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A UNIQUENESS CRITERION AND A COUNTEREXAMPLE TO

REGULARITY IN AN INCOMPRESSIBLE VARIATIONAL PROBLEM

M. DENGLER AND J.J. BEVAN

Abstract. In this paper we consider the problem of minimizing functionals of the form
E(u) =

∫
B
f(x,∇u) dx in a suitably prepared class of incompressible, planar maps u : B →

R2. Here, B is the unit disk and f(x, ξ) is quadratic and convex in ξ. It is shown that if u is
a stationary point of E in a sense that is made clear in the paper, then u is a unique global
minimizer of E(u) provided the gradient of the corresponding pressure satisfies a suitable
smallness condition. We apply this result to construct a non-autonomous, uniformly convex
functional f(x, ξ), depending smoothly on ξ but discontinuously on x, whose unique global
minimizer is the so-called N−covering map, which is Lipschitz but not C1.

1. Introduction

Let B ⊂ R2 be the unit ball. For any u ∈W 1,2(B,R2), define the energy E(u) by

(1) E(u) =

∫
B

f(x,∇u) dx,

where the integrand is quadratic in the gradient argument

f(x, ξ) = M(x)ξ · ξ for any x ∈ B and ξ ∈ R2×2,(2)

and where M ∈ L∞(B,R16) is symmetric, i.e. Mijkl = Mklij for all i, j, k, l ∈ {1, 2}.1
Furthermore, we require that there exists a constant ν > 0 s.t.

(3) M(x)ξ · ξ ≥ ν |ξ|2 for a.e. x ∈ B and all ξ ∈ R2×2,

so that f(x, ξ) is uniformly convex in ξ.

Assume that g is the trace of a map u0 ∈W 1,2(B,R2) that satisfies det∇u0 = 1 a.e. in B, so
that the class

Ag := {u ∈W 1,2(B,R2) : det∇u = 1 a.e. in B u|∂B = g}(4)

is, in particular, nonempty. The constrained minimization problem that we study in this
paper is then to find

(5) min
u∈Ag

E(u)

in Ag. Concrete instances of g for which Ag is nonempty include:

(a) g(x) := Ax, x ∈ ∂B, where A is any constant matrix in SL+(2,R), and
(b) g(θ) := 1√

N
eR(Nθ), where N ∈ N \ {0} and 0 ≤ θ ≤ 2π.

1991 Mathematics Subject Classification. 49K10, 49K20, 73C15, 73C50.
Key words and phrases. Calculus of Variations, Elasticity, Uniqueness, Counterexample to Regularity.
1M ∈ L∞ is sufficient to guarantee E(u) <∞ for any u ∈W 1,2.
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Note that the latter is the trace of the so-called N−covering map

uN (R, θ) =
R√
N
eR(Nθ),(6)

expressed in plane polar coordinates, and where we employ the notation eR(θ) = (cos θ, sin θ).

Definition 1.1. (Stationary point) We say that u is a stationary point of E(·) if there exists
a function λ, which we shall henceforth refer to as a pressure, belonging to W 1,1(B) and such
that

div (∇ξf(x,∇u) + 2λ(x) cof ∇u) = 0 in D′(B).(7)

The first main result we obtain shows that if u is a stationary point of the energy E whose
corresponding pressure λ satisfies, in addition, the assumption that

||∇λ(x)R‖L∞(B,R2) ≤
√

3ν

2
√

2
,(8)

then u is a global minimizer of E. We think of the estimate (8) as characterizing ‘smallness’
of the pressure; concrete examples (such as can be found in [3, Proposition 3.4] or [5], for
instance) show that such an estimate need not hold in general. In the following we assume
that g has been chosen and fixed so that Ag is non-empty.

Theorem 1.2 (Uniqueness under small pressure). Let the energy functional E(u) be given
by (1), and let f(x, ξ) be given by (2), where M ∈ L∞(B,R16) is symmetric and satisfies (3)
for some ν > 0. Let u be a stationary point of E in the sense of (7) and assume that the
corresponding pressure λ satisfies

(9) ‖∇λ(x)R‖L∞(B,R2) ≤
√

3ν

2
√

2
.

Then u is a global minimizer of E in Ag.
Moreover, if the inequality is strict, i.e. |∇λ(x)R| <

√
3ν

2
√
2

on a measurable set U ⊂ B with

L2(U) > 0 then u is the unique global minimizer of E in Ag.2

In our second main result we provide an explicit integrand f(x, ξ) of the form (2) whose
corresponding energy functional E is minimized in Ag by the N−covering map uN . Here, g is
the trace of uN as defined in (6). For its construction we make use of Theorem 1.2. A novelty
of our approach is that, in order to apply Theorem 1.2, we develop a method to compute the
corresponding pressure explicitly.

Theorem 1.3 (Counterexample to regularity). Let g be the trace of the N−covering map
uN , let N ∈ N \ {1} and let a ∈

(
N2 −N,N2 +N

)
. Define for x ∈ B \ {0} and ξ ∈ R2×2 the

function

f(x, ξ) = ν
[
a(eTRξeR)2 + (eTRξeθ)

2 + a(eTθ ξeR)2 + (eTθ ξeθ)
2
]
,

where ν > 0. Then the following statements are true:

2Here the norm is defined via ‖f‖L∞(B,R2,µ) := max{‖f1‖L∞(B,µ), ‖f2‖L∞(B,µ)} and ‖fi‖L∞(B,µ) :=

limp→∞

(∫
B

|fi(x)|p dµ
) 1

p

.
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(i) There exists M ∈ L∞(B,R16) such that

f(x, ξ) = νM(x)ξ · ξ
for any x ∈ B \ {0}, ξ ∈ R2×2 and where M is of the explicit form3

M(x) =a((eR ⊗ eR)(eR ⊗ eR)) + ((eR ⊗ eθ)(eR ⊗ eθ))
+ a((eθ ⊗ eR)(eθ ⊗ eR)) + ((eθ ⊗ eθ)(eθ ⊗ eθ))

and satisfies M(x) ≥ νId for any x ∈ B \ {0} and any N ∈ N \ {1}.
(ii) The maps x 7→M(x) and x 7→ f(x, ξ), for any ξ ∈ R2×2 \ {0}, are discontinuous at 0.

(iii) The maps x 7→M(x) and x 7→ f(x, ξ), for any ξ ∈ R2×2 \ {0}, belong to

W 1,q \W 1,2 for any 1 ≤ q < 2

with the spaces (B,R16) and (B) respectively.
(iv) The map

(10) u = uN ∈ C
0,1(B,R2) \ C1(B,R2)

is a stationary point of E, as defined in (7), and the corresponding pressure λ exists
and satisfies λ ∈W 1,q(B) for any 1 ≤ q < 2.

(v) Moreover, the map uN is the unique global minimizer of E in the class Ag.
(vi) The minimum energy is given by

min
v∈Ag

E(v) =
νπ

2
(1 + a)

(
1

N
+N

)
.

The problem of studying a functional of the form E(u) is of interest not least because the reg-
ularity and/or uniqueness of minimizers of such incompressible problems cannot necessarily
be determined a priori. Concerning uniqueness in the compressible setting, works including
but not limited to John [7], Knops and Stuart [10], Sivaloganathan [16], Zhang [22], and
Sivaloganathan and Spector [17] provide conditions under which the uniqueness of a global
minimizer can be expected. By contrast, a striking example given by Spadaro [18] clearly
demonstrates that global minimizers need not be unique, even under full displacement bound-
ary conditions. When the domain of integration, or reference configuration, is an annulus,
a number of papers, including those of John [7], Post and Sivaloganathan [12], Taheri [20],
and Morris and Taheri [11, 21], address uniqueness. With the topology of the annulus at
their disposal, a multiplicity of solutions/equilibria can be generated by working with cer-
tain homotopy classes. For example, Morris and Taheri [11, 21] consider functionals of the
form W (x, s, ξ) = F (|x|2, |s|2)|ξ|2/2, with F ∈ C2, on the annulus A and admissible maps

A = W 1,2
id (A,R2), and show that there are countably many solutions, with exactly one for

each homotopy class.

In the homogeneous, incompressible elasticity setting, Knops and Stuart [10, Section 6] (see
also [15]) show that the equilibirum solutions they consider are, when subject to affine dis-
placement boundary conditions, global minimizers of the associated energy. Recent results [4]
show that there are polyconvex energies with inhomogeneous integrands that, under pure
displacement boundary conditions, possess countably many pairs of equal-energy stationary

3Here the multiplication is understood through its action on ξ ∈ R2×2 which is given by

((a⊗ b)(c⊗ d))ξ · ξ = (a⊗ b)ijξij(c⊗ d)klξkl for i, j, k, l ∈ {1, 2}.
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points. It is an open question whether the lowest-energy pair of such stationary points rep-
resent global minimizers.

The regularity of equilibrium solutions or mininimzers in incompressible variational problems
is, like its compressible counterpart, a delicate matter. Ball [1, §2.6] points out that any
minimizer of the Dirichlet energy in the class W 1,2(B;R2), subject to the pointwise (incom-
pressibility) constraint det∇u = 1 a.e and boundary condition u(1, θ) = 1√

2
(cos(2θ), sin(2θ)),

must fail to be C1. There is evidence to suggest that the double-covering map u2 (see (6))
itself may be the global minimizer in that particular problem [3,5]. A partial regularity result
for Lipschitz minimizers that are subject to a type of monotonicity condition was established
in [6], and Karakhanyan [8, 9] proves that, in the case of the Dirichlet energy, bounds on
the so-called dual pressure lead, by a sophisticated argument, to the conclusion that suitably

defined equilibrium solutions must belong to the Hölder class C
1
2
loc. It is perhaps significant

that Karakhanyan’s results, like ours, also depend on ‘pressure bounds’, but more signif-
icant still that the maps he deals with are measure-preserving. The double-covering map
u2 mentioned above, and indeed the N−covering maps which form the basis of the coun-
terexample to regularity in Section 3 of this paper, do not preserve L2−measure in the sense
of [19, Eq.(24)], for example, and so are less relevant to physically realistic models of elasticity.

It seems that pressure regimes can be used to divide the sorts of incompressible problems we
consider into two classes. The double-covering problem introduced by Ball appears to lie in
the ‘high pressure’ regime4, whereas the problem we focus on falls, by design, into the ‘low
pressure’ regime, where we can say a bit more.

Let v, u ∈ Ag and suppose that u is a stationary point of E in the sense of (7). To compare
E(v) and E(u) we set η = v − u and expand E(v) = E(u+ η) as

E(v) = E(u) + E(η) +

∫
B

2M(x)∇u(x) · ∇η(x) dx

Our problem, as expressed in (5), is made more tractable by the observation made in [3] that
the stationarity condition (7) allows us, at the expense of incorporating a pressure term, to
rewrite the final, affine-in-∇η term in the expansion above as a term that is quadratic in ∇η,
namely ∫

B
M(x)∇u(x) · ∇η(x) dx =

∫
B
λ(x) det∇η(x) dx.

In particular,

E(v) = E(u) +

∫
B
|∇η|2 + 2λdet∇η dx.

For the details, see (12) and the foregoing discussion.

Plan of the paper: The main purpose of Section 2 will be to prove the uniqueness result,
Theorem 1.2. We begin by giving two technical lemmas, the first of which enables us to
decompose certain expressions in terms of Fourier modes. Section 2 concludes with the proof

of Theorem 1.2, together with an argument which shows that the prefactor 3
1
2 2−

3
2 ' 0.6123

4By which we mean that the pressure λ2 , say, appearing in the equilibrium equations associated with u2

obeys ||R∇λ2 ||∞ = 3ν, when adapted to the notation we use in this paper. The prefactor of ν in the latter

exceeds the prefactor 3
1
2 2−

3
2 appearing in the condition (9) of Theorem 1.2, which is why we refer to this as

the ‘high pressure’ regime.
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appearing in (9) can be replaced by 1 when λ depends on just one of the variables R, θ. See
Corollary 2.3. The focus of Section 3 is Theorem 1.3. In order to obtain this result we first
develop a method to compute the pressure explicitly: this is done for a quite general situation
in Lemma 3.1, and then more concretely in Lemmata 3.2-3.3.

1.1. Notation. For a 2× 2−matrix A the cofactor is given by

(11) cof A =

(
a22 −a21
−a12 a11

)
,

and we define the matrix J via

J :=

(
0 −1
1 0

)
.

For two vectors a ∈ Rn, b ∈ Rm we define the tensor product a ⊗ b ∈ Rn×m by (a ⊗ b)ij :=
(abT )ij = aibj for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. When ϕ is suitably differentiable, we recall that
det∇ϕ = JϕR · ϕτ , where ϕR and ϕτ = 1

Rϕθ are, respectively, the radial and angular deriva-

tives of ϕ. We use L2 to denote two-dimensional Lebesgue measure. For any k ∈ N\{0} and f :

B → R measurable we define the norm ‖f‖L2(dx/Rk) :=

(∫
B

|f(x)|2 dx
Rk

) 1
2

. For a measurable

vector-valued f = (f1, f2) : B → R2 we define ‖f‖L2(dx/Rk) :=

(∫
B

|f1(x)|2 + |f2(x)|2 dx
Rk

) 1
2

.

All other notation is either standard or is defined when it is used.

2. Uniqueness in the small pressure regime

To prove Theorem 1.2 we need two technical lemmas. The first contains basic properties of
functions in the class W 1,1(B) that satisfy ‖R∇λ‖L∞(B,R2) <∞, and it relies on a standard

Fourier decomposition which, when applied to η ∈ C∞(B,R2), is given by:

η(x) =
∑
j≥0

η(j)(x), where η(0)(x) =
1

2
A0(R), A0(R) =

1

2π

2π∫
0

η(R, θ) dθ

and, for any j ≥ 1,

η(j)(x) = Aj(R) cos(jθ) +Bj(R) sin(jθ),

where

Aj(R) =
1

2π

2π∫
0

η(R, θ) cos(jθ) dθ and Bj(R) =
1

2π

2π∫
0

η(R, θ) sin(jθ) dθ.

For later use, we set η̃ := η − η(0).

Lemma 2.1. Let λ ∈ W 1,1(B) and assume that ‖R∇λ‖L∞(B,R2) < ∞. Then the following
statements are true:

i) λ ∈ BMO(B).
ii) If ϕn → ϕ ∈W 1,2(B,R2) then

∫
B

λ(x) det∇ϕn dx→
∫
B

λ(x) det∇ϕ dx.

iii) It holds
∫
B

|∇ϕ|2 dx =
∑
j≥0

∫
B

|∇ϕ(j)|2 dx for any ϕ ∈W 1,2(B,R2).
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iv) det∇ϕ(0) = 0 for any ϕ ∈W 1,2(B,R2).

v)
∫
B

λ(x) det∇ϕ dx = −1
2

∫
B

((cof ∇ϕ)∇λ(x)) · ϕ dx for any ϕ ∈W 1,2
0 (B,R2).

vi)
∫
B

λ(x) det∇ϕ dx = −1
2

∫
B

((cof ∇ϕ(0))∇λ(x)) · ϕ̃ dx − 1
2

∫
B

((cof ∇ϕ)∇λ(x)) · ϕ̃ dx for any

ϕ ∈W 1,2
0 (B,R2).

Proof. i)-iv) For a proof of these points, see [3, Lem 3.2 and Prop 3.2]. The argument given
there still applies if λ depends on x instead of R.

v) Assuming ϕ ∈ C∞c (B), a computation shows:∫
B

λ(x) det∇ϕ dx =

∫
B

λ(x)Jϕ,R ·ϕ,θ
dx

R

=−
∫
B

(λ(x)Jϕ,R ),θ ·ϕ
dx

R

=−
∫
B

λ(x),θ Jϕ,R ·ϕ
dx

R
−
∫
B

λ(x)Jϕ,Rθ ·ϕ
dx

R

=−
∫
B

λ(x),θ Jϕ,R ·ϕ
dx

R
+

∫
B

λ(x),R Jϕ,θ ·ϕ
dx

R

+

∫
B

(λ(x)Jϕ,θ ) · ϕ,R
dx

R

=−
∫
B

((cof ∇ϕ)∇λ(x)) · ϕ dx−
∫
B

(λ(x)Jϕ,R ) · ϕ,θ
dx

R

The result follows by bringing the rightmost term to the left-hand side and dividing
by two. Note, as a last step, that one needs to upgrade the above equation to hold not
just for ϕ ∈ C∞c (B) but instead for all ϕ ∈W 1,2

0 (B). This is slightly delicate because
of the weak spaces involved: for a proof, see [3, Lem 3.2.(iv)].

vi) This is a version of (v) in which we emphasise the way that the above expression

depends on ϕ(0). Again, we assume ϕ ∈ C∞c (B), and we start by noting ϕ,θ = ϕ̃,θ ,
hence,∫

B

λ(x) det∇ϕ dx =

∫
B

λ(x)Jϕ,R ·ϕ̃,θ
dx

R

=−
∫
B

((cof ∇ϕ)∇λ(x)) · ϕ̃ dx+

∫
B

(λ(x)Jϕ̃,θ ) · ϕ̃,R
dx

R

then the rightmost term is just∫
B

(λ(x)Jϕ̃,θ ) · ϕ̃,R
dx

R
= −

∫
B

(λ(x)Jϕ̃,R ) · ϕ̃,θ
dx

R
=

1

2

∫
B

((cof ∇ϕ̃)∇λ(x)) · ϕ̃ dx,
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together with the above we get∫
B

λ(x) det∇ϕ dx =− 1

2

∫
B

((cof ∇ϕ(0))∇λ(x)) · ϕ̃ dx− 1

2

∫
B

((cof ∇ϕ)∇λ(x)) · ϕ̃ dx.

�

The uniqueness condition will be of the form ‖∇λ(x)R‖L∞(B,R2) ≤ C, for some constant
C > 0 and where λ will be the corresponding pressure to some stationary point. A priori, the
condition only guarantees the existence of ∇λ(x)R in a suitable space. In the next lemma we
show that λ and ∇λ themselves exist in a suitable space, which, in particular, allows one to
make use of the technical lemma above.

Lemma 2.2. Let µ : B → R be a function satisfying

‖∇µ(x)R‖L∞(B,R2) <∞.

Then µ ∈W 1,p(B,R2) for any 1 ≤ p < 2.

Proof. The proof is straightforward. Indeed, it holds that∫
B

|∇µ|p dx ≤ ‖∇µR‖p
L∞(B,R2)

∫
B

R1−p dx

R
,

where the latter integrand is integrable for all 1 ≤ p < 2. �

We are now in a position to prove the main statement of this section.

Proof of Theorem 1.2:

Let u ∈ Ag be a stationary point with pressure λ, let v ∈ Ag be arbitrary and set η := v−u ∈
W 1,2

0 (B,R2).

We start expanding the energy via

E(v) = E(u) + E(η) +H(u, η),

where

H(u, η) := 2

∫
B

M(x)∇u · ∇η dx

denotes the mixed terms.
Expanding the Jacobian of η and exploiting the fact that both u and v satisfy det∇u =
det∇v = 1 a.e. yields

det∇η = −cof ∇u · ∇η a.e.

By the latter identity and the fact that (u, λ) satisfies (7), H can be written as

(12) H(u, η) = 2

∫
B

λ(x) det∇η dx.

By Lemma 2.1.(vi) we have

H(u, η) = −
∫
B

(cof ∇η(0)∇λ(x)) · η̃ dx−
∫
B

(cof ∇η∇λ(x)) · η̃ dx =: (I) + (II).
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Now by noting that the 0−mode is only a function of R, we get

(cof ∇η(0)∇λ(x)) · η̃ =
λ,θ
R

(η
(0)
1,Rη̃2 − η

(0)
2,Rη̃1).

Instead of just λ,θ on the right hand side of the latter equation we would like to have the full
gradient of λ. This can be achieved by using the basic relations eθ · eθ = 1 and eR · eθ = 0 to
obtain

(cof ∇η(0)∇λ(x)) · η̃ = (λ,RReR + λ,θ eθ) · (η
(0)
1,Rη̃2 − η

(0)
2,Rη̃1)

eθ
R
.

Arguing similarly for (II), and a short computation shows

H(u, η) =−
∫
B

(λ,RReR + λ,θ eθ) ·
[
(η̃1η̃2,θ − η̃2η̃1,θ)

eR
R

+ (η̃2(η
(0)
1,R + η1,R)− η̃1(η(0)2,R + η2,R))eθ

] dx

R
.(13)

By Hölder’s inequality we get5

H(u, η) ≥− ‖∇λ(x)R‖L∞(B,R2, dx
R
)

∫
B

[
|η̃1η̃2,θ − η̃2η̃1,θ|

1

R

+
∣∣∣η̃2(η(0)1,R + η1,R)− η̃1(η(0)2,R + η2,R)

∣∣∣] dx

R
.

By ‖∇λ(x)R‖L∞( dx
R
) ≤

√
3ν

2
√
2

and a weighted Cauchy-Schwarz Inequality, we see

H(u, η) ≥− ν
√

3

4
√

2

[
2a‖η̃1‖2L2(dx/R2) + 2a‖η̃2‖2L2(dx/R2)

+
1

a

∫
B

[
η̃22,θ
R2

+ (η
(0)
2,R + η2,R)2 + (η

(0)
1,R + η1,R)2 +

η̃21,θ
R2

]
dx

 .
Next we recall an elementary Fourier estimate (see, for instance, [3, Proof of Proposition 3.3]),
which states that for any φ ∈ C∞(B) it holds

(14)

∫
B

R−2|φ̃,θ|2 dx ≥
∫
B

R−2|φ̃|2 dx.

Applying the Cauchy-Schwarz inequality and (14), and then combining some of the norms
yields

H(u, η) ≥− ν
√

3

4
√

2

[
(2a+

1

a
)‖η̃1,θ ‖2L2(dx/R2) + (2a+

1

a
)‖η̃2,θ ‖2L2(dx/R2)+

+
2

a
‖η1,(0)R ‖

2
L2(dx) +

2

a
‖η1,R ‖2L2(dx) +

2

a
‖η2,(0)R ‖

2
L2(dx) +

2

a
‖η2,R ‖2L2(dx)

]
5Since we are not only interested in a qualitative but rather a quantitative estimate, we need to specify

which norm we pick on R2. For this the above Hölder estimate is given more carefully by∫
B

f · g dµ =

∫
B

f1g1 + f2g2 dµ ≤
∫
B

|f1||g1|+ |f2||g2| dµ ≤ max{‖f1‖L∞(B,µ), ‖f2‖L∞(B,µ)}
∫
B

(|g1|+ |g2|) dµ

This is the reason why we defined the norm of f via ‖f‖L∞(B,R2,µ) := max{‖f1‖L∞(B,µ), ‖f2‖L∞(B,µ)}.
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≥− ν
√

3

4
√

2

[
(2a+

1

a
)‖η̃,θ ‖2L2(dx/R2) +

2

a
‖η,(0)R ‖

2
L2(dx) +

2

a
‖η,R ‖2L2(dx)

]
.

Making use of η̃,θ = η,θ , which is true since the zero-mode does not depend on θ, and

‖η,(0)R ‖2L2(dx) ≤ ‖η,R ‖
2
L2(dx) we obtain

H(u, η) ≥− ν
√

3

4
√

2

[
(2a+

1

a
)‖η,θ ‖2L2(dx/R2) +

4

a
‖η,R ‖2L2(dx)

]
.

Choosing a =
√
3√
2

and again combining norms gives

H(u, η) ≥− ν
√

3

4
√

2

[
4
√

2√
3

(‖η,θ ‖2L2(dx/R2) + ‖η,R ‖2L2(dx))

]
=− νD(η),

where D(η) := ‖∇η‖2L2(dx) denotes the Dirichlet energy. This yields

E(η) +H(u, η) ≥ E(η)− νD(η) ≥ 0,

which, since Mξ · ξ ≥ ν|ξ|2 for all ξ ∈ R2, completes the proof.

The prefactor
√
3

2
√
2

in (9) is the best we have for general λ at the moment. If, however,

circumstances are such that λ depends on only one of R, θ throughout B, then condition (9)
can be replaced by the weaker assumption

‖∇λ(x)R‖L∞(B,R2) ≤ ν.(15)

Corollary 2.3. Let the conditions of Theorem 1.2 be in force, but with (15) replacing (8),
and assume that either λ(x) = λ(R) or λ(x) = λ(θ) for all x ∈ B. Then the conclusions of
Theorem 1.2 hold.

Proof. (i) (λ(x) = λ(R).) This case is significantly simpler and one can argue more along the
lines of the proof of [3, Prop.3.3]. The reason is that in this case it still holds that

H(v, η) = 2

∫
B

λ(R) det∇η dx = 2

∫
B

λ(R) det∇η̃ dx,

where η̃ = η − η(0) eliminating the 0−mode.
Then applying of [3, Lemma 3.2.(iv)] yields

H(v, η) =

∫
B

λ′(R)Rη̃ · Jη̃,θ
dx

R2
.

Using Hölder’s inequality, ‖λ′(R)R‖L∞(0,1) ≤ ν, and Fourier estimate (14) we get

H(v, η) ≥− ‖λ′(R)R‖L∞(0,1)

∫
B

|η̃||η̃,θ|
dx

R2

≥− ν

∫
B

|η̃|2 dx
R2

1/2∫
B

|η̃,θ|2
dx

R2

1/2
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≥− ν
∫
B

|η̃,θ|2
dx

R2

≥− ν
∫
B

|∇η|2 dx.

Note, as before, that the ∼ could be dropped because
∫
B

|∇η̃|2 dx ≤
∫
B

|∇η|2 dx.

(ii) (λ(x) = λ(θ).) Here we start with (13) which simplifies to

H(u, η) =−
∫
B

λ,θ (θ)[(η2,
(0)
R +η2,R )η̃1 + (η1,

(0)
R +η1,R )η̃2]

dx

R

By Hölder’s inequality, Inequality (14) and ‖λ,θ ‖L∞(0,2π) ≤ ν we get

H(u, η) ≥− ‖λ,θ ‖L∞(0,2π)

∫
B

|(η2,(0)R +η2,R )η̃1 + (η1,
(0)
R +η1,R )η̃2|

dx

R

≥− ν

2
[2‖η̃1,θ ‖2L2(dx/R2) + 2‖η̃2,θ ‖2L2(dx/R2) + ‖η,(0)R ‖

2
L2(dx) + ‖η,R ‖2L2(dx)]

Using η̃,θ = η,θ and ‖η,(0)R ‖2L2(dx) ≤ ‖η,R ‖
2
L2(dx) we get

H(u, η) ≥− ν

2
[2‖η,θ ‖2L2(dx/R2) + 2‖η,R ‖2L2(dx)]

=− νD(η).

�

Remark 2.4 (Relaxation of the assumptions). The result of Theorem 1.2 continues to hold
if we assume that f(x; ξ) = M(x)ξ · ξ ≥ ν(|x|)|ξ|2 for some ν ∈ L∞(R+), ν(R) ≥ 0, and all
ξ ∈ R2×2. Here, ν(R) = 0 is allowed6 to be 0. The assumption ν = ν(R) is needed because
we do not know if the Fourier estimate (14) is still true if ν depends on both R and θ. In this
case, the small pressure condition can be relaxed to a pointwise estimate:

|∇λ(x)R| ≤
√

3ν(R)

2
√

2
for a.e. x ∈ B,

with uniqueness if the inequality is strict on some non-null set.

3. A method for computing the pressure and a counterexample to regularity

In this section we a construct an explicit functional E(u) of the form (1), where the integrand

obeys (2) and (3), such that u = uN is the global minimizer of E in Atr (u
N
). The strategy is

as follows:

(i) select a candidate trace function g ∈ W k+1,p(S1,R2) for k ≥ 1 and 1 ≤ p ≤ ∞ which
obeys7 1 = Jg(θ) · g′(θ) for a.e. θ in [0, 2π)8

6Note that in these circumstances, we do not need to verify that a minimizer of the associated functional
E(u) exists in order to apply Theorem 1.2. Rather, it is enough to establish that u is a stationary point in the
sense of (7).

7The condition Jg · g′ = 1 ensures that the one-homogeneous extension u obeys det∇u = 1 a.e. in B
8Here, by a slight abuse of notation, we put g̃(θ) = g(cos θ, sin θ) and then promptly drop the ˜
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(ii) extend g to a one-homogeneous function u(R, θ) := Rg(θ), and compute, in Lemma
3.1, a PDE which must be satisfied by both u and an associated λ in order that u is
a stationary point of E in the sense of (7);

(iii) fix g = tr (uN ) and construct, in Lemma 3.2, a suitable f(x, ξ) such that the PDE in
step (ii) can be solved for λ, and

(iv) verify that the small pressure condition stipulated in Corollary 2.3 is satisfied by λ,
and hence that uN is the unique global minimizer of the associated energy E.

We first examine conditions on M necessary for a to be a stationary point of E in the sense
of (7).
Notation: Recall the notation for 2d polar coordinates

{eR, eθ} := {(cos θ, sin θ), (− sin θ, cos θ)}.
Additionally, we will use

{eNR, eNθ} := {(cos(Nθ), sin(Nθ)), (− sin(Nθ), cos(Nθ))}
for any N ∈ N. Moreover, we will use the notation Mijgk = (M(ei ⊗ ej)) · (g ⊗ ek) for any
combination of i, j, k ∈ {R, θ} and any map g ∈ R2. Especially, if g = eNl for some l ∈ {R, θ}
we will use Mij(Nl)k for short.

Lemma 3.1 (Representation of the pressure). Let 1 ≤ p ≤ ∞, k ∈ N \ {0} and assume
M ∈ (L∞ ∩W k,p)(B,R16), g ∈ W k+1,p(S1,R2) where g obeys Jg · g′ = 1 a.e. in [0, 2π), and
let u = Rg(θ) ∈ Ag be a stationary point of the energy E as defined in (7).

Then there exists a corresponding pressure λ ∈W k,p(B,R) and it satisfies the following system
of equations a.e. in B :

λ(x),θ (Jg · eR)− λ(x),RR(Jg′ · eR) =− [MRθ(g+g′′)θ

+ ((M,θ )RθgR + (M,θ )Rθg′θ)

+R((M,R )RRgR + (M,R )RRg′θ)]

=:h1(M, g)

λ(x),θ (Jg · eθ)− λ(x),RR(Jg′ · eθ) =− [Mθθ(g+g′′)θ

+ ((M,θ )θθgR + (M,θ )θθg′θ)

+R((M,R )θRgR + (M,R )θRg′θ)]

=:h2(M, g)(16)

Proof. Let u = Rg(θ) ∈ Ag be a stationary point. If there exists a corresponding pressure
λ ∈W 1,p then u is a solution of

(17)

∫
B

M(x)∇u · ∇η dx = −
∫
B

λ(x)cof ∇u · ∇η dx for any η ∈ C∞c (B,R2).

For now, let us assume that λ ∈W 1,p(B,R). In order to derive the system of equations above,
we enter the explicit form of u and the representation η = (η · eR)eR + (η · eθ)eθ into the sta-
tionarity condition. By some further calculations, which are mainly integrations by parts, we
obtain (16). In the last step of the proof we discuss the existence of λ ∈W 1,p.
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Step 1: Computation of left-hand side of (17):
The derivative and the cofactor of the map u = Rg(θ) + b are given by

∇u = g ⊗ eR + g′ ⊗ eθ,

cof ∇u = Jg ⊗ eθ − Jg′ ⊗ eR.
Plugging the above into the left-hand side of (17) and integrating by parts yields

(LHS) =

∫
B

M(x)(g ⊗ eR + g′ ⊗ eθ) ·
(
η,R⊗eR +

1

R
η,θ ⊗eθ

)
dx

=−
∫
B

R(M(x),R )(g ⊗ eR + g′ ⊗ eθ) · (η ⊗ eR)
dx

R

−
∫
B

[M(x)((g + g′′)⊗ eθ) +M(x),θ (g ⊗ eR + g′ ⊗ eθ)] · (η ⊗ eθ)
dx

R

Now by expanding η = αeR + βeθ with α = (η · eR) and β = (η · eθ) and the shorthand
introduced above we get

(LHS) =−
∫
B

R[(M,R )RRgR + (M,R )RRg′θ]α+R[(M,R )θRgR + (M,R )θRg′θ]β
dx

R

−
∫
B

MRθ(g+g′′)θα+ [(M,θ )RθgR + (M,θ )Rθg′θ]α

+Mθθ(g+g′′)θβ + [(M,θ )θθgR + (M,θ )θθg′θ]β
dx

R

=

∫
B

h1α+ h2β
dx

R
.

Step 2: Computation of right-hand side of (17):
Now by again using the explicit form of cof ∇u, and integration by parts we get

(RHS) =−
∫
B

(λ(x)(Jg · η,θ )− λ(x)R(Jg′ · η,R ))
dx

R

=

∫
B

λ,θ (x)(Jg · η)− λ,R (x)R(Jg′ · η)
dx

R
.

Further, we use the expression η = αeR + βeθ with the notation α = (η · eR) and β = (η · eθ)
to derive

(RHS) =

∫
B

(λ,θ (x)(Jg · eR)− λ,R (x)R(Jg′ · eR))α

+(λ,θ (x)(Jg · eθ)− λ,R (x)R(Jg′ · eθ))β
dx

R
.

Together with Step 1 and the realization that in the above α, β ∈ C∞c (B) are arbitrary, the
claimed equations need to be true a.e. in B.
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Step 3: Existence of the pressure λ ∈W 1,p(B,R) :
The equations above can be rewritten as∫

B

div (λ cof ∇u) · η dx =

∫
B

h(M, g) · η dx
R
,

where h = (h1, h2). We know that div (λcof ∇u) ∈ Lp(dx) iff h(M, g) ∈ Lp(dxR ), with obvious
notation. Now consider h1(M, g) (the argument being similar for h2) and define

h11 :=−MRθ(g+g′′)θ

h12 :=[((M,θ )RθgR + (M,θ )Rθg′θ)

+R((M,R )RRgR + (M,R )RRg′θ)].

Then for h11 ∈ Lp(dxR ) we need M ∈ L∞(dx) and g, g′′ ∈ Lp, which is true by assumption.

Now, by Sobolev imbedding, we have W 2,p ↪→ W 1,∞([0, 2π),R2), and hence, in order for
h12 ∈ Lp(dxR ), and bearing in mind that g, g′ ∈ L∞, it is enough to require that ∇M ∈ Lp(dx).
This is exactly how we chose the classes for M and g. This guarantees the existence of
div (λcof ∇u) = (cof ∇u)∇λ ∈ Lp(dx). By further noting that g, g′ ∈ L∞, it is immediate
that ∇u ∈ L∞(dx), and since det∇u = 1 a.e. in B, we may write

∇λ = (cof ∇u)T
h(M, g)

R
∈ Lp(dx).

In particular, when M and g are specified, ∇λ is specified and it belongs to the class Lp(B),
reverting to the traditional notation. One can argue similarly for the higher integrability. �

We now specify g = tr (uN ) and compute the pressure under the assumptions that M depends
only on θ and is diagonal with respect to the basis of polar coordinates.

Lemma 3.2 (Representation of the pressure, N-cover, M(θ)=diag). For N ∈ N \ {1} let
g = 1√

N
eNR and assume M ∈ (L∞ ∩W k,p)(B,R16) for some 1 ≤ p ≤ ∞ and k ∈ N, where

M is of the specific form

M(x) = diag(MRRRR,MRθRθ,MθRθR,Mθθθθ) = diag(α(θ), β(θ), γ(θ), δ(θ))

with ν > 0 and α, β, γ, δ ≥ ν for any θ ∈ [0, 2π). Furthermore, suppose u = Rg(θ) ∈ Ag is a
stationary point of the energy E, as defined in (1).
Then there exists a corresponding pressure λ ∈ W k,p(B) and it satisfies the following system
of equations a.e. in B :

−λ(x),θ
1√
N

sin(θN−1) + λ(x),RR
√
N cos(θN−1) =

√
Nβ′ sin(θN−1)

+
[√

N(N − 1)β +
√
Nδ− α√

N

]
cos(θN−1)

=:h1(18)

λ(x),θ
1√
N

cos(θN−1) + λ(x),RR
√
N sin(θN−1) =−

√
Nδ′ cos(θN−1)

+
[√

Nβ +
√
N(N − 1)δ− γ√

N

]
sin(θN−1)

=:h2(19)
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where we used the shorthand θk := kθ for any k ∈ R.

Proof. By Lemma 3.1, we know that the pressure λ exists and system (16) is satisfied. Now
we just have to verify that (16) agrees with the claimed system given by (18) and (19). We
start by verifying the first of the equations in the system (16).

Step 1:
That the left-hand side of (18) follows from the left-hand side of the first equation in system
(16) is a straightforward calculation. Hence, we focus on the corresponding right-hand side,
which we named h1. First note that, because M depends only on θ, we are left with

(20) h1 = −
[
MRθ(g+g′′)θ + (M,θ )RθgR + (M,θ )Rθg′θ

]
.

We have g = 1√
N
eNR, g

′ =
√
NeNθ, g

′′ = −N
√
NeNR, and hence

MRθ(g+g′′)θ =

(
1√
N
−
√
NN

)
MRθ(NR)θ =

(
1√
N
−
√
NN

)
(MRθRθ(eNR·eR)+MRθθθ(eNR·eθ)).

Using that MRθθθ = 0 and MRθRθ = β yields

MRθ(g+g′′)θ =

(
1√
N
−
√
NN

)
β cos(θN−1).

For the second term of (20), consider

MRθgR,θ = (M,θ )RθgR +MθθgR −MRRgR +MRθg′R +MRθgθ,

which, after a short calculation, gives

(M,θ )RθgR =MRθgR,θ −MθθgR +MRRgR −MRθg′R −MRθgθ

=
1√
N

[α− β] cos(θN−1).

Similarly, for the rightmost term of (20) we get

(M,θ )Rθg′θ =MRθg′θ,θ −Mθθg′θ +MRRg′θ −MRθg′′θ +MRθg′R

=−
√
Nβ′ sin(θN−1) +

√
N [β − δ] cos(θN−1).

Together,

h1 =
√
Nβ′ sin(θN−1) +

[√
Nδ − α√

N
+
√
N(N − 1)β

]
cos(θN−1).

Step 2:
By arguing similarly, we find that

h2 = −
[
Mθθ(g+g′′)θ + (M,θ )θθgR + (M,θ )θθg′θ

]
.

Then

Mθθ(g+g′′)θ =

(
1√
N
−
√
NN

)
δ sin(θN−1)

(M,θ )θθgR =MθθgR,θ +MRθgR +MθRgR −Mθθg′R −Mθθgθ

=
1√
N

[γ − δ] sin(θN−1)

(M,θ )θθg′θ =Mθθg′θ,θ +MRθg′θ +MθRg′θ −Mθθg′′θ +Mθθg′R
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=
√
Nδ′ cos(θN−1) +

√
N [δ − β] sin(θN−1)

and finally

h2 = −
√
Nδ′ cos(θN−1) +

[√
Nβ +

√
N(N − 1)δ − γ√

N

]
sin(θN−1),

completing the proof. �

Next, we compute the small pressure criteria in the same situation. Moreover, we will provide
an explicit form of the pressure.

Lemma 3.3 (Small pressure condition, N-cover, M(θ)=diag). Let the assumptions be as
above. For any N ∈ N \ {1}, let M = (a, 1, a, 1)ν, where we pick a to be constant and in the
range

1 ≤ N2 −N < a < N2 +N.

Then for this M the corresponding pressure λ is given by

λ(x) = c+
[
N − a

N

]
ln(R) for any x ∈ B

for any real constant c ∈ R, which is independent of R and θ. Moreover, λ ∈W 1,q(B) for any 1 ≤
q < 2 and λ satisfies condition (9) strictly.

Proof. Define first

H1 =

[√
N(N − 1)β +

√
Nδ − α√

N

]
and H2 =

[√
Nβ +

√
N(N − 1)δ − γ√

N

]
.

By solving the system (18) and (19) we obtain

λ,RR =(β′ − δ′)sin(2θN−1)

2
+

1√
N

(H1 cos2(θN−1) +H2 sin2(θN−1))

λ,θ =
√
N(H2 −H1)

sin(2θN−1)

2
−N(β′ sin2(θN−1) + δ′ cos2(θN−1)).

For the specific case of M = (a, 1, a, 1)ν they become

λ,RR =
[
N − a

N

]
and λ,θ = 0

showing, in particular, that λ depends only on R i.e. λ(x) = λ(R). Indeed, the pressure is
then given by

λ(x) = c+
[
N − a

N

]
ln(R) for any x ∈ B

and for any real constant c ∈ R, which is independent of R and θ. The small pressure condition
of Corollary 2.3 can now be applied, giving∣∣∣N − a

N

∣∣∣ < 1.

Solving this inequality by case distinction yields the claimed bounds on a. The integrability
is then easily deduced, completing the proof. �

To make it more accessible for the reader we collect what we have shown so far in the following.

Proof of Theorem 1.3

(i) , (ii), and (vi) trivial.
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(iii) It is enough to show this point for M. Note, that M only depends on θ, i.e. M(x) =
M(θ). Hence, the gradient is given by

(21) ∇M =
1

R
∂θM(θ)⊗ eθ for any x ∈ B \ {0}.

First realise that the derivative with respect to θ only replaces eR with eθ (up to sign)
and vice versa, and therefore one can still bound the modulus of ‖∂θM(θ)‖L∞(B,R16) ≤
C(a) via some real constant C(a) > 0. Then, by integrating |∇M |q with respect to
dx using (21) and by the latter discussion, the claim follows.

(iv) As a consequence of g ∈ C∞ and point (iii), Lemma 3.2 guarantees that u is a
stationary point and the existence of λ in the right spaces.

(v) By Lemma 3.3 we know that λ satisfies the small pressure criteria strictly. Together,
with Theorem 1.2 this implies that u = uN is indeed the unique global minimizer to
the energy E.

Remark 3.4. (i) To summarize the foregoing analysis, we have shown that for the full ball
B ⊂ R2 and smooth boundary conditions, albeit with a topological change, there is a uni-
formly convex functional, which depends discontinuously on x, but smoothly on ∇u, such that
the corresponding energy is uniquely globally minimised by a map that is everywhere Lipschitz
but not C1(B).

(ii) One might also be interested in this counterexample on the scale of Sobolev spaces. With
this in mind, note that for any N ∈ N \ {1} and b ∈ R2 we have9

u =
R√
N
eNR + b ∈W 2,q(B,R2) \W 2,2(B,R2) for any 1 ≤ q < 2.

Moreover, one might like to compare our result with the high-order regularity result, given
in [2]. They showed that for the special case of the Dirichlet functional and u ∈W 2,q(B,R2)
with q > 2 being a stationary point satisfying det∇u = 1 a.e., then u ∈ C∞(B,R2). It is pos-
sible that a similar result could be established, for a fairly general non-autonomous p−growth
functional with the necessary changes in q. Let’s assume for a second that such a result is
indeed possible. Intriguingly, this seems to leave a ‘gap’ at q = 2.

(iii) The singular set Σ in our example is, of course, just the origin Σ = {0}. It remains an
open question whether there can be other incompressible variational problems, including in
incompressible elasticity, where the stationary points/minimizers possess a richer Σ.
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