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Abstract. We put forth a new cryptographic primitive for securely com-
puting inner-products in a scalable, non-interactive fashion: any party
can broadcast a public (computationally hiding) encoding of its input,
and store a secret state. Given their secret state and the other party’s
public encoding, any pair of parties can non-interactively compute addi-
tive shares of the inner-product between the encoded vectors.
We give constructions of this primitive from a common template, which
can be instantiated under either the LPN (with non-negligible correct-
ness error) or the LWE (with negligible correctness error) assumptions.
Our construction uses a novel twist on the standard non-interactive key
exchange based on the Alekhnovich cryptosystem, which upgrades it to a
non-interactive inner product protocol almost for free. In addition to be-
ing non-interactive, our constructions have linear communication (with
constants smaller than all known alternatives) and small computation:
using LPN or LWE with quasi-cyclic codes, we estimate that encoding
a length-220 vector over a 32-bit field takes less that 2s on a standard
laptop; decoding amounts to a single cheap inner-product.
We show how to remove the non-negligible error in our LPN instantiation
using a one-time, logarithmic-communication preprocessing. Eventually,
we show to to upgrade its security to the malicious model using new
sublinear-communication zero-knowledge proofs for low-noise LPN sam-
ples, which might be of independent interest.

1 Introduction

In this work, we put forth a new approach for non-interactive secure computa-
tion of inner products, one of the most basic and fundamental functionalities in
secure computation. Our approach can be instantiated under either the learn-
ing parity with noise (LPN) or the learning with error (LWE) assumptions, two
of the most important post-quantum assumptions. It builds upon a simple but
powerful observation: a well-chosen tweak of the Alekhnovich key exchange [4]
turns it into a non-interactive secure protocol for approximately computing in-
ner products. Borrowing tools from the recent line of work on pseudorandom
correlation generators [16–18], we show how to turn this into full fledged secure
protocols for inner product, using a small preprocessing phase with communica-
tion much smaller than the length of the vectors, both in the semi-honest and
in the malicious setting.
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1.1 Secure Inner-Product Made as Easy as Non-Interactive Key
Exchange

To better capture the attractive efficiency features of our protocols, we introduce
the notion of non-interactive inner product (NIIP) protocols. At a high level, a
NIIP specifies a pair of algorithm, Encode and Decode, where:

– Encode takes an input vector x ∈ Fn over some field F, and produces a pair
(pkx, skx). pkx is the public encoding, and skx is the secret state. All parties
can publicly reveal the encodings pkx, since they computationally hide their
vectors x.

– Decode takes as input a public encoding pkx, and a secret state sky, and
outputs a value z, such that the following holds: z = Decode(pkx, sky) and
z′ = Decode(pky, skx) form additive shares of the inner product xᵀ ·y = z+z′

over F.

Therefore, an NIIP provides a very appealing way to compute inner products
with a minimalistic interaction pattern: multiple parties can compute and pub-
lish encodings of their input ahead of time, locally keeping the secret state. Then,
whenever two parties want to securely compute the inner product between their
inputs, they can locally and non-interactively decode the other party’s public en-
coding with their own secret state, and obtain additive shares of the output. One
can compare this interaction pattern to the interaction pattern of non-interactive
key exchange: after broadcasting their public keys, any two individuals from a
network can locally compute a shared secret key. We achieve exactly the same
interaction pattern, but for the significantly more “advanced” functionality of
securely computing (shares of) inner products. We believe that this minimalistic
interaction pattern makes our construction very appealing in many natural sce-
narios, and allow them to scale more efficiently to large networks of users (which
is typically a bottleneck for secure computation).

LPN-based Instantiation. Our primary instantiation of this approach relies
on the learning parity with noise assumption. There, we only achieve correctness
up to a vanishing (but non-negligible) error term ε, which is of the order of λ2/n,
where λ is a security parameter, and n is the vector dimension. Therefore, our
protocol provides non-trivial correctness only for values of n > λ2. We note that
this is likely to be optimal: an NIIP with a much smaller correctness error would
imply an LPN-based key exchange under LPN with noise rate higher than

√
n,

which is a famous and long-standing open problem. Furthermore, we improve
the protocol in two ways:

– Using an input-independent preprocessing phase with sublinear communi-
cation O(log n) (where the O(·) hides poly(λ) factors), the protocol can be
made perfectly correct. This construction builds upon the recently intro-
duced notion of pseudorandom correlation generators.

– By developing new types of zero-knowledge proofs with sublinear commu-
nication tailored to our protocol, we show how the security of our protocol
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can be enhanced from semi-honest to malicious, at a small cost. Our new
zero-knowledge proofs, which demonstrate knowledge of a sparse vector in
the kernel of a matrix with communication sublinear in the dimension (but
linear in the sparsity), are of independent interest.

LWE-based Instantiation. Our second instantiation is based on the learning
with error assumption. There, we focus on the semi-honest setting, and directly
achieve a full-fledged (negligible error) NIIP, without any preprocessing. This
makes our protocol highly versatile in environments where it is desirable to
minimize interactions. Furthermore, our LWE-based instantiation can be shown
to provide information-theoretic security for one of the two parties.

1.2 Efficiency, Discussions and an Open Question

In addition to their optimal interaction pattern, our protocols have linear com-
munication O(n), with concrete small constants. Specifically, the constant is
always smaller than 6, and can be asymptotically reduced to 2 + ε for arbitrar-
ily small ε when n grows (approaching the – optimal – cost of just exchanging
the two vectors in the clear). In terms of computation, using relatively stan-
dard variants of LPN (or LWE) with a quasi-cyclic matrix, our protocols have
O(n · log n) computational complexity, where the cost is dominated by that of
doing a matrix-vector multiplication with a quasi-cyclic matrix (this boils down
to computing FFT’s in dimension n). For n ≈ 107, using the library of [24], the
full matrix multiplication can be executed in less than 2 seconds on a personal
laptop, according to the implementation of [17].

The LPN assumption with quasi-cyclic codes is relatively well studied [1, 3,
17], and has been used in recent submissions to the post-quantum NIST compe-
tition [3, 6, 45]. There exist other candidate codes which lead to a much greater
efficiency and are believed to provide secure variants of LPN; one standard such
example is Alekhnovich assumption [4], which states that LPN remains hard
when instantiated with a sparse code. However, our constructions require LPN
to be simultaneously hard with respect to the code and its dual code. Intrigu-
ingly, to our knowledge, no code with fast encoding and fast dual encoding is
known to provide (plausibly) secure LPN variants with respect to the code and
its dual (for example, LPN with respect to the dual of sparse codes, which are
LDPC codes, is easy due to the existence of efficient algorithms for LDPC codes).
Hence, this raises an intriguing open question: Are there linear-time encodable
codes whose dual is also linear time encodable, such that both the code and its
dual lead to hard LPN variants? As we will discuss, this question is strongly
related to the question of finding linear-time encodable codes where both the
code and its dual are good codes (i.e., have linear minimum distance), a prob-
lem which seems to be still open in coding theory (but does not seem to have
been studied much). A positive answer would provide a linear-time variant of
the Alekhnovich cryptosystem, which would lead to significant improvements
in LPN-based encryption. Furthermore, it would make our protocol strictly lin-
ear time as well. We believe that this question is therefore an important open
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question, whose study could open the road to strong efficiency improvements in
LPN-based public-key cryptography.

1.3 Comparison to the State of the Art

Many methods from the literature can be used to securely compute inner prod-
ucts. We go through the main options here, and compare them to our result.

From OT/OLE. A first option is to use generic oblivious-transfer-based secure
computation for inner product. This works especially well over F2, since the
inner product between n bit vectors can be reduced to n oblivious transfers
(OT). Using recent advances in silent OT extension [16–18], this can be done
with asymptotic communication approaching three bits per oblivious transfer.

However, things become significantly more complicated over larger fields. To
handle multiplications over a larger field F, the standard OT-based method [36]
induces a log |F| overhead in the total number of OTs, which can quickly get
prohibitive. A more efficient alternative is to build on recent advances in batch
oblivious linear evaluation (OLE) over general fields, since an inner-product
between length-n vectors over F can be reduced to a batch of n OLEs over F.
To our knowledge, the most efficient protocols for generating many OLEs are
the work of [20], which constructs a “silent OLE extension” protocol assuming
the hardness of ring-LPN over a fully-splitting ring, and the result of [10]. Being
silent, the protocol of [20] achieves an asymptotically optimal communication of
2n+ o(n) elements of F, for a computational cost of Õ(n) operations.

Our protocol achieves essentially the same asymptotic communication, and
our computational complexity is also essentially on par with theirs. However, we
improve on three core aspects:

– Communication Pattern. The protocol of [20] requires running a generic,
interactive secure computation protocol to generate the seeds for the silent
OLE extension, before running a local expansion and “derandomizing” the
pseudorandom OLEs with additional interaction. In contrast, we achieve a
minimal interaction pattern, where a single encoding of the input is broadcast
simultaneously by all parties.

– Underlying Assumption. The protocol of [20] inherently requires a new “ring-
LPN with fully splitting ring” assumption. In fact, their starting point is a
construction based on a standard variant of LPN (LPN with quasi-cyclic
codes, which we use here), which has superquadratic computational com-
plexity Õ(n2). Then, their new assumption is introduced as a way to over-
come this quadratic overhead. In contrast, we directly achieve quasilinear
overhead, under the standard LPN assumption over quasi-cyclic codes.

– Concrete Efficiency. Measuring the concrete efficiency of [20] is relatively
complex, but working out the parameters in the paper, the communication
complexity of setting up the correlation is around 40 · n for n = 220. For
lower values of n, it is much higher, and it drops quickly for higher values
of n (e.g. around 3 · n for n = 224). In contrast, our setup costs are minimal
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(e.g. around 0.7 · n for n = 220) In practice, this means that this approach
will start to outperform our protocol communication-wise only for n > 224.

As for the protocol of [10], their communication overhead is ∼ 33% larger
than ours for short-ish vectors (from 6n to 8n elements of F), and up to 4 times
larger asymptotically (from (2 + ε)n to 8n elements of F). In addition, their
construction requires a dedicated setup phase (while we only need a common
random string). Their dedicated setup can be replaced with a PKI setup, at
the cost of sacrificing further some efficiency. Other low-communication OLE
protocols have been described in [47], but their concrete computational efficiency
is significantly lower than that of [20].

From homomorphic encryption. Another standard solution is to rely on
linearly homomorphic encryption, such as Paillier encryption [49]. In these so-
lutions, one party encrypts its vector x and sends it to the other party, who
homomorphically computes and sends back a rerandomized encryption of xᵀ ·y,
which the first party decrypts. For extremely large fields (log |F| � 2048), one
can achieve the smallest communication across all known alternatives, with a
communication of only (n + o(n)) log |F| bits (i.e., essentially the cost of send-
ing one of the two vectors in the clear), using a rate-1 homomorphic encryption
scheme such as Damgård-Jurik [29]. However, this solution is not competitive
with the previous approaches for any reasonable field sizes, communication-wise
and computation-wise.

Using Ring-LWE-based linearly homomorphic encryption, a recent unpub-
lished work [22] devised a carefully optimized semi-honest OLE protocol. By
tailoring their protocol to inner products, we estimate that their protocol can
achieve a communication comparable to our semi-honest protocol. This comes
at the cost of using PKI setup and not having a non-interactive communication
pattern as we do (furthermore, our protocol can be based on LWE rather than
Ring-LWE).

1.4 Applications

Inner products are a fundamental operation in many standard privacy-preserving
applications. In many of these applications, the non-interactive structure of our
new protocol enables a very appealing realization of these applications in a multi-
party setting. This includes for example biometric authentication [48] or pattern
matching [38] (computing the Hamming distance between two strings can be
non-interactively reduced to computing an inner product, since the Hamming
distance between x and y is HW(x) + HW(y) − 2 · xᵀ · y, where HW denotes
the Hamming weight). With our non-interactive protocol, each user could pub-
lish a compact encoding associated to its fingerprint, and each authority could
also have a list of public encodings of authorized fingerprints. Then, a user can
authenticate himself with an authority with almost zero communication: the
authority and the user locally compute shares of the Hamming distance, and



6 Geoffroy Couteau and Maryam Zarezadeh

the user reveal his share to the authority (a single field element). If the shares
reconstruct to a value below the threshold, the authentication is successful.

Other applications can include distributed data mining and machine learning
applications such as finding k-nearest neighbors (KNN) [55], rule mining [32],
decision trees [52], support vector machine (SVM) classification [57], or privacy
preserving neural network learning [8, 25].

Inner products are also used in secure similarity measure protocols such as
secure multi-keyword searchable schemes [42], secure keyword similarity [43],
similar document detection for plagiarism prevention, copyright protection and
duplicate submission detection (where similar documents between two entities
should be detected while keeping documents confidential [40,46]), or secure pro-
file proximity matching in social networks (e.g. in some applications, a user
profile is defined as a vector of integers where attributes correspond to an inter-
est; social proximity is defined as dot product of two user’s vectors [26]. Similar
methods are used in secure protocols for friend discovery in mobile social net-
works [33]). In many of these applications, the non-interactive nature of our
protocols can allow to design scalable, multi-user variants.

2 Preliminaries

Throughout the paper, we denote the security parameter by λ. We use upper-
case letters likeM to denote matrices, bold lower-case letters like v to denote row
vectors, and for column vectors we use the transpose vᵀ. We write uᵀ||vᵀ two
denote the horizontal concatenations of (horizontal) vectors, and u//v to denote
vertical concatenation. Eventually, we write x $← X (resp. x $← D) to denote
that x is uniformly sampled from the set X (resp. randomly sampled according
to distribution D). For a finite set S, we denote the uniform distribution on S
by U(S). We denote by Berτ the Bernoulli distribution with parameter τ , i.e.,
e ∼ Berτ means that the random variable e evaluates to 1 with probability τ
and to 0 with probability 1− τ . More generally, we write Berτ (F) to denote the
distribution that outputs a uniformly random element of F with probability τ ,
and 0 otherwise (note that with this definition, Berτ (F2) = Ber(1+τ)/2; we ignore
this slight discrepancy). We write D0

c
≈ D1 to denote that two (families of)

distributions D0 and D1 are computationally indistinguishable. Eventually, we
recall a standard lemma known in the LPN literature as the piling-up lemma:

Lemma 1 (Piling-up Lemma). For any 0 < τ < 1/2 and random variables
(X1, · · · , Xn) i.i.d. to Berτ , it holds that Pr [

⊕n
i=1Xi = 0] = (1 + (1− 2τ)n) /2.

2.1 Learning Parity with Noise

The learning parity with noise (LPN) assumption with dimension k, m noisy
samples, and noise rate τ states that it is infeasible to distinguish (A,A · s+ e)
from random, where A is a random matrix in Fm×k2 , s is a random length-k
vector, and e is a length-m vector whose entries are sampled from Berτ . More
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generally, the LPN assumption can be formulated with respect to a family of
linear codes over an arbitrary field F, in which case it states that it is hard to
distinguish a noisy codeword A·s+e from random (where A is a generator matrix
for a random code from the family). Formally, given a dimension k, number of
samples m, and field F, let Code(m, k,F) be a probabilistic code generation
algorithm that outputs a matrix A ∈ Fm×k (A is viewed as the generator matrix
of a linear code). Furthermore, we let Code⊥(m,m−k,F) be a probabilistic code
generation algorithm for the dual of Code, which outputs random parity-check
matrices B ∈ Fm×m−k for a random code A ∈ Code(m, k,F) (i.e., a full-rank
matrix B such that Bᵀ ·A = 0; B is a generator for the dual of the code generated
by A). We define the LPN assumption over F with respect to a code Code below.

Definition 2 (Learning Parity with Noise). Fix a field F = F(λ), dimen-
sion k = k(λ), number of samples m = m(λ), and noise rate τ = τ(λ). The
LPNmk,τ assumption with respect to Code states that

{(A,b) | A $← Code(m, k,F), e $← Berτ (F)m, s
$← Fk,b← A · s+ e}

c
≈

{(A,b) | A $← Code(m, k,F),b $← Fm}

The above LPN assumption has an equivalent dual formulation:

Definition 3 (Dual Learning Parity with Noise). Fix a field F = F(λ),
dimension k = k(λ), number of samples m = m(λ), and noise rate τ = τ(λ).
The dual-LPNmk,τ assumption with respect to Code⊥ states that

{(H,b) | H $← Code⊥(m,m− k,F), e $← Berτ (F)m,b← Hᵀ · e}
c
≈

{(H,b) | H $← Code⊥(m,m− k,F),b $← Fm−k}

The following is standard:

Lemma 4. For any F, k,m, τ and code generation algorithm Code, the LPNmk,τ (F)
assumption with respect to Code and the dual-LPNmk,τ (F) assumption with respect
to Code⊥ are equivalent.

Standard codes and noise distributions. The classical LPN assumption
is recovered by setting F = F2 and Code to be the uniform distribution over
Fm×k2 . However, the hardness of LPN is commonly assumed for other families of
codes in the literature, such as sparse codes [4] (often called the “Alekhnovich
assumption”), quasi-cyclic codes (used in several recent submissions to the NIST
post-quantum competition [3, 6, 45]), Toeplitz matrices [35, 44] and many more.
All these variants of LPN generalize naturally to larger fields (and LPN is typi-
cally believed to be at least as hard, if not harder, over larger fields).

In addition, it is also relatively common to consider alternative noise distri-
butions beyond the Bernoulli noise. The two most standard choices are exact
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noise (where the noise is sampled uniformly from the set of all τ ·m-sparse vec-
tors of Fm) and regular noise (where the noise is a concatenation of τ ·m random
unit vectors of length 1/τ). See [16, 18] for discussions about these alternative
noise distributions. We will denote by XNτ,m(F) (for eXact Noise) the exact noise
distribution, and by RNτ,m(F) (for Regular Noise) the regular noise distribution.

Security of LPN and its variants. Numerous attacks on LPN have been de-
vised. Among the most standard attacks are Gaussian elimination, which solves
LPN in time and sample complexity Θ(1/(1 − τ)k) using Θ(k2) memory, and
its variants (e.g. pooled Gauss [34], and BKW [14]), and the Information Set
Decoding attacks (introduced by Prange [50] and further improved in a long
sequence of papers, see e.g. [12, 13]). In this work, we will be interested in vari-
ants of LPN with a very low number of samples (linear in the dimension) and
a very low noise rate. This has several consequences: first, algorithms such as
BKW (which require a very large number of samples) do not apply, and using
a regular noise distribution has no known effect on security (in contrast, if the
number of samples is at least quadratic in the dimension, attacks such as the
Arora-Ge attack [7] can take advantage of the noise structure). Second, in the
very low-noise regime, all improved variants of ISD become equivalent to the
original (much simpler) algorithm of Prange.

We point out that increasing the field size beyond 2 is not known to reduce
security (and actually seems to slightly improve security with respect to known
attacks), and neither does using a different family of linear code, as long as
they are good codes (i.e. a random code from the family has a linear minimum
distance with high probability). A small exception to that are quasi-cyclic codes,
where the strong structure allows for the DOOM attack [51], which slightly
reduces security (but can be easily compensated by a small increase in the noise
rate). We refer the reader to [16–18, 20] for more detailed discussions on the
security of LPN with various types of noise distributions and code ensembles.
As a rule of thumb, though: in our parameter setting, all known attacks will
have a complexity of the form 2O(τ ·m). Hence, fixing the noise rate τ to λ/m for
some fixed security parameter λ suffices to achieve exponential security (in λ)
against all known attacks.

2.2 Learning with Errors

The learning with errors (LWE) assumption is a close variant of the LPN as-
sumption. In essence, and using our generalized definition of LPN, the LWE
assumption with dimension k, and m samples, is simply the LPN assumption
over Zq (for some large enough prime q) with respect to a different noise dis-
tribution, which trades sparsity for small magnitude – i.e., instead of being a
distribution over vectors whose entries are mostly zero, the noise distribution
samples vectors whose entries are small in magnitude. Multiple choices of such
noise distributions are standard in the literature, including discrete Gaussian
noise, or noise sampled uniformly from [−B,B], where B � q is a bound on the
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magnitude. We call ’LWEmk (Zq, χ) with respect to Code’ the LWE assumption
with dimension k, m samples, over Zq, with noise vector sampled from χm and
matrix sampled from Code.

Rounding lemma. Let dxc denotes the rounding of x ∈ R to the nearest
integer. We recall the rounding lemma, from [21]:

Lemma 5 (Rounding of noisy shares). Let (p, q) be two integers with q/p ∈
N. Fix any z ∈ Zp, and (t0, t1) be two random elements of Zq subject to t0+ t1 =
(q/p) · z + e mod q, where e is such that q/(p · |e|) ≥ λω(1) (λ is a security
parameter). Then with probability at least 1− (|e|+1) ·p/q ≥ 1−λ−ω(1), it holds
that R(t0) + R(t1) = z mod p, where R is the deterministic rounding function
R : x→ d(p/q)·zc mod p and the probability is over the random choice of (t0, t1).

3 Non-Interactive Approximate Inner Product from LPN
and LWE

In this section, we describe a general non-interactive protocol for securely com-
puting the inner product between two vectors over Fn, with ε correctness error
(independent of the value of the inputs). Our general protocol can be instanti-
ated either under the LPN assumption, in which case the error will be noticeable
(but arbitrarily small), or under the LWE assumption (in which case the error
can be made negligible). Our protocol enjoys an attractive key exchange struc-
ture: consider two parties Alice and Bob with respective inputs (u,v) ∈ Fn×Fn.
The protocol has the following interaction pattern:

– First, Alice and Bob broadcast encodings of their respective vectors (u,v),
denoted pku and pkv, and locally keep a private state, which we denote by
sku and skv respectively. The encodings have length O(n) (the O(·) hides a
small constant) and computationally hide the vector they encode.

– Second, Alice (resp. Bob) can locally compute α ← Decode(pkv, sku) (resp.
β ← Decode(pku, skv)), where Decode is some deterministic decoding algo-
rithm. The values α and β form additive shares of a value w ∈ F, where it
holds that w = uᵀ · v with probability at least ε (over the random coins of
the encoding procedure).

We call a protocol with the above interaction pattern a non-interactive ap-
proximate inner-product protocol (NIAIP). We formalize this notion below.

3.1 Non-Interactive Approximate Inner Product

Definition 6. A non-interactive ε-approximate inner-product protocol (ε-NIAIP)
over a field F is a tuple of probabilistic polynomial-time algorithms (Setup,Encode,
Decode) such that Decode is deterministic, and

– Setup(1λ) : on input the security parameter 1λ in unary, outputs a common
reference string (CRS) crs.



10 Geoffroy Couteau and Maryam Zarezadeh

– Encode(crs, b,u) : on input the CRS crs, a bit b, u ∈ Fn, outputs a pair
(pkb, skb);

– Decode(crs, pk, sk′) : on input the CRS crs, a public encoding pk and a secret
state sk′, outputs a value γ ∈ F.

Furthermore, an NIAIP must satisfy two properties:

– ε-Correctness. For every common reference string crs in the domain of
Setup(1λ) and every pair (u0,u1) ∈ Fn × Fn of vectors, it holds that

Pr[Decode(crs, pk0, sk1) + Decode(crs, pk1, sk0) = uᵀ
0 · u1] ≥ ε(λ, n),

where the probability is taken over the joint random coins of both instances
of Encode, ((pkb, skb)

$← Encode(crs, b,ub))b∈{0,1}.
– Indistinguishability. For every b ∈ {0, 1}, the advantage of any (state-

ful) probabilistic polynomial-time (PPT) adversary A in distinguishing the
following two experiments, parametrized by a bit σ, is negligible:

• A receives crs
$← Setup(1λ) and outputs u ∈ Fn.

• The challenger samples a pair (pkb, skb)
$← Encode(crs, b,v), where v is

0n if σ = 0, and v = u otherwise. The challenger sends pkb to A.

A note on syntax. We note that in the above definition, the parties have
fixed roles. In a multiparty setting, if all pairs of parties want to compute inner
products, this means that they must publish two encodings of their input, one
with role 0, and one with role 1. In many applications, however, it is natural
to have “type-0” and “type-1” parties (e.g. clients and servers), such that secure
computations tasks are only carried between a type-0 and a type-1 party.

3.2 A (1− τ2m)-NIAIP from LPN

We now proceed with the construction of an ε-NIAIP, from the learning parity
with noise assumption. The construction is relatively simple in hindsight, and
quite elegant; it is a natural twist on the Alekhnovich cryptosystem. The con-
struction is parametrized by a field F, and a vector length n. We let k(n),m(n)
denote respectively a dimension parameter and a number of samples, both to be
specified later (but the reader can think of k and m as linear in n, e.g. k = 2n
and m = 4n), and t = t(λ, n) denote a noise parameter (the reader can consider
t = λ to be a reasonable choice). Let Code be a probabilistic code generation
algorithm. The construction is represented on Figure 1.

Before we state the theorem, we introduce some notation: let Code⊥right be the

code generator that samples a random matrix H $← Code⊥(m, k + n,F) (hence
H ∈ Fm×k+n) and outputs the matrix Hright ∈ Fm×k which contains the last k
columns ofH. Furthermore, we say that Code⊥ is a nice code if givenHright, there
is an efficient algorithm to sample a random matrix H from Code⊥(m, k+ n,F)



Non-Interactive Secure Computation of Inner-Product from LPN and LWE 11

– Setup(1λ) : sample H $← Code⊥(m, k + n,F) and output crs = H.
– Encode(crs, b,u) : parse crs as H and sample rb

$← Bermτ (F). If b = 0,
output pk0 ← (u//0)−Hᵀ · r0 and sk0 ← r0. If b = 1, sample s

$← Fk, and
output pk1 ← H · (u//s) + r1 and sk1 ← (u//s).

– Decode(crs, pk, sk′) : output pkᵀ · sk′.

Fig. 1. A non-interactive approximate inner-product over F for vectors of length n

whose last k columns are exactlyHright
3. We denoteH $← Code⊥|Hright

(m, k+n,F)
this process.

Theorem 7. Let Code⊥ be a nice code. Assume that the dual-LPNmm−(k+n),τ (F)
assumption with respect to Code⊥, and the (primal) LPNmk,τ (F) assumption with
respect to Code⊥right both hold. Then the construction (Setup,Encode,Decode) on
Figure 1 is an ε-NIAIP, with ε ≥ 1−mτ2.

Proof. We first prove ε-correctness. Observe that for any pair of inputs (u0,u1) ∈
Fn × Fn and every matrix H ∈ Fm×k+n, it holds that

Decode(crs, pk0, sk1) + Decode(crs, pk1, sk0)

= pkᵀ0 · sk1 + pkᵀ1 · sk0
= ((u0//0)−Hᵀ · r0)ᵀ · (u1//s) + (H · (u1//s) + r1)

ᵀ · r0
= (uᵀ

0 ||0ᵀ) · (u1//s)− rᵀ0 ·H · (u1//s) + (u1//s)
ᵀ ·Hᵀ · r0 + rᵀ1 · r0

= uᵀ
0 · u1 − rᵀ0 ·H · (u1//s) + (rᵀ0 ·H · (u1//s))

ᵀ + rᵀ1 · r0
= uᵀ

0 · u1 + rᵀ1 · r0 (since the transpose of a single field element is itself).

Now, since r0 and r1 are random Bernoulli noise vectors with rate τ , we have

Pr[rᵀ1 · r0 = 0] ≥ 1−m · τ2,

since Pr[rᵀ1 · r0 = 0] ≥ Pr[r
(i)
0 · r

(i)
1 = 0∀i ≤ m], which equal to 1 − Pr[∃i, r(i)0 ·

r
(i)
1 = 1] ≥ 1 − mτ2, using a straightforward union bound and the fact that
Pr[r

(i)
0 · r

(i)
1 = 1] = τ2 for any i.

We now prove indistinguishability, for b = 0 and b = 1. We proceed in a
sequence of games of the form Gib,σ:

– Game G0
0,0 is the initial game, with bits b = 0 and σ = 0. The challenger

samples H $← Code⊥(m, k + n,F). Upon receiving u ∈ Fn from A(crs), the
challenger returns pk0 ← 0k+n − Hᵀ · r0, where r0 is a random Bernoulli
noise.

– Game G1
0,0 : the challenger first receives a challenge, denoted (H, c), for the

dual-LPNmm−(k+n),τ assumption with respect to Code⊥, where c is Hᵀ · e for

3 All known LPN-friendly codes satisfy this property.
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some noise vector e. Upon receiving u ∈ Fn from A(crs), the challenger
returns pk0 ← 0k+n − c. This game is perfectly indistinguishable from the
previous one.

– Game G2
0,0 is exactly as Game G1

0,0, except that c is now a random vec-
tor from Fm. Observe that distinguishing between G1

0,0 and G2
0,0 is exactly

solving the dual-LPNmm−(k+n),τ assumption with respect to Code⊥.
– Game G3

0,0 : the challenger proceeds as in Game G2
0,0, except that it outputs

pk0
$← (u//0)−c. Since c is a uniformly random vector, this game is perfectly

indistinguishable from the previous one.
– Game G4

0,0 : as the previous one, except that c is back to being of the form
Hᵀ ·e for some noise vector e. Distinguishing this game from G3

0,0 is exactly
solving the dual-LPNmm−(k+n),τ assumption with respect to Code⊥.

– Game G0
0,1 : this game is simply the initial game with bits b = 0 and σ = 1.

Game G0
0,1 is perfectly indistinguishable from G4

0,0.

From the above, we conclude that the advantage of any polynomial time
adversary in the indistinguishability experiment with b = 0 is at most twice its
advantage against the dual-LPNmm−(k+n),τ (F) assumption with respect to Code⊥.
We now address the case b = 1.

– Game G0
1,0 is the initial game, with bits b = 1 and σ = 0. The challenger

samples H $← Code(m, k + n,F). Upon receiving u ∈ Fn from A(crs), the
challenger returns pk1 ← H · (0n//s) + r1, where r1 is a random Bernoulli
noise and s is a random vector from Fk.

– Game G1
1,0 : the challenger first receives a challenge, denoted (Hright, c), for

the LPNmk,τ assumption with respect to Code⊥right, where c is Hright · s+ e for
some random vector s and some noise vector e. The challenger samples H
as H $← Code⊥|Hright

(m, k+n,F) (which is possible by definition since Code⊥

is a nice code). Let Hleft be such that H = Hleft||Hright. Upon receiving
u ∈ Fn from A(H), the challenger returns pk1 ← c. By construction of c,
since H · (0n//s) = Hright · s, this game is perfectly indistinguishable from the
previous one.

– Game G2
1,0 is exactly as Game G1

0,0, except that c is now a random vec-
tor from Fm. Observe that distinguishing between G1

0,0 and G2
0,0 is exactly

solving the LPNmk,τ assumption with respect to Code⊥right.
– Game G3

1,0 : the challenger proceeds as in Game G2
0,0, except that it outputs

pk0
$← Hleft ·u+c. Since c is a uniformly random vector, this game is perfectly

indistinguishable from the previous one.
– Game G4

1,0 : as the previous one, except that c is back to being of the form
Hright ·s+e. Distinguishing this game from G3

0,0 is exactly solving the LPNmk,τ
assumption with respect to Code.

– Game G0
1,1 : this game is simply the initial game with bits b = 1 and σ = 1.

Since H ·(u//s) = Hleft ·u+Hright ·s, Game G0
0,1 is perfectly indistinguishable

from G4
0,0.
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From the above, we conclude that the advantage of any polynomial time ad-
versary in the indistinguishability experiment with b = 1 is at most twice its
advantage against the LPNmk,τ (F) assumption with respect to Code⊥right. This con-
cludes the proof.

3.3 Non-Interactive Inner Product from LWE

A simple variant of our construction of non-interactive approximate inner-product
leads to a construction under the learning with error (LWE) assumption. Unlike
its LPN-based counterpart, this variant can actually achieve correctness expo-
nentially close to 1.

Let Fp be the prime-order field over which we want to compute a non-
interactive inner-product. Fix a bound B on the magnitude of the noise. Let
Zq be a ring, for some multiple q of p of size q > (m · B2 + 1) · p · λω(1). The
variant is described on Figure 2. Eventually, we let χ denote a noise distribu-
tion. The exact choice of χ does not matter much, but we assume that all entries
in a random sample from χm belong to [−B,B] with overwhelming probabil-
ity. Note that we follow an LPN-style description, by viewing the matrix of the
LWE assumption as the generator matrix of some linear code over the ring Zq.
While this is not so common in the LWE literature, this viewpoint allows for
considerations on the choice of better codes to improve efficiency.

– Setup(1λ) : sample H $← Code⊥(m, k + n,Zq) and output crs = H.
– Encode(crs, b,u) : parse crs as H and sample rb

$← χm. If b = 0, output
pk0 ← (q/p) · (u//0)−Hᵀ · r0 and sk0 ← r0. If b = 1, sample s

$← Zkq , and
output pk1 ← H · (u//s) + r1 and sk1 ← (u//s).

– Decode(crs, pk, sk′) : output d(p/q) · pkᵀ · sk′c mod p.

Fig. 2. An LWE-based non-interactive inner-product over Fp for vectors of length n

Theorem 8. Assuming the LWEmk (Zq, χ) with respect to Code, the construction
of Figure 2 is an ε-NIAIP, with correctness ε negligibly close to 1.

Proof. The protocol of Figure 2 is identical to the LPN-based protocol of Fig-
ure 1, up to two differences:

– Hᵀ · r0 is used to mask (q/p) · (u//0) instead of (u//0), and
– the output of Decode is fed to the rounding procedure R of the rounding

lemma (Lemma 5) which, on input x ∈ Zq, outputs R(x) = d(p/q)·xc mod p.

Using the same analysis as for the correctness of the LPN-based protocol, if
(pk0, sk0) and (pk1, sk1) are encodings of two inputs (u0,u1) ∈ Fp×Fp, we have

pkᵀ0 · sk1 + pkᵀ1 · sk0 = (q/p) · uᵀ
0 · u1 + rᵀ1 · r0,
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where |rᵀ1 · r0| ≤ m · B2. Let e ← rᵀ1 · r0 denote the output noise and z ←
uᵀ
0 ·u1 denote the target output. The values pkᵀ0 · sk1 and pkᵀ1 · sk0 form random

shares of (q/p) · z + e over Zq with |e| ≤ m · B2. Therefore, by the rounding
lemma (Lemma 5), the outputs of Decode form additive shares of z ∈ Zp with
overwhelming probability. This concludes the proof of overwhelming correctness.

For security, the second part of the analysis is identical to the security analy-
sis of the LPN-based protocol, and reduces to the LWEmk (Zq, χ) assumption with
respect to Code. The first part of the analysis, however, differs in a crucial way:
a standard application of the leftover hash lemma shows that Hᵀ · r0 is statisti-
cally close to a random vector. Therefore, the NIAIP actually enjoys statistical
security for one of the two parties in the LWE setting. The rest of the game hops
are identical – one must simply replace invocations of the dual LPN assumption
by the statistical argument.

Like its LPN-based counterpart, this protocol leads to an NIAIP over an ar-
bitrary prime order field (and can even be modified to give an inner product
protocol over Z); furthermore, it enjoys overwhelming correctness. However, as
we will see later, it is possible to upgrade the correctness of the LPN-based NIAIP
to perfect correctness, and its security to security against malicious adversaries,
at a cost sublinear in n; this means that, asymptotically, the LPN-based proto-
col can be made perfectly correct and maliciously secure at negligible cost. In
contrast, making the LWE-based protocol secure against malicious adversaries
is more challenging, and we leave it to future work.

3.4 From NIAIP to Secure Computation of Inner Product

The natural usecase for NIAIP is to securely compute inner products: two parties
P0, P1 publish encodings of their respective inputs u and v, locally compute
shares of the inner product, and exchange their shares to reconstruct the output.
An important technicality here is that the NIAIP indistinguishability notion does
not directly imply security when revealing the share of P0 to its opponent P1.
When correctness is overwhelming (as with our LWE-based instantiation), this
is not an issue: given the output uᵀ · v and the randomness of P1, the simulator
can compute P1’s share γ1, and simulate the missing share as uᵀ · v − γ1. Due
to the overwhelming correctness, the simulation is indistinguishable from the
honest protocol.

When using ε-NIAIP with non-negligible correctness error (as with our LPN-
based instantiation), however, the correctness error translates to a security loss
for the protocol: the simulation fails with probability 1 − ε. Yet, this does not
directly imply an attack on the protocol. In fact, for our LPN-based instantiation,
we can get perfect simulation by giving the the simulator the error term rᵀ1 · r0.
Concretely, this corresponds to allowing the adversary to learn a single sparse
linear equation (given by r1) in the LPN noise vector r0. In turn, this means
that the security reduces to an appropriate LPN with leakage assumption. Such
variants of LPN are relatively standard, and can in particular be reduced to the
standard LPN assumption, albeit with some loss [17,20].
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In an multiparty setting, where P0 wants to compute the inner product of
u with many other vectors, the leakage can be accumulated across corrupted
parties. This translates to a larger loss for the assumption, and the LPN param-
eters must be adjusted to compensate, as a function of the maximum number
of corrupted parties. An alternative solution is to first remove the error instead,
using the sublinear-communication preprocessing phase described in Section 4.

3.5 Choosing the Parameters and the Code

Our non-interactive inner-product communicates k + n+m bits (k + n for pk0
and m for pk1). The security of our protocol relies on a relatively unusual set
of parameters: we need to assume dual LPN with dimension m − (k + n), m
samples, noise rate τ with respect to the matrix Hᵀ, as well as primal LPN with
dimension k, m samples, noise rate τ with respect to the “right half” of H. We
will discuss candidate choices for the underlying code afterwards. Regarding the
parameters, we set m − (k + n) = k to ensure that both assumptions achieve
the same dimension and number of samples, in order to balance security. This
implies m = 2k + n. From there, the choice of k induces a tradeoff between the
noise rate (which must be kept low as the error probability of the protocol is
τ2 ·m) and the communication of the protocol (which grows with k): picking a
very large k � n increase communication but achieves asymptoptically a rate
1/2 (as m approaches 2k).

Concrete Parameters. For concrete instantiations, we consider a reasonable
middle ground and set k = n (hence m = 3k), leading to codes of rate 1/3.
This leads to a protocol with total communication 5n bits, only 2.5 times more
than the communication of exchanging u0 and u1 in the clear. To estimate
the concrete noise rate, we rely on the analysis of [16] which provides various
formulas to compute lower bounds on the bit complexity of the most standard
attacks on LPN. With a rate 1/3 and using their formulas for the cost of ISD,
Gaussian elimination, and low-weight parity-check attacks, we get the following
(very close) approximation of the security level: choosing τ = λ/m provides
λ−20 bits of security (independently of the vector length n). Hence, for example,
setting λ = 100 gives 80 bits of security, and an error probability of λ2/m = 0.3%
for vectors of length n = 220 (for smaller vectors, the error probability increases
rapidly: e.g. around 10% for n = 215).

Asymptotic Parameters. Asymptotically, letting m = 2k + n as before, the
code rate is k/m for both codes. Let ε be an arbitrarily small constant, and set
k = ε ·n and τ = λ/m for a security parameter λ. The best known attack against
LPN with code rate k/m = O(1) and noise rate λ/m run in time 2O(λ) (where
the O(·) hides a 1/ε factor). With these parameters, the protocol communicates
3k+2n = (2+3ε)n bits, which is arbitrarily close to the optimal communication
of an insecure NIAIP that simply reveals the inputs in the clear. Settling for
subexponential security in λ can further reduce communication to 2n+ o(n).
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Choosing the Code. It remains to discuss how to choose an appropriate code
to instantiate the NIAIP. While the code has no impact on communication, it
represents a tradeoff between computation and security. For example, using a
uniformly random code leads to a security reduction to the most standard flavor
of LPN, but comes at a huge computational cost: the computation scales as
O(n2).

Some variants of LPN are conjectured to be secure with respect to linear
time encodable codes, where the mapping x → H · x can be computed in linear
time (by the transposition principle [15, 39], this also implies that the mapping
y → Hᵀ · y can be computed in linear time). This is for example the case of
primal LPN instantiated with a sparse matrix H, with a constant number of
nonzero entry per row, which corresponds to the Alekhnovich assumption [4].
Unfortunately, to our knowledge, for all known linear-time encodable code such
that primal LPN is conjectured to hold with respect to H, the dual assumption
with respect to Hᵀ turns out to be insecure. For sparse codes, typically, this is
equivalent to the well-known fact that LDPC codes admit an efficient decoding
algorithm.

Fortunately, if we settle for quasi-linear time encodable codes, we can circum-
vent the issue. For example, quasi-cyclic codes can be encoded in time O(n·log n)
using Fast Fourier Transform, and given a generator matrix H for a quasi-cyclic
code, LPN is widely conjectured to hold both with respect to Hright in its primal
form, and with respect to Hᵀ in its dual form. Quasi-cyclic codes have been
used in numerous recent works [1, 3, 17] as well as in submissions to the NIST
post-quantum competition [3,6,45]. We note that, when using quasi-cyclic codes,
one must account for the speedup given by the DOOM attack [51], which gives
a
√
k speedup for the attacker. To compensate for this attack, we must therefore

aim at λ+ log2 k “pre-DOOM” bits of security, which can be done by increasing
the noise rate from (λ+ 20)/m to (λ+ 20 + log2 k)/m with our concrete choice
of parameters.

3.6 Open Problem: Finding a “Doubly Good” Linear Time
Encodable Code

While the above provides a relatively satisfying solution, it remains an intriguing
open question whether an appropriate choice of codes could possibly allow to
achieve NIAIP with strictly linear computation. Following the recent analysis of
LPN variants in [19, 28], a core necessary requirement to achieve this is to find
a linear-time encodable code such that both the code and its dual have linear
minimum distance (in the dimension). Indeed, there exists efficient attacks on
LPN with codes whose dual have low minimum dimension [5], and furthermore
having linear minimum distance suffices to circumvent all known attacks against
LPN [19,28]. However, although the question appears to be very natural, linear-
time encodable code where both the code and its dual are good codes (i.e. exhibit
linear minimum distance) have never been exhibited in the literature, and we
raise their existence as an interesting theoretical (but also possibly practical, in
light of our construction) open question.
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4 Removing Correctness Errors via Sublinear
Preprocessing

In this section, we show how to convert the LPN-based ε-NIAIP from the previous
section into a two-party secure computation protocol for inner product, without
correctness error. While the protocol is not an NIAIP anymore, all additional in-
teractions take place during an input-independent preprocessing phase. Further-
more, the amount of computation and communication during this preprocessing
phase is sublinear in n (more precisely, it will be of the form poly(λ) · log n).

The ideal functionality FIP for secure computation of (shares of) an inner
product over a field F is described on Figure 4 (setting ε = 1). The intuition
behind the protocol of this section is natural: the correctness error in the protocol
of Figure 1 is due to an additive term rᵀ1 · r0 in the shares locally decoded by
the parties. Since the rb are sparse vectors, their inner product is zero with
high probability ≈ 1−λ2/m. To correct the error, the parties will distributively
generate noise vectors (r0, r1) together with additive shares of rᵀ1 · r0. Crucially,
this entire preprocessing requires communication and computation sublinear in
the vector length n.

4.1 Picking the Right Noise Distribution

While the high level intuition is simple, the (asymptotic and concrete) efficiency
of this approach turns out to be extremely sensitive to the noise distribution. In
the previous section, we described the protocol using the standard Bernoulli noise
distribution, since it allows for a reduction to the most common flavor of LPN.
However, Bernoulli noise is a poor choice for allowing efficient preprocessing;
using a regular noise distribution insteads allows for a considerably more efficient
preprocessing, without harming security.

In a bit more details, setting τ = λ/m, a vector rb
$← Berτ (F)m can be

written as the sum of ≈ λ unit vectors. Therefore, securely computing (shares
of) the inner product between two such vectors reduces to securely computing
λ2 products of elements of F, and λ2 secure equality tests between logm-size
bitstrings. This is already sublinear in m = O(n), but the λ2 overhead can incur
a significant slowdown.

Instead, we sample r0 and r1 from the regular noise distribution: r0 and
r1 are concatenations of λ random unit vectors. The corresponding variant of
LPN, regular LPN, is not known to be any weaker than LPN in our regime of
parameters. Let us introduce a few notations: we denote rb = (r

(1)
b // · · · //r(λ)b )

for b = 0, 1, where the r
(i)
b are unit vectors. Furthermore, we denote by jb,i and

rb,i the position and the value of the nonzero entry in r
(i)
b . then, we have

rᵀ1 · r0 =

λ∑
i=1

(r
(i)
1 )ᵀ · r(i)0 =

λ∑
i=1

EQ(j0,i, j1,i) · (r0,ir1,i),

where EQ(x, y) returns 1 if x = y and 0 otherwise. Therefore, securely distribut-
ing shares of rᵀ1 · r0 reduces (mostly) to performing λ secure equality tests (for
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the EQ(j0,i, j1,i) terms) between log(m/λ)-bit strings, and secure products over
F (for the r0,ir1,i terms), which is quadratically reduced compared to the cost
for Bernoulli noise.

4.2 The Protocol

We describe below a protocol for inner product, following our previous discussion.
We use the following building blocks:

– FEQ is an ideal functionality parametrized by a domain [k] which, given
two inputs (x, y) ∈ [k]2, outputs random shares bA, bB to Alice and Bob of
EQ(x, y);

– FOLE is an ideal functionality parametrized by a field F which, given two
inputs (x, y) ∈ F2, outputs random shares zA, zB of x · y to Alice and Bob.

The protocol in the (FEQ,FOLE)-hybrid model is given on Figure 3.

Protocol Πsh
IP

– Setup. Let F be a prime order field. Sample H $← Code⊥(m, k + n,F) and
output crs = H.

– Preprocessing. Alice and Bob each sample random pairs (j0,i, r0,i)
$←

[m/λ] × F∗ and (j1,i, r1,i)
$← [m/λ] × F∗ for i = 1 to λ. Let r0, r1 denote

the corresponding regular noise vectors.
• The parties call FEQ on inputs (j0,i, j1,i) ∈ [m/λ]2 for i = 1 to λ. Let

(b0,i, b1,i) denote Alice’s and Bob’s outputs. Let c0,i ← (−1)b0,i and c1,i ←
(−1)b1,i for i = 1 to λ. Note that c0,i · c1,i = (−1)EQ(j0,i,j1,i).

• If F 6= F2, the parties call FOLE over F twice, on inputs (r0,i, r1,i) and
(c0,i · r0,i, c1,i · r1,i), for i = 1 to λ. Let (α0,i, α1,i) and (β0,i, β1,i) denote
their respective outputs in each instance. Note that α0,i+α1,i = r0,i · r1,i,
and β0,i + β1,i = c0,ir0,i · c1,ir1,i = (−1)EQ(j0,i,j1,i) · r0,ir1,i.

• If F 6= F2, the parties compute z0 =
∑λ
i=1(α0,i − β0,i)/2 and

z1 =
∑λ
i=1(α1,i − β1,i)/2. Note that z0 + z1 =

∑λ
i=1 r0,ir1,i · (1 −

(−1)EQ(j0,i,j1,i))/2 =
∑λ
i=1 r0,ir1,i · EQ(j0,i, j1,i) = rᵀ0 · r1.

• Else, if F = F2, the parties set (z0, z1)← (
⊕λ

i=1 b0,i,
⊕λ

i=1 b1,i). Note that
z0 ⊕ z1 =

⊕λ
i=1 EQ(j0,i, j1,i) = rᵀ0 · r1 (since r0,i = r1,i = 1 for all i when

F = F2).
– Online Phase. Let (u0,u1) be the inputs of Alice and Bob.
• Alice sends pk0 ← (u0//0)−Hᵀ · r0 and sets sk0 ← r0, while Bob samples

s
$← Fk, sends pk1 ← H · (u1//s) + r1 and sets sk1 ← (u1//s).

• Alice outputs x0 = pkᵀ1 · sk0 − z0 and Bob outputs x1 = pkᵀ0 · sk1 − z1.

Fig. 3. A non-interactive inner-product protocol with semi-honest security Πsh
IP over F

for vectors of length n
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Theorem 9. Let F be a prime order field and Code⊥ be a nice code. Assume
that the regular dual-LPNmm−(k+n),τ (F) assumption with respect to Code⊥, and the
(primal) regular LPNmk,τ (F) assumption with respect to Code⊥right both hold. Then
protocol on Figure 3 securely realizes the inner product functionality FIP(F, n)
from Figure 4 in the (FEQ,FOLE)-hybrid model with semi-honest security and
static corruption.

Functionality FIP(F, n, )

The functionality FIP is parametrized by a field F, and a vector length n. It interacts
with two parties Alice and Bob, and an adversary A. On input (Input,u ∈ Fnq ) from
Alice and (Input,v ∈ Fnq ) from Bob, the functionality FIP proceeds as follows:

- If both parties are honest, sample α, β ∈ Fq at random such that uᵀ · v = α+ β
- If Alice is corrupted, wait for a message (Output, α ∈ Fq) fromA and set β = uᵀ·v−α.
- If Bob is corrupted, wait for a message (Output, β ∈ Fq) from the adversary and set

α = uᵀ · v − β.

The functionality outputs α to Alice and β to Bob, and then halts.

Fig. 4. Ideal functionality FIP for inner product between vectors over Fn.

Proof. Case 0: both parties are honest. We first consider the case where
no party is corrupted. Then, it follows by construction that z0 + z1 = rᵀ0 · r1.
Furthermore, we established previously in the proof of Theorem 7 that pkᵀ1 ·
sk0 + pkᵀ0 · sk1 = uᵀ

0 · u1 + rᵀ0 · r1 (the online phase of the protocol is identical to
an execution of Encode and Decode; only the distribution of r0, r1 changes). It
follows that the outputs of Alice and Bob form additive shares of uᵀ

0 · u1 (with
probability 1).

Case 1: Alice is corrupted. Assume now that Alice is corrupted, with
input u0. The simulator Sim activates FIP(F, n) on behalf of Alice in the ideal
world by sending (Input,u0). In the real world, it plays honestly the role of Bob
in the preprocessing phase, emulates the answer of the functionalities FEQ and
FOLE by returning either a random bit or a random element of F, and stores the
queries of Alice to the functionalities and the output z0 that she computes from
the answers to her queries. Sim extracts the j0,i from Alice’s calls to FEQ and
the r0,i from her calls to FOLE, and reconstructs r0 = sk0. Sim emulates Bob in

the online phase by sending pk1
$← Fm, and sets x0 ← pkᵀ1 · sk0− z0. Eventually,

Sim sends (Output, x0) to FIP(F, n).
It remains to argue why the simulation is indistinguishable from an hon-

est execution of the protocol. Observe that the behavior of Sim is perfectly
indistinguishable to that of Bob, except that it sends pk1

$← Fm instead of
pk1 ← H · (u1//s)+r1. Since the preprocessing phase does not leak any informa-
tion about r1 (the answers of FEQ and FOLE to Alice being uniformly random by
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definition) and Sim does not need r1 to emulate these functionalities, the same
sequence of games as in the proof of Theorem 7 shows that the advantage in
distinguishing pk1 from a uniformly random element in Fm is negligible under
the (regular, primal) LPNmk,λ/m assumption with respect to Code.

Case 2: Bob is corrupted. Assume now that Bob is corrupted, with input
u1. Sim plays in the preprocessing phase and interacts with FIP(F, n) in a sym-
metrical way, extracting the (j1,i, r1,i) and reconstructing the vector r1 and the

value z1. Sim emulates Alice in the online phase by sending pk0
$← Fm. Upon

receiving pk1 from Bob, Sim extracts sk1 = (u1//s) by solving pk1 − r1 = H ·X
and parsing the solution X as sk1 = (u1//s) (which is guaranteed to be well-
formed since Bob is semi honest). Eventally, Sim sets x1 ← pkᵀ0 · sk1 − z1 and
sends (Output, x1) to FIP(F, n).

As above, proving indistinguishability from an honest execution reduces to
proving that pk0

$← Fm is indistinguishable from setting pk0 ← (u0//0)−Hᵀ ·r0,
which can be shown (since r0 is perfectly hidden from Bob), using the same
sequence of games as in the proof of Theorem 7, to follow from the (regular)
dual-LPNmm−(k+n),λ/m assumption with respect to Code.

4.3 Variant: Replacing λ Calls to FOLE by 2λ Calls to FOT

Let FOT(F) be the oblivious transfer functionality over F: on input (s0, s1) ∈ F2

from the sender and a bit b from the receiver, it outputs sb to the receiver and
nothing to the sender.

In the protocol of Figure 3, the parties with shares (b0,i, b1,i) of EQ(j0,i, j1,i)
and values (r0,i, r1,i) ∈ F2 must compute additive shares of (b0,i ⊕ b1,i) · r0,ir1,i,
which they do using two calls to FOLE. We provide an alternative instantiation,
which uses one call to FOLE, and two additional calls to FOT:

– Alice and Bob call FOLE on inputs (r0,i, r1,i) ∈ F2 and obtain additive shares
(α0,i, α1,i) of their product.

– Alice and Bob perform two oblivious transfers in parallel. In the first OT,
Alice plays the sender with inputs (b0,i · α0,i + rA, (1 − b0,i) · α0,i + rA) for
a random mask rA, and Bob plays the receiver with input b1,i. Concretely,
Alice and Bob obtain this way shares of (b0,i ⊕ b1,i) · α0,i (where Alice’s
share is rA). In the other direction, Bob plays the role of the sender, using
a random mask rB , and Alice of the receiver with input b0,i; Alice and Bob
obtain additive shares of (b0,i ⊕ b1,i) · α1,i. Summing their shares, Alice and
Bob do indeed obtain shares of (b0,i ⊕ b1,i) · r0,ir1,i.

4.4 Instantiating FEQ and FOLE

With the above variant, the preprocessing boils down to λ invocations of FEQ

on log(m/λ)-bit strings, λ invocations of FOLE over F, and 2λ invocations of
FOT on log |F|-bit strings. There exists numerous options to implement the FEQ

functionality. In our range of parameters, we estimate that the most efficient
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solution is the protocol of [27]. For equality test over `-bit strings, it requires
` + o(`) oblivious transfers of log `-bit strings, and O(log∗ `) rounds of commu-
nication. Concretely, setting for example λ = 120 and m = 3n, for an inner
product between string of length at most n = 220, the protocol of [27] can be in-
stantiated either with 15 OTs of 16-bit strings and 14 OTs of bits in two rounds,
or with 15 OTs of 16-bit strings, 4 OTs of 4-bit strings, and 2 OTs of bits, in
three rounds (and no additional communication beyond the OTs). For FOLE, the
protocol of [36] requires log |F| OTs per OLE over F (while recent OLE proto-
cols such as [20] are much more efficient, their efficiency improvement “kicks in”
only for a large enough number of OLE). With these choices of protocol, the full
preprocessing boils down to λ · (log(m/λ) + log |F|+ 2) oblivious transfers.

Overall, setting m = O(n), the communication of the preprocessing phase
boils down to O(λ · (log n+log |F|)) oblivious transfer of small strings (O(log n)-
bit or log |F|-bit strings), which leads to a logarithmic communication in the
vector length n. For example, using the standard instantiation for short string
oblivious transfer [41], computing the inner product between two strings of length
220 over a 32-bit field requires about 5·105 ≈ 0.5·n bits of communication, adding
only a small overhead to the entire communication of the protocol. Using recent
advances in silent OT extension [17, 28], this overhead can be further reduced
by a factor four.

5 Malicious Security

In this section, we enhance our protocol from Section 4 to withstand attacks
from malicious adversaries.

5.1 Guaranteeing the Success of Extraction

In the malicious model, the parties may not follow the specifications of the
protocol; in particular, they may not use their prescribed input. Therefore, to
make the protocol from Figure 3 secure against malicious behavior, the simulator
must have a mean to extract the input of the corrupted party. When Alice is
corrupted, since Sim emulates the preprocessing and stores her noise vector r0,
the effective input u0 used by Alice can be extracted by computing pk0 +Hᵀ ·
r0, and parsing it as (u0//0). However, the success of this extraction is only
guaranteed if we can ensure that pk0 will always be well-formed (i.e. the “bottom
half” of pk0 is of the form M · r0 for a sparse r0, where M is the bottom half of
Hᵀ). Similarly, if Bob is corrupted, Sim extracts u1 by solving the linear system
H ·X = pk1 − r1 to get (u1//s). However, this is an overdetermined system of
equations which is not guaranteed to have a solution, and extraction will again
succeed only if we can guarantee that pk0 is well-formed (i.e., this system has a
solution).

To guarantee the success of extraction, we let Alice and Bob add zero-
knowledge proofs that their public keys pk0, pk1 are well-formed. With simple
manipulations, it is easy to show that in both cases, this reduces to proving
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that a vector v is of the form M · e, where M is a public compressive matrix,
and e is a secret sparse noise vector – i.e., this reduces to proving knowledge of
a preimage in an instance of the syndrome decoding problem for the code with
parity-check matrixM , which is a well-studied problem [2,23,53]. Unfortunately,
existing solutions are prohibitively expensive in our setting: they require O(κ·m)
communication, where κ is a statistical security parameter (which stems from
parallel repetitions of an underlying zero-knowledge proof with constant sound-
ness error, e.g. 2/3 in Stern’s scheme [53]) and m is the code dimension. Since
our protocol operates in the high-dimension, low-noise setting, this causes a huge
blowup to the total communication and computation.

5.2 A New Almost-Zero-Knowledge Proof for Low-Noise Syndrome
Decoding

As a contribution of independent interest, we therefore design a new zero-
knowledge proof system for the syndrome decoding problem, which is especially
suited for instances with large dimension and low noise. For a syndrome decod-
ing instance of dimension ` and a noise rate of λ/`, our protocol boils down
essentially to O(λ · log `) actively secure oblivious transfers and λ OLE. On the
downside, unlike Stern’s protocol, our zero-knowledge proof is not an identifi-
cation scheme: it is private coin and cannot be made non-interactive using the
Fiat-Shamir heuristic.

Our approach follows the intuition underlying a recent line of work [9, 11,
30, 56] on efficient zero-knowledge proofs from pseudorandom correlation gen-
erators [16–18]. However, our goal is fundamentally different, since these works
target linear communication zero-knowledge proofs for general (arithmetic) cir-
cuits; on the other hand, we construct a sublinear communication zero-knowledge
proof for a specific problem.

Intuition. A recent line of work initiated in [16] has developed pseudorandom
correlation generators (PCG) for the vector-OLE (VOLE) correlation. At a high
level, a PCG for a VOLE correlation allows to distributively generate additive
shares of ∆ · v, where ∆ is a (chosen) element of F known to one of the parties,
and v is a (long) pseudorandom vector over F, known to the other party. We
do not directly build on PCG, but observe that the main component in their
construction is a protocol that relies on puncturable pseudorandom functions
(PPRF) to distributively generate, with low communication, additive shares of
∆ · e for a sparse, regular noise vector e.

We rely on this PPRF-based protocol to authenticate the regular noise vector
e (i.e., the witness of the prover) with low communication overhead, using an
information-theoretic MAC ∆ known to the verifier. Due to the regular structure
of e, this boils down to distributively generating and locally concatenating shares
of ∆ · ei for i = 1 to λ, where the ei are unit vectors (let ji be the index of their
nonzero entry, and ei be the corresponding value). Such a protocol is called a
single point vector OLE. We briefly recall how such shares are generated with
sublinear communication:
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– The verifier samples ∆, and a PRF key K for a PRF {PRFK : [`/λ] 7→ F}K .
– The parties execute an interactive protocol to securely generate K{ji} (the

key K punctured at ji). Using variants of the Doerner-shelat protocol [31]
on top of the GGM puncturable PRF [37], this requires O(log `) invocations
of an oblivious transfer protocol.

– The prover obliviously receive the value PRFK(ji) + ∆ · ei, using a single
OLE over F.

– In the malicious setting, when several instances are executed, additional
consistency checks are required to guarantee that∆ remains the same accross
all executions. An efficient protocol for this task was given in [54], with
minimal overhead compared to the semi-honest protocol.

Let (q0,q1) denote the additive shares of ∆ · e generated using the above
protocol. To check that v is indeed of the formM ·e, the verifier sends a random
vector ρ to the prover, who replies with the value ver0 = −ρᵀ · (M · q0) ∈ F.
Then, the verifier sets ver1 ← ρᵀ · (M · q1 −∆ · v) and check that ver0 = ver1.

Observe that ver1−ver0 = ρᵀ·(M ·q1−∆·v+M ·q0) = ρᵀ·(M ·(∆·e)−∆·v) = 0
ifM ·e = v. Soundness will rely on the Schwarz-Zippel lemma to show that when
M · e 6= v, causing ver0 = ver1 is as hard as guessing ∆, which can happen only
with probability 1/|F| since ∆ is perfectly hidden from the prover. This readily
suffices when F is exponentially large. For smaller fields, we simply sample ∆
from an appropriate extension field F′ of F such that |F′| ≥ 2κ for some statistical
security parameter κ; the rest of the protocol is identical, except that the parties
must use a PRF from [`/λ] to F′, and execute the OLE’s over F′.

Zero-knowledge versus almost-zero-knowledge. The above blueprint actu-
ally leads to a true zero-knowledge proof system with sublinear communication,
when instantiated with a maliciously secure sublinear protocol for single point
vector OLE. While it is possible to construct such protocols, recent works [17,54]
have observed that one can achieve a much greater efficiency by slightly relaxing
the single point VOLE functionality. In this relaxation, the verifier is allowed to
learn roughly one bit of leakage about the noise vector e. When instantiating our
construction with the protocol of [54] (the state-of-the-art protocol of this line of
work), the protocol we get is therefore not truly zero-knowledge. Nevertheless,
it still suffices to construct a maliciously secure inner product protocol, which is
our end goal, at the cost of relying on the LPN with static leakage assumption
(first put forth in [17]), which states (informally) that LPN remains secure given
one bit of leakage about the noise vector.

The zero-knowledge proof. Since, for better efficiency, we do not achieve full-
fledged zero-knowledge but only a relaxed version which suffices in our specific
context, we do not provide here an isolated description of the zero-knowledge
proof, and directly integrate it into our maliciously secure protocol. However,
for the sake of completeness, we provide a description of the proof system in
isolation (with and without the relaxation) in the full version of this paper.
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5.3 Maliciously Secure Inner Product from LPN with Static
Leakage

The full protocol, integrating the procedure for checking that pk0 and pk1 are
well-formed, is described on Figure 6, in the Fmal

pre -hybrid model. These checks
require the parties to have access to authenticated versions of the noise vectors
r0, r1; this authentication procedure is executed in a preprocessing phase. The
ideal functionality Fmal

pre describing the preprocessing phase is represented on
Figure 5. It follows closely the single-point vector-OLE functionality from [54],
but enhances it to also distribute the inner product between pairs of single-
point VOLEs. Similarly, our instantiation of this functionality will build upon
the protocol of [54].

Functionality Fmal
pre (F,F′, n)

The functionality is parametrized by a field F and an extension field F′ of F, as well
as a vector length n, which is assumed to be a power of 2.

Initialize. Upon receiving Input from Alice and Bob, sample ∆,∆′ $← F′ if both Alice
and Bob are honest. Otherwise, if Bob is corrupted, receive ∆′ from the adversary
and sample ∆ $← F′; if Alice is corrupted, receive ∆ from the adversary and sam-
ple ∆′ $← F′. Output ∆ to Alice, ∆′ to Bob, and ignore all subsequent Input commands.

Extend. Upon receiving (Extend,x) from Alice and (Extend,x′) from Bob, where
(x,x′) are unit vectors over Fn, do:

1. If Bob is honest, sample y
$← (F′)n. Otherwise, receive y ∈ (F′)n from the adver-

sary. Similarly, if Alice is honest, sample y′
$← (F′)n. Otherwise, receive y′ ∈ (F′)n

from the adversary.
2. If Alice is honest, compute z← y+∆ ·x. Otherwise, receive z from the adversary

and recompute y← z−∆ ·x. Similarly, if Bob is honest, compute z′ ← y′+∆′ ·x′.
Otherwise, receive z′ from the adversary and recompute y′ ← z′ −∆′ · x′.

3. If party P ∈ {A,B}, receive a set I ⊆ [1, n] from the adversary. Let j ∈ [1, n] be
the index of the nonzero entry of x (if P = B) or x′ (if P = A). If j ∈ I, send
success to P and continue. Otherwise, send abort to both parties and abort.

4. If both parties are honest, set (w0, w1) to be random shares over F of xᵀ · x′. Oth-
erwise, if Alice (resp. Bob) is corrupted, receive w0 (resp. w1) from the adversary,
and set w1 ← xᵀ · x′ − w0 (resp. w0 ← xᵀ · x′ − w1).

5. Send (z,y′, w0) to Alice and (y, z′, w1) to Bob.

Global-key query. If party P ∈ {A,B} is corrupted, receive (guess, ∆̂) from the
adversary with ∆̂ ∈ F′. If ∆̂ = ∆ and P = A, or if ∆̂ = ∆′ and P = B, send success to
P and ignore any subsequent global-key query from P . Otherwise, send abort to both
parties and abort.

Fig. 5. Ideal Functionality for the preprocessing step of maliciously secure inner prod-
uct, parametrized by a field F with extension field F′
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Protocol Πmal
IP

Let F′ be the smallest extension field of F (possibly equal to F) such that |F′| ≥ 2κ,
for a statistical security parameter κ. Fix parameters (k,m) as in the semi-honest
protocol. Sample H $← Code⊥(m, k + n,F) and output crs = H ∈ Fm×(k+n).

Preprocessing. Alice and Bob send Input to Fmal
pre (F,F′,m), and receive respective

outputs (∆,∆′) ∈ F′ × F′.

– Alice and Bob each sample random pairs (j0,i, r0,i)
$← [m/λ]×F∗ and (j1,i, r1,i)

$←
[m/λ] × F∗ for i = 1 to λ. Let rb = r

(1)
b // · · · //r(λ)b for b = 0, 1 denote the corre-

sponding regular noise vectors.
– Alice and Bob call the Extend command of Fmal

pre (F,F′,m/λ) λ times, on respective
inputs (r

(i)
0 , r

(i)
1 ) for i = 1 to λ. Let (zi,y

′
i, w0,i) and (z′i,yi, w1,i) denote their

outputs in the i-th instance respectively. Alice constructs q0 by concatenating
all the zi, and q′0 by concatenating all the y′i. Similarly, Bob constructs −q1 by
concatenating all the z′i, and −q′1 by concatenating all the yi. Eventually, Alice sets
z0 ←

∑
i w0,i and Bob sets z1 ←

∑
i w1,i. Note that by definition of Fmal

pre (F,F′,m),
it holds that (q0,q1) form additive shares of ∆ · r1, (q′0,q′1) form additive shares
of ∆′ · r0, and (z0, z1) form additive shares of rᵀ0r1.

Online Phase. Let (u0,u1) be the inputs of Alice and Bob.

– Alice sends pk0 ← (u0//0)−Hᵀ · r0 and sets sk0 ← r0, while Bob samples s $← Fk,
sends pk1 ← H · (u1//s) + r1 and sets sk1 ← (u1//s). The following checks are
performed in parallel:

– Checking that pk0 is well-formed:
• Let M ∈ Fk×m be the last k rows of Hᵀ. Note that the statement “there exists

a vector u0 and a λ-regular vector r0 such that pk0 = (u0//0) − Hᵀ · r0” is
equivalent to “there exists a λ-regular vector r0 such that the last k coordinates
of pk0 are equal to M · r0”. Bob sends K0

$← {0, 1}λ and both parties expand
K0 into ρ0 = (PRFK0(0), · · · ,PRFK0(k/λ)) ∈ (F′)1×k using a PRF PRF :
{0, 1}λ 7→ {0, 1}λ.

• Alice sends ver0 ← −ρ0 ·(M ·q′0). Bob aborts unless ver0 = ρ0 ·(M ·q′1−∆′ ·pk0).
– Checking that pk1 is well-formed:
• Let G ∈ F(m−k−n)×m be a parity-check matrix of H. Note that the statement

“there exists a vector u1//s and a λ-regular vector r0 such that pk1 = H ·
(u1//s) + r1” is equivalent to “there exists a λ-regular vector r1 such that
G · pk1 = G · r1”. Alice sends K1

$← {0, 1}λ and both parties expand K1 into
ρ1 = (PRFK1(0), · · · ,PRFK1(k/λ)) ∈ (F′)1×(m−k−n) using a PRF.

• Bob sends ver′1 ← −ρ1 · (G · q1). Alice aborts unless ver′1 = ρ1 · (G · q0 −∆ ·
(G · pk1)).

– Alice outputs x0 = pkᵀ1 · sk0 − z0 and Bob outputs x1 = pkᵀ0 · sk1 − z1.

Fig. 6. A non-interactive inner-product protocol with malicious security Πmap
IP over F

for vectors of length n
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5.4 Security Analysis

We first recall the LPN with static leakage assumption from [17,54]:

Definition 10 (Regular LPN with static leakage). Fix a field F = F(λ),
dimension k = k(λ), number of samples m = m(λ), and noise rate τ = τ(λ).
The regular LPNmk,τ assumption with static leakage with respect to Code holds if
for every PPT algorithm A, it holds that∣∣∣∣Pr[LPN-SuccA(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ),

where the experiment LPN-SuccA(λ) is defined as follows:

1. Sample A $← Code(m, k,F), s $← Fk, e $← RNτ,m(F), and let (α1, · · · , ατm) ∈
[1/τ ]τm denote the location of the nonzero entries of e. Send A to A.

2. A outputs τm subsets (I1, · · · , Iτm) of [1/τ ]. If αi ∈ Ii for every i ≤ τm,
output success to A; otherwise, abort the experiment and set the output to 0.

3. If the experiment did not abort, pick a random bit b $← {0, 1}. If b = 0, set
u ← A · s + e; else, set u $← Fm. Send u to A. Output 1 if A answers with
b, and 0 otherwise.

We note that LPN with static leakage reduces to standard LPN assump-
tion [17], but the reduction is not tight. Intuitively, the assumption allows the
adversary to obtain one bit of leakage on e on average, which should reduce bit
security by one bit at most. Since the reduction to LPN induces a much larger
loss, we define this assumption as an independent assumption and use it with
the same concrete parameter as for LPN.

On the use of a PRF. The checks in the online phase require the par-
ties to exchange long random strings ρ0, ρ1. To reduce communication, this
is done by exchanging short keys, which the parties locally stretch into long
pseudorandom strings by evaluating a PRF on a priori fixed inputs: ρb ←
(PRFKb

(0), · · · ,PRFKb
(k/λ)), assuming that PRF has λ-bit outputs. It is a well-

known result that any statistical test that succeeds with high probability for
a random string, such as our application of the Schwarz-Zippel lemma, must
succeed with comparable probability when evaluating a PRF on inputs fixed
before the key was sampled, since any noticeable difference can be turned into
an efficient distinguisher against the PRF.

Theorem 11. Let Code⊥ be a nice code. Assume that the dual-LPNmm−(k+n),τ (F)
assumption with static leakage with respect to Code⊥, and the (primal) LPNmk,τ (F)
assumption with static leakage with respect to Code⊥right both hold. Then the pro-
tocol πmal

IP securely computes the inner product functionality FIP with security
against malicious adversaries in the Fmal

pre -hybrid model.

Due to lack of space, we defer the proof of Theorem 11 to the full version of
this paper.
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Efficiency. Compared to the semi-honest protocol, the online phase of Figure 6
adds two rounds of interaction to the protocol, as well as 2λ bits (for exchanging
the seeds) and two elements of F′ (hence, the overall increase in communication
is essentially negligible). Regarding computation, the cost of the check that pk0
is well-formed is dominated by a multiplication by the matrix M · Fk×m, which
(setting k = n for concreteness) is about twice faster than a multiplication by
H. The cost of checking that pk1 is well-formed is dominated by a multiplication
by the parity-check matrix G of H for Bob (resp. two multiplications by G for
Alice), which is about the same cost as a multiplication by H. Therefore, the
computational cost of the maliciously secure protocol is about twice that of the
semi-honest protocol.

Implementing the malicious preprocessing functionality. Due to lack of
space, we defer the discussion on how to implement the malicious preprocessing
functionality to the full version of this paper.
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