
The devil hides in the model: Reviewing Blockchain and
BFT protocols

Antoine Durand1 and Gérard Memmi1

LTCI, Télécom Paris, Institut polytechnique de Paris, France
firstname.lastname@telecom-paris.fr

Abstract. Recent advances in blockchains and Byzantine Fault Tolerant proto-
cols have been numerous and varied in nature. However, making a fair and con-
sistent comparison of existing protocols is a difficult task that must begin right
at the execution model. In this work, we undergo a review of several promi-
nent blockchain protocols including their models, i.e., network synchrony, cryp-
tographic assumptions, corruption, as well as latency and communication cost
figures. This review illustrates the issues that can arise due to the lack of standard-
ization on blockchain terminology. For example, we show that in two prominent
blockchain protocols, seemingly minor technical details in the formulation leads
to the execution model being strictly different from the intended one.

Keywords: Blockchain · Distributed Ledger Technology · Benchmark · Complexity

1 Introduction
In recent years, blockchains, and distributed ledger technologies in general, experienced
a surge of interest, spawning an impressive number of research directions and concur-
rent works. This proliferation somehow contrasts with the widely recognized difficulty
of designing and proving secure distributed cryptographic algorithms. Thorough evalu-
ations of fault-tolerant Byzantine protocols such as blockchains are therefore becoming
more complex. As a result, there is currently no recognized evaluation procedure for
such protocols, which makes formal comparisons challenging; this also partially ex-
plains the lack of standardization and the increased difficulty of designing advanced
blockchain applications, particularly when multiple protocols are involved.

In this paper, we propose an evaluation strategy that is centered around the execu-
tion model of each blockchain. We selected a collection of prominent and published
blockchain protocols. Our contribution is that we interpreted their execution models
through a common formulation supporting a fair comparison of their various assump-
tions, primitives, and, by extension, their performance. This approach allowed us define
multiple common variables to carry out a detailed asymptotic evaluation of communi-
cation complexity and latency. As a result we are able to offer an assessment summary
in Section 4 that is clear, rigorous, and comprehensive without being dependent on any
one type of protocol.

We chose the following protocols that are representative of different techniques and
working principles of blockchains, however, we could only consider sufficiently for-
malized protocols to enable a fair assessment of their model and properties. Nakamoto
agreement [11] is certainly one of the most prominent, and we believe its analysis

2 Antoine Durand and Gérard Memmi

applies to similar protocols such as Ethereum. We also chose Phantom [17] in or-
der to have a second PoW-based protocol to compare with the Nakamoto agreement.
Ouroboros Praos [4] is a non-PoW-based synchronous protocol, and Algorand [12] is
somewhat similar to Ouroboros but in a partially synchronous setting. Tendermint [1]
operates similarly to classical state machine replication protocols [5], and HoneyBad-
gerBFT [15] is asynchronous.

Existing benchmarks in published literature focus on qualitative comparisons and
experimental performance evaluations [2]. In light of this, the closest work to ours is a
taxonomy by Garay and Kiayias [10], for which we make a more enhanced contribution
in this work with the inclusion of newer protocols, but most notably, the addition of a
generic, multivariate performance analysis.

Outline. This paper is organized as follows. Section 2 is a concise introduction to the
notations used to capture all of the protocol models. We analyze each protocol in Sec-
tion 3, and discuss the resulting comparison in Section 4. Finally, we conclude in Sec-
tion 5.

2 Model
To enable a generic discussion of the protocol’s models and properties, we adopt the
notations from Durand [7]. They are briefly summarized below.

Background The distributed system contains a set of nodes Π , as well as modules which
serves as abstract representations of the components present in the system. A module
m provides an interface to interact with nodes and also describes its behaviour through
this interface; concretely, m is represented by its input and output domains and a validity
predicate on sequences of inputs/outputs. Given a list of ideal primitives M, expressed
as modules, the notation P ∈ P[M] means that P is a protocol that may interact with
the modules in M. Such a protocol, P, is represented as a state machine run by each
(honest) node and annotated with inputs/outputs. The set of executions of P that are
conforming to its model are noted MA

P , where A is a parameter that specifies the adver-
sary’s capabilities. A contains three components to indicate (1) whether the adversary
is computationally bounded, (2) whether node corruption is dynamic, weakly dynamic,
or static, and (3) the corruption structure [13] that must be respected. More specifically,
a corruption structure C contains all sets of nodes that may be corrupted. This general-
ization of corruption thresholds is well suited for models that leverage Proof-of-X for
Sybil resistance.

The notation MA
P |=λ S indicates that protocol P satisfies specification S with prob-

ability 1−O(2−λ), where λ is the security parameter, and the specification S is also
represented by a module.

Specification The selected protocols slightly vary in the formulation of their specifica-
tion. Thus, we chose Atomic Broadcast (ABC) [6] as a common specification based on
the state machine replication paradigm. An ABC protocol is a protocol where nodes
may input and output values from a message set M, such that,

– ABC-Consistency: For any honest nodes p1 and p2, for any k ∈ N such that p1 and
p2 both made at least k outputs, then p1 and p2’ k-th outputs equal.

– ABC-Liveness: All honest players’ inputs are eventually output by all honest nodes.

The devil hides in the model: Reviewing Blockchain and BFT protocols 3

Primitives All models include a point-to-point network module, however there are three
possible variants depending on synchronicity level, namely:

– "sync_net": Any sent message m takes at most δ time to be received, and ∆ ≥ δ is
given as a parameter to the nodes.

– "weak_net": Any sent message m takes at most δ time to be received, but ∆ is
unknown to the nodes.

– "async_net": There is no bound on the message delays.

The models include a few cryptographic primitives, also modeled as modules. We do
not give explicit module definitions here and refer instead to standard cryptographic def-
initions [14]. These are: random oracle "RO", digital signatures "signatures" (including
a public key infrastructure), public parameters "params", and Verifiable Random Func-
tions "VRF".

The performance evaluation is a multivariate asymptotic evaluation of communica-
tion cost and latency. Communication cost (CC) is the number of bits sent by honest
nodes, and latency (L) is the time elapsed between submission of a message an its
delivery by all honest nodes. The common input variables of the asymptotic analysis
are:

– ∆ is the known upper bound on network delays, for "sync_net" networks.
– δ is the unknown upper bound on network delays, for "weak_net" networks.
– n is the number of nodes.
– b is the amortized size of the protocol output payload.
– polyv(λ) is a function polynomial in the security parameter λ , and arbitrary in v.

It’s important to note that the above definitions only require the presence of an ABC
protocol and a network. Thus these variables can be evaluated and analyzed for any
blockchain protocol.

To simultaneously model corruption for Proof-of-Work (PoW), Proof-of-Stake (PoS),
and classical BFT protocols, we use weighted corruption thresholds. Given the nodes’
weights W : Π 7→ [0,1] such that ∑p∈Π W (p) = 1 and a threshold t ∈ [0,1]; then the
adversary respects the corruption structure CW,t iff at all times during the execution, the
set of corrupt nodes C ⊆ Π is such that ∑p∈C W (p)< t.

3 Protocol Analysis
3.1 Using the Bitcoin backbone protocol

For Nakamoto agreement1 and Ouroboros Praos, we rely on the backbone protocol
formalism from Garay et al. [11,4]. They present two analyses, one with a synchronous
network and one extended to a partially synchronous network, the latter being similarly
defined in Ouroboros Praos [4]. They describe a network offering a global round clock
to all nodes. Then, sent messages are delivered after up to ∆ rounds, meaning that such
rounds do not have a prescribed duration and act more as "real time step" or "time slot".

However, we believe there is a slight issue in the formulation used. First of all, it’s
important to note that both protocols are stated to be secure assuming that less than half

1 We use the term "Nakamoto agreement" or "Nakamoto" for short to refer to Bitcoin’s under-
lying ABC protocol.

4 Antoine Durand and Gérard Memmi

of the stake/hashpower is owned by malicious nodes. This is surprising since consensus
cannot be solved in partially synchronous networks with more than a third of the honest
nodes. On the other hand, if there is an honest majority, a strongly synchronous network
is required to solve consensus.

Moreover, the only difference between partial and strong synchrony is that the ∆

bound is made available to nodes in the strongly synchronous case. Therefore, with
careful examination, we observe that both Nakamoto and Ouroboros Praos actually
requires the value ∆ to be known to execute correctly, and as a result they could be
better described as synchronous protocols. Essentially, for both cases, the protocols can
be proven secure assuming they are fed with the correct parameters, but if nodes are
able to output transactions with a known probability of error, i.e., if they assume the
protocol is secure, then they are also able to compute ∆ .

For Ouroboros Praos, the protocol takes a parameter f that tunes the probability for
a node to be eligible to multicast the current block. To know whether a given node is
eligible to multicast a block, a procedure taking f as a parameter is executed within
the protocol. Then, to prove the security of the protocol, the authors require that f
satisfies an inequality [4, Theorem 9 equation 12], which encodes the "Majority of
Honest Stake" assumption but also depends on ∆ . Notably, if f and all the other protocol
parameters are known to the nodes, then assuming that the inequality holds, this implies
that nodes can solve it to obtain (an upper bound on) ∆ .

We adopt a similar reasoning with Nakamoto. Here, ∆ is related to other known
parameters through an inequality [11, Honest Majority Assumption (Bounded Delay)],
which must hold to prove the security of the protocol. Therefore, nodes can solve it to
compute ∆ . Formally, these remarks can be expressed with the following theorem.

Theorem 1 (Nakamoto and Praos are strongly synchronous).

∃P ∈ P[MPraos], MAPraos
P |= strong_net

∃P′ ∈ P[MNakamoto], MANakamoto
P′ |= strong_net

Where (MNakamoto,ANakamoto) and (MPraos,APraos) are the models of Nakamoto agree-
ment and Ouroboros Praos, respectively.

Proof. To implement the strong_net module, P and P′ work similarly. Initially, nodes
compute a bound D ≥ ∆ using the procedure described above. Upon request of the ∆

value through the interface of strong_net, the value D is returned. Any other interaction
is proxied to the underlying weak_net module. Knowing that a weakly synchronous
network with a known bound on δ is exactly a synchronous network; therefore, the
conclusion is reached.

3.2 Nakamoto agreement
Model. We have already shown that the model from Garay et al. [11] is strongly syn-
chronous, with a computational adversary. Their model is completed with a Random
Oracle, which is modified to integrate the Proof-of-Work mining primitive. That is to
say, the Random Oracle is given the ability to answer "mining" queries from the nodes,
with a limit of q queries per node per network round (or 1 in the "partially" synchronous

The devil hides in the model: Reviewing Blockchain and BFT protocols 5

analysis). Then, an additional interface is added to be able to verify the result of a query
without having to make the same query again and be limited by q.

Regarding the corruption structure, they state an "Honest Majority Assumption"
such that the proportion of hashpower (expressed in RO queries per round) available
to the malicious nodes is lower than 1−d(λ ,∆)

2−d(λ ,∆) with d a function bounded between 0
and 1. This "Honest Majority Assumption" is easily modeled as a weighted corruption
structure with each node being weighted by its hashpower. As expected, d is an increas-
ing function, meaning that the amount of tolerated malicious hashpower gets further
from the optimal value (1/2) down to 0 as the security parameter is increased. Node
corruptions take effect immediately, therefore the adversary is dynamic.

Metrics. In the Bitcoin Backbone analysis, Garay et al. articulate their proofs on the
assumption of a typical execution that roughly states that parties produce blocks at a
rate close enough to their expected value (i.e., hashpower). Then, they show that any
execution of k rounds is typical with probability 1− e−Θε (k), where ε is a variable that
quantifies how close the block production rate is to its expected value. In turn, the proofs
will rely on ε being appropriately bounded, an assumption that is integrated in their
version of "honest majority assumption". In particular, this assumption gives a bound
on ε that depends on ∆ , hence, an execution which is longer than poly∆ (λ) rounds is
typical with overwhelming probability.

Assuming a typical execution, Garay et al. prove that it takes 4k
1−ε

rounds for a
transaction to be confirmed by k blocks. Thus, if k = poly(λ) the latency of transaction
confirmation is L(NAKAMOTO) = poly∆ (λ).

The analysis regarding communication complexity is simpler: All b bits from the
output are blocks that have been multicast once, hence the communication cost is at least
bn. Furthermore, this cost is only increased if the adversary forces orphaned blocks.
Since all messages on the network are blocks with a valid PoW, it is clear that the
overall number of blocks received by honest nodes is a constant factor of the number of
blocks that will end up in the blockchain. Hence, CC(NAKAMOTO) =Θ(bn).

3.3 Ouroboros Praos

Model. We have already shown that the model from Bernardo et al. [4] is strongly syn-
chronous, with Byzantine faults and a computational adversary. Like with the Nakamoto
agreement, we now complete the model.

The existence of the Random Oracle and digital signatures is assumed. Node cor-
ruptions take immediate effect and the adversary is fully dynamic. This is possible due
to the usage of VRFs, on a principle similar to how the Bitcoin miner can be corrupted
just after sending a block without issue. Ouroboros nodes use the VRF to learn locally
whether they are randomly selected to multicast a block, and once the block is sent they
no longer have a privileged role. The verifiability of the VRF output ensures that nodes
cannot cheat their eligibility.

Regarding the corruption structure, Bernardo et al. assume that the proportion of
stake owned by honest nodes is higher than 1

2 d(λ ,∆), where d is an (increasing) func-
tion lower bounded by 1. This assumption is modeled by a weighted corruption structure
using stake as weights.

6 Antoine Durand and Gérard Memmi

Metrics. In Ouroboros Praos, for every time slot, each node can be independently
elected to multicast a new block, and the probability to be elected is only a function of
the amount of the owned stake. Generating the randomness to seed the election of block
leaders is implemented by having each leader include a VRF output in their block, and
periodically concatenating the VRF output to form a random seed for the future VRF
evaluation.

Given this method of block production, Ouroboros’s properties can be proven using
only combinatorial arguments on the distribution of honest and malicious leaders in the
block tree. This is done through the analysis of "characteristics strings", which are an
encoding of the schedule of honest and malicious leaders. Bernardo et al. show that
a string of length of k time slots is "forkable" with probability negl(k), for an appro-
priate notion of "forkable" that is later used to prove the protocol security. In particu-
lar, the distribution of characteristics strings only depends on the (stakewise) propor-
tion of malicious leaders, and therefore k is only a function of the security parameter,
i.e. k = poly(λ) and L(PRAOS) =Θ(∆k)

3.4 Tendermint
Our discussion of Tendermint is based on an analysis by Amoussou-Guenou et al. [1].

Model. Tendermint follows more classical approaches to State Machine Replication [5]
and as such fits very nicely into the ABC formulation. Amoussou-Guenou et al. assume
a partially synchronous network with a formalism based on a Global Stabilization Time
(GST), which is equivalent to having an unknown network delay δ . All nodes sign their
messages with a digital signature algorithm. Tendermint uses a hash function that can
be modeled with a Random Oracle. The corruption threshold is ⌊n/3⌋ nodes, which
is simply represented as a corruption structure with equal weights for all nodes.The
adversarial adaptivity is not explicitly specified, however it is straightforward to see
that it can be dynamic; the leader is not expected to be honest, and the schedule of
leaders may as be well known when the adversary choose corruptions.

Metrics. Tendermint’s normal case operation is reminiscent of PBFT [5], except that
leaders are always changed after each broadcast, whether they be successful or not. For
each block, there is a leader that will execute a reliable broadcast protocol implemented
through two all-to-all voting rounds. To optimize the bandwidth, only the hash of the
block is included in the voting messages. This requires the b bytes of the block content
to be sent to all n nodes, and the additional cost of n2 bytes for the reliable broadcast,
taking three communication steps. That is, a single leader attempting to append a block
takes Θ(bn+n2) bit complexity and Θ(1) latency.

Malicious leaders can ensure that their attempt does not succeed, and because the
leader order is arbitrary, all malicious nodes may be leaders first, thus increasing la-
tency by a factor maxC∈C #C =Θ(n). This does not impact the overall communication
cost however, because all honest leaders will also append a block and only a constant
fraction of nodes are malicious. Tendermint is optimistic in the sense that, in failure free
executions, transactions are immediately appended and the latency becomes Θ(δ).

3.5 HoneyBadgerBFT
Model. In HoneyBadger BFT [15](HBBFT), the network is asynchronous, up to 1/3 of
the nodes may be corrupt, and the adversary is static. The protocol makes use of a hash

The devil hides in the model: Reviewing Blockchain and BFT protocols 7

function and digital signatures. Miller et al. explicitly assume a "Purely asynchronous
network", "Static Byzantine faults" and "Trusted setup", and they aim to solve Atomic
Broadcast. The setup only serves to implement a PKI for the digital signatures and a
common coin subprotocol.

Metrics. HoneyBadgerBFT uses the reduction to a reliable broadcast and a binary con-
sensus from Ben-Or et al. [3] to implement a variant of the consensus problem, namely
an asynchronous common subset.

The reliable broadcast protocol terminates in three rounds and has a bit complexity
of Θ(bn+ n2 log(n)poly(λ)). The binary consensus is an asynchronous probabilistic
protocol with Θ(n2 poly(λ)) bit complexity. At each round it has 1/2 probability to
terminate. HBBFT must wait for all their consensus instances to terminate, and the
time required is Θ(log(n)) rounds on average.

However, one of the achievements of HBBFT is that at the end of this procedure, it
commits data from all node inputs. That is, if all the nodes have an input of size B, then
the batch committed will be of size Θ(nB) bits. Hence, for b bits committed, there are
Θ(bn+n3 log(n)poly(λ)) bits received by honest players.

Miller et al. do provide a complexity analysis, but they state their results in terms
of overhead, i.e., the total cost divided by b. Furthermore, by the specifying minimum
input size (batching policy) of Ω(n2 log(n)poly(λ)) = O(b), they obtain an O(n) figure
which is a constant per-node overhead, which essentially amounts to looking at the
communication complexity assuming the block contents is the dominating cost. This
emphasis on the low overhead is less visible in our results, although it is translated by
the fact that HBBFT complexity on the b factor is bn instead of bn2 for other BFT-style
protocols, i.e. a reduction factor of n is consistent with the authors’ analysis.

3.6 Phantom

Model. Phantom [17] is a Proof-of-Work protocol whose mining operation is very sim-
ilar to Nakamoto, except that blocks may have more than one parent. As a result, the
model is essentially the same as for Nakamoto, however Sompolinsky and Zohar use
their own formulation based on an earlier proposal [16]. Phantom’s security statement
(Theorem 4) merges the ABC-Consistency and ABC-Liveness properties into a single
one, although its formulation is specifically tied to the blockchain structure. Addition-
ally, because the authors explicitly aim for a generalized version of Nakamoto, we are
confident in choosing ABC to faithfully capture Phantom’s properties.

The network is strongly synchronous; the authors state "if an honest node v ∈ N
sends a message of size b MB at time t, it arrives at all honest nodes by time t +D
the latest.", where a bound one D is known to the protocol. Up to 1

2 (1− d(λ ,∆)) of
the hashpower may be corrupt, with d an (increasing) function lower bounded by 0.
Although not mentioned explicitly, the adversary is dynamic for the same reason as
with Nakamoto agreement.

The Proof-of-Work mining is modelled by a Poisson process. Although common
modeling of the mining process results in a Binomial distribution, this is not an issue
since this distribution converges towards the Poisson distribution whenever the number
of tries goes to infinity. As with Nakamoto, we also require the Random Oracle to
answer hash queries unrelated to mining.

8 Antoine Durand and Gérard Memmi

Metrics. In Phantom, the block structure is a Directed Acyclic Graph (DAG) which
allows blocks to be linked to any number of the previous blocks instead of one. A key
technique of Phantom is that PoW merely serves as a network-level synchronization
primitive, thus decoupling the mining hardness from the protocol security. And indeed
the mining rate is independent from λ and only required to be high enough so that
blocks are not mined faster than they can be transmitted through the network. As such,
there is little restriction on the mining process. More precisely, the entirety of the online
protocol consists of mining on top of all the blocks with no successor in the block graph.

The online protocol maintains the DAG that grows over time, and another sub-
protocol independently determines which values from the DAG will be the ABC output.

Phantom implements a procedure Risk that provides a bound on the probability
that safety will not hold for this transaction. The authors then show that the bound
returned is smaller than a given ε after O(log(1

ε
)) honest blocks are created. Hence,

with ε = O(e−λ), and since this procedure requires the upper bound ∆ , we have that
the number of honest blocks required is poly∆ (λ). The time taken for this to happen is
obtained by multiplying it by the rate of honest block production, which only depends
on ∆ . Then, in order for all the nodes to be aware of these blocks, an additional ∆

overhead is added, resulting in O(∆ +poly∆ (λ)) latency.
On the other hand, communication complexity is simpler. In fact, the same analysis

as the other blockchain style algorithms is applicable. Blocks all require a valid PoW
to be sent through the network, and the PoW creation rate is bounded according to the
corruption structure, thus reaching an optimal CC(PHANTOM) =Θ(bn).

3.7 Algorand

Model. Algorand [12] uses a partially synchronous network, the Random Oracle, for-
ward secure signatures, and "VRFs". As expected in a partially synchronous network,
a proportion h > 2

3 of the stake is assumed to be owned by honest nodes. However,
since Algorand uses an election mechanism, the protocol failure probability increases
as h goes to 2

3 . Like with Ouroboros Praos, their usage of VRFs gives the possibility to
tolerate dynamic adversaries.

Metrics. Like Ouroboros Praos, Algorand relies on a public randomness computed in
previous blocks. It is used to elect a committee (instead of a leader) at each round
that will have sufficiently many honest nodes, with overwhelming probability. These
committees run a consensus protocol, which does not require a private state from the
nodes (except from their private key), since committees would not be able to pass it
on to the next committee. Except from this property, common techniques from BFT
algorithms can be used to reach agreement in a constant number of rounds. In particular,
since it has been ensured that committees have a constant fraction of honest nodes,
standard quorum-based arguments are still valid. More precisely, at each round, each
user has a fixed probability p to be part of the committee. To bound the number of
malicious nodes in a committee, the authors leverage the fact that ∀t ′ < t; the probability
of having at most t ′ malicious nodes in a uniformly sampled committee of size k is
1−negl(k). Thus, the committees expected size is poly(λ).

As a result, each round that would be equivalent to a n2 all-to-all communication in
a traditional BFT algorithm is now a "committee-to-all", Θ(npoly(λ)) communication.

The devil hides in the model: Reviewing Blockchain and BFT protocols 9

Additionally, Algorand optimizes bandwidth through a block proposing step similar to
a leader election. The average committee size for that step is the smallest such that there
is at least one proposer with overwhelming probability, i.e., poly(λ) asymptotically.

4 Discussion
Table 1 summarizes the above results. Concretely, For each protocol P in Table 1, we
have made the following claim.

P ∈ P[params,RO,M], M
(computational,C(W,α),(E,i,p)7→⊤)

P |=λ ABC (1)

where: W (p) := hp(∑q∈Π hq)
−1 if the protocol uses the PoW module, or, if the protocol

has a stake public parameter, W (p) is p’s relative stake. α is the contents of the "Adver-
sary" column, M is the contents of the "Modules" column. We also claimed that L(P)
is equal to the contents of the "Latency" column and that CC(P) is equal to the contents
of the "Communication Cost" column.

Table 1: Comparison Summary.
Algorithm Corruption threshold Modules Latency Communication Cost

Nakamoto [11] 1/2− ε(λ ,∆) sync_net, PoW poly∆ (λ) Θ(bn)
Phantom [17] 1/2− ε(λ ,∆) sync_net, PoW Θ(∆ +poly∆ (λ)) Θ(bn)
Ouroboros Praos [4] 1/2− ε(λ ,∆) sync_net, signatures, VRF Θ(∆ poly(λ)) Θ(bn)
Algorand [12] 1/3− ε(λ) weak_net, signatures, VRF Θ(δ) Θ(bnpoly(λ))
Tendermint [1] 1/3 weak_net, signatures Θ(δn), f.f. Θ(δ) Θ(bn+n2)
HoneyBadgerBFT [15] 1/3 async_net, signatures Θ(δ log(n)) Θ(bn+n3 log(n)poly(λ))

This table clearly outlines the relation between the protocol’s models and their per-
formance metrics. The major drawback of Bitcoin is that its latency has an arbitrary
dependence on ∆ , which could very well be exponential. The same concern also ap-
plies to Phantom, and this is due to the fact that the confidence in a transaction depends
on the time it takes for a PoW string to be transmitted. Moreover, it’s worth remember-
ing that ∆ must hold for all messages, of any length. Therefore, increasing the block size
may change ∆ and results in a theoretically unknown impact on the protocol latency.
These considerations point towards analyzing how latency depends on ∆ and would be
a great step forward in the assessment of PoW-based protocols.

Interestingly, we can see that all three synchronous protocols have their corruption
threshold dependent on ∆ , and for the same reason for each of them, the "honest ma-
jority" assumption is stated as an inequality that depends on ∆ . As expected, the 1/2
corruption threshold is synonymous with strong synchrony, and the PoW oracle is able
to replace digital signatures. The presence of "−ε(...)" in the corruption threshold is
indicative of protocols making use of the election mechanism, which also imply a fac-
tor poly(λ) in its costs. Algorand is interesting in this regard, as it uses a large elected
committee instead of leaders, thus removing the ∆ factor in the threshold reduction ε ,
but gaining the poly(λ) in communication cost. Reducing this communication cost by
a constant factor is possible, e.g., through sharding [8,9]. On the other hand Tendermint
and HoneyBadger BFT doesn’t use the election mechanism and bear a communication
cost at least quadratic in n.

10 Antoine Durand and Gérard Memmi

5 Conclusion
We presented a brief review of a selection of prominent published blockchain protocols.
This review aimed at putting the protocol execution models on a common footing and
at analyzing and comparing communication cost and latency as a function of multiple
common variables. Our work puts an emphasis on having a streamlined terminology
that fits the wide range of executions models. We were able to highlight and solve
confusions and non-trivial issues that arise due to the lack of standardized formal def-
initions for common distributed primitives. We believe that this work can serve as a
basis for facilitating the comparison of blockchain protocols as well as alleviating both
the difficulties of standardization and fine-grained interoperability.

References
1. Amoussou-Guenou, Y., Pozzo, A.D., Potop-Butucaru, M., Tucci Piergiovanni, S.: Dissecting

tendermint. In: NETYS 2019, June 19-21, Marrakech, Morocco
2. Bano, S., Sonnino, A., Al-Bassam, M., Azouvi, S., McCorry, P., Meiklejohn, S., Danezis,

G.: Sok: Consensus in the age of blockchains. In: AFT 2019, Zurich, Switzerland
3. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal re-

silience (extended abstract). In: PODC, Los Angeles, California, USA, August 14-17, 1994
4. Bernardo, D., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-secure,

semi-synchronous proof-of-stake blockchain. In: EUROCRYPT (2018)
5. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM

Trans. Comput. Syst. 20(4), 398–461 (Nov 2002)
6. Cristian, F., Aghili, H., Strong, H.R., Dolev, D.: Atomic broadcast: From simple message

diffusion to byzantine agreement. Inf. Comput. 118(1), 158–179 (1995)
7. Durand, A.: Byzantine consensus and blockchain : Models unification and new protocols.

Theses, Polytechnic Institute of Paris (Nov 2021)
8. Durand, A., Anceaume, E., Ludinard, R.: Stakecube: Combining sharding and proof-of-stake

to build fork-free secure permissionless distributed ledgers. In: NETYS 2019, Marrakech,
Morocco, June 19-21, 2019. LNCS, vol. 11704, pp. 148–165. Springer (2019)

9. Durand, A., Hébert, G., Toumi, K., Memmi, G., Anceaume, E.: The stakecube blockchain
: Instantiation, evaluation amp; applications. In: 2020 Second International Conference on
Blockchain Computing and Applications (BCCA). pp. 9–15 (2020)

10. Garay, J.A., Kiayias, A.: Sok: A consensus taxonomy in the blockchain era. In: CT-RSA
2020, San Francisco, CA, USA, February 24-28. LNCS

11. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and ap-
plications. In: EUROCRYPT 2015, Sofia, Bulgaria, April 26-30, 2015. Updated version on
IACR Cryptol. ePrint Arch. 2014, 765.

12. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling byzantine
agreements for cryptocurrencies. In: SOSP 2017, Shanghai, China, October 28-31, 2017

13. Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in secure multi-
party computation. In: PODC ’97, Santa Barbara, California, USA, August 21-24. ACM

14. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press (2014)
15. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT protocols. In:

ACM SIGSAC 2016, Vienna, Austria, October 24-28, 2016
16. Sompolinsky, Y., Lewenberg, Y., Zohar, A.: SPECTRE: A fast and scalable cryptocurrency

protocol. IACR Cryptol. ePrint Arch. 2016, 1159
17. Sompolinsky, Y., Zohar, A.: PHANTOM and GHOSTDAG: A scalable generalization of

nakamoto consensus. IACR Cryptol. ePrint Arch. 2018, 104

	The devil hides in the model: Reviewing Blockchain and BFT protocols

