γ∇ωVω(S)] − ∇ωVω(S̃))] .
As explained in [Bertsekas and Tsitsiklis, 1996,
p. 369], omitting the gradient term ∇ωTθVω(S̃) =
ES∼Pθ(·|S̃)[γ∇ωVω(S)] in ∇ωEθ(ω) yields the standard
TD learning update rule ωt+1 = ωt + δt+1φ(S̃t).
The TD learning update does not coincide with a
stochastic gradient descent on the MSBE or even
any other objective function (see [Barnard, 1993,
Appendix 1] for a proof). The idea of target-based
TD learning is to consider a modified version of the
MSBE Ẽθ(ω, ω̄) := 1

2‖TθVω̄ − Vω‖
2
Dρ,θ

. Observe that
the term TθVω depending on ω in the MSBE is now
freezed in Ẽθ(ω, ω̄) thanks to the target variable ω̄ .
We now need to introduce a new sequence ω̄t to define
a sample-based version of TθVω̄ − Vω which will be a
modified version of the standard TD-error

δ̄t+1 = Rt+1 + γφ(St+1)T ω̄t − φ(S̃t)
Tωt . (8)

Then, a stochastic gradient descent on Ẽ w.r.t. ω yields
the critic update

ωt+1 = ωt + βtδ̄t+1φ(S̃t) . (9)

The target variable sequence ω̄t needs to be a slowed
down version of the critic parameter ωt. For this pur-
pose, instead of using a periodical synchronization of
the target variable ω̄t with ωt through a copy as in
DQN, we use the Polyak-averaging update rule pro-
posed by [Lillicrap et al., 2016]

ω̄t+1 = ω̄t + ξt(ωt+1 − ω̄t) , (10)

where ξt is a positive stepsize chosen s.t. the se-
quence (ω̄t) evolves on a slower timescale than the
sequence (ωt) to track it. The update rules of the actor
and the critic collected together from Eqs. (6) to (9)
give rise to Algorithm 1. We will use the shorthand
notation δt+1 := δ

Vωt
t+1 from now on.

Remark 1. We can simplify Algorithm 1 by using only
the target-based TD error δ̄t+1 instead of maintaining
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Algorithm 1 Target-based actor-critic.
Initialization: θ0 ∈ Rd, ω0 ∈ Rm .
for t = 0, 1, 2, · · · , T − 1 do

Ãt ∼ πθt(·|S̃t); St+1 ∼ p(·|S̃t, Ãt)
δt+1 = Rt+1 + γ φ(St+1)Tωt − φ(S̃t)

Tωt
. classical TD error

δ̄t+1 = Rt+1 + γ φ(St+1)T ω̄t − φ(S̃t)
Tωt

. target-based TD error
θt+1 = θt + αt

1
1−γ δt+1ψθt(S̃t, Ãt) . actor

ωt+1 = ωt + βtδ̄t+1φ(S̃t) . critic
ω̄t+1 = ω̄t + ξt(ωt+1 − ω̄t) . target variable
Sρt+1 ∼ ρ ; Bt+1 ∼ B(γ)

S̃t+1 = Bt+1St+1 + (1−Bt+1)Sρt+1

end for
Output: Policy and value function parameters θT
and ωT .

both TD errors δ̄t+1 and δt+1. The proofs can be easily
adapted, note for this that (ω̄t) and (ωt) track the same
target ω̄∗(θt) (see Prop. 5.2, Th. 5.3). For clarity of
exposition, we present the algorithm with both TD
errors, since the classical TD error stems directly from
the policy gradient whereas the target-based TD error
comes from the use of the target network.

5 CONVERGENCE ANALYSIS

In this section, we provide asymptotic convergence
guarantees for the critic and the actor of Algorithm 1
successively . For every θ ∈ Rd, let K̃θ ∈ R|S||A|×|S||A|
be the transition matrix over the state-action pairs de-
fined for every (s, a), (s′, a′) ∈ S×A by K̃θ(s

′, a′|s, a) =
p̃(s′|s, a)πθ(a

′|s′) . Let K := {K̃θ : θ ∈ Rd} and
let K̄ be its closure. Every element of K̄ defines a
Markov chain on the state-action space. We make
the following assumption (see also [Zhang et al., 2021,
Marbach and Tsitsiklis, 2001]).

Assumption 5.1. For everyK ∈ K̄, the Markov chain
induced by K is ergodic.

In particular, it ensures the existence of a unique invari-
ant distribution µρ,θ for the kernel K̃θ for every θ ∈ Rd.
Note that we can replace p̃ by p in Assumption 5.1 .

Algorithm 1 involves three different timescales. The
actor parameter θt is updated on a slower timescale
(i.e., with smaller stepsizes) than the target variable ω̄t
which itself uses smaller stepsizes than the main critic
parameter ωt. This is guaranteed by a specific choice of
the three stepsize schedules. The following assumption
is a three timescales version of the standard assump-
tion used for two timescales stochastic approximation
[Borkar, 2008, Chap. 6] and plays a pivotal role in our
analysis.

Assumption 5.2 (stepsizes). The sequences of posi-
tive stepsizes (αt), (βt) and (ξt) satisfy:

(a)
∑
t αt =

∑
t βt =

∑
t ξt = +∞ ,

(b)
∑
t(α

2
t + β2

t + ξ2
t ) <∞ ,

(c) limt→∞ αt/ξt = limt→∞ ξt/βt = 0 .

We also need the following stability assumption.

Assumption 5.3. supt(‖ωt‖+ ‖θt‖) < +∞ w.p.1 .

The almost sure boundedness assump-
tion is classical [Konda and Borkar, 1999,
Borkar, 2008, Bhatnagar et al., 2009,
Karmakar and Bhatnagar, 2018]. The stability
question could be addressed in a look up table repre-
sentation setting (for e.g., m = n). Nevertheless, this
question seems out of reach in the FA setting without
any modification of the algorithm. Indeed, as discussed
in [Bhatnagar et al., 2009, p. 2478-2479], FA makes it
hard to find a Lyapunov function to apply the stochastic
Lyapunov function method [Kushner and Yin, 2003]
whereas the function J can be readily used in the
tabular case. Under a modification of the actor
update of the algorithm and slightly stronger as-
sumptions inspired from [Konda and Tsitsiklis, 2003a,
Konda and Tsitsiklis, 2003b], the almost sure bound-
edness of the sequence (ωt) can be relaxed using a
generalization to three timescales of the rescaling
technique of [Borkar and Meyn, 2000] which was ex-
tended by [Lakshminarayanan and Bhatnagar, 2017]
to two timescales stochastic approximation in the
case of i.i.d. samples. For simplicity of exposition,
we defer the technical details regarding this question
to the appendix (see Appendix C). Concerning
the sequence (θt), as previously mentioned, it
seems out of reach without modifying the algo-
rithm, [Lakshminarayanan and Bhatnagar, 2017] (see
their Section 6) propose for example to regularize
the objective function J by adding a quadratic
penalty ε ‖θ‖2/2 (ε positive) leading to an addi-
tional ε θt term in the actor update of the standard
actor-critic algorithm 1 of [Bhatnagar et al., 2009].
We do not make use of this trick which modifies the
critical points of the performance function. It is
also worth mentioning that several works enforce the
boundedness via a projection of the iterates on some
compact set [Bhandari et al., 2018, Wu et al., 2020,
Shen et al., 2020, Zhang et al., 2021]. The drawback
of this procedure is that it modifies the dynamics of
the iterates and could possibly introduce spurious
equilibria.

First, we will analyze the critic before investigating the
convergence properties of the actor.
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5.1 Critic analysis

The following assumption regarding the family
of basis functions is a standard requirement
[Bhatnagar et al., 2009, Konda and Tsitsiklis, 2003b,
Tsitsiklis and Van Roy, 1997].

Assumption 5.4 (critic features). The matrix Φ has
full column rank.

We follow the strategy of [Borkar, 2008, Chap. 6,
Lem. 1] for the analysis of multi-timescale stochas-
tic approximation schemes based on the ODE method.
We start by analyzing the sequence (ωt) evolving on the
fastest timescale, i.e., with the slowly vanishing step-
sizes βt (see Assumption 5.2). The main idea behind
the proofs is that θt, ω̄t can be considered as quasi-
static in this timescale. Then, loosely speaking (see
Appendix for a rigorous statement and proof), we can
show from its update rule Eq. (9) that (ωt) is associated
to the ODE

ω̇(s) = h̄(θ(s), ω̄(s))− Ḡ(θ(s))ω(s) ,

θ̇(s) = 0 ,

˙̄ω(s) = 0 ,

(ODE-ω)

where h̄ : Rd × Rm → Rm and Ḡ : Rd → Rm×m are
defined for every θ ∈ Rd, ω̄ ∈ Rm by

h̄(θ, ω̄) := ΦTDρ,θ(Rθ+γPθΦ ω̄) and Ḡ(θ) := ΦTDρ,θΦ .
(11)

Recall that the matrices Dρ,θ, Pθ and the vector Rθ are
defined in Sec. 4.2.

Remark 2. Under Assumptions 5.1 and 5.4 , the ma-
trix −Ḡ(θ) is Hurwitz for every θ ∈ Rd , i.e., all its
eigenvalues have negative real parts. In particular, it
is invertible.

The matrix −Ḡ(θ) being Hurwitz, it follows
from (ODE-ω) that ωt tracks a slowly moving target
ω∗(θt, ω̄t) governed by the slower iterates θt and ω̄t.
The detailed proof in the appendix makes use of a re-
sult from [Karmakar and Bhatnagar, 2018] to handle
the Markovian noise.

Proposition 5.1. Under Assumptions 3.1 and 5.1
to 5.4 , the linear equation Ḡ(θ)ω = h̄(θ, ω̄) has a
unique solution ω∗(θ, ω̄) for every θ ∈ Rd, ω̄ ∈ Rm and
limt ‖ωt − ω∗(θt, ω̄t)‖ = 0 w.p.1.

In a second step, we analyze the target variable se-
quence (ω̄t) which is evolving on a faster timescale than
the sequence (θt) and slower than the sequence (ωt).
At the timescale ξt, everything happens as if the quan-
tity ωt in Eq. (10) could be replaced by ω∗(θt, ω̄t)
thanks to Prop. 5.1. Thus, in a sense that is made
precise in the appendix, we can show from Eq. (10)

that (ω̄t) is related to the ODE{
˙̄ω(s) = Ḡ(θ(s))−1(h(θ(s))−G(θ(s))ω̄(s)) ,

θ̇(s) = 0 ,

(ODE-ω̄)
where h : Rd → Rn and G : Rd → Rm×m are defined
for every θ ∈ Rd by

h(θ) := ΦTDρ,θRθ and G(θ) := ΦTDρ,θ(In−γPθ)Φ .
(12)

We show in the appendix that the matrix
−G(θ) is Hurwitz. This result differs from
[Bertsekas and Tsitsiklis, 1996, Lem. 6.6. p.300] or
[Tsitsiklis and Van Roy, 1997, Lem. 9] because the ma-
trix Dρ,θ corresponds to the stationary distribution
associated to the artificial kernel p̃ and the policy πθ
in lieu of the original transition kernel p. Then, we
prove that −Ḡ(θ)−1G(θ) is also stable, which suggests
from (ODE-ω̄) that ω̄t tracks an other slowly moving
target ω̄∗(θt). This is established in the next proposi-
tion.

Proposition 5.2. Under Assumptions 3.1 and 5.1
to 5.4 , for every θ ∈ Rd, the linear equation G(θ)ω̄ =
h(θ) has a unique solution ω̄∗(θ) and limt ‖ω̄t −
ω̄∗(θt)‖ = 0 w.p.1 . Moreover, for every θ ∈ Rd,
Φ ω̄∗(θ) is a fixed point of the projected Bellman op-
erator, i.e., ΠθTθ(Φ ω̄∗(θ)) = Φ ω̄∗(θ), where Πθ =
Φ(ΦTDρ,θΦ)−1ΦTDρ,θ is the projection matrix on the
space {Φω : ω ∈ Rm} of all vectors of the form Φω
for ω ∈ Rm w.r.t. the norm ‖ · ‖Dρ,θ .

Combining the results from Props. 5.1 and 5.2 , we
prove that ωt tracks the same target ω̄∗(θt).

Theorem 5.3. Let Assumptions 3.1, and 5.1 to 5.4
hold true . Then, we have

lim
t
‖ωt − ω̄∗(θt)‖ = 0 w.p.1 .

Moreover, this limit implies the following:
limt ‖ΠθtTθt(Φωt)− Φωt‖ = 0 w.p.1 .

Remark 3. When the actor parameter θt is fixed
(i.e., we are back to a policy evaluation prob-
lem), the second part of the above convergence
result coincides with the widely known interpre-
tation of the limit of the TD learning algorithm
provided in [Tsitsiklis and Van Roy, 1997] (see also
[Bertsekas and Tsitsiklis, 1996, p. 303-304]).

5.2 Actor analysis

Theorem 5.4. Let Assumptions 3.1 and 5.1 to 5.4
hold true. Then, w.p.1

lim inf
t

(‖∇J(θt)‖ − ‖b(θt)‖) ≤ 0 ,
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where for every θ ∈ Rd, (s, a) ∈ S × A ,
b(θ) := 1

1−γEµρ,θ [ψθ(S̃, Ã)(Q̂θ(S̃, Ã)−Qπθ (S̃, Ã))] and
Q̂θ(s, a) := R(s, a) + γ

∑
s′∈S p(s

′|s, a)φ(s′)T ω̄∗(θ) .

Th. 5.4 is analog to [Konda, 2002, Th. 5.5] which is
established for the standard on-policy actor-critic in the
average reward setting and [Zhang et al., 2020b, Th. 3]
for an off-policy actor-critic without any target network.
The result states that the sequence (θt) generated by
our actor-critic algorithm visits any neighborhood of
the set {θ ∈ Rd : ‖∇J(θ)‖ ≤ ‖b(θ)‖} infinitely often.
The bias b(θ) corresponds to the difference between the
gradient ∇J(θ) and the steady state expectation of the
actor’s update direction. The estimate used to update
the actor in Eq. (7) is only a biased estimate of ∇J(θ)
because of linear FA.
Remark 4. The bias b(θ) disappears in the tabu-
lar setting (m = |S| and the features spanning R|S|)
when we do not use FA and in the linear FA set-
ting when the value function belongs to the class
of linear functions spanned by the pre-selected fea-
ture (or basis) functions. Beyond these particular set-
tings, considering compatible features as introduced in
[Sutton et al., 2000, Konda and Tsitsiklis, 2003b] can
be a solution to cancel the bias b(θ) incurred by Algo-
rithm 1. We do not investigate this direction in this
work.

6 FINITE-TIME ANALYSIS

Our analysis in this section should be valid for a contin-
uous state space S (and still finite action space) upon
supposing that the feature map φ defined in Section 4.2
has bounded norm (i.e., ‖φ(·)‖ ≤ 1) and slightly adapt-
ing our notations and definitions to this more general
setting (see also for e.g., [Wu et al., 2020]). To stay
concise and consistent with the first part of our analysis
in Section 5, we restrict ourselves to the finite state
space setting.

6.1 Critic analysis

For every θ ∈ Rd, we suppose that the Markov
chain (S̃t) induced by the policy πθ and the transi-
tion kernel p̃ mixes at a geometric rate.
Assumption 6.1. There exist constants c > 0 and
σ ∈ (0, 1) s.t. for every t ∈ N, θ ∈ Rd,

sup
s∈S

dTV (P(S̃t ∈ ·|S̃0 = s, πθ), dρ,θ) ≤ cσt ,

where dTV (·, ·) denotes the total-variation distance be-
tween two probability measures.

This assumption is used to control the Markovian noise
induced by sampling transitions from the MDP under

a dynamically changing policy. It was considered first
in [Bhandari et al., 2018] in a policy evaluation setting
for the finite-time analysis of TD learning. It was later
used for instance in [Zou et al., 2019, Wu et al., 2020,
Shen et al., 2020].

We have seen in Sec. 5.1 that the dynamics of the critic
is driven by two key matrices −Ḡ(θ) and −Ḡ(θ)−1G(θ).
While we only need these matrices to be stable for our
asymptotic results, we actually show in the appendix
that −Ḡ(θ) is even negative definite uniformly in θ.
We suppose that the second matrix −Ḡ(θ)−1G(θ) is
also negative definite uniformly in θ.

Assumption 6.2. There exists ζ > 0 s.t. for every θ ∈
Rd, ω ∈ Rm, ωT Ḡ(θ)−1G(θ)ω ≥ ζ‖ω‖2 .

We are now ready to state our critic convergence rate.

Theorem 6.1. Let Assumptions 3.1, 5.1 and 5.3 to 6.2
hold. Let c1, c2, c3, α, ξ, β be positive constants s.t.
0 < β < ξ < α < 1 . Set αt = c1

(1+t)α , ξt = c2
(1+t)ξ

and
βt = c3

(1+t)β
. Then, the sequences (ωt) and (θt) from

Algorithm 1 satisfy for every integer T ≥ 1 ,

1

T

T∑
t=1

E[‖ωt − ω̄∗(θt)‖2] = O
(

1

T 1−ξ

)
+O

(
lnT

T β

)
+O

(
1

T 2(α−ξ)

)
+O

(
1

T 2(ξ−β)

)
.

The bound of Th. 6.1 shows the impact of using a
target variable. First, the last two terms impose the
conditions α > ξ and ξ > β. At least with linear
FA, this may provide a theoretical justification to the
common practice of updating the target network at a
slower rate compared to the main network for the critic.
Second, compared to [Wu et al., 2020, Th. 4.7] which is
concerned with the standard actor-critic in the average
reward setting, we have the slower O(T ξ−1) instead
of O(T β−1) and our bound comprises four error terms.
These are also consequences of the use of a target
variable.

Remark 5. Although we use similar proof techniques
to [Wu et al., 2020] for our finite-time analysis, notice
that our novel asymptotic analysis of the critic (Sec. 5.1)
is crucial for the proof (see Sec. B.1 for details).

6.2 Actor analysis

We suppose that the critic approximation er-
ror induced by linear FA is uniformly bounded
(see also [Qiu et al., 2019, Wu et al., 2020,
Xu et al., 2020a]).

Assumption 6.3. There exists εFA ≥ 0 s.t. for ev-
ery θ ∈ Rd, ‖Vπθ − Φ ω̄∗(θ)‖Dρ,θ ≤ εFA .
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Observe that εFA = 0 if the true value function Vπθ
belongs to the linear function space spanned by the
feature functions for every θ ∈ Rd.
Theorem 6.2. Let Assumptions 3.1 , 5.1 , 5.3 to 6.1
and 6.3 hold. Let c1, c2, c3, α, ξ, β be positive constants
s.t. 0 < β < ξ < α < 1 . Set αt = c1

(1+t)α , ξt = c2
(1+t)ξ

and βt = c3
(1+t)β

. Then, for every integer T ≥ 1 ,

1

T

T∑
t=1

E[‖∇J(θt)‖2] = O
(

1

T 1−α

)
+O

(
ln2 T

Tα

)

+O

(
1

T

T∑
t=1

E[‖ωt − ω̄∗(θt)‖2]

)
+O (εFA) .

Combining Th. 6.1 and Th. 6.2, we obtain the following
result.
Corollary 6.3. Under the setting and the assumptions
of Ths. 6.1 and 6.2 , we have for every T ≥ 1 ,

1

T

T∑
t=1

E[‖∇J(θt)‖2] = O
(

1

T 1−α

)
+O

(
lnT

T β

)
+O

(
1

T 2(α−ξ)

)
+O

(
1

T 2(ξ−β)

)
+O (εFA) .

Moreover, if we set α = 2
3 , ξ = 1

2 and β = 1
3 to define

the stepsizes (αt), (ξt) and (βt), the actor parameter
sequence (θt) generated by Algorithm 1 within T =
O(ε−3 ln3( 1

ε )) steps, satisfies

min
0≤t≤T

E[‖∇J(θt)‖2] ≤ O(εFA) + ε .

As a consequence, since Algorithm 1 uses a single sam-
ple from the MDP per iteration, its sample complexity
is O(ε−3 ln3( 1

ε )) . This is to compare with the best
O(ε−2 ln( 1

ε )) sample complexity known in the litera-
ture (to the best of our knowledge) for actor-critic
algorithms up to the linear FA error [Xu et al., 2020a,
Th. 2]. Although the use of a target variable seems
to deteriorate the sample complexity w.r.t. the best
known result for target-free actor-critic methods, note
that it is still aligned with the complexity reported
in [Qiu et al., 2019] (up to logarithmic factors) and
better than the O(ε−4) sample complexity obtained
in [Kumar et al., 2019] with i.i.d. sampling. Notice
that we do not make use of mini-batching of sam-
ples (even from a single sample path) or nested loops
as in [Xu et al., 2020a]. We refer to [Wu et al., 2020,
Section 4.4] and [Xu et al., 2020a, Table 1] for fur-
ther discussion. We briefly comment on the origin
of this deteriorated sample complexity stemming from
our finite-time bounds. Due to the use of a target
variable, instead of the O(T 2(α−β)) error term of the
standard actor-critic (see [Wu et al., 2020, Cor. 4.9] or

[Shen et al., 2020, Ths.3-4]), we have two error terms
O(T 2(α−ξ)) and O(T 2(ξ−β)) slowing down the conver-
gence because of the condition β < ξ < α. Interestingly,
at least in the linear FA setting, this corroborates the
practical intuition that the use of a target network
may slow down learning as formulated for instance
in [Lillicrap et al., 2016, Section 3] (even if constant
stepsizes are used in practice).
Remark 6. Remark 4 also applies to the function
approximation error εFA.

7 CONCLUSION AND FUTURE
WORK

This paper provides the first convergence analysis of an
actor-critic algorithm incorporating a target network,
establishing both asymptotic and finite-time results
under Markovian sampling. Motivated by the success
of actor-critic methods using target networks in deep
RL, our analysis shows that this target network mech-
anism is theoretically sound in the linear FA setting.
Although our analysis does not demonstrate a partic-
ular advantage of target-based actor-critic methods
over non-target based counterpart in the linear FA set-
ting, our results pave the road for the nonlinear FA
setting. There are several interesting directions for
future research. A theoretical justification of the use
of a target network in the nonlinear FA setting beyond
linear FA is a challenging problem that merit further
investigation. In particular, as practical algorithms
in deep RL seem to indicate, it would be interesting
to see if such a trick can be a theoretically grounded
alternative to the failure of temporal difference learning
with nonlinear FA. Another possible avenue for future
work to close the gap between theory and practice is to
address the case of off-policy target-based actor-critic
algorithms which have enjoyed great empirical success
[Fujimoto et al., 2018, Haarnoja et al., 2018].
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Supplementary Material:
Analysis of a Target-Based Actor-Critic Algorithm

with Linear Function Approximation

A Proofs for Sec. 5: asymptotic convergence results

A.1 Critic analysis

The objective of this section is to prove Th. 5.3. First, we recall the outline of the proof. Our actor-critic algorithm
features three different timescales associated to three different stepsizes converging to zero with different rates,
each one associated to one of the sequences (θt), (ω̄t) and (ωt). In spirit, we follow the strategy of [Borkar, 2008,
Chap. 6, Lem. 1] for the analysis of two timescales stochastic approximation schemes. We make use of the results
of [Karmakar and Bhatnagar, 2018] which handles controlled Markov noise. The proof is divided into three main
steps:

(i) We start by analyzing the sequence (ωt) evolving on the fastest timescale, i.e., with the stepsizes βt which
are converging the slowest to zero (see Assumption 5.2). We rewrite the slower sequences (θt), (ω̄t) with
the stepsizes βt. In this timescale, (θt), (ω̄t) are quasi-static from the point of view of the evolution of the
sequence (ωt). We deduce from this first step that ωt tracks a slowly moving target ω∗(θt, ω̄t) governed by
the slower iterates θt and ω̄t. This is the purpose of Prop. 5.1 which is proved in Sec. A.1.1 below.

(ii) In a second step, we analyze the sequence (ω̄t) which is evolving in a faster timescale than the sequence (θt)
and slower than the sequence (ωt). Similarly, we show that ω̄t tracks an other slowly moving target ω̄∗(θt).
This is established in the proof of Prop. 5.2 in Sec. A.1.2.

(iii) We conclude in Sec.A.1.3 by combining the results from the first two steps, proving that the sequence ωt
tracks the same target ω̄∗(θt).

A.1.1 Proof of Prop. 5.1

Let Ft be the σ-field generated by the random variables Sl, S̃l, Ãl, θl, ω̄l, ωl for l ≤ t. For each time step t, let
Zt = (S̃t, Ãt). Our objective here is to show that the critic sequence (ωt) tracks the slowly moving target ω∗(θt, ω̄t)
defined in Prop. 5.1. From the update rule of the sequence (ωt), we have

ωt+1 = ωt + βtδ̄t+1φ(S̃t)

= ωt + βt(Rt+1 + γφ(St+1)T ω̄t − φ(S̃t)
Tωt)φ(S̃t)

= ωt + βtw(ω̄t, ωt, Zt) + βtη
(1)
t+1 , (13)

where for every ω̄, ω ∈ Rm, z = (s, a) ∈ S ×A,

w(ω̄, ω, z) :=

(
R(s, a) + γ

∑
s′∈S

p(s′|s, a)φ(s′)T ω̄

)
φ(s)− φ(s)φ(s)Tω (14)

and η(1)
t+1 is a martingale difference sequence defined as

η
(1)
t+1 = (Rt+1 −R(S̃t, Ãt))φ(S̃t) + γω̄Tt (φ(St+1)− E[φ(St+1)|Ft])φ(S̃t) . (15)

As can be seen in Eq. (13), the sequence (ωt) can be written as a linear stochastic approximation scheme controlled
by the slowly varying Markov chains (θt) and (ω̄t). In view of characterizing its asymptotic behavior, we compute
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for fixed ω̄, ω ∈ Rm the expectation of the quantity w(ω̄, ω, Z) (see Eq. (14)) where Z = (S̃, Ã) is a random
variable (on S ×A) following the stationary distribution µρ,θ (see Eq. (2)) of the Markov chain (Zt). Recall the
definitions of h̄ : Rd × Rm → Rm and Ḡ : Rd → Rm×m from Eq. (11), for every θ ∈ Rd, ω̄ ∈ Rm

h̄(θ, ω̄) := ΦTDρ,θ(Rθ + γPθΦ ω̄) and Ḡ(θ) := ΦTDρ,θΦ .

Lemma A.1. Under Assumption 5.1 , for every ω̄, ω ∈ Rm, we have

EZ∼µρ,θ [w(ω̄, ω, Z)] = h̄(θ, ω̄)− Ḡ(θ)ω .

Proof. We obtain from the definitions of w in Eq. (14) and µρ,θ in Eq. (2) that

EZ∼µρ,θ [w(ω̄, ω, Z)] = EZ∼µρ,θ

[(
R(S̃, Ã) + γ

∑
s′∈S

p(s′|S̃, Ã)φ(s′)T ω̄

)
φ(S̃)− φ(S̃)φ(S̃)Tω

]

=
∑

s∈S,a∈A
µρ,θ(s, a)

(
R(s, a) + γ

∑
s′∈S

p(s′|s, a)φ(s′)T ω̄

)
φ(s)− φ(s)φ(s)Tω

=
∑
s∈S

dρ,θ(s)

(
Rθ(s)φ(s) + γ

∑
s′∈S

pθ(s
′|s)φ(s′)T ω̄φ(s)− φ(s)φ(s)Tω

)
= h̄(θ, ω̄)− Ḡ(θ)ω ,

where the penultimate equation stems from recalling that Rθ(s) =
∑
a∈AR(s, a)πθ(a|s) and pθ(s

′|s) =∑
a∈A p(s

′|s, a)πθ(a|s) for every s ∈ S.

Defining χt = (θt, ω̄t), we obtain from the update rules of (θt) and (ω̄t) that

χt+1 = χt + βtεt , (16)

where εt =
(
αt
βt

1
1−γ δt+1ψθt(Zt),

ξt
βt

(ωt+1 − ω̄t)
)
. Notice that εt → 0 as t→∞. This is because αt

βt
→ 0, ξtβt → 0 by

Assumption 5.2 , (ωt) and (hence) (ω̄t) are a.s. bounded by Assumption 5.3 , (Rt) is bounded by UR, θ 7→ ψθ(s, a)
is bounded by Assumption 3.1 and S,A are finite.

Let ζt = (χt, ωt), ζ = (θ, ω̄, ω) ∈ Rd+2m, W (ζ, z) = (0, w(ω̄, ω, z)), ε′t = (εt, 0) and η̃(1)
t+1 = (0, η

(1)
t+1). Then, we

can write Eqs. (16) and (13) in the framework of [Karmakar and Bhatnagar, 2018, Sec. 3, Eq.(14), Lem. 9], i.e.,
as a single timescale controlled Markov noise stochastic approximation scheme:

ζt+1 = ζt + βt[W (ζt, Zt) + ε′t + η̃
(1)
t+1] , (17)

with ε′t → 0 . Under the assumptions of [Karmakar and Bhatnagar, 2018] that we will verify at the end of the
proof, we obtain that the sequence (ζt) converges to an internally chain transitive set (i.e., a compact invariant
set which has no proper attractor, see definition in [Karmakar and Bhatnagar, 2018, Sec. 2.1] or [Benaim, 1996,
Sec. 1 p. 439]) of the ODE

d

ds
ζ(s) = W̄ (ζ(s)) where W̄ (ζ) = (0, h̄(χ)− Ḡ(θ)ω) ,

i.e., {
d
dsχ(s) = 0 ,
d
dsω(s) = h̄(χ(s))− Ḡ(θ(s))ω(s) .

(18)

As we will show that the second ODE governing ω has a unique asymptotically stable equilibrium ω∗(θ, ω̄) for every
constant function χ(t) = χ = (θ, ω̄), it follows that (χt, ωt) converges a.s. towards the set {(χ, ω∗(χ)) : χ ∈ Rd+m}.
In other words, limt ‖ωt − ω∗(θt, ω̄t)‖ = 0, which is the desired result.

We now conclude the proof by verifying among (A1) to (A7) of [Karmakar and Bhatnagar, 2018] the assumptions
under which [Karmakar and Bhatnagar, 2018, Lemmas 9 and 10] hold.
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(i) (A1): (Zt) takes values in a compact metric space. Note that it is a finite state-action Markov chain controlled
by the sequence (θt).

(ii) (A2): It is easy to see from Eq. (14) that the drift function w is Lipschitz continuous w.r.t. the variables
ω̄, ω uniformly w.r.t. the last variable z because p is a probability kernel and the set of states S is finite.

(iii) (A3): (η̃
(1)
t+1) is a martingale difference sequence w.r.t. the filtration (Ft) . Moreover, since (Rt) is bounded,

there exists K > 0 s.t. E[‖η̃(1)
n+1‖2|Ft] ≤ K(1 + ‖ωt‖2 + ‖ω̄t‖2).

(iv) (A4): The stepsizes (βt) satisfy
∑
t βt = +∞ and

∑
t β

2
t <∞ as formulated in Assumption 5.2.

(v) (A5): The transition kernel associated to the controlled Markov process (Zt) is continuous w.r.t. the variables
z ∈ S × A, χ ∈ Rd+m, ω ∈ Rm. Continuity (w.r.t. to the metric of the weak convergence of probability
measures) is a consequence of the fact that we have a finite-state MDP.

(vi) (A6’): We first note that the inverse of the matrix Ḡ(θ) exists thanks to Assumptions 5.1 and 5.4 . For
all χ = (θ, ω̄) ∈ Rd+m, we now show that the ODE d

dsω(s) = h̄(χ) − Ḡ(θ)ω(s) has a unique globally
asymptotically stable equilibrium ω∗(χ) = Ḡ(θ)−1h̄(χ). The aforementioned ODE is stable if and only if the
matrix Ḡ(θ) is Hurwitz. We actually show that we have a stronger result in Lem. A.2 under Assumptions 5.1
and 5.4 . We briefly explicit why the assumption as formulated in the rest of (A6’) holds.

Define the function L(χ, ω) = 1
2‖Ḡ(θ)ω − h̄(χ)‖2 . For every χ = (θ, ω̄) ∈ Rd+m, the function L(χ, ·) is a

Lyapunov function for ODE (18). Indeed, using Lem. A.2 below, we can write

d

ds
L(χ, ω(s)) = −〈h̄(χ)− Ḡ(θ)ω(s), Ḡ(θ)(h̄(χ)− Ḡ(θ)ω(s))〉 ≤ −ε‖Ḡ(θ)ω(s)− h̄(χ)‖2 .

(vii) (A7): The stability Assumption 5.3 ensures that supt(‖ωt‖+ ‖θt‖) < +∞ w.p.1 . As a consequence, it also
follows from the update rule of (ω̄t) that supt ‖ω̄t‖ < +∞ .

Lemma A.2. Under Assumptions 5.1 and 5.4 , there exists ε > 0 s.t. for all θ ∈ Rd, ω ∈ Rm,

ωT Ḡ(θ)ω ≥ ε‖ω‖2 .

In particular, it holds that supθ∈Rd ‖Ḡ(θ)−1‖ <∞ .

Proof. Recall that K := {K̃θ : θ ∈ Rd} where for every θ ∈ Rd, K̃θ ∈ R|S||A|×|S||A| is the transition matrix over
the state-action pairs defined for every (s, a), (s′, a′) ∈ S × A by K̃θ(s

′, a′|s, a) = p̃(s′|s, a)πθ(a
′|s′) . We also

denoted by K̄ the closure of K. Under Assumption 5.1 , there exists a unique stationary distribution µK ∈ RS×A
for every K ∈ K̄.

We first show that the map K 7→ µK is continuous over the set K̄ . The proof of this fact is similar to the proofs
of [Zhang et al., 2021, Lem. 9] and [Marbach and Tsitsiklis, 2001, Lem. 1]. We reproduce a similar argument
here for completeness. Observe first that µK satisfies:

M(K)µK =

[
0
1

]
where M(K) :=

[
KT − I

1

]
.

As a consequence, since M(K) has full column rank thanks to Assumption 5.1 , the matrix M(K)TM(K) is
invertible and we obtain a closed form expression for µK given by:

µK = (M(K)TM(K))−1M(K)T
[
0
1

]
=

com(M(K)TM(K))T

det (M(K)TM(K))
M(K)T

[
0
1

]
,

where com(A) stands for the comatrix of the matrix A. Then, it can be seen from this expression that the map
K 7→ µK is continuous. Note for this that the entries of the comatrix are polynomial functions of the entries
of M(K)TM(K), and the determinant operator is continuous.

It follows from Assumption 5.1 that for every K ∈ K̄ and every (s, a) ∈ S × A, µK(s, a) > 0 . We deduce
from the continuity of the map K 7→ µK over the compact set K̄ that infK∈K̄ µK(s, a) > 0 .Since K̃θ ∈ K̄ for
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every θ ∈ Rd , we obtain that infθ µρ,θ(s, a) > 0where we recall that µρ,θ is the unique stationary distribution of
the Markov chain induced by K̃θ . As a consequence, since dρ,θ(s) =

∑
a∈A µρ,θ(s, a), it also holds that

inf
θ
dρ,θ(s) > 0 .

Therefore, for every θ ∈ Rd, ω ∈ Rm:

ωT Ḡ(θ)ω = (Φω)TDρ,θ(Φω) ≥ min
s∈S

inf
θ
dρ,θ(s)‖Φω‖2 ≥ min

s∈S
inf
θ
dρ,θ(s)λmin(ΦTΦ)‖ω‖2 ,

where λmin(ΦTΦ) > 0 corresponds to the smallest eigenvalue of the symmetric positive definite matrix ΦTΦ which
is invertible thanks to Assumption 5.4 . The proof is concluded by setting ε := λmin(ΦTΦ) ·mins∈S infθ dρ,θ(s) > 0
which is independent of θ.

A.1.2 Proof of Prop. 5.2

Recall the definitions of the vector h(θ) and the matrix G(θ) from Eq. (12):

h(θ) := ΦTDρ,θRθ and G(θ) := ΦTDρ,θ(In − γPθ)Φ . (19)

We begin the proof by showing the existence of a unique solution ω̄∗(θ) to the linear system G(θ)ω̄ = h(θ) . The
following lemma establishes the uniform positive definiteness of the matrix G(θ) Note that we do not include
symmetry in our definition of positive definiteness as in [Bertsekas and Tsitsiklis, 1996]. As a matter of fact, the
matrix G(θ) is not symmetric in general.
Lemma A.3. If Assumptions 5.1 and 5.4 hold, there exists κ > 0 s.t. for all θ ∈ Rd and ω ∈ Rm,

ωTG(θ)ω ≥ κ‖ω‖2 .

In particular, the matrix G(θ) is invertible.

Proof. First, we have for every θ ∈ Rd, ω ∈ Rm,

ωTG(θ)ω = (Φω)TDρ,θ(In − γPθ)Φω = (Φω)TDρ,θ(Φω)− γ(Φω)TDρ,θPθ(Φω) . (20)

Then, the Cauchy-Schwarz inequality yields

(Φω)TDρ,θPθ(Φω) = (Φω)TD
1
2

ρ,θD
1
2

ρ,θPθ(Φω) ≤ ‖Φω‖Dρ,θ‖PθΦω‖Dρ,θ . (21)

Notice now that we cannot use the classical result [Tsitsiklis and Van Roy, 1997, Lem. 1] to obtain that
‖PθV ‖Dρ,θ ≤ ‖V ‖Dρ,θ for any V ∈ Rn because Dρ,θ is not the stationary distribution of the kernel Pθ but
it is instead associated to the artificial kernel P̃θ. Nevertheless, the following lemma provides an analogous result
with a similar proof.

Lemma A.4. For every θ ∈ Rd, V ∈ Rn, we have

‖PθV ‖2Dρ,θ ≤
1

γ
‖V ‖2Dρ,θ −

1− γ
γ
‖V ‖2ρ ≤

1

γ
‖V ‖2Dρ,θ .

Proof. It follows from Jensen’s inequality that

‖PθV ‖2Dρ,θ =

n∑
i=1

dρ,θ(si)

( n∑
j=1

Pθ(sj |si)Vj
)2

≤
n∑
i=1

dρ,θ(si)

n∑
j=1

Pθ(sj |si)V 2
j .

Then, observe that P̃θ = γPθ + (1− γ)1ρT as a consequence of Eq. (4). By plugging this formula and then using
the fact that dTρ,θP̃θ = dTρ,θ, we obtain

n∑
i=1

dρ,θ(si)

n∑
j=1

Pθ(sj |si)V 2
j =

1

γ

[( n∑
j=1

n∑
i=1

dρ,θ(si)P̃θ(sj |si)V 2
j

)
− (1− γ)

n∑
j=1

ρ(sj)V
2
j

]

=
1

γ

[ n∑
j=1

dρ,θ(sj)V
2
j − (1− γ)

n∑
j=1

ρ(sj)V
2
j

]
=

1

γ
‖V ‖2Dρ,θ −

1− γ
γ
‖V ‖2ρ ,
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which concludes the proof of Lem. A.4 .

We now complete the proof of Lem. A.3 . From Eq. (21), Lem. A.4 with V = Φω yields

(Φω)TDρ,θPθ(Φω) ≤ 1
√
γ
‖Φω‖2Dρ,θ =

1
√
γ

(Φω)TDρ,θ(Φω) .

Whence, we obtain from Eq. (20) that

ωTG(θ)ω ≥ (1−√γ)(Φω)TDρ,θ(Φω) ≥ ε(1−√γ)‖ω‖2 ,

where the last inequality stems from Lem. A.2.

We now prove the remaining convergence results. We start with the first result showing that the sequence (ω̄t)
tracks ω̄∗(θt) . From the update rules of the sequences (ω̄t) and (ωt) (Eqs. (9)-(10)), we can introduce the quantity
ω∗(θt, ω̄t) as defined in Prop. 5.1 to obtain

ω̄t+1 = ω̄t + ξt(ωt+1 − ω̄t)

= ω̄t + ξt(ωt + βtw(ω̄t, ωt, Zt) + βtη
(1)
t+1 − ω̄t)

= ω̄t + ξt(ω∗(θt, ω̄t)− ω̄t) + ξt(ωt − ω∗(θt, ω̄t) + βtw(ω̄t, ωt, Zt)) + ξtβtη
(1)
t+1 . (22)

Then, using the expressions of h̄, Ḡ in Eq. (11) and h,G in Eq. (12), we can write

ω∗(θt, ω̄t)− ω̄t = Ḡ(θt)
−1(h̄(θt, ω̄t)− Ḡ(θt)ω̄t) = Ḡ(θt)

−1(h(θt)−G(θt)ω̄t) .

As a consequence,

ω̄t+1 = ω̄t + ξtḠ(θt)
−1(h(θt)−G(θt)ω̄t) + ξt(ωt − ω∗(θt, ω̄t) + βtw(ω̄t, ωt, Zt)) + ξtβtη

(1)
t+1 . (23)

Therefore, the sequence (ω̄t) satisfies a linear stochastic approximation scheme driven by the slowly varying
Markov chain (θt) evolving on a slower timescale than the iterates (ω̄t). We proceed similarly to the proof of
Prop. 5.1 .

Recall the notation χt = (θt, ω̄t). Let χ = (θ, ω̄) ∈ Rd+m, U(χ) = (0, Ḡ(θ)−1(h(θ)−G(θ)ω̄)). Then,

χt+1 = χt + ξt[U(χt) + ε̃t] , (24)

where ε̃t = (αtξt
1

1−γ δt+1ψθt(S̃t, Ãt), ωt − ω∗(θt, ω̄t) + βtw(ω̄t, ωt, Zt) + βtη
(1)
t+1) .

It can be shown that ε̃t → 0 as t → +∞. Note for this that αt/ξt → 0 and βt → 0 by Assumption 5.2 ,
ωt − ω∗(θt, ω̄t)→ 0 as proved in Prop. 5.1 and δt+1ψθt(S̃t, Ãt), w(ω̄t, ωt, Zt) are bounded by Assumptions 3.1-(c) ,
5.3, the boundedness of the reward function R and the fact that the sets S,A are finite. Moreover, Assumption 5.2
ensures that

∑
t ξt = +∞ and

∑
t ξ

2
t < +∞ .

Furthermore, one can show that the function U is Lipschitz continuous. For this, remark that:

(a) The function U is affine in ω̄.

(b) The functions θ 7→ Rθ and θ 7→ Pθ are Lipschitz continuous as Pθ(s′|s) = p(s′|s, a)πθ(a|s) , Rθ(s) =∑
a∈AR(s, a)πθ(a|s) and Assumption 3.1-(b) guarantees that θ 7→ πθ(a|s) is Lipschitz continuous for every

(s, a) ∈ S ×A .

(c) The function θ 7→ Dρ,θ is Lipschitz continuous. We refer to [Zhang et al., 2021, Lem. 9] for a proof.

(d) The function θ 7→ Ḡ(θ)−1 is Lipschitz continuous. Observe for this that for every θ, θ′ ∈ Rd , Ḡ(θ)−1 −
Ḡ(θ′)−1 = Ḡ(θ)−1(Ḡ(θ′)− Ḡ(θ))Ḡ(θ′)−1 and that supθ ‖Ḡ(θ)−1‖ <∞ using Lem. A.2.

(e) The reward function R is bounded and the entries of the matrices Dρ,θ and Pθ are bounded by one.
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Using classical stochastic approximation results (see, for e.g., [Benaim, 1996, Th.1.2]), we obtain that the
sequence (χt) converges a.s. towards an internally chain transitive set of the ODE d

dsχ(s) = U(χ(s)) , i.e.,{
d
dsθ(s) = 0 ,
d
ds ω̄(s) = Ḡ(θ(s))−1(h(θ(s))−G(θ(s))ω̄(s)) .

(25)

We conclude by showing that for every θ ∈ Rd, the ODE d
ds ω̄(s) = Ḡ(θ)−1(h(θ) − G(θ)ω̄(s)) has a globally

asymptotically stable equilibrium ω̄∗(θ). This result holds if the matrix −Ḡ(θ)−1G(θ) is Hurwitz, i.e., all its
eigenvalues have negative real parts. We show this result in Lem. A.5 below.

Then, it follows that χt = (θt, ω̄t) converges a.s. towards the set {(θ, ω̄∗(θ)) : θ ∈ Rd}. This yields the desired
result limt ‖ω̄t − ω̄∗(θt)‖ = 0.
Lemma A.5. For every θ ∈ Rd, the matrix −Ḡ(θ)−1G(θ) is Hurwitz .

Proof. We first recall Lyapunov’s theorem which characterizes Hurwitz matrices (see, for e.g.,
[Horn and Johnson, 1994, Th.2.2.1 p. 96]). A complex matrix A is Hurwitz if and only if there exists a
positive definite matrix M = M∗ s.t. A∗M + MA is negative definite, where M∗ and A∗ are the complex
conjugate transposes of M and A . We use this theorem with A = −Ḡ(θ)−1G(θ) and M = Ḡ(θ) which is
symmetric by definition and positive definite thanks to Lem. A.2. Then, we obtain that

A∗M +MA = −G(θ)T Ḡ(θ)−1Ḡ(θ)− Ḡ(θ)Ḡ(θ)−1G(θ) = −(G(θ)T +G(θ)) .

We conclude the proof by showing that G(θ)T +G(θ) is a (symmetric) positive definite matrix. For that, observe
that for every nonzero vector ω ∈ Rm, it holds that ωT (G(θ)T +G(θ))ω = 2ωTG(θ)ω > 0 where the positivity
stems from Lem. A.3.

The last result states that for every θ ∈ Rd, Φω̄∗(θ) is a fixed point of the projected Bellman operator ΠθTθ. This
is a consequence of the following derivations:

ΠθTθ(Φω̄∗(θ)) = ΦḠ(θ)−1ΦTDρ,θTθ(Φω̄∗(θ))

= ΦḠ(θ)−1ΦTDρ,θ(Rθ + γPθΦω̄∗(θ))

= ΦḠ(θ)−1h(θ) + ΦḠ(θ)−1(Ḡ(θ)−G(θ))G(θ)−1h(θ)

= ΦḠ(θ)−1h(θ) + ΦG(θ)−1h(θ)− ΦḠ(θ)−1h(θ)

= ΦG(θ)−1h(θ)

= Φω̄∗(θ) , (26)

where the first equality uses the expression of the projection Πθ, the second one uses the definition of the Bellman
operator Tθ and the third one stems from the definitions of the matrices Ḡ(θ) and G(θ) (see Eqs. (11) and (12)).

A.1.3 Proof of Th. 5.3

The proof of Th. 5.3 uses both Prop. 5.1 and Prop. 5.2 .

In order to show that limt ‖ωt − ω̄∗(θt)‖ = 0 w.p.1 ,we prove the two following results:

(a) limt ‖ωt − ω∗(θt, ω̄∗(θt))‖ = 0 w.p.1 .

(b) ω∗(θ, ω̄∗(θ)) = ω̄∗(θ) for all θ ∈ Rd .

(a) We have the decomposition

ωt − ω∗(θt, ω̄∗(θt)) = [ωt − ω∗(θt, ω̄t)] + [ω∗(θt, ω̄t)− ω∗(θt, ω̄∗(θt))],
= [ωt − ω∗(θt, ω̄t)] + Ḡ(θt)

−1(h̄(θt, ω̄t)− h̄(θt, ω̄∗(θt)))

= [ωt − ω∗(θt, ω̄t)] + Ḡ(θt)
−1ΦTDρ,θtPθtΦ(ω̄t − ω̄∗(θt))

= [ωt − ω∗(θt, ω̄t)] + Ḡ(θt)
−1(Ḡ(θt)−G(θt))(ω̄t − ω̄∗(θt))

= [ωt − ω∗(θt, ω̄t)] + (Im − Ḡ(θt)
−1G(θt))(ω̄t − ω̄∗(θt)) . (27)
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It follows from Prop. 5.1 that the first term in the above decomposition goes to zero. Then, observe that
supθ ‖Ḡ(θ)−1‖ <∞ given Lem. A.2 and supθ ‖G(θ)‖ <∞ thanks to the boundedness of the matrices Pθ and Dρ,θ

uniformly in θ. As a consequence, the second term also converges to zero using Prop. 5.2 .

(b) Using the definitions of the functions ω∗ and ω̄∗, we can write for every θ ∈ Rd,

ω∗(θ, ω̄∗(θ)) = Ḡ(θ)−1h̄(θ, ω̄∗(θ))

= Ḡ(θ)−1ΦTDρ,θ(Rθ + γPθΦG(θ)−1h(θ))

= Ḡ(θ)−1(h(θ) + γΦTDρ,θPθΦG(θ)−1h(θ))

= Ḡ(θ)−1(In + γΦTDρ,θPθΦG(θ)−1)h(θ)

= Ḡ(θ)−1(G(θ) + γΦTDρ,θPθΦ)G(θ)−1h(θ)

= Ḡ(θ)−1Ḡ(θ)G(θ)−1h(θ)

= ω̄∗(θ) .

For the last result, we write

‖ΠθtTθt(Φωt)− Φωt‖ = ‖Φ
(
Ḡ(θt)

−1ΦTDρ,θtTθt(Φωt)− ωt
)
‖

= ‖Φ
(
Ḡ(θt)

−1ΦTDρ,θt(Tθt(Φωt)− Φωt)
)
‖

= ‖Φ
(
Ḡ(θt)

−1(h(θt)−G(θt)ωt)
)
‖

= ‖ΦḠ(θt)
−1G(θt)(ωt − ω̄∗(θt))‖

≤ ‖Φ‖‖Ḡ(θt)
−1‖‖G(θt)‖‖ωt − ω̄∗(θt)‖ . (28)

Then, as previously mentioned in the proof, observe that supθ ‖Ḡ(θ)−1‖ < ∞ and supθ ‖G(θ)‖ < ∞. Since
ω̄t − ω̄∗(θt)→ 0 as t→∞, the result follows.

A.2 Proof of Th. 5.4: actor analysis

In this subsection, we present a proof of Th. 5.4 which is similar in spirit to the proof in
[Konda and Tsitsiklis, 2003b, Sec. 6]. Recall the notation Zt = (S̃t, Ãt). Note that (Zt) is a Markov chain.
The actor parameter θt iterates as follows:

θt+1 = θt + αt
1

1− γ
δt+1ψθt(S̃t, Ãt)

= θt + αt
1

1− γ
(Rt+1 + (γφ(St+1)− φ(S̃t))

Tωt)ψθt(S̃t, Ãt)

= θt + αt
1

1− γ
(R(S̃t, Ãt)ψθt(S̃t, Ãt) +Hθt(Zt)ωt) + αt

1

1− γ
η̃t+1 ,

where for every θ ∈ Rd, z = (s, a) ∈ S ×A,

Hθ(z) = ψθ(s, a)

(
γ
∑
s′∈S

p(s′|s, a)φ(s′)− φ(s)

)T
,

and (η̃t+1) is an Rd-valued Ft-martingale difference sequence defined by

η̃t+1 = (Rt+1 − E[Rt+1|Ft])ψθt(S̃t, Ãt) + γψθt(S̃t, Ãt)(φ(St+1)− E[φ(St+1)|Ft])Tωt . (29)

We now introduce the steady-state expectation of the main term Hθ(Zt)ωt+R(S̃t, Ãt)ψθt(S̃t, Ãt). Recall that µρ,θ
is the stationary distribution of the Markov chain (Zt). Define the functions H̄ : Rd → Rd×m and u : Rd → Rd
for every θ ∈ Rd by

H̄(θ) = EZ∼µρ,θ [Hθ(Z)] , (30)

u(θ) = EZ∼µρ,θ [R(S̃, Ã)ψθ(S̃, Ã)] , (31)
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where Z = (S̃, Ã) is a random variable following the distribution µρ,θ .

Then, we introduce the quantity ω̄∗(θt) which approximates well ωt for large t (in the sense of Th. 5.3) and only
depends on the actor parameter θt. We obtain the following decomposition

θt+1 = θt + αtf(θt) + αt
1

1− γ
(η̃t+1 + e

(1)
t + e

(2)
t ) , (32)

where the function f : Rd → Rd and the error terms e(1)
t and e(2)

t are defined as follows

f(θ) =
1

1− γ
(H̄(θ) ω̄∗(θ) + u(θ)) , (33)

e
(1)
t = (R(S̃t, Ãt)ψθt(S̃t, Ãt) +Hθt(Zt)ω̄∗(θt))− (H̄(θt) ω̄∗(θt) + u(θt)) , (34)

e
(2)
t = Hθt(Zt)(ωt − ω̄∗(θt)) . (35)

The bias induced by the approximation of ∇J(θ) by our actor-critic algorithm is defined for every θ ∈ Rd by

b(θ) := f(θ)−∇J(θ) . (36)

This bias is due to the linear FA of the true state-value function. It is defined as the difference between the
steady-state expectation of the actor update given by the function f defined in Eq. (33) and the gradient ∇J(θ)
we are interested in . The following lemma provides a more explicit and interpretable expression for the bias b(θ).
The state-value function Vπθ will be seen as a vector of R|S|.
Lemma A.6. For every θ ∈ Rd,

b(θ) =
γ

1− γ
∑

s∈S,a∈A
µρ,θ(s, a)ψθ(s, a)

∑
s′∈S

p(s′|s, a)(φ(s′)T ω̄∗(θ)− Vπθ (s′)) .

Proof. The expression follows from using the definition of b(θ) and computing both the function H̄ defined in
Eq. (30) and the gradient of the function J .

First, we explicit the function H̄, writing

H̄(θ) = EZ∼µρ,θ [Hθ(Z)] = EZ∼µρ,θ

ψθ(S̃, Ã)

(
γ
∑
s′∈S

p(s′|S̃, Ã)φ(s′)− φ(S̃)

)T
=

∑
s∈S,a∈A

µρ,θ(s, a)ψθ(s, a)

(
γ
∑
s′∈S

p(s′|s, a)φ(s′)T − φ(s)T

)
= γ

∑
s∈S,a∈A

µρ,θ(s, a)ψθ(s, a)
∑
s′∈S

p(s′|s, a)φ(s′)T , (37)

where the last equality stems from remarking that
∑
a∈A µρ,θ(s, a)ψθ(s, a) = 0.

Then, the policy gradient theorem as formulated in Eq. (1) and the definition of the advantage function provide

(1− γ)∇J(θ) = EZ∼µρ,θ [∆πθ (S̃, Ã)ψθ(S̃, Ã)]

= EZ∼µρ,θ [(R(S̃, Ã) + γ
∑
s′∈S

p(s′|S̃t, Ãt)Vπθ (s′)− Vπθ (S̃))ψθ(S̃, Ã)]

=
∑
s,a

µρ,θ(s, a)(R(s, a) + γ
∑
s′∈S

p(s′|s, a)Vπθ (s
′)− Vπθ (s))ψθ(s, a)

= u(θ) + γ
∑

s∈S,a∈A
µρ,θ(s, a)ψθ(s, a)

∑
s′∈S

p(s′|s, a)Vπθ (s
′) . (38)

The result stems from using the definition of b(θ) together with Eqs. (37) and (38).
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Using a second-order Taylor expansion of the L̃-Lipschitz function ∇J (again see [Zhang et al., 2020a, Lem. 4.2])
together with Eq. (32), we can derive the following inequalities

J(θt+1) ≥ J(θt) + 〈∇J(θt), θt+1 − θt〉 − L‖θt+1 − θt‖2 ,
≥ J(θt) + αt〈∇J(θt), f(θt)〉

+
αt

1− γ
〈∇J(θt), η̃t+1 + e

(1)
t + e

(2)
t 〉 − L̃

α2
t

(1− γ)2
‖δt+1ψθt(S̃t, Ãt)‖2 . (39)

The above inequality consists of a main term involving the function f and noise terms. The following lemma
controls these noise terms which are shown to be negligible.

Lemma A.7. (a)
∑∞
t=0 αt〈∇J(θt), e

(1)
t 〉 <∞w.p.1 ,

(b)
∑∞
t=0 αt〈∇J(θt), η̃t+1〉 <∞w.p.1 ,

(c) limt→∞ e
(2)
t = 0 , w.p.1 ,

(d)
∑∞
t=0 α

2
t ‖δt+1ψθt(S̃t, Ãt)‖2 <∞ w.p.1 .

Proof. (a) The proof is based on the classical decomposition of the Markov noise term e
(1)
t using the Poisson

equation [Benveniste et al., 1990, p. 222-229]. We refer to [Zhang et al., 2020b, Lem. 7 and Sec. A.8.3] for
a detailed proof using this technique. The proof of our result here follows the same line. For conciseness,
we only describe the necessary tools, pointing out the differences with [Zhang et al., 2020b, Lem. 7 and
Sec. A.8.3] which is concerned with a different algorithm.
Let Z := S ×A. First, define the functions g∗θ : Z → Rd and ḡ : Rd → Rd by:

g∗θ(z) := R(z)ψθ(z) +Hθ(z)ω̄∗(θ) , (40)
ḡ(θ) := u(θ) + H̄(θ)ω̄∗(θ) , (41)

for every z = (s, a) ∈ Z, θ ∈ Rd. Observe in particular that e(1)
t = g∗θt(S̃t, Ãt)−ḡ(θt) . Recall that for every θ ∈

Rd, the kernel transition K̃θ is defined for every (s, a), (s′, a′) ∈ S × A by K̃θ(s
′, a′) = p̃(s′|s, a)πθ(a

′|s′)
(see Assumption 5.1). The idea of the proof is to introduce for each integer i = 1, · · · , d a Markov Reward
Process (MRP) [Puterman, 2014, Sec. 8.2] on the space Z induced by the transition kernel K̃θ and the
reward function g∗θ,i (ith coordinate of the function g∗θ ). As a consequence, the corresponding average reward
is given by ḡi(θ) (ith coordinate of ḡ(θ)). Then, the differential value function of the MRP is provided
by vθ,i := (I − K̃θ + 1µTρ,θ)

−1(I − 1µTρ,θ)g
∗
θ,i as shown for instance in [Puterman, 2014, Sec. 8.2]. The

functions vθ,i for i = 1, · · · , d define together a vector valued function vθ : Z → Rd . Under Assumption 5.1,
using similar arguments to the proof of Lem. A.2 (see also [Zhang et al., 2021, Proof of Lem. 4, p. 26]), we
can show that the function K ∈ K̄ 7→ (I −K + 1µTK)−1(I − 1µTK) is continuous on the compact set K̄. It
follows that supθ,z ‖vθ(z)‖ < ∞ because K̃θ ∈ K̄ for every θ ∈ Rd and g∗θ,i is uniformly bounded w.r.t. θ
under our assumptions . Moreover, the differential value function satisfies the crucial Bellman equation:

vθ(z) = g∗θ(z)− ḡ(θ) +
∑
z′∈Z

K̃θ(z
′|z)vθ(z) ,

for every z ∈ Z . We use the above Poisson equation to express e(1)
t = g∗θt(S̃t, Ãt)− ḡ(θt) using vθ. The rest

of the proof follows the same line as [Zhang et al., 2020b, Lem. 7 and Sec. A.8.3].

(b) First, recall that (η̃t) is a martingale difference sequence adapted to Ft and so is (〈∇J(θt), η̃t+1〉). Using
the boundedness of the function θ → ψθ(s, a) guaranteed by Assumption 3.1-(c) with the boundedness of
the rewards sequence (Rt), the sequence (ωt) (Assumption 5.3 ) and the gradient ∇J , one can show by
Cauchy-Schwarz inequality that there exists a constant C > 0 s.t. E[|〈∇J(θt), η̃t+1〉|2|Ft] ≤ C a.s. Then,
using that

∑
t α

2
t <∞ (Assumption 5.2 ), it follows that

∑
t E[|αt〈∇J(θt), η̃t+1〉|2|Ft] <∞ a.s. We deduce

from Doob’s convergence theorem that item (b) holds.

(c) As for item (c), we first observe that H̄(θt) is bounded since θ 7→ ψθ(s, a) is bounded for every (s, a) ∈ S ×A
thanks again to Assumption 3.1-(c). Then, item (c) stems from the fact that ωt − ω̄∗(θt)→ 0 as shown in
Th. 5.3 .
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(d) Similarly to H̄(θt), upon noticing that the reward sequence (Rt) is bounded by UR and the sequence (ωt)
is a.s. bounded by Assumption 5.3 , the quantity δt+1ψθt(S̃t, Ãt) is also a.s. bounded. Then, item (d) is a
consequence of the square summability of the stepsizes αt (

∑
t α

2
t <∞) as guaranteed by Assumption 5.2.

The end of the proof follows the same line as [Konda and Tsitsiklis, 2003b, p. 1163] (see also [Konda, 2002, p. 86]).
We reproduce the argument here for completeness. Let T > 0. Define a sequence kt by

k0 = 0 , kt+1 = min

{
k ≥ kt :

k∑
i=kt

αi ≥ T

}
for t > 0 .

Using Eq. (39) together with the Cauchy-Schwarz inequality and Eq. (36), we can write

J(θkt+1
) ≥ J(θkt) +

kt+1−1∑
k=kt

αk(‖∇J(θk)‖2 − ‖b(θk)‖ · ‖∇J(θk)‖) + υt ,

where υt is defined by

υt =

kt+1−1∑
k=kt

(
αk

1− γ
〈∇J(θk), η̃k+1 + e

(1)
k + e

(2)
k 〉 − L̃

α2
k

(1− γ)2
‖δk+1ψθk(S̃k, Ãk)‖2

)
.

It stems from Lem. A.7 that υt → 0 as t→ +∞ . By contradiction, if the result does not hold, the sequence J(θk)
would increase indefinitely. This contradicts the boundedness of the function J (note that θ 7→ Vπθ is bounded
since the rewards are bounded).

B Proofs for Sec. 6: finite-time analysis

Throughout our finite-time analysis, we will not track all the constants although these can be precisely determined.
We will in particular explicit the dependence on the effective horizon 1/(1− γ) and the cardinal |A| of the action
space. The universal constant C may change from line to line and from inequality to inequality. It may depend
on constants of the problem s.t. the Lipschitz constants of the functions J, θ 7→ ψθ, θ 7→ πθ, upperbounds of the
rewards and the score function ψθ.

B.1 Proof of Th. 6.1: finite-time analysis of the critic

The proof is inspired from the recent works [Wu et al., 2020, Shen et al., 2020]. However, it significantly deviates
from these works because of the use of a target variable ω̄ in Algorithm 1 . In particular, as previously
mentioned, Algorithm 1 involves three different timescales whereas the actor-critic algorithms considered in
[Wu et al., 2020, Shen et al., 2020] only use two different timescales respectively associated to the critic and the
actor.

We follow a similar strategy to our asymptotic analysis of the critic. Indeed, our non-asymptotic analysis consists
of two main steps based on the following decomposition:

ωt − ω̄∗(θt) = ωt − ω∗(θt, ω̄t) + ω∗(θt, ω̄t)− ω̄∗(θt)
= ωt − ω∗(θt, ω̄t) + ω∗(θt, ω̄t)− ω∗(θt, ω̄∗(θt))
= ωt − ω∗(θt, ω̄t) + Ḡ(θt)

−1(h̄(θt, ω̄t)− h̄(θt, ω̄∗(θt))) . (42)

Hence, it is sufficient to obtain a control of the convergence rates of the quantities ωt−ω∗(θt, ω̄t) and ω̄t− ω̄∗(θt) .
We already know that these quantities converge a.s. to zero thanks to Props. 5.1 and 5.2 . We conduct a finite-time
analysis of each of the terms separately in the subsections below and combine the obtained results to conclude
the proof.
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We start by introducing a few useful shorthand notations. Let x̃t := (S̃t, Ãt, St+1) . Define for every x̃ = (s̃, ã, s) ∈
S ×A× S and every ω̄, ω ∈ Rm:

δ̄(x̃, ω̄, ω) = R(s̃, ã) + γφ(s)T ω̄ − φ(s̃)Tω , (43)
g(x̃, ω̄, ω) = δ̄(x̃, ω̄, ω)φ(s̃) . (44)

Finally, define for every θ ∈ Rd the steady-state expectation:

ḡ(θ, ω̄, ω) = Es̃∼dρ,θ,ã∼πθ,s∼p(·|s̃,ã)[g(x̃, ω̄, ω)] = h̄(θ, ω̄)− Ḡ(θ)ω . (45)

B.1.1 Control of the first error term ωt − ω∗(θt, ω̄t)

We introduce an additional shorthand notation for brevity:

νt := ωt − ω∗(θt, ω̄t) .

Decomposition of the error. Using the update rule of the critic gives

‖νt+1‖2 = ‖ωt + βtg(x̃t, ω̄t, ωt)− ω∗(θt+1, ω̄t+1)‖2

= ‖νt + βtg(x̃t, ω̄t, ωt) + ω∗(θt, ω̄t)− ω∗(θt+1, ω̄t+1)‖2 .

Then, we develop the squared norm and use the classical inequality ‖a+ b‖2 ≤ 2‖a‖+ 2‖b‖2 to obtain

‖νt+1‖2 ≤ ‖νt‖2 + 2βt〈νt, g(x̃t, ω̄t, ωt)〉+ 2〈νt, ω∗(θt, ω̄t)− ω∗(θt+1, ω̄t+1)〉
+ 2‖ω∗(θt, ω̄t)− ω∗(θt+1, ω̄t+1)‖2 + 2Cβ2

t . (46)

Now, we decompose the first inner product into a main term generating a repelling effect and a second Markov
noise term as follows

〈νt, g(x̃t, ω̄t, ωt)〉 = 〈νt, ḡ(θt, ω̄t, ωt)〉+ Λ(θt, ω̄t, ωt, x̃t) , (47)

where we used the shorthand notation

Λ(θ, ω̄, ω, x̃) := 〈ω − ω∗(θ, ω̄), g(x̃, ω̄, ω)− ḡ(θ, ω̄, ω)〉 . (48)

We control the first term in Eq. (47) as follows

〈νt, ḡ(θt, ω̄t, ωt)〉 = 〈νt, ḡ(θt, ω̄t, ωt)− ḡ(θt, ω̄t, ω∗(θt, ω̄t))〉 = −〈νt, Ḡ(θt)νt〉 ≤ −ε‖νt‖2 . (49)

We used the fact that ḡ(θt, ω̄t, ω∗(θt, ω̄t)) = 0 for the first equality and Lem. A.2 for the inequality. Then, it can
be shown that

‖ω∗(θt, ω̄t)− ω∗(θt+1, ω̄t+1)‖ ≤ C(‖θt − θt+1‖+ ‖ω̄t − ω̄t+1‖) ≤ C
(

αt
1− γ

+ ξt

)
. (50)

Combining Eqs. (46) to (50) leads to

‖νt+1‖2 ≤ (1− 2εβt)‖νt‖2 + 2βtΛ(θt, ω̄t, ωt, x̃t) + C

(
αt

1− γ
+ ξt

)
‖νt‖+ C

(
α2
t

(1− γ)2
+ ξ2

t + β2
t

)
. (51)

Control of the Markov noise term Λ(θt, ω̄t, ωt, x̃t) . We decompose the noise term using a similar technique
to [Zou et al., 2019] which was then used in [Wu et al., 2020, Shen et al., 2020]. Let T > 0. Define the mixing
time

τT := min{t ∈ N, t ≥ 1 : cσt−1 ≤ min{αT , ξT , βT }} . (52)

In the remainder of the proof, we will use the notation τ for τT (interchangeably). In order to control the
difference between the update rule of the critic and its steady-state expectation, we introduce an auxiliary chain
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which coincides with x̃t except for the τ last steps where the policy is fixed to πθt−τ . The auxiliary chain will be
denoted by x̌t := (Št, Ǎt, St+1) where St+1 ∼ p(·|Št, Ǎt) and (Št, Ǎt) is generated as follows:

S̃t−τ
θt−τ−−−→ Ãt−τ

p̃−→ S̃t−τ+1
θt−τ−−−→ Ǎt−τ+1

p̃−→ Št−τ+2
θt−τ−−−→ Ǎt−τ+2

p̃−→ · · · p̃−→ Št
θt−τ−−−→ Ǎt

p̃−→ Št+1 .

Compared to this chain, the original chain has a drifting policy, i.e., at each time step, the actor parameter θt is
updated and so is the policy πθt and we recall that it is given by:

S̃t−τ
θt−τ−−−→ Ãt−τ

p̃−→ S̃t−τ+1
θt−τ+1−−−−→ Ãt−τ+1

p̃−→ S̃t−τ+2
θt−τ+2−−−−→ Ãt−τ+2

p̃−→ · · · p̃−→ S̃t
θt−→ Ãt

p̃−→ S̃t+1 .

Using the shorthand notation zt := (ω̄t, ωt), the Markov noise term can be decomposed as follows:

Λ(θt, ω̄t, ωt, x̃t) = (Λ(θt, zt, x̃t)− Λ(θt−τ , zt−τ , x̃t)) + (Λ(θt−τ , zt−τ , x̃t)− Λ(θt−τ , zt−τ , x̌t))

+ Λ(θt−τ , zt−τ , x̌t) . (53)

We control each one of the terms successively.

(a) Control of Λ(θt, zt, x̃t)− Λ(θt−τ , zt−τ , x̃t): Using that ω∗ and ḡ are Lipschitz in all their arguments, g
is Lipschitz in its two last arguments and ωt, ω∗, g and ḡ are all bounded, one can show after tedious
decompositions that

|Λ(θt, zt, x̃t)− Λ(θt−τ , zt−τ , x̃t)| ≤ C(‖θt − θt−τ‖+ ‖ω̄t − ω̄t−τ‖+ ‖ωt − ωt−τ‖) . (54)

Then, recalling that the sequence (αt) is nonincreasing, remark that

‖θt − θt−τ‖ ≤
t−1∑
t−τ
‖θj+1 − θj‖ ≤

C

1− γ

t−1∑
t−τ

αj ≤
C

1− γ
ταt−τ .

Similarly, we have ‖ω̄t − ω̄t−τ‖ ≤ Cτξt−τ , ‖ωt −ωt−τ‖ ≤ Cτβt−τ and we can therefore deduce from Eq. (54)
that

|Λ(θt, zt, x̃t)− Λ(θt−τ , zt−τ , x̃t)| ≤ Cτ
(
αt−τ
1− γ

+ βt−τ + ξt−τ

)
. (55)

(b) Control of Λ(θt−τ , zt−τ , x̃t)− Λ(θt−τ , zt−τ , x̌t): following similar arguments to [Wu et al., 2020,
Shen et al., 2020], we upperbound the conditional expectation of this error term w.r.t. S̃t−τ+1, ω̄t−τ , ωt−τ
and θt−τ . Note that our definition of x̌t is slightly different from the ones used in the two aforementioned
references because of the third component of x̌t (and also x̃t) which is generated according to the original
kernel p instead of the artificial kernel p̃. We have

E[Λ(θt−τ , zt−τ , x̃t)− Λ(θt−τ , zt−τ , x̌t)|S̃t−τ+1, θt−τ ] = E[〈νt−τ , g(x̃t, zt−τ )− g(x̌t, zt−τ )〉|S̃t−τ+1, θt−τ ]

≤ CdTV (P(x̃t ∈ ·|S̃t−τ+1, θt−τ ),P(x̌t ∈ ·|S̃t−τ+1, θt−τ ))

≤ C

2
|A|Lπ

t∑
i=t−τ

E[‖θi − θt−τ‖|S̃t−τ+1, θt−τ ] , (56)

where the first equality stems from the definition of Λ, the first inequality uses the definition of the
total variation distance dTV between two probability measures and the last inequality is a consequence of
[Wu et al., 2020, Lem. B.2, p.17] (see also [Shen et al., 2020, Lem. 2 p.12]).
Then, we have

t∑
i=t−τ

E[‖θi − θt−τ‖|S̃t−τ+1, θt−τ ] ≤
t∑

i=t−τ

i−1∑
j=t−τ

E[‖θj+1 − θj‖|S̃t−τ+1, θt−τ ]

≤ C

1− γ

t∑
i=t−τ

i−1∑
j=t−τ

αj ≤
C

1− γ
αt−τ

τ∑
i=0

i ≤ C

1− γ
αt−τ (τ + 1)2 .



Anas Barakat, Pascal Bianchi, Julien Lehmann

As a consequence of these derivations, Eq. (56) yields

E[Λ(θt−τ , zt−τ , x̃t)− Λ(θt−τ , zt−τ , x̌t)|S̃t−τ+1, θt−τ ] ≤ C

1− γ
|A|αt−τ (τ + 1)2 , (57)

(c) Control of Λ(θt−τ , zt−τ , x̌t) : Define x̄t := (S̄t, Āt, St+1) where S̄t ∼ dρ,θt−τ , Āt ∼ πθt−τ and St+1 ∼
p(·|S̄t, Āt). Observing that E[Λ(θt−τ , zt−τ , x̄t)|S̃t−τ+1, θt−τ ] = 0, we obtain

E[Λ(θt−τ , zt−τ , x̌t)|S̃t−τ+1, θt−τ ] = E[Λ(θt−τ , zt−τ , x̌t)− Λ(θt−τ , zt−τ , x̄t)|S̃t−τ+1, θt−τ ]

= E[〈νt−τ , g(x̌t, zt−τ )− g(x̄t, zt−τ )〉|S̃t−τ+1, θt−τ ]

≤ CdTV (P(x̌t ∈ ·|S̃t−τ+1, θt−τ ),P(x̄t ∈ ·|S̃t−τ+1, θt−τ ))

= CdTV (P(S̃t ∈ ·|S̃t−τ+1, θt−τ ), dρ,θt−τ )

≤ Cστ−1

≤ CαT , (58)

where the first inequality stems again from the definition of the total variation norm and the last two ones
follow from Assumption 6.1 and the definition of the mixing time τ = τT (see Eq. (52)).

Given the decomposition of Eq. (53), collecting Eqs.(55), (57), (58) and taking total expectation leads to the
conclusion of this subsection

E[Λ(θt, zt, x̃t)] ≤ C
(
τ

(
αt−τ
1− γ

+ βt−τ + ξt−τ

)
+ |A| αt−τ

1− γ
(τ + 1)2 + αT

)
. (59)

Derivation of the convergence rate of the mean error term 1
T

∑T
t=1 ‖νt‖2 . We obtain from taking the

total expectation in Eq. (51) together with Eq. (59) that

E[‖νt+1‖2] ≤ (1− 2εβt)E[‖νt‖2] + 2Cβt

(
τ

(
αt−τ
1− γ

+ βt−τ + ξt−τ

)
+ |A| αt−τ

1− γ
(τ + 1)2 + αT

)
+ C

(
αt

1− γ
+ ξt

)
E[‖νt‖] + C

(
α2
t

(1− γ)2
+ ξ2

t + β2
t

)
. (60)

Rearranging the inequality and summing for t between τT and T, we get

2ε

T∑
t=τT

E[‖νt‖2] ≤ I1(T ) + I2(T ) + I3(T ) + I4(T ) , (61)

where

I1(T ) :=

T∑
t=τT

1

βt
(E[‖νt‖2]− E[‖νt+1‖2]) , (62)

I2(T ) :=

T∑
t=τT

2C

(
τ

(
αt−τ
1− γ

+ βt−τ + ξt−τ

)
+ |A| αt−τ

1− γ
(τ + 1)2 + αT

)
(63)

I3(T ) := C

T∑
t=τT

(
αt

(1− γ)βt
+
ξt
βt

)
E[‖νt‖] (64)

I4(T ) := C

T∑
t=τT

α2
t

(1− γ)2βt
+
ξ2
t

βt
+ βt . (65)

We derive estimates of each one of the terms Ii(T ) for i = 1, 2, 3, 4.
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(1) Since (νt) is a bounded sequence,

I1(T ) =

T∑
t=τT

(
1

βt
− 1

βt−1

)
E[‖νt‖2] +

1

βτT−1
E[‖ντT ‖2]− 1

βτT
E[‖νT+1‖2]

≤ C

[
T∑

t=τT

(
1

βt
− 1

βt−1

)
+

1

βτT−1

]
=

C

βT
= O(T β) . (66)

Then, since τT = O(lnT ), it follows that

1

1 + T − τT
I1(T ) ≤ 1

1 + T − τT
C

βT
=

1

T ( 1
T + 1− τT

T )

C

βT
= O(T β−1) .

(2) Using the inequality
∑p
k=l k

−β ≤ p1−β

1−β for 1 ≤ l < p and the fact that τT = O(lnT ), we have

I2(T ) ≤ C

(
τT

T−τ∑
t=0

(
αt

1− γ
+ βt + ξt

)
+ |A| (τ + 1)2

1− γ

T−τ∑
t=0

αt + (1 + T − τ)αT

)

≤ C

1− γ
(τ(1 + T )1−β + (τ + 1)2|A|(1 + T )1−α)

= O
(

lnT

1− γ
T 1−β

)
+O

(
|A|

1− γ
ln2(T )T 1−α

)
= O

(
|A|

1− γ
ln(T )T 1−β

)
, (67)

where we recall for the second inequality that 0 < β < ξ < α < 1 and for the last equality, we recall that |A|
is finite. As a consequence,

1

1 + T − τT
I2(T ) = O

(
|A|

1− γ
ln(T )T−β

)
.

(3) Using the Cauchy-Schwarz inequality, we can write:

I3(T ) =

T∑
t=τT

C

(
αt

(1− γ)βt
+
ξt
βt

)
E[‖νt‖]

≤ C

√√√√ T∑
t=τT

(
αt

(1− γ)βt
+
ξt
βt

)2

√√√√ T∑
t=τT

E[‖νt‖2] . (68)

Then, observing that the sequences (αtβt ) and ( ξtβt ) are nonincreasing, we have:

1

1 + T − τT

T∑
t=τT

(
αt

(1− γ)βt
+
ξt
βt

)2

≤ 2

1 + T − τT

T∑
t=τT

((
αt

(1− γ)βt

)2

+

(
ξt
βt

)2
)

=
2

1 + T − τT

T−τT∑
t=0

((
αt+τT

(1− γ)βt+τT

)2

+

(
ξt+τT
βt+τT

)2
)

≤ 2

T − τT + 1

T−τT∑
t=0

((
αt

(1− γ)βt

)2

+

(
ξt
βt

)2
)

≤ (T − τT + 1)−2(α−β)

(1− γ)2(1− 2(α− β))
+

(T − τT + 1)−2(ξ−β)

1− 2(ξ − β)

= O
(
T−2(α−β)

(1− γ)2
+ T−2(ξ−β)

)
. (69)
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(4) Similarly to item (3), to control the fourth term, we write:

1

1 + T − τT

T∑
t=τT

(
α2
t

(1− γ)2βt
+
ξ2
t

βt
+ βt

)
≤ 1

1 + T − τT

T−τT∑
t=0

(
α2
t

(1− γ)2βt
+
ξ2
t

βt
+ βt

)

≤ (1 + T − τT )−(2α−β)

(1− γ)2(1− (2α− β))
+

(1 + T − τT )−(2ξ−β)

1− (2ξ − β)

+
(1 + T − τT )−β

1− β

= O
(
T−(2α−β)

(1− γ)2
+ T−(2ξ−β) + T−β

)
. (70)

Hence,
1

1 + T − τT
I4(T ) = O

(
T−(2α−β)

(1− γ)2
+ T−(2ξ−β) + T−β

)
. (71)

Define:

N(T ) :=
1

1 + T − τT

T∑
t=τT

E[‖νt‖2] , (72)

F (T ) :=
1

1 + T − τT

T∑
t=τT

((
αt

(1− γ)βt

)2

+

(
ξt
βt

)2
)
, (73)

G(T ) :=
1

1 + T − τT
(I1(T ) + I2(T ) + I4(T )) . (74)

Using items (1) to (4), we have:

F (T ) = O
(
T−2(α−β)

(1− γ)2
+ T−2(ξ−β)

)
, (75)

G(T ) = O(T β−1) +O
(
|A|

1− γ
ln(T )T−β

)
+O

(
T−(2α−β)

(1− γ)2
+ T−(2ξ−β) + T−β

)
. (76)

From Eq. (61) and items (1) to (4) above, we have:

2εN(T ) ≤ C
√
F (T )

√
N(T ) +G(T ) .

Solving this inequality yields:
N(T ) = O(F (T ) +G(T )) .

Remarking that 0 < 2(α− β) < 2α− β and 0 < 2(ξ − β) < 2ξ − β, we obtain:

N(T ) = O(T β−1) +O
(
|A|

1− γ
ln(T )T−β

)
+O

(
T−2(α−β)

(1− γ)2

)
+O(T−2(ξ−β)) .

Then, we conclude that:

1

T

T∑
t=1

E[‖νt‖2] = O(ln(T )T−1) +O(N(T )) = O(N(T )) .

B.1.2 Control of the second error term ω̄t − ω̄∗(θt)

Consider the shorthand notation ν̄t := ω̄t − ω̄∗(θt) .
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Using the update rules of (ω̄t), (ωt) and developing the squared norm gives:

‖ν̄t+1‖2 = ‖ω̄t + ξt(ωt+1 − ω̄t)− ω̄∗(θt+1)‖2

= ‖ν̄t + ξt(ωt + βtg(x̃t, ω̄t, ωt)− ω̄t) + ω̄∗(θt)− ω̄∗(θt+1)‖2

= ‖ν̄t + (ξt(νt + βtg(x̃t, ω̄t, ωt) + ω∗(θt, ω̄t)− ω̄t) + ω̄∗(θt)− ω̄∗(θt+1)) ‖2

= ‖ν̄t‖2 + 2〈ν̄t, ξt(νt + βtg(x̃t, ω̄t, ωt) + ω∗(θt, ω̄t)− ω̄t) + ω̄∗(θt)− ω̄∗(θt+1)〉
+ ‖ξt(νt + βtg(x̃t, ω̄t, ωt) + ω∗(θt, ω̄t)− ω̄t) + ω̄∗(θt)− ω̄∗(θt+1)‖2 . (77)

Since the sequences (νt), (ω̄t) and the functions g, ω∗ are bounded and the function ω̄∗ is Lipschitz continuous,
the last squared norm term can be bounded by: C(ξ2

t β
2
t + ξ2

t +
α2
t

(1−γ)2 ) .

We now control the scalar product in Eq. (77). We decompose this term into four different terms:

(a) Using Assumption 6.2, it holds that:

2ξt〈ν̄t, ω∗(θt, ω̄t)− ω̄t〉 = −2ξt〈ν̄t, Ḡ(θt)
−1G(θt)ν̄t〉 ≤ −2ζξt‖ν̄t‖2 .

(b) The boundedness of the function g implies that:

2ξtβt〈ν̄t, g(x̃t, ω̄t, ωt)〉 ≤ Cξtβt‖ν̄t‖ .

(c) Applying the Cauchy-Schwarz inequality gives:

2ξt〈ν̄t, νt〉 ≤ 2ξt‖ν̄t‖ · ‖νt‖ .

(d) Since ω̄∗ is Lipschitz continuous, we can write:

2〈ν̄t, ω̄∗(θt)− ω̄∗(θt+1)〉 ≤ C αt
1− γ

‖ν̄t‖ .

Collecting the bounds from items (a) to (d) and incorporating them into Eq. (77), we obtain:

‖ν̄t+1‖2 ≤ (1− 2ζξt)‖ν̄t‖2 + C

(
ξtβt +

αt
1− γ

)
‖ν̄t‖+ 2ξt‖ν̄t‖ · ‖νt‖+ C

(
ξ2
t β

2
t + ξ2

t +
α2
t

(1− γ)2

)
. (78)

Rearranging Ineq. (78) leads to:

2ζ‖ν̄t‖2 ≤
1

ξt
(‖ν̄t‖2 − ‖ν̄t+1‖2) + C

(
βt +

αt
(1− γ)ξt

)
‖ν̄t‖+ 2‖ν̄t‖ · ‖νt‖+ C

(
ξtβ

2
t + ξt +

α2
t

(1− γ)2ξt

)
. (79)

Summing this inequality for t between 1 and T and taking total expectation yield:

2ζ

T

T∑
t=1

E[‖ν̄t‖2] ≤ Σ1(T ) + Σ2(T ) + Σ3(T ) + Σ4(T ) , (80)

where

Σ1(T ) :=
1

T

T∑
t=1

1

ξt
(E[‖ν̄t‖2]− E[‖ν̄t+1‖2]) , (81)

Σ2(T ) :=
C

T

T∑
t=1

(
βt +

αt
(1− γ)ξt

)
E[‖ν̄t‖] , (82)

Σ3(T ) :=
2

T

T∑
t=1

E[‖ν̄t‖ · ‖νt‖] , (83)

Σ4(T ) :=
C

T

T∑
t=1

(
ξtβ

2
t + ξt +

α2
t

(1− γ)2ξt

)
. (84)

Similarly to Sec. B.1.1, we control each one of the terms Σi, i = 1, 2, 3, 4 successively.
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(i) First, using the boundedness of (ν̄t), we estimate Σ1 as follows:

Σ1(T ) =
1

T

[
T∑
t=1

(
1

ξt
− 1

ξt−1

)
E[‖ν̄t‖2] +

1

ξ0
E[‖ν̄1‖2]− 1

ξT
E[‖ν̄T+1‖2]

]
≤ C

TξT
= O(T ξ−1) .

(ii) Cauchy-Schwarz inequality implies:

Σ2(T ) ≤ C

T

√√√√ T∑
t=1

(
βt +

αt
(1− γ)ξt

)2

√√√√ T∑
t=1

E[‖ν̄t‖2]

≤ C

√√√√ 1

T

T∑
t=1

(
β2
t +

(
αt

(1− γ)ξt

)2
)√√√√ 1

T

T∑
t=1

E[‖ν̄t‖2] .

Moreover,

1

T

T∑
t=1

(
β2
t +

(
αt

(1− γ)ξt

)2
)
≤ 1

T

(
(T + 1)1−2β

1− 2β
+

(T + 1)1−2(α−ξ)

(1− γ)2(1− 2(α− ξ))

)
= O(T−2β) +O

(
T−2(α−ξ)

(1− γ)2

)
.

(iii) Invoking the Cauchy-Schwarz inequality again yields:

Σ3(T ) ≤ 2

√√√√ 1

T

T∑
t=1

E[‖ν̄t‖2]

√√√√ 1

T

T∑
t=1

E[‖νt‖2]

(iv) Similarly to item (ii), we obtain

Σ4(T ) = O(T−ξ−2β) +O(T−ξ) +O
(
T ξ−2α

(1− γ)2

)
.

Define for every T > 0 the following quantities:

W (T ) :=
1

T

T∑
t=1

E[‖νt‖2] , (85)

X(T ) :=
1

T

T∑
t=1

E[‖ν̄t‖2] , (86)

Y (T ) :=
1

T

T∑
t=1

(
β2
t +

(
αt

(1− γ)ξt

)2
)
, (87)

Z(T ) := Σ1(T ) + Σ4(T ) . (88)

It follows from items (i) to (iv) and Sec. B.1.1 (for the last estimate) that

Y (T ) = O(T−2β) +O
(
T−2(α−ξ)

(1− γ)2

)
, (89)

Z(T ) = O(T ξ−1) +O(T−ξ−2β) +O(T−ξ) +O
(
T ξ−2α

(1− γ)2

)
, (90)

W (T ) = O(T β−1) +O
(
|A|

1− γ
ln(T )T−β

)
+O

(
T 2(β−α)

(1− γ)2

)
+O(T 2(β−ξ)) . (91)
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Eq. (80) can be written:

2ζX(T ) ≤ C
(√

Y (T ) +
√
W (T )

)√
X(T ) + Z(T ) .

Solving this inequality implies:
X(T ) = O(Y (T ) +W (T ) + Z(T )) . (92)

Since 0 < β < ξ < α < 1, we obtain:

X(T ) = O(T ξ−1) +O
(
|A|

1− γ
ln(T )T−β

)
+O

(
T−2(α−ξ)

(1− γ)2

)
+O(T−2(ξ−β)) . (93)

B.1.3 End of Proof of Th. 6.1

We conclude our finite-time analysis of the critic by combining both previous sections (B.1.1 and B.1.2):

1

T

T∑
t=1

E[‖ωt − ω̄∗(θt)‖2] =
1

T

T∑
t=1

E[‖νt + ω∗(θt, ω̄t)− ω̄∗(θt)‖2]

=
1

T

T∑
t=1

E[‖νt + ω∗(θt, ω̄t)− ω∗(θt, ω̄∗(θt))‖2]

≤ 2W (T ) + CX(T )

= O(X(T ))

= O(T ξ−1) +O
(
|A|

1− γ
ln(T )T−β

)
+O

(
T−2(α−ξ)

(1− γ)2

)
+O(T−2(ξ−β)) , (94)

where the second equality follows from using the identity w∗(θ, ω̄∗(θ)) = ω̄∗(θ) for every θ ∈ Rd, the inequality
stems from using the classical inequality ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2) together with the fact that ω∗ is Lipschitz
continuous, the penultimate equality is a consequence of Eq. (92) and the last equality is the result of the previous
section (see Eq. (93)).

B.2 Proof of Th. 6.2: finite-time analysis of the actor

Recall the notation x̃t := (S̃t, Ãt, St+1). In this section, we overload this notation with the reward sequence (Rt),
i.e., x̃t := (S̃t, Ãt, St+1, Rt+1) . Let us fix some additional convenient notations. Define for every x̃ = (s̃, ã, s, r) ∈
S ×A× S × [−UR, UR], and every ω ∈ Rm, θ ∈ Rd:

δ̂(x̃, ω) := r + γφ(s)Tω − φ(s̃)Tω (95)
δ(x̃, θ) = r + γVπθ (s)− Vπθ (s̃) . (96)

Note that the TD error δt+1 used in Algorithm 1 coincides with δ̂(x̃t, ωt).

Recall that θ 7→ ∇J(θ) and θ 7→ Vπθ(s) (for every s ∈ S) are Lipschitz continuous. Throughout the proof,
L∇J (resp. LV ) stands for the Lipschitz constant of θ 7→ ∇J(θ) (resp. θ 7→ Vπθ(s) for every s ∈ S) and C∇J
(resp. CV ) denotes the upperbound of θ 7→ ‖∇J(θ)‖ (resp. θ 7→ Vπθ (s) for every s ∈ S). Since the function ∇J is
L∇J -Lipschitz continuous, a classical Taylor inequality combined with the update rule of (θt) yields:

J(θt+1) ≥ J(θt) +
αt

1− γ
〈∇J(θt), δ̂(x̃t, ωt)ψθt(S̃t, Ãt)〉 −

L∇J
2

α2
t

(1− γ)2
‖δ̂(x̃t, ωt)ψθt(S̃t, Ãt)‖2 . (97)

Recalling that θ 7→ ψθ(s, a) is bounded by Assumption 3.1-(c), (Rt) and (ωt) are bounded (see Assumption 5.3)
and S,A are finite, we obtain from Eq. (97) that there exists a constant C s.t.:

J(θt+1) ≥ J(θt) +
αt

1− γ
〈∇J(θt), δ̂(x̃t, ωt)ψθt(S̃t, Ãt)〉 − CL∇J

α2
t

(1− γ)2
. (98)
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Now, we decompose the TD error by introducing both the moving target ω̄∗(θt) and the TD error δ(x̃t, θt)
associated to the true value function Vπθt :

δ̂(x̃t, ωt) = [δ̂(x̃t, ωt)− δ̂(x̃t, ω̄∗(θt))] + [δ̂(x̃t, ω̄∗(θt))− δ(x̃t, θt)] + δ(x̃t, θt) . (99)

Incorporating this decomposition (99) into Eq. (98) gives:

J(θt+1) ≥ J(θt) +
αt

1− γ
〈∇J(θt), (δ̂(x̃t, ωt)− δ̂(x̃t, ω̄∗(θt)))ψθt(S̃t, Ãt)〉

+
αt

1− γ
〈∇J(θt), (δ̂(x̃t, ω̄∗(θt))− δ(x̃t, θt))ψθt(S̃t, Ãt)〉

+
αt

1− γ
〈∇J(θt), δ(x̃t, θt)ψθt(S̃t, Ãt)−∇J(θt)〉+

αt
1− γ

‖∇J(θt)‖2 − CL∇J
α2
t

(1− γ)2
. (100)

In Eq. (100), the first inner product corresponds to the bias introduced by the critic. The second one represents
the linear FA error and the third translates the Markovian noise. Our task now is to control each one of these
error terms in Eq. (100).

For the first term, observing that δ̂(x̃t, ωt)− δ̂(x̃t, ω̄∗(θt)) = (γφ(St+1)−φ(S̃t))
T (ωt− ω̄∗(θt)), the Cauchy-Schwarz

inequality leads to:

E[〈∇J(θt), δ̂(x̃t, ωt)− δ̂(x̃t, ω̄∗(θt))ψθt(S̃t, Ãt)〉] ≥ −C
√
E[‖∇J(θt)‖2]

√
E[‖ωt − ω̄∗(θt)‖2] . (101)

Then, we control each one of the second and third terms in Eq. (100) in the following sections successively.

B.2.1 Control of the Markovian bias term

We introduce a specific convenient notation for the second term, for every x̃ = (s̃, ã, s, r) ∈ S ×A×S × [−UR, UR],
and every θ ∈ Rd:

Γ(x̃, θ) := 〈∇J(θ), δ(x̃, θ)ψθ(s̃, ã)−∇J(θ)〉 .
Recall from Sec. B.1.1 the auxiliary Markov chain (x̌t), the Markov chain (x̄t) induced by the stationary
distribution and the mixing time τ defined in Eq. (52).

Similarly to Sec. B.1.1, we introduce the following decomposition:

E[Γ(x̃t, θt)] = E[Γ(x̃t, θt)− Γ(x̃t, θt−τ )] + E[Γ(x̃t, θt−τ )− Γ(x̌t, θt−τ )]

+ E[Γ(x̌t, θt−τ )− Γ(x̄t, θt−τ )] + E[Γ(x̄t, θt−τ )] . (102)

We address each term of this decomposition successively.

(a) For this first term, we write:

Γ(x̃t, θt)− Γ(x̃t, θt−τ ) = 〈∇J(θt)−∇J(θt−τ ), δ(x̃t, θt)ψθt(S̃t, Ãt)−∇J(θt)〉
+ 〈∇J(θt−τ ), (δ(x̃t, θt)− δ(x̃t, θt−τ ))ψθt(S̃t, Ãt)〉
+ 〈∇J(θt−τ ), δ(x̃t, θt−τ )(ψθt(S̃t, Ãt)− ψθt−τ (S̃t, Ãt))〉
+ 〈∇J(θt−τ ),∇J(θt−τ )−∇J(θt)〉 .

Moreover, note that:

δ(x̃t, θt)− δ(x̃t, θt−τ ) = γ(Vπθt (St+1)− Vπθt−τ (St+1)) + Vπθt−τ (S̃t)− Vπθt (S̃t) .

Remark that ∇J, θ 7→ ψθ and θ 7→ Vπθ are bounded functions under Assumption 3.1 . Since ∇J, Vπθ , ψθ are
in addition Lipschitz continuous as functions of θ (see, for e.g., [Shen et al., 2020, Lem. 3] for a proof for Vπθ )
under Assumption 3.1 , one can show after tedious inequalities that:

|Γ(x̃t, θt)− Γ(x̃t, θt−τ )| ≤ (L∇J(C(1 + CV ) + C∇J) + CC∇JLV + C(1 + CV )C∇J + C∇JL∇J)‖θt − θt−τ‖
≤ CC1−γ‖θt − θt−τ‖ , (103)
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where C1−γ := max(L∇JCV , L∇JC∇J , LV C∇J , CV C∇J) . Note here that the last notation highlights that
the constant depends on 1 − γ due to the dependence on 1 − γ of the constants defining C1−γ . We will
explicit this dependence later on in the proof.

(b) For the second term, we have:

|E[Γ(x̃t, θt−τ )− Γ(x̌t, θt−τ )]|
= |E[〈∇J(θt−τ ), δ(x̃t, θt−τ )ψθt−τ (S̃t, Ãt)− δ(x̌t, θt−τ )ψθt−τ (Št, Ǎt)〉]|
= |E[〈∇J(θt−τ ), δ(x̃t, θt−τ )ψθt−τ (S̃t, Ãt)− δ(x̌t, θt−τ )ψθt−τ (Št, Ǎt)〉|S̃t−τ+1, θt−τ ]|
≤ CCV C∇JE[dTV (P(x̃t ∈ ·|S̃t−τ+1, θt−τ ),P(x̌t ∈ ·|S̃t−τ+1, θt−τ ))]

≤ CCV C∇J |A|
t∑

i=t−τ
E[‖θi − θt−τ‖] . (104)

Here, the first inequality is a consequence of the definition of the total variation distance whereas the second
inequality follows from applying [Wu et al., 2020, Lem. B.2]. Indeed, using this last lemma, to show the last
inequality, it is sufficient to write:

dTV (P(x̃t ∈ ·|S̃t−τ+1, θt−τ ),P(x̌t ∈ ·|S̃t−τ+1, θt−τ ))

= dTV (P((S̃t, Ãt) ∈ ·|S̃t−τ+1, θt−τ ),P((Št, Ǎt) ∈ ·|S̃t−τ+1, θt−τ ))

≤ dTV (P(S̃t ∈ ·|S̃t−τ+1, θt−τ ),P(Št ∈ ·|S̃t−τ+1, θt−τ )) +
1

2
|A|LπE[‖θt − θt−τ‖] .

Iterating this inequality gives the desired result of Eq. (104) . We conclude from this item that:

E[Γ(x̃t, θt−τ )− Γ(x̌t, θt−τ )] ≥ −CCV C∇J |A|
t∑

i=t−τ
E[‖θi − θt−τ‖] .

(c) Regarding the third term, similarly to item (b), we can write:

E[Γ(x̌t, θt−τ )− Γ(x̄t, θt−τ )] ≥ −CCV C∇JE[dTV (P(x̌t ∈ ·|S̃t−τ+1, θt−τ ),P(x̄t ∈ ·|S̃t−τ+1, θt−τ ))]

= −CCV C∇JE[dTV (P(x̌t ∈ ·|S̃t−τ+1, θt−τ ), dρ,θt−τ ⊗ πθt−τ ⊗ p)]
= −CCV C∇JE[dTV (P(Št ∈ ·|S̃t−τ+1, θt−τ ), dρ,θt−τ )]

≥ −CCV C∇Jστ−1 , (105)

where the equalities follow from the definitions of x̌t, x̄t and the last inequality stems from Assumption 6.1 .

(d) Since the Markov chain x̄t is built s.t. S̄t ∼ dρ,θt−τ , Āt ∼ πθt−τ , St+1 ∼ p(·|S̄t, Āt), one can see that
E[Γ(x̄t, θt−τ )] = 0 .

We conlude this section from Eq. (102) by collecting Eqs. (103) to (105) (items (a) to (d)) to obtain:

E[Γ(x̃t, θt)] ≥ −CC1−γE[‖θt − θt−τ‖]− CCV C∇J
t∑

i=t−τ+1

E[‖θi − θt−τ‖]− CCV C∇Jστ−1

≥ −CC1−γ

t∑
i=t−τ+1

E[‖θi − θi−1‖]− CCV C∇J
t∑

i=t−τ+1

i∑
j=t−τ+1

E[‖θj − θj−1‖]− CCV C∇Jστ−1

≥ −CC1−γ

t∑
i=t−τ+1

E[‖θi − θi−1‖]− CCV C∇J
t∑

i=t−τ+1

t∑
j=t−τ+1

E[‖θj − θj−1‖]− CCV C∇Jστ−1

≥ −C(C1−γ + CV C∇Jτ)

t∑
i=t−τ+1

E[‖θi − θi−1‖]− CCV C∇Jστ−1

≥ −C
(

(C1−γ τ + CV C∇Jτ
2)
αt−τ
1− γ

+ CV C∇JαT

)
, (106)

where the last inequality uses the definition of the mixing time τ and the fact that the sequence (αt) is
nonincreasing.
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B.2.2 Control of the linear FA error term

Recall that θ 7→ ψθ is Lipschitz continuous, ∇J is bounded and remark that the quantity δ̂(x̃t, ω̄∗(θt))− δ(x̃t, θt)
is bounded. Therefore, using the Cauchy-Schwarz inequality, we have:

E[〈∇J(θt), (δ̂(x̃t, ω̄∗(θt))− δ(x̃t, θt))ψθt(S̃t, Ãt)〉]

= E[〈∇J(θt), (δ̂(x̃t, ω̄∗(θt))− δ(x̃t, θt))(ψθt(S̃t, Ãt)− ψθt−τ (S̃t, Ãt))〉]

+ E[〈∇J(θt), (δ̂(x̃t, ω̄∗(θt))− δ(x̃t, θt))ψθt−τ (S̃t, Ãt)〉]

≥ −C(1 + CV )C∇JE[‖θt − θt−τ‖] + E[〈∇J(θt), (δ̂(x̃t, ω̄∗(θt))− δ(x̃t, θt))ψθt−τ (S̃t, Ãt)〉] . (107)

Let us introduce for every x̃ = (s̃, ã, s, r) ∈ S ×A× S × [−UR, UR], and every θ ∈ Rd the shorthand notation:

∆(x̃, θ) := 〈∇J(θ), (δ̂(x̃, ω̄∗(θ))− δ(x̃, θ))ψθt−τ (S̃t, Ãt)〉 .

Note here that the term ψθt−τ (S̃t, Ãt) in the notation above is fixed in adequacy with Eq. (107). The following
decomposition holds:

∆(x̃t, θt) = (∆(x̃t, θt)−∆(x̃t, θt−τ )) + (∆(x̃t, θt−τ )−∆(x̌t, θt−τ ))

+ (∆(x̌t, θt−τ )−∆(x̄t, θt−τ )) + ∆(x̄t, θt−τ ) . (108)

Similar derivations to the previous section allow us to control each one of the error terms.

(i) Using that the mappings ∇J, θ 7→ Vπθ (s) (for every s ∈ S) and θ 7→ ω̄∗(θ) are L∇J (resp. LV , Lω̄∗)-Lipschitz
continuous, we obtain:

∆(x̃t, θt)−∆(x̃t, θt−τ ) ≥ −CC̃1−γ‖θt − θt−τ‖ ,

where C̃1−γ := L∇J(1 + CV ) + C∇J(LV + Lω̄∗) .

Using similar manipulations to the previous section, we get:

(ii)

E[∆(x̃t, θt−τ )−∆(x̌t, θt−τ )] ≥ −CC∇J(1 + CV )|A|
t∑

i=t−τ
E[‖θi − θt−τ‖] . (109)

(iii)
E[∆(x̌t, θt−τ )−∆(x̄t, θt−τ )] ≥ −CC∇J(1 + CV )στ−1 . (110)

(iv) For the last term, we can write:

E[∆(x̄t, θt−τ )|θt−τ ] ≥ −C‖∇J(θt−τ )‖ · E[|δ̂(x̄t, ω̄∗(θt−τ ))− δ(x̄t, θt−τ )||θt−τ ] . (111)

Then, recall that x̄t = (S̄t, Āt, St+1) where St+1 ∼ p(·|S̄t, Āt) and observe that:

δ̂(x̄t, ω̄∗(θt−τ ))− δ(x̄t, θt−τ ) = γ(φ(St+1)T ω̄∗(θt−τ )− Vπθt−τ (St+1))

+ (Vπθt−τ (S̄t)− φ(S̄t)
T ω̄∗(θt−τ )) . (112)

Recalling that p̃ = γp+ (1− γ)ρ and using Assumption 6.3 , one can then easily show that:

E[|δ̂(x̄t, ω̄∗(θt−τ ))− δ(x̄t, θt−τ )||θt−τ ] ≤ CεFA .

As a consequence, noticing that ∇J is bounded, we obtain from Eq. (111):

E[∆(x̄t, θt−τ )] ≥ −CC∇JεFA .
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Combining items (i) to (iv) with the boundedness of the function ∇J , we conclude from this section that:

E[〈∇J(θt), (δ̂(x̃t, ω̄∗(θt))− δ(x̃t, θt))ψθt(S̃t, Ãt)〉]

≥ −C((1 + CV )C∇J + C̃1−γ)E[‖θt − θt−τ‖]− CC∇J(1 + CV )|A|
t∑

i=t−τ
E[‖θi − θt−τ‖]

− CC∇J(1 + CV )στ−1 − CC∇JεFA

≥ −C
(

(((1 + CV )C∇J + C̃1−γ)τ + C∇J(1 + CV )|A|τ2)
αt−τ
1− γ

+ C∇J(1 + CV )αT + C∇JεFA

)
(113)

where the last inequality has already been established in Sec. B.1 with the choice of the mixing time τ = τT .

B.2.3 End of the proof of Th. 6.2

Combining Eq. (100) with Eqs. (101), (106) and (113) yields:

E[J(θt+1)] ≥ E[J(θt)] +
αt

1− γ
E[‖∇J(θt)‖2]− C αt

1− γ
√
E[‖∇J(θt)‖2]

√
E[‖ωt − ω̄∗(θt)‖2]

− C αt
1− γ

((C1
1−γτ + C2

1−γτ
2)
αt−τ
1− γ

+ C3
1−γαT + C∇JεFA)− CL∇J

α2
t

(1− γ)2
, (114)

where C1
1−γ := (1 +CV )C∇J + C̃1−γ +C1−γ , C2

1−γ := CV C∇J +C∇J (1 +CV )|A| and C3
1−γ := CV C∇J +C∇J (1 +

CV ) .

Rearranging and summing this inequality for t = τT to T lead to:

1

T − τT + 1

T∑
t=τT

E[‖∇J(θt)‖2] ≤ U1(T ) + U2(T ) + U3(T ) + CC∇JεFA , (115)

where

U1(T ) :=
1

T − τT + 1

T∑
t=τT

1− γ
αt

(E[J(θt+1)]− E[J(θt)]) , (116)

U2(T ) :=
C

T − τT + 1

T∑
t=τT

(
(C1

1−γτT + C2
1−γτ

2
T )
αt−τT
1− γ

+ C3
1−γαT + L∇J

αt
1− γ

)
, (117)

U3(T ) :=
C

T − τT + 1

T∑
t=τT

√
E[‖∇J(θt)‖2]

√
E[‖ωt − ω̄∗(θt)‖2] . (118)

Let us now provide estimates of each one of the quantities Ui(T ) for i = 1, 2, 3 .

1. Since the function J is bounded by UR
1−γ and the sequence (αt) is nonincreasing, the first term can be

controlled as follows:

U1(T ) =
1− γ

T − τT + 1

(
1

αT
E[J(θT+1)]− 1

ατT−1
E[J(θτT )] +

T∑
t=τT

(
1

αt−1
− 1

αt

)
E[J(θt)]

)

≤ UR
T − τT + 1

(
1

αT
+

1

ατT−1
+

1

αT
− 1

ατT−1

)
≤ UR
T − τT + 1

2

αT

= O
(
Tα−1

)
. (119)

2. We can observe from the policy gradient that C∇J = O((1−γ)−2), LV = O((1−γ)−2) and from the definition
of the value function that CV = O((1 − γ)−1). Moreover, it follows from [Zhang et al., 2020a, Lem. 4.2]
that L∇J = O((1− γ)−3). As a consequence, we have that:

C1−γ = O((1−γ)−5), C̃1−γ = O((1−γ)−4) ;C1
1−γ = O((1−γ)−5) ;C2

1−γ = O((1−γ)−3) ;C3
1−γ = O((1−γ)−3) .
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Recalling that the sequence of stepsizes (αt) is nonincreasing and that τT = O(lnT ), the second term can be
estimated by the following derivations:

U2(T ) =
C

T − τT + 1

(
(C1

1−γτT + C2
1−γτ

2
T )

T∑
t=τT

αt−τT
1− γ

+ C3
1−γ(T − τT + 1)αT + L∇J

T∑
t=τT

αt
1− γ

)

≤ C

T − τT + 1

(
(C1

1−γτT + C2
1−γτ

2
T )

T−τT∑
t=0

αt
1− γ

+ C3
1−γ(T − τT + 1)αT + L∇J

T−τT∑
t=0

αt
1− γ

)

≤ C

T − τT + 1

(
(C1

1−γτT + C2
1−γτ

2
T ) + L∇J

1− γ
· (T − τT + 1)1−α

1− α
+ C3

1−γ(T − τT + 1)αT

)

= O
(

ln2 T

(1− γ)6
T−α

)
(120)

3. Using the Cauchy-Schwarz inequality, we have:

U3(T ) ≤ C

T − τT + 1

√√√√ T∑
t=τT

E[‖∇J(θt)‖2]

√√√√ T∑
t=τT

E[‖ωt − ω̄∗(θt)‖2] . (121)

Define the quantities:

F (T ) :=
1

T − τT + 1

T∑
t=τT

E[‖∇J(θt)‖2] , (122)

E(T ) :=
1

T − τT + 1

T∑
t=τT

E[‖ωt − ω̄∗(θt)‖2] , (123)

K(T ) := U1(T ) + U2(T ) + CC∇JεFA . (124)

Using these definitions, we can rewrite Eq. (115) as follows:

F (T ) ≤ C
√
F (T )

√
E(T ) +K(T ) .

Solving this inequality yields:
F (T ) = O(E(T )) +O(K(T )) . (125)

We conclude the proof by remarking that items (1) to (3) above imply:

K(T ) = O
(
Tα−1

)
+O

(
ln2 T

(1− γ)6
T−α

)
+O

(
εFA

(1− γ)2

)
. (126)

Eqs. (125) and (126) combined can be explicitely written as follows:

1

T − τT + 1

T∑
t=τT

E[‖∇J(θt)‖2] = O
(
Tα−1

)
+O

(
ln2 T

(1− γ)6
T−α

)
+O

(
εFA

(1− γ)2

)

+O

(
1

T − τT + 1

T∑
t=τT

E[‖ωt − ω̄∗(θt)‖2]

)
.

Thus, by combining with the result of Theorem 6.1, we have:

1

T − τT + 1

T∑
t=τT

E[‖∇J(θt)‖2] = O
(
Tα−1

)
+O

(
ln2 T

(1− γ)6
T−α

)
+O

(
εFA

(1− γ)2

)

+O(T ξ−1) +O
(

lnT

1− γ
T−β

)
+O

(
T−2(α−ξ)

(1− γ)2

)
+O(T−2(ξ−β)) . (127)
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Then, we can write

1

T

T∑
t=1

E[‖∇J(θt)‖2] =
1

T

(
τT−1∑
t=1

E[‖∇J(θt)‖2] +

T∑
t=τT

E[‖∇J(θt)‖2]

)

≤ C lnT

T
+O

(
1

T − τT + 1

T∑
t=τT

E[‖∇J(θt)‖2]

)

= O
(
Tα−1

)
+O

(
lnT

(1− γ)6
T−β

)
+O

(
T−2(α−ξ)

(1− γ)2

)
+O(T−2(ξ−β)) +O

(
εFA

(1− γ)2

)
.

This completes the proof.

B.2.4 Proof of Cor. 6.3

The result is a consequence of combining Ths. 6.1 and 6.2 and simplifying the obtained rate using the fact
that 0 < β < ξ < α < 1 .

C Proof of the stability result

The proof is inspired from the techniques used in [Konda and Tsitsiklis, 2003a,
Lakshminarayanan and Bhatnagar, 2017]. Note though that our proof deviates from a simple applica-
tion of these results. On the one hand, the approach of Konda and Tsitsiklis [Konda and Tsitsiklis, 2003a] is not
sufficient to tackle the case of our three timescales algorithms which is more involved than the standard two
timescales actor-critic algorithm. On the other hand, the result of [Lakshminarayanan and Bhatnagar, 2017]
extending the rescaling technique of [Borkar and Meyn, 2000] to two timescales stochastic approximation
algorithms does not handle the Markovian noise and only addresses the case of additive martingale noise.

Before proceeding with the proof, we state the stability result with all the required assumptions.

C.1 Assumptions and stability theorem

We first introduce a useful assumption regarding the increments of the actor iterates.

Assumption C.1. There exists a constant C > 0 s.t. for every t ∈ N, ‖θt+1 − θt‖ ≤ αtC .

In order to satisfy this assumption, one can slightly change the update rule of the actor sequence (θt) of
our algorithm to bound its increments. This trick was previously used in [Konda, 2002, p. 80] for instance
and considered later in [Zhang et al., 2020b]. Let Γ : Rm → R be a function assumed to satisfy the following
inequalities for some positive constants C1 < C2: for every ω ∈ Rm, ‖ω‖·Γ(ω) ∈ [C1, C2] , and for every ω, ω′ ∈ Rm,
|Γ(ω)−Γ(ω′)| ≤ C2‖ω−ω′‖

1+‖ω‖+‖ω′‖ . An example of such function as provided in [Konda, 2002] is for instance the function
defined for every ω ∈ Rm by:

Γ(ω) := 1‖ω‖≤C0
+

1 + C0

1 + ‖ω‖
1‖ω‖≥C0

,

where C0 is some given positive constant. Given such a projection-like function Γ, we replace the update rule of
the actor of our actor-critic algorithm (see Algorithm 1 ) by a modified update rule guaranteeing Assumption C.1
above as follows:

θt+1 = θt + αt
1

1− γ
Γ(ωt)δt+1ψθt(S̃t, Ãt) .

We introduce an additional assumption on the stepsizes complementing Assumption 5.2.

Assumption C.2. The sequences of positive stepsizes satisfy the following:
(i) The sequences (βt), (αt) and (ξt) are nonincreasing.
(ii) For every t ∈ N, 0 < ξt ≤ 1 .
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Theorem C.1. Let Assumptions 3.1 , 5.1 , 5.2 , 5.4 , 6.2 , C.1 and C.2 hold true. Then, supk(‖ω̄k‖+ ‖ωk‖) <
∞, a.s., i.e., Assumption 5.3 holds true.

The proof of this result proceeds as for our convergence result: we address the faster timescale first before
analyzing the slower one.

C.2 Faster timescale analysis

In this section, our goal is to bound the norm of the sequence (ωt) evolving on the fast timescale driven by the step-
sizes (βt) using the norm of the sequence (ω̄t) updated in a slower timescale defined by the stepsizes (ξt). In order to
use a rescaling technique inspired from [Borkar and Meyn, 2000, Lakshminarayanan and Bhatnagar, 2017], we in-
troduce a few useful notations. Define for every θ ∈ Rd the functions hθ : R×S2 → R2m andGθ : R×S2 → R2m×2m

for every y = (r, s̃, s′) ∈ R× S2 by:

hθ(y) :=

[
rφ(s̃)

0

]
, Gθ(y) :=

[
φ(s̃)φ(s̃)T −γφ(s̃)φ(s′)T

0 0

]
.

Consider the sequences rk := (ωTk , ω̄
T
k )T and Yk+1 := (S̃k, Sk+1, Rk+1). Given the update rules of the se-

quences (ωk) and (ω̄k) from our algorithm, we have the following decomposition:

rk+1 = rk + βk

(
hθk(Yk+1)−Gθk(Yk+1)rk

)
+ βkMk+1rk + βkηk+1 ,

where (Mk+1) is a 2m × 2m-matrix valued martingale difference sequence w.r.t. the filtration (Fk) (where
the σ-field is generated by all the r.v.s up to time k) defined for every k ∈ N by:

Mk+1 :=

[
0 γφ(S̃k)(φ(Sk+1)− E[φ(Sk+1)|Fk])T

0 0

]
,

and (ηk+1) is a 2m-vector valued sequence defined for every k ∈ N by :

ηk+1 :=
ξk
βk

[
0

ωk+1 − ω̄k

]
.

Consider now the functions h̃ : Rd → R2m and G̃ : Rd → R2m×2m defined for every θ ∈ Rd by:

h̃(θ) :=

[
h(θ)

0

]
, G̃(θ) :=

[
Ḡ(θ) −γΦTDρ,θPθΦ

0 0

]
,

where we recall that h(θ) = ΦTDρ,θRθ and Ḡ(θ) = ΦTDρ,θΦ.

Let the sequence of nonnegative integers (kβj ) be defined by:

kβ0 = 0 , kβj+1 = min

k > kβj :

k−1∑
l=kj

βl > T

 , (128)

where T is a positive constant that will be chosen appropiately later on. For notational convenience, in the rest of
Section C.2, we will simply use the notation (kj) for the sequence (kβj ). The superscript β will be useful when
considering a different timescale in the upcoming section.

Then, for any j ∈ N, we can introduce the rescaled iterates r̂jk = rk
max(1,‖rkj ‖)

defined for every k ≥ kj and which
satisfy the following recurrence relation:

r̂jk+1 = r̂jk + βk

(
h̃(θk)

max(1, ‖rkj‖)
− G̃(θk)r̂jk

)
+ βk ε̂

j
k+1 + βk

ηk+1

max(1, ‖rkj‖)
,

where for k ≥ kj , the term ε̂jk+1 is defined by:

ε̂jk+1 :=

(
hθk(Yk+1)− h̃(θk)

max(1, ‖rkj‖)
− (Gθk(Yk+1)− G̃(θk))r̂jk

)
+ βkMk+1r̂

j
k .
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We also introduce the iterates (rjk) defined as follows: rjkj = r̂kj and

rjk+1 = rjk + βk

(
h̃(θk)

max(1, ‖rkj‖)
− G̃(θk)rjk

)
+ βk

ηk+1

max(1, ‖rkj‖)
.

Observing that the sequence rjk can be written as (ωjk, ω̄
j
k) and given the update rule of (rjk), we have the following

for every j ∈ N, k ≥ kj :{
ωjk+1 = ωjk + βk

(
h(θk)

max(1,‖rkj ‖)
+ γΦTDρ,θkPθkΦω̄jk − Ḡ(θk)ωjk

)
,

ω̄jk+1 = ω̄jk + ξk(ωjk+1 − ω̄
j
k) ,

(129)

Before proceeding, we recall two useful lemmas which we will repeatedly use in the proofs.
Lemma C.2. Let λ ∈ [0, 1). Suppose that (uk) and (εk) are nonnegative sequences satisfying uk+1 ≤ λuk + εk.
If supk εk <∞, then supk uk <∞.
Lemma C.3. Let G ∈ Rm×m be a matrix verifying for every ω ∈ Rm, ωTGω ≥ ε‖ω‖2 where ε > 0 is a constant.
Then, for sufficiently small γ > 0, ‖(I − γG)ω‖ ≤ (1− 1

2γε)‖ω‖ ≤ e
− 1

2γε‖ω‖.
Lemma C.4. We have the following:

(i) There exists a constant C > 0 s.t. supj maxkj≤k≤kj+1
‖rjk‖ ≤ C.

(ii) limj maxkj≤k≤kj+1
‖r̂jk − r

j
k‖ = 0, a.s.

(iii) There exists a constant C ′ > 0 s.t. supj maxkj≤k≤kj+1
‖r̂jk‖ ≤ C ′, a.s..

Proof. (i) Let us show that there exists a positive constant C̃ > 0 s.t. supj maxkj≤k≤kj+1 ‖ω
j
k‖ ≤ C̃. For j

sufficiently large s.t. Lem. C.3 holds and for k between kj and kj+1, we have

‖ωjk+1‖ ≤ ‖(I − βkḠ(θk))ωjk‖+ βk
‖h(θk)‖

max(1, ‖rkj‖)
+ βk‖γΦTDρ,θkPθkΦω̄jk‖

≤ (1− 1

2
βkε)‖ωjk‖+ βk

C1

max(1, ‖rkj‖)
+ βkC2‖ω̄jk‖

≤ e−
1
2 ε

∑k
i=kj

βi‖ωjkj‖+

 k∑
i=kj

βi

 C1

max(1, ‖rkj‖)
+ C2

 k∑
i=kj

βi‖ω̄ji ‖


≤ 1 + T ′C1 + C2

 k∑
i=kj

βi‖ω̄ji ‖

 , (130)

where C1, C2 are two positive constants, T ′ is a positive constant (which we do not explicit) s.t. T ′ > T ,
the second inequality follows from the fact that the matrix Ḡ(θ) is ε-uniformly positive definite (i.e., for
every ω ∈ Rm, ωT Ḡ(θ)ω ≥ ε‖ω‖2) together with Lem. C.3 and the last inequality stems from the fact
that ‖ωjkj‖ ≤ 1 by definition.
We now relate the term ‖ω̄ji ‖ to the quantity maxkj≤l≤i ‖ω

j
l ‖. For every i ∈ {kj · · · , kj+1 − 1},

‖ω̄ji+1‖ ≤ ‖ω̄
j
i ‖+ ξi‖ωji+1‖ ≤ ‖ω̄

j
kj
‖+

i∑
l=kj

ξl‖ωjl+1‖ ≤ 1 + T ′
(

max
kj≤l≤i

ξl
βl

)(
max

kj≤l≤i+1
‖ωjl ‖

)
.

Notice then that ‖ω̄jk‖ is bounded whenever ‖ωjk‖ is bounded. It remains to show that the sequence (ωjk) is
bounded. For this purpose, combining the above inequality with Eq. (130) yields

max
kj≤k≤kj+1

‖ωjk‖ ≤ (1 + T ′C1 + C2T
′) + C2T

′ max
kj≤k≤kj+1

 k∑
i=kj

βi

(
max
kj≤l≤i

ξl
βl

)(
max
kj≤l≤i

‖ωjl ‖
)

≤ (1 + T ′C1 + C2T
′) + C2T

′2
(

max
kj≤k≤kj+1

ξk
βk

)(
max

kj≤k≤kj+1

‖ωjk‖
)
.
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Since the sequence ( ξkβk ) converges to 0 by Assumption 5.2 , there exists υ > 0 s.t. for j sufficiently large,
C2T

′2(maxkj≤k≤kj+1

ξk
βk

) ≤ 1− υ. Thus,

max
kj≤k≤kj+1

‖ωjk‖ ≤
1 + T ′C1 + C2T

′

υ
,

which concludes the proof.

(ii) This result is a consequence of applying [Konda and Tsitsiklis, 2003a, Lem. 9] to the sequence (rt).
Note that Assumption 6 in [Konda and Tsitsiklis, 2003a] is not needed for this result to hold since we
proved item one. This means that the matrix G̃(θ) is not required to be uniformly positive definite
(see [Konda and Tsitsiklis, 2003a, Assumption 6]). We leave the verification of the remaining technical
assumptions to the reader.

(iii) This item follows from combining the two first items with the triangular inequality. Remark that the second
item implies that the sequence (maxkj≤k≤kj+1

‖r̂jk − r
j
k‖)j is a.s. bounded.

Recall that for every ω̄ ∈ Rm, θ ∈ Rd,

ω∗(ω̄, θ) = Ḡ(θ)−1
(
h(θ) + γΦTDρ,θPθΦω̄

)
.

Now, we define for every j ∈ N and for every ω̄ ∈ Rm, θ ∈ Rd a rescaled version ω̃∗j (ω̄, θ) of ω∗(ω̄, θ) as follows:

ω̃∗j (ω̄, θ) := Ḡ(θ)−1

(
h(θ)

max(1, ‖rkj‖)
+ γΦTDρ,θPθΦω̄

)
. (131)

Notice that there exists a constant C∗ > 0 s.t. for every j ∈ N, for every ω̄ ∈ Rm, θ ∈ Rd,

max (‖ω∗(ω̄, θ)‖, ‖ω̃∗j (ω̄, θ)‖) ≤ C∗(1 + ‖ω̄‖) . (132)

Lemma C.5. There exists j∗ ∈ N, T∗ > 0 s.t for every integer j ≥ j∗ and T ≥ T∗ (T as in the definition of kj),
if ‖ωkj − ω∗(ω̄kj , θkj )‖ > C1(1 + ‖ω̄kj‖) for some constant C1 > 0 , then,

‖ωkj+1
− ω∗(ω̄kj+1

, θkj+1
)‖ ≤ 3

4
‖ωkj − ω∗(ω̄kj , θkj )‖ , a.s.

Proof. Notice that if ‖ωkj − ω∗(ω̄kj , θkj )‖ > C1(1 + ‖ω̄kj‖), using Eq. (132), we obtain that:

‖rkj‖ = ‖(ωkj , ω̄kj )‖ =
√
‖ωkj − ω∗(ω̄kj , θkj ) + ω∗(ω̄kj , θkj )‖2 + ‖ω̄kj‖2

≤
√

2‖ωkj − ω∗(ω̄kj , θkj )‖2 + 2‖ω∗(ω̄kj , θkj )‖2 + ‖ω̄kj‖2

≤
√

2‖ωkj − ω∗(ω̄kj , θkj )‖+
√

2C∗2(1 + ‖ω̄kj‖)2 + ‖ω̄kj‖2

≤
√

2‖ωkj − ω∗(ω̄kj , θkj )‖+
√

2C∗ + (
√

2C∗ + 1)‖ω̄kj‖) .

As a consequence, we have:

‖ωkj − ω∗(ω̄kj , θkj )‖
max(1, ‖rkj‖)

≥
‖ωkj − ω∗(ω̄kj , θkj )‖√

2‖ωkj − ω∗(ω̄kj , θkj )‖+ (
√

2C∗ + 1)(1 + ‖ω̄kj‖)
≥ 1
√

2 +
√

2C∗+1
C1

.

Then, setting C2 :=
√

2 +
√

2C∗+1
C1

, it follows that:

‖ωkj+1 − ω∗(ω̄kj+1 , θkj+1)‖
‖ωkj − ω∗(ω̄kj , θkj )‖

=
‖ω̂jkj+1

− ω̃∗j (ˆ̄ωjkj+1
, θkj+1)‖

‖ω̂jkj − ω̃
∗
j (ˆ̄ωjkj , θkj )‖

≤ C2(‖ω̂jkj+1
−ωjkj+1

‖+‖ωjkj+1
− ω̃∗j (ˆ̄ωkj+1

, θkj+1
)‖)

(133)
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Since the first term of the right-hand side converges a.s. to zero as j goes to infinity by Lem. C.4 , there
exists j0 ∈ N s.t. for every j ≥ j0,

‖ω̂jkj+1
− ωjkj+1

‖ ≤ 1

4C2
, a.s. (134)

We now establish a bound for the second term in Eq. (133). For every kj ≤ k < kj+1, we have that:

‖ωjk+1 − ω̃
∗
j (ω̄jk+1, θk+1)‖ = ‖ωjk − ω̃

∗
j (ω̄jk, θk) + βk(

h(θk)

max(1, ‖rkj‖)
+ γΦTDρ,θkPθkΦω̄jk − Ḡ(θk)ωjk)

+ ω̃∗j (ω̄jk, θk)− ω̃∗j (ω̄jk+1, θk+1)‖

≤ ‖ωjk − ω̃
∗
j (ω̄jk, θk)− βkḠ(θk)(ωjk − ω̃

∗
j (ω̄jk, θk))‖

+ ‖ω̃∗j (ω̄jk, θk)− ω̃∗j (ω̄jk+1, θk+1)‖

≤ ‖I − βkḠ(θk)‖‖ωjk − ω̃
∗
j (ω̄jkj , θk)‖+ C(ξk + αk)

where C > 0 is a constant coming from Lem. C.4 and the last inequality stems from the fact that the function
(ω̄, θ) 7→ ω̃∗j (ω̄, θ) is Lipschitz continuous for every j (by the same arguments as for the proof showing that the
function U is Lipschitz before Lemma A.5). Similarly to the proof of the first item of Lem. C.4 , we have:

‖ωjkj+1
− ω̃∗j (ω̄jkj+1

, θkj+1
)‖ ≤ e− 1

2 εT ‖ωjkj − ω̃
∗
j (ω̄jkj , θkj )‖+ C

kj+1∑
k=kj

(ξk + αk)

≤ e− 1
2 εT

(
‖ωjkj‖+ ‖ω̃∗j (ω̄jkj , θkj )‖

)
+ C

kj+1∑
k=kj

(ξk + αk) . (135)

By definition, ‖ωjkj‖ ≤ 1, ‖ω̄jkj‖ ≤ 1, and it stems from Eq. (132) that ‖ωjkj‖+‖ω̃∗j (ω̄jkj , θkj )‖ ≤ C
′ for some C ′ > 0.

Choosing T ≥ 2 ln(4C′/C2)
ε , we obtain: e−

1
2 εT

(
‖ωjkj‖+ ‖ω̃∗j (ω̄jkj , θkj )‖

)
≤ 1

4C2
. We also have that for every j ∈ N,∑kj+1

k=kj
(ξk + αk) ≤ maxkj≤k≤kj+1

ξk+αk
βk

T ′. Since (ξk + αk)/βk → 0, there exists j1 ∈ N s.t., for every j ≥ j1 ,

C
∑kj+1

k=kj
(ξk + αk) ≤ 1

4C2
. As a consequence, Eq. (135) implies that for every j ≥ max(j0, j1),

‖ωjkj+1
− ω̃∗j (ω̄jkj+1

, θkj+1
)‖ ≤ 1

2C2
. (136)

Combining Eq. (133) with Eqs. (134) and (136) yields for every j ≥ max(j0, j1),

‖ωkj+1
− ω∗(ω̄kj+1

, θkj+1
)‖

‖ωkj − ω∗(ω̄kj , θkj )‖
≤ C2

(
1

4C2
+

1

2C2

)
=

3

4
,

which is the desired inequality.

Theorem C.6. There exists a constant C > 0 s.t. for every j ∈ N,

(i) ‖ωkj − ω∗(ω̄kj , θkj )‖ ≤ C(1 + ‖ω̄kj‖), a.s.
(ii) ‖ωkj‖ ≤ C(1 + ‖ω̄kj‖), a.s.
(iii) maxkj≤k≤kj+1

‖ωk‖ ≤ C(1 + ‖ω̄kj‖), a.s.

Proof. (i) The proof follows exactly the same path than the proof of [Lakshminarayanan and Bhatnagar, 2017,
Th. 7-(ii)]. We reproduce it here for completeness. On a set of positive probability, let us assume on
the contrary that there exists a monotonically increasing sequence (jl) for which Cjl ↑ ∞ as l →∞ and
‖ωkjl ‖ ≥ Cjl(1 + ‖ω̄kjl ‖). Now, from Lem. C.5 , we know that if ‖ωkj −ω∗(ω̄kj , θkj )‖ > C1(1 + ‖ω̄kj‖), then
‖ωki − ω∗(ω̄ki , θki)‖ for i ≥ j falls at an exponential rate until it is within the ball of radius C1(1 + ‖ω̄kj‖).
Thus, corresponding to the sequence (jl), there must exist another sequence (j′l) s.t. jl−1 ≤ j′l ≤ jl
and ‖ωkj′

l
−1
− ω∗(ω̄kj′

l
−1
, θkj′

l
−1

)‖ is within the ball of radius C1(1 + ‖ω̄kj′
l
−1
‖) and ‖ωk′l − ω∗(ω̄k′l , θk′l)‖
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is greater than Cjl(1 + ‖ω̄kj′
l

‖). However, we know from Lem. C.4 that the iterates can only grow
by a factor of C ′ between the time kj′l−1 and kj′l . This leads to a contradiction. We conclude that
‖ωkj − ω∗(ω̄kj , θkj )‖ ≤ C̄(1 + ‖ω̄kj‖) for some C̄ > 0.

(ii) The inequality is a consequence of the first item combined with Eq. (132).

(iii) Using the definition of the sequence (ω̂jk) and the third item of Lem. C.4 (providing the constant C ′)
combined with the second item of the present theorem, we obtain the desired result as follows:

‖ωk‖ = max(1, ‖(ωkj , ω̄kj )‖)‖ω̂
j
k‖ ≤ (1 + ‖ωkj‖+ ‖ω̄kj‖)C ′ ≤ C(1 + ‖ω̄kj‖) ,

where C := C ′(1 + C̄) and C̄ comes from the proof of the first item.

C.3 Slower timescale analysis

We now turn to the analysis of the sequence (ω̄t) evolving in a slower timescale than that of the sequence (ωt).
Recall the update rule of the sequence (ω̄t):

ω̄k+1 = ω̄k + ξk(ωk+1 − ω̄k) .

Given a constant T > 0, let (kβj ) be defined as in Eq. (128) and define the sequence (kξn) (which we will sometimes
simply denote (kn) in the rest of this section when unambiguous) as follows:

kξ0 = 0, kξn+1 = min

kβj > kn : j ∈ N ,
kβj −1∑
l=kn

ξl > T

 .

Since ξk/βk converges to 0, there exists Cξ > 0 such that T ≤
∑kn+1

l=kn
ξl ≤ CξT .

Similarly to the previous section, for every n ∈ N, we define the rescaled iterates (ω̂nk )k and (ˆ̄ωnk )k for every k ≥ kn
as follows:ω̂

n
kn

=
ωkn

max(1,‖rkn‖)

ω̂nk+1 = ω̂nk + βkφ(S̃k)
(

Rk+1

max(1,‖rkn‖)
+ γφ(Sk+1)T ˆ̄ωnk − φ(S̃k)T ω̂nk

) ;

{
ˆ̄ωnkn =

ω̄kn
max(1,‖rkn‖)

ˆ̄ωnk+1 = ˆ̄ωnk + ξk(ω̂nk+1 − ˆ̄ωnk ) ,

(137)

and their noiseless counterparts (ωnk )k and (ω̄nk )k are defined for every n ∈ N, k ≥ kn by:{
ωnkn = ω̂nkn
ωnk+1 = ωnk + βk( h(θk)

max(1,‖rkn‖)
+ γΦTDρ,θkPθkΦω̄nk − Ḡ(θk)ωnk )

;

{
ω̄nkn = ˆ̄ωnkn
ω̄nk+1 = ω̄nk + ξk(ωnk+1 − ω̄nk ) .

(138)

The following lemma states the almost sure boundedness of the above rescaled and noiseless iterates.

Lemma C.7. The following assertions hold true:
(i) supn maxkn≤k≤kn+1(‖ ˆ̄ωnk ‖+ ‖ω̂nk ‖) <∞ , a.s.
(ii) supn maxkn≤k≤kn+1

(‖ω̄nk ‖+ ‖ωnk ‖) <∞ , a.s.

Proof. (i) Let n ∈ N. By definition of the sequence (kn), there exists j ∈ N s.t. kn = kβj . There exists C > 0

(independent of n) s.t. for every k ∈ {kβj , · · · , k
β
j+1 − 1}, a.s.,

‖ ˆ̄ωnk+1‖ ≤ (1− ξk)‖ ˆ̄ωnk ‖+ ξk‖ω̂nk+1‖ ≤ ‖ ˆ̄ωnk ‖+ ξkC(1 + ‖ ˆ̄ωn
kβj
‖) ,
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where we used Th. C.6-(iii) for the last inequality. It follows that for every k ∈ {kβj , · · · , k
β
j+1 − 1}, a.s.,

‖ ˆ̄ωnk+1‖ ≤

1 + C

k∑
l=kβj

ξl

 ‖ ˆ̄ωnkβj ‖+ C

k∑
l=kβj

ξl ≤ e
C

∑k

l=k
β
j

ξl
‖ ˆ̄ωn

kβj
‖+ C

k∑
l=kβj

ξl .

As a consequence, using the notation uj :=
∑kβj+1−1

l=kβj
ξl for every j ∈ N, we obtain that a.s.,

‖ ˆ̄ωn
kβj+1

‖ ≤ eCuj‖ ˆ̄ωn
kβj
‖+ Cuj . (139)

For every l, p ∈ N, let U(l, p) be the set of integers j s.t. l ≤ kβj ≤ p. Recall that for every n ∈ N, there
exist integers jn+1 > jn s.t. kn = kβjn and kn+1 = kβjn+1

by definition of the sequence (kn). Then, using
Eq. (139), we have for every j ∈ U(kn, kn+1), a.s,

‖ ˆ̄ωn
kβj+1

‖ ≤

 ∏
i∈U(kn,k

β
j+1−1)

eCui

 ‖ ˆ̄ωnkn‖+ C
∑

p∈U(kn,k
β
j+1−1)

 ∏
i∈U(kβp+1,k

β
j+1−1)

eCui

up

= eC
∑k

β
j+1
−1

l=kn
ξl‖ ˆ̄ωnkn‖+ C

∑
p∈U(kn,k

β
j+1−1)

e
C

∑k
β
j+1
−1

l=k
β
p+1

ξl
up

≤ eCCξT + CeCCξTCξT ,

where the last inequality comes from the facts that ‖ ˆ̄ωnkn‖ is bounded by 1 and that
∑kn+1

l=kn
ξl ≤ CξT . To

conclude, notice that this bound also holds for any k ∈ {kn, · · · , kn+1} and use Th. C.6-(iii) to bound ‖ω̂nk ‖.

(ii) The proof of this item follows a similar path to the first one. Notice that the iterates considered in this
item are noiseless versions of their counterparts which were shown to be bounded in the first item.

Lemma C.8. limn maxkn≤k≤kn+1

∥∥(ω̂nk , ˆ̄ωnk )− (ωnk , ω̄
n
k )
∥∥ = 0 .

Proof. Let n ∈ N. Consider the shorthand notations xnk := ω̂nk − ωnk and ynk := ˆ̄ωnk − ω̄nk for k ≥ kξn. Note that for
every k ≥ kξn, the sequences (xnk )k and (ynk )k satisfy the recurrence relations:{

xnk+1 = xnk + βk(γΦTDρ,θkPθkΦynk − Ḡ(θk)xnk ) + βk ε̂
n
k ,

ynk+1 = ynk + ξk(xnk+1 − ynk ) ,
(140)

where the Markovian noise sequence (ε̂nk )k is defined for every k ≥ kξn by:

ε̂nk :=
1

max(1, ‖rkξn‖)

[
φ(S̃k)Rk+1−h(θk)

]
+γ

[
φ(S̃k)φ(Sk+1)T−ΦTDρ,θkPθkΦ

]
ˆ̄ωnk+

[
Ḡ(θk)−φ(S̃k)φ(S̃k)T

]
ω̂nk .

(141)

It is clear that the sequence (ε̂nk ) is a.s. bounded using Lem. C.7. Define the mapping x∗ : Rm × Rd → Rm for
every θ ∈ Rd, y ∈ Rm by:

x∗(y, θ) := γḠ(θ)−1ΦTDρ,θPθΦy . (142)

Then, we have the following decomposition for every k ≥ kξn:

ynk+1 = ynk + ξk(x∗(ynk , θk)− ynk ) + ξk(xnk+1 − xnk ) + ξk(xnk − x∗(ynk , θk))

= (Im − ξkḠ(θk)−1G(θk))ynk + ξk(xnk+1 − xnk ) + ξk(xnk − x∗(ynk , θk)) .
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Since Ḡ(θ)−1G(θ) is uniformly (in θ) κ-positive definite (see Assumption 6.2), Lem. C.3 implies that there
exists κ > 0 s.t. for sufficiently large n and k ∈ {kξn, · · · , k

ξ
n+1 − 1},

‖ynk+1‖ ≤ e−
1
2κT ‖yn

kξn
‖+

k∑
l=kξn

ξl‖xnl+1 − xnl ‖+ ξl‖xnl − x∗(ynl , θl)‖

=

k∑
l=kξn

ξl‖xnl+1 − xnl ‖+ ξl‖xnl − x∗(ynl , θl)‖

≤
k∑

l=kξn

ξlβlC + CξT max
l∈{kξn,··· ,k}

‖xnl − x∗(ynl , θl)‖ ,

where the equality comes from the fact that yn
kξn

= 0 by definition and the last inequality comes from the fact
that xnl+1 − xnl = βl(γΦTDρ,θlPθlΦy

n
l − Ḡ(θl)x

n
l + ε̂nl ) and the a.s. boundedness of the sequences (xnk )k,(ynk )k

and (ε̂nk )k resulting from Lem. C.7. Observe then that:

kξn+1−1∑
l=kξn

ξlβl =

kξn+1−1∑
l=kξn

ξl
βl
β2
l =

kβjn+1
−1∑

l=kβjn

ξl
βl
β2
l ≤ max

kβjn≤l≤k
β
jn+1

(
ξl
βl

) +∞∑
l=kβjn

β2
l . (143)

Since
∑
n β

2
n < ∞ and ξn/βn → 0, it follows that

∑kξn+1−1

k=kξn
βkξk → 0. Combining this result with Lem. C.11

below yields:
lim
n→∞

max
kξn≤k≤kξn+1

‖ynk ‖ = 0, a.s. (144)

We now show the same result for the sequence (xnk )k. First, observing that xnkn = 0, we obtain by iterating
Eq. (140) that:

xnk+1 =

k∑
l=kξn

 k∏
p=l+1

(Im − βpḠ(θp))

βl (γΦTDρ,θlPθlΦy
n
l + ε̂nl

)
.

Then, similarly to the first part of the proof, there exist C > 0 and ε > 0 s.t. for sufficiently large n
and kn ≤ k ≤ kn+1,

‖xnk+1‖ ≤ C
k∑

l=kξn

 k∏
p=l+1

(1− 1

2
εβp)

βl‖ynl ‖+

∥∥∥∥∥∥
k∑

l=kξn

 k∏
p=l+1

(Im − βpḠ(θp))

βlε̂nl
∥∥∥∥∥∥

≤ C 2

ε
max

kξn≤l≤kξn+1

‖ynl ‖+

∥∥∥∥∥∥
k∑

l=kξn

 k∏
p=l+1

(Im − βpḠ(θp))

βlε̂nl
∥∥∥∥∥∥ .

where the first inequality stems from the fact that the matrix Ḡ(θ) is uniformly positive definite and Lem. C.3,
and the last inequality is a consequence of [Kaledin et al., 2020, Lem. 12]. Eq. (144) and Lem. C.12 below entail
together that:

lim
n→∞

max
kξn≤k≤kξn+1

‖xnk‖ = 0, a.s. ,

which concludes the proof.

Lemma C.9. There exists a sequence (δn) that converges to 0 when n → ∞ and a constant C > 0 s.t. for
every n ∈ N,

‖ω̄nkn+1
‖ ≤ e− 1

2κT ‖ω̄nkn‖+ δn +
C

max(1, ‖rkn‖)
.
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Proof. Recall from Eq. (131) that ω̃∗n(ω̄, θ) := Ḡ(θ)−1
(

h(θ)
max(1,‖rkn‖)

+ γΦTDρ,θPθΦω̄
)

for every n ∈ N, ω̄ ∈
Rm, θ ∈ Rd. It is clear that for every k ≥ kn:

ω̄nk+1 = ω̄nk + ξk(ω̃∗n(ω̄nk , θk)− ω̄nk ) + ξk(ωnk+1 − ωnk ) + ξk(ωnk − ω̃∗n(ω̄nk , θk)) .

Rewriting this equation using the definition of ω̃∗n gives us:

ω̄nk+1 = (I − ξkḠ(θk)−1G(θk))ω̄nk + ξk
Ḡ(θk)−1h(θk)

max(1, ‖rkn‖)
+ ξk(ωnk+1 − ωnk ) + ξk(ωnk − ω̃∗n(ω̄nk , θk)) .

Remember that Ḡ(θ)−1G(θ) is (uniformly) positive definite. Thus, for sufficiently large n, Lem. C.3 ensures the
existence of κ > 0 s.t.:

‖ω̄nk+1‖ ≤ (1− 1

2
κξk)‖ω̄nk ‖+ ξk

‖Ḡ(θk)−1h(θk)‖
max(1, ‖rkn‖)

+ ξk‖ωnk+1 − ωnk ‖+ ξk‖ωnk − ω̃∗n(ω̄nk , θk)‖ . (145)

Since the sequences (ωnk ), (ω̄nk ) and h(θk) are bounded and supθ∈Rd ‖Ḡ(θ)−1‖ <∞, there exists C > 0 s.t. for
every k ∈ {kξn, · · · , k

ξ
n+1}, ‖Ḡ(θk)−1h(θk)‖ ≤ C and:

‖ωnk+1 − ωnk ‖ = βk

∥∥∥∥ h(θk)

max(1, ‖rkn‖)
+ γΦTDρ,θkPθkΦω̄nk − Ḡ(θk)ωnk

∥∥∥∥ ≤ βkC .
Therefore, for sufficiently large n,

‖ω̄n
kξn+1

‖ ≤ e− 1
2κT ‖ω̄n

kξn
‖+

CCξT

max(1, ‖rkn‖)
+ CCξTβkn +

kξn+1∑
k=kξn

ξk‖ωnk − ω̃∗n(ω̄nk , θk)‖ .

It remains to show that
∑kξn+1

k=kξn
ξk‖ωnk − ω̃∗n(ω̄nk , θk)‖ converges to 0 as n→∞. For this purpose, we adopt the

same strategy used for studying the sequence (ω̄nk ). First, we write for every k ≥ kn,

ωnk+1 − ω̃∗n(ω̄nk+1, θk+1) = (I − βkḠ(θk))(ωnk − ω̃∗n(ω̄nk , θk))− (ω̃∗n(ω̄nk+1, θk+1)− ω̃∗n(ω̄nk , θk)) .

Then, applying Lem. C.3, for sufficiently large n, there exists ε > 0 s.t. for every k ∈ {kn, · · · , kn+1},

‖ωnk+1 − ω̃∗n(ω̄nk+1, θk+1)‖ ≤ (1− βk
1

2
ε)‖ωnk − ω̃∗n(ω̄nk , θk)‖+ ‖ω̃∗n(ω̄nk+1, θk+1)− ω̃∗n(ω̄nk , θk)‖ .

We can show that, for every n, the function (ω̄, θ) 7→ ω̃∗n(ω̄, θ) is Lipschitz continuous (same arguments as the
proof showing that the function U is Lipschitz before Lem. A.5). It follows that there exists positive constants C
and C ′ s.t. for every k ∈ {kξn, · · · , k

ξ
n+1},

‖ω̃∗n(ω̄nk+1, θk+1)− ω̃∗n(ω̄nk , θk)‖ ≤ Cξk‖ωnk+1 − ω̄nk ‖+ Cαk ≤ C ′ξk ,

where the last inequality comes from the boundedness of the sequences ωnk and ω̄nk for k ∈ {kξn, · · · , k
ξ
n+1}, and

the fact that there exists C > 0 s.t. for every k, αk ≤ Cξk. Therefore, noticing that there exists C > 0 s.t.
‖ωn

kξn
− ω̃∗n(ω̄n

kξn
, θkξn)‖ ≤ C, it is easy to check that

‖ωnk+1 − ω̃∗n(ω̄nk+1, θk+1)‖ ≤ e
− 1

2 ε
∑k

l=k
ξ
n
βl
C + C ′

k∑
l=kξn

e−
1
2 ε

∑k
p=l+1 βpξl .

To conclude the proof, it is sufficient to show that:

lim
n→∞

kξn+1∑
k=kξn

ξk

(
e
− 1

2 ε
∑k−1

l=k
ξ
n

βl
+

k−1∑
l=kξn

e−
1
2 ε

∑k−1
p=l+1 βpξl

)
= 0 .

The proof of this technical result is deferred to Lem. C.15 below.
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Theorem C.10. We have the following:

(i) supn ‖ω̄kn‖ <∞, a.s.
(ii) supn maxkn≤k≤kn+1 ‖ω̄nk ‖ <∞, a.s.
(iii) supk ‖ω̄k‖ <∞, a.s.

Proof. (i) Combining Lem. C.9 with Lem. C.8 implies the existence of a sequence (δ̂n) converging to zero a.s.
s.t. for sufficiently large n,

‖ ˆ̄ωnkn+1
‖ ≤ e− 1

2κT ‖ ˆ̄ωnkn‖+ δ̂n +
C

max(1, ‖rkn‖)
.

Multiplying both sides by max(1, ‖rkn‖) and using the fact that a.s.:

max(1, ‖rkn‖) ≤ 1 + ‖ωkn‖+ ‖ω̄kn‖ ≤ (1 + C ′)(1 + ‖ω̄kn‖) ,

where C ′ > 0 in the last inequality is a constant stemming from Th. C.6-(iii), we obtain a.s.:

‖ω̄kn+1
‖ ≤ (e−

1
2κT + (1 + C ′)δ̂n)‖ω̄kn‖+ (1 + C ′)δ̂n + C .

The result follows from Lem. C.2.

(ii) This result can be proven following similar arguments to the first item by exploiting Eq. (145) in the proof
of Lem. C.9 and the results therein.

(iii) First, using the definition of (ˆ̄ωnk ), observe that:

sup
k
‖ω̄k‖ = sup

n
max

kn≤k≤kn+1

‖ω̄k‖

= sup
n

max
kn≤k≤kn+1

{max(1, ‖(ωkn , ω̄kn)‖) · ‖ ˆ̄ωnk ‖} . (146)

Then, using that max(a, b) ≤ a+ b for any nonnegative reals a, b, together with the triangular inequality, it
follows from Eq. (146) that:

sup
k
‖ω̄k‖ ≤ sup

n
(1 + ‖ωkn‖+ ‖ω̄kn‖)( max

kn≤k≤kn+1

‖ω̄nk ‖+ max
kn≤k≤kn+1

‖ ˆ̄ωnk − ω̄nk ‖) . (147)

Given Th. C.6-(ii), there exists a constant C̃ > 0 s.t. a.s.:

sup
k
‖ω̄k‖ ≤ sup

n
C̃(1 + ‖ω̄kn‖)( max

kn≤k≤kn+1

‖ω̄nk ‖+ max
kn≤k≤kn+1

‖ ˆ̄ωnk − ω̄nk ‖) . (148)

The result follows from the boundedness of the sequences (ω̄kn) (see the first item) and (ω̄nk ) (see the second
item) and Lem. C.8.

C.4 Technical lemmas

Lemma C.11. With (xnk ) and (ynk ) defined as in the proof of Lem. C.8, it holds that:

lim
n→∞

max
kξn≤k≤kξn+1

‖xnk − x∗(ynk , θk)‖ = 0, a.s. ,

where we recall that for every y ∈ Rm, θ ∈ Rd, x∗(y, θ) = γḠ(θ)−1ΦTDρ,θPθΦy as previously defined in Eq. (142).

Proof. Recall that xn
kξn

= yn
kξn

= 0. Throughout this proof, we will use the shorthand notation vnk := xnk−x∗(ynk , θk).
Recall that (xnk ) and (ynk ) are bounded sequences in the sense of Lem. C.7 and so is the sequence (vnk ). Using
Eq. (140), it is easy to check that the sequence (vnk ) satisfies for every k ≥ kξn the recurrence relation:

vnk+1 = (Im − βkḠ(θk))vnk + (x∗(ynk , θk)− x∗(ynk+1, θk+1)) + βk ε̂
n
k .
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Iterating this equality for k ≥ kξn and observing that vn
kξn

= 0 leads to the identity:

vnk+1 =

k∑
p=kξn

 k∏
l=p+1

(
Im − βlḠ(θl)

) ((x∗(ynp , θp)− x∗(ynp+1, θp+1)) + βpε̂
n
p ) .

It can be shown that the function (ω̄, θ) 7→ x∗(ω̄, θ) is L-Lipschitz continuous for some L > 0 (using the same
arguments as for the proof showing that the function U is Lipschitz before Lem. A.5). Furthermore, since Ḡ(θ)
is uniformly positive definite, applying Lem. C.3 yields the existence of ε > 0 s.t. for sufficiently large n and
for k ≥ kξn,

‖vnk+1‖ ≤ L
k∑

p=kξn

e−
1
2 ε

∑k
l=p+1 βl‖(ynp , θp)− (ynp+1, θp+1)‖+

∥∥∥∥∥∥
k∑

p=kξn

 k∏
l=p+1

(Im − βlḠ(θl))

βpε̂np
∥∥∥∥∥∥ .

It can be easily checked that there exist C > 0 and C ′ > 0 s.t. for every k ∈ {kξn, · · · , k
ξ
n+1 − 1}, ‖(ynk , θk) −

(ynk+1, θk+1)‖ ≤ C(ξk + αk) ≤ C ′ξk. As a consequence, we obtain for every k ∈ {kξn, · · · , k
ξ
n+1 − 1},

‖vnk+1‖ ≤ LC ′
k∑

p=kξn

e−
1
2 ε

∑k
l=p+1 βlξp +

∥∥∥∥∥∥
k∑

p=kξn

 k∏
l=p+1

(Im − βlḠ(θl))

βpε̂np
∥∥∥∥∥∥ . (149)

To prove the lemma, it is sufficient to show that both terms on the r.h.s. of the above inequality converge a.s.
to 0. For this, recall first from the definition of the sequence (kξn) that there exist jn, jn+1 ∈ N s.t. kξn = kβjn
and kξn+1 = kβjn+1

. Observe also that for every k ∈ {kξn, · · · , k
ξ
n+1 − 1}, there exists ik ∈ {jn, · · · , jn+1 − 1}

s.t. k ∈ {kβik , · · · , k
β
ik+1 − 1}. Then, we can rewrite the first term in the above inequality as follows:

k∑
p=kξn

e−
1
2 ε

∑k
l=p+1 βlξp =

ik−1∑
i=jn

kβi+1∑
p=kβi

e−
1
2 ε

∑k
l=p+1 βlξp +

k∑
p=kβik

e−
1
2 ε

∑k
l=p+1 βlξp .

The second term on the r.h.s. of the above equation can be easily upperbounded by
∑kβik+1−1

p=kβik

ξp ≤ (T +

βkβik+1−1) maxkξn≤p≤kξn+1

ξp
βp
. Now, for the first term of the above equation, notice that for i ∈ {jn, · · · , ik − 1},

p ∈ {kβi , · · · , k
β
i+1 − 1} and k ∈ {kβik , · · · , k

β
ik+1},

∑k
l=p+1 βl ≥

∑kβik
l=kβi+1

βl ≥ T (ik − i− 1) and this implies:

ik−1∑
i=jn

kβi+1−1∑
p=kβi

e−
1
2 ε

∑k
l=p+1 βlξp ≤

ik−1∑
i=jn

e−
1
2 εT (ik−1−i)

kβi+1−1∑
p=kβi

ξp ≤
CξT

1− e− 1
2 εT

max
kξn≤p≤kξn+1

ξp
βp

.

We conclude from the above derivations that there exists C > 0 (independent of n) s.t. for every k ∈
{kξn, · · · , k

ξ
n+1 − 1},

k∑
p=kξn

e−
1
2 ε

∑k
l=p+1 βlξp ≤ C max

kξn≤p≤kξn+1

ξp
βp

.

Given Assumption 5.2, we deduce from this inequality that the first term on the r.h.s. of Eq. (149) converges
to 0, i.e.,

lim
n→∞

max
kξn≤k≤kξn+1

k∑
p=kξn

e−
1
2 ε

∑k
l=p+1 βlξp = 0 .

As for the second term on the r.h.s. of Eq. (149), we control it in the following lemma (Lem. C.12).

Lemma C.12. limn→∞maxkξn≤k≤kξn+1

∥∥∥∑k
p=kξn

[∏k
l=p+1(Im − βlḠ(θl))

]
βpε̂

n
p

∥∥∥ = 0, a.s.



Anas Barakat, Pascal Bianchi, Julien Lehmann

Proof. Let Ḡp+1:k :=
∏k
l=p+1(Im − βlḠ(θl)) for every p ∈ {kξn, · · · , k

ξ
n+1} and p ≤ k − 1. As in the proof of

Lem. C.11, we begin by the observation that there exist jn and jn+1 s.t. kβjn = kξn, k
β
jn+1

= kξn+1 and that for
every k ∈ {kξn, · · · , k

ξ
n+1 − 1}, there exists ik ∈ {jn, · · · , jn+1 − 1} s.t. k ∈ {kβik , · · · , k

β
ik+1 − 1}. Then, we can

write for every k ∈ {kξn, · · · , k
ξ
n+1 − 1},∥∥∥∥∥∥

k∑
p=kξn

Ḡp+1:kβpε̂
n
p

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∥
ik−1∑
i=jn

kβi+1∑
p=kβi

Ḡp+1:kβpε̂
n
p

∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥
k∑

p=kβik

Ḡp+1:kβpε̂
n
p

∥∥∥∥∥∥∥ .
We will show that the first term on the r.h.s. of the above inequality converges to 0 a.s. when n → ∞. A
slight change in the following proof will establish the convergence to zero of the second term. Notice that
for k ∈ {kξn, · · · , k

ξ
n+1 − 1},∥∥∥∥∥∥∥

ik−1∑
i=jn

kβi+1∑
p=kβi

Ḡp+1:kβpε̂
n
p

∥∥∥∥∥∥∥ ≤
ik−1∑
i=jn

∥∥∥Ḡkβi+1:k

∥∥∥
∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi

Ḡp+1:kβi+1−1βpε̂
n
p

∥∥∥∥∥∥∥ . (150)

Lem C.3 implies that for sufficiently large n, for k ∈ {kβik , · · · , k
β
ik+1} ⊂ {kξn, · · · , k

ξ
n+1} and i ∈ {jn, · · · , ik − 1}∥∥∥Ḡkβi+1:k

∥∥∥ ≤ e− 1
2 ε

∑k

l=k
β
i+1

βl
≤ e− 1

2 εT (ik−1−i) . (151)

Recall now from Eq. (141) the definition of ε̂np for p ≥ kξn,

ε̂np :=
1

max(1, ‖rkξn‖)

[
φ(S̃p)Rp+1 − h(θp)

]
+ γ

[
φ(S̃p)φ(Sp+1)T −ΦTDρ,θpPθpΦ

]
ˆ̄ωnp +

[
Ḡ(θp)− φ(S̃p)φ(S̃p)

T

]
ω̂np .

In the following, we control this Markovian noise using the decomposition technique of [Benveniste et al., 1990]
which was also used in [Konda and Tsitsiklis, 2003a]. We use similar notations to those of the proof of
[Konda and Tsitsiklis, 2003a, Lem. 8]. Define the Markov chain Yp+1 := (S̃p, Ãp). The perturbation ε̂np is
of the form

Fθp(ω̂np , ˆ̄ωnp , Yp+1)− F̄θp(ω̂np , ˆ̄ωnp ) +M
(1)
p+1

ˆ̄ωnp +M
(2)
p+1 ,

where F̄θ(ω, ω̄) is the steady state expectation of Fθ(ω, ω̄, (S̄p, Āp)), where S̄p is a Markov chain with transition
kernel Pθ, and where M (i)

p+1 for i = 1, 2 are martingale difference sequences. For every θ ∈ Rd, ω, ω̄ ∈ Rm, there
exists a solution F̂θ(ω, ω̄) to the so-called Poisson equation:

Fθ(ω, ω̄, y)− F̄θ(ω, ω̄) = F̂θ(ω, ω̄, y)− (PθF̂θ)(ω, ω̄, y) .

Using this equation, the perturbation can be decomposed as follows for any fixed n ∈ N and p ≥ kn,

ε̂np = M
(1)
p+1

ˆ̄ωnp +M
(2)
p+1 + Fθp(ω̂np , ˆ̄ωnp , Yp+1)− F̄θp(ω̂np , ˆ̄ωnp )

= M
(1)
p+1

ˆ̄ωnp +M
(2)
p+1 + F̂θp(ω̂np , ˆ̄ωnp , Yp+1)− (Pθp F̂θp)(ω̂np , ˆ̄ωnp , Yp+1)

= (M
(1)
p+1

ˆ̄ωnp +M
(2)
p+1 + (F̂θp(ω̂np , ˆ̄ωnp , Yp+1))− (Pθp F̂θp)(ω̂np , ˆ̄ωnp , Yp)) (152)

+ ((Pθp−1 F̂θp−1)(ω̂np−1, ˆ̄ωnp−1, Yp)− (Pθp F̂θp)(ω̂np , ˆ̄ωnp , Yp+1)) (153)

+ (Pθp F̂θp)(ω̂np , ˆ̄ωnp , Yp)− (Pθp F̂θp)(ω̂np−1, ˆ̄ωnp , Yp) (154)

+ (Pθp F̂θp)(ω̂np−1, ˆ̄ωnp , Yp)− (Pθp F̂θp)(ω̂np−1, ˆ̄ωnp−1, Yp) (155)

+ (Pθp F̂θp)(ω̂np−1, ˆ̄ωnp−1, Yp)− (Pθp−1
F̂θp−1

)(ω̂np−1, ˆ̄ωnp−1, Yp) . (156)

Eqs. (150),(151) and (156) imply that the proof is complete if we show that:

lim
n→∞

max
kξn≤k≤kξn+1

ik−1∑
i=jn

e−
1
2 εT (ik−1−i)

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi

Ḡp+1:kβi+1−1βpε̂
n
p

∥∥∥∥∥∥∥ = 0 , a.s.
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For this, it is sufficient to prove the following inequality:

E

 max
jn≤i≤jn+1−1

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi

Ḡp+1:kβi+1−1βpε̂
n
p

∥∥∥∥∥∥∥
2 ≤ C kξn+1−1∑

p=kξn

β2
p . (157)

Indeed, the Chebyshev inequality implies that for every δ > 0,

P

 max
jn≤i≤jn+1−1

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi

Ḡp+1:kβi+1−1βpε̂
n
p

∥∥∥∥∥∥∥ ≥ δ
 ≤ C

δ2

kξn+1−1∑
p=kξn

β2
p ,

and applying the Borel-Cantelli lemma with the summability of the series
∑
k β

2
k yields:

lim
n→∞

max
jn≤i≤jn+1−1

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi

Ḡp+1:kβi+1−1βpε̂
n
p

∥∥∥∥∥∥∥ = 0 , a.s.

To prove that Ineq. 157 holds, it is sufficient to show that the desired inequality holds when ε̂np is replaced by each
one of the terms of its decomposition. For the first term which is a martingale difference with bounded second
moment, we establish the sought-after inequality in Lem. C.13. The last three terms are of the order O(βp), O(ξp)
and O(αp), respectively. The remaining term is the summand of a telescopic series with bounded moment and we
address its particular case in Lem. C.14 below.

Lemma C.13. There exists C > 0 s.t. for every n ∈ N,

E

 max
jn≤i≤jn+1−1

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi

Ḡp+1:kβi+1−1βpZ
n
p+1

∥∥∥∥∥∥∥
2 ≤ C kξn+1−1∑

p=kξn

β2
p ,

where for every p ≥ kn, Znp+1 := M
(1)
p+1

ˆ̄ωnp +M
(2)
p+1 + (F̂θp(ω̂np , ˆ̄ωnp , Yp+1)− (Pθp F̂θp)(ω̂np , ˆ̄ωnp , Yp)) .

Proof. In this proof, we suppress the superscript n of Znp+1 to simplify notation. Note that n is fixed throughout
the proof. Define Mk

kβi
:=
∑k
l=kβi

βlZl+1 for every i ∈ N, k > kβi . This is a zero mean, square integrable martingale

for k ∈ {kξn + 1, · · · , kξn+1}. By summation by part, we have for every jn ≤ i ≤ jn+1 − 1,

kβi+1−1∑
p=kβi

Ḡp+1:kβi+1−1βpZp = M
kβi+1−1

kβi
−
kβi+1−2∑
p=kβi

(Ḡp+1:kβi+1−1 − Ḡp:kβi+1−1)Mp

kβi
.

Notice that Ḡp+1:kβi+1−1 − Ḡp:kβi+1−1 = βpḠp+1:kβi+1−1Ḡ(θp). Hence, bounding the max by the sum, we obtain the
following inequality:

max
jn≤i≤jn+1−1

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi

Ḡp+1:kβi+1−1βpZp+1

∥∥∥∥∥∥∥
2

≤ 2

jn+1−1∑
i=jn

∥∥∥∥Mkβi+1−1

kβi

∥∥∥∥2

+ 2

jn+1−1∑
i=jn

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi

βpḠp+1:kβi+1−1Ḡ(θp)M
p

kβi

∥∥∥∥∥∥∥
2

(158)

We have that supθ∈Rd ‖Ḡ(θ)‖ < ∞. Moreover, using Lem. C.3 , one can show that there exists C > 0 s.t. for
every integers q > p, ‖Ḡp:q‖ ≤ C. Thus, we obtain the following upper bound using the triangle inequality:∥∥∥∥∥∥∥

kβi+1−1∑
p=kβi

βpḠp+1:kβi+1−1Ḡ(θp)M
p

kβi

∥∥∥∥∥∥∥
2

≤ C2

kβi+1−1∑
p=kβi

βp

∥∥∥Mp

kβi

∥∥∥


2

≤ C2T ′2

(
max

kβi ≤p≤k
β
i+1−1

‖Mp

kβi
‖

)2

.
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Taking the expectation in Eq. (158) and using Doob’s inequality yields:

E

 max
jn≤i≤jn+1−1

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi

Ḡp+1:kβi+1−1βpZp+1

∥∥∥∥∥∥∥
2 ≤ (2 + 8C2T ′2

) jn+1−1∑
i=jn

E

[∥∥∥∥Mkβi+1−1

kβi

∥∥∥∥2
]

≤
(
2 + 8C2T ′2

)
CZ

jn+1−1∑
i=jn

kβi+1−1∑
p=kβi

β2
p

=
(
2 + 8C2T ′2

)
CZ

kξn+1−1∑
p=kξn

β2
p ,

where the last inequality comes from the bounded second moment of Zp+1.

Lemma C.14. Let (Xk) be an Rm-valued random sequence with bounded second moment. Then, there
exists C > 0 s.t.:

E

 max
jn≤i≤jn+1−1

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi

Ḡp+1:kβi+1−1βp(Xp+1 −Xp)

∥∥∥∥∥∥∥
2 ≤ C kξn+1−1∑

p=kξn

β2
p .

Proof. Summation by parts yields for jn ≤ i ≤ jn+1 − 1,

kβi+1−1∑
p=kβi

Ḡp+1:kβi+1−1βp(Xp+1 −Xp) = βkβi+1−1Xkβi+1
− βkβi Ḡkβi +1:kβi+1−1Xkβi

+

kβi+1−1∑
p=kβi +1

(βpḠp+1:kβi+1−1 − βp−1Ḡp:kβi+1−1)Xp . (159)

Notice that βpḠp+1:kβi+1−1−βp−1Ḡp:kβi+1−1 = (βp−βp−1)Ḡp+1:kβi+1−1 +βp−1βpḠp+1:kβi+1−1Ḡ(θp). Then, similarly

to the proof of the previous lemma, recall that supθ∈Rd ‖Ḡ(θ)‖ <∞ and that Lem. C.3 entails the existence of
a constant CG > 0 s.t. for sufficiently large p and for every integers q > p, max(‖Ḡ(θp)Ḡp+1:q‖, ‖Ḡp:q‖) ≤ CG.
Using the previous remarks with Eq. (159) yields for jn ≤ i ≤ jn+1 − 1,

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi

Ḡp+1:kβi+1−1βp(Xp+1 −Xp)

∥∥∥∥∥∥∥
2

≤ 4β2
kβi+1−1

∥∥∥Xkβi+1

∥∥∥2

+ 4C2
Gβ

2
kβi

∥∥∥Xkβi

∥∥∥2

+ 4

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi +1

(βp − βp−1)Ḡp+1:kβi+1−1Xp

∥∥∥∥∥∥∥
2

+ 4

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi +1

βp−1βpḠp+1:kβi+1−1Ḡ(θp)Xp

∥∥∥∥∥∥∥
2

. (160)

To prove the lemma, it is sufficient to show that the desired inequality holds when the l.h.s. is replaced by each
of the terms on the r.h.s. of the above equation. Consider the first term:

E
[

max
jn≤i≤jn+1−1

β2
kβi+1−1

‖Xkβi+1
‖2
]
≤
jn+1−1∑
i=jn

β2
kβi+1−1

E
[
‖Xkβi+1

‖2
]
≤ CX

jn+1−1∑
i=jn

β2
kβi+1−1

≤ C
kξn+1−1∑
p=kξn

β2
p , (161)

where the constant CX > 0 bounds the second moment of Xk (i.e., supk E‖Xk‖2 ≤ CX) and C is also a positive
constant independent of p and n. The second term is treated analogously.
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Let us consider now the third term. Using the triangle inequality combined with the boundedness of ‖Ḡp:q‖
for q > p yields for n sufficiently large and jn ≤ i ≤ jn+1 − 1,∥∥∥∥∥∥∥

kβi+1−1∑
p=kβi +1

(βp − βp−1)Ḡp+1:kβi+1−1Xp

∥∥∥∥∥∥∥
2

≤ C2
G

 kβi+1−1∑
p=kβi +1

|βp−1 − βp| · ‖Xp‖


2

.

Then, it follows that:

max
jn≤i≤jn+1−1

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi +1

(βp − βp−1)Ḡp+1:kβi+1−1Xp

∥∥∥∥∥∥∥
2

≤ C2
G

jn+1−1∑
i=jn

 kβi+1−1∑
p=kβi +1

|βp−1 − βp| · ‖Xp‖


2

.

We obtain the desired inequality by taking the expectation and using the boundedness of the second moment of
the r.v. Xk:

E

 max
jn≤i≤jn+1−1

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi +1

(βp−1 − βp)Ḡp+1:kβi+1−1Xp

∥∥∥∥∥∥∥
2 ≤ C ′ jn+1−1∑

i=jn

 kβi+1−1∑
p=kβi +1

(βp−1 − βp)


2

≤ C ′
kξn+1−1∑
p=kξn

β2
p ,

where C ′ := C2
GCX . It only remains to show that the desired inequality also holds for the fourth term in

Ineq. (160). Using similar manipulations as above, we have:

max
jn≤i≤jn+1

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi +1

βp−1βpḠp+1:kβi+1−1Ḡ(θp)Xp

∥∥∥∥∥∥∥
2

≤ C2
G

jn+1−1∑
i=jn

kβi+1−1∑
p=kβi +1

kβi+1−1∑
q=kβi +1

βpβp−1βqβq−1‖Xp‖‖Xq‖ ,

and taking the expectation implies:

E

 max
jn≤i≤jn+1

∥∥∥∥∥∥∥
kβi+1−1∑
p=kβi +1

βp−1βpḠp+1:kβi+1−1Ḡ(θp)Xp

∥∥∥∥∥∥∥
2 ≤ C ′

kξn+1−1∑
p=kξn

β2
p


2

≤ C̃
kξn+1−1∑
p=kξn

β2
p ,

where C̃ := C ′
∑∞
k=0 β

2
k. Thus, the lemma holds for C ≥ 4CX + 4CXC

2
G + 4C ′ + 4C̃.

Lemma C.15. limn→∞
∑kn+1

k=kn
ξk

(
e−

1
2 ε

∑k
l=kn

βl +
∑k
l=kn

e−
1
2 ε

∑k
m=l+1 βmξl

)
= 0 .

Proof. We have already proved that limn→∞
∑kn+1

k=kn
ξke
− 1

2 ε
∑k
l=kn

βl = 0 (see the proof of Lem. C.11). The
convergence of the second term in the lemma is proven in the same manner.
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