
HAL Id: hal-03860748
https://hal.science/hal-03860748

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anonymous Whistleblowing over Authenticated
Channels

Thomas Agrikola, Geoffroy Couteau, Sven Maier

To cite this version:
Thomas Agrikola, Geoffroy Couteau, Sven Maier. Anonymous Whistleblowing over Authenticated
Channels. TCC 2022 - Theory of Cryptography Conference, Nov 2022, Chicago, United States. �hal-
03860748�

https://hal.science/hal-03860748
https://hal.archives-ouvertes.fr

Anonymous Whistleblowing over Authenticated Channels

Thomas Agrikola2,⋆, Geoffroy Couteau1,⋆⋆, and Sven Maier2,⋆

1 CNRS, IRIF, Université de Paris, France geoffroy.couteau@irif.fr
2 Karlsruhe Institute of Technology, Karlsruhe, Germany {thomas.agrikola,sven.maier}@kit.edu

Abstract. The goal of anonymous whistleblowing is to publicly disclose a message while at
the same time hiding the identity of the sender in a way that even if suspected of being the
sender, this cannot be proven. While many solutions to this problem have been proposed
over the years, they all require some form of interaction with trusted or non-colluding parties.
In this work, we ask whether this is fundamentally inherent. We put forth the notion of
anonymous transfer as a primitive allowing to solve this problem without relying on any
participating trusted parties.
We initiate the theoretical study of this question, and derive negative and positive results on
the existence of such a protocol. We refute the feasibility of asymptotically secure anonymous
transfer, where the message will be received with overwhelming probability while at the
same time the identity of the sender remains hidden with overwhelming probability. On
the other hand, resorting to fine-grained cryptography, we provide a heuristic instantiation
(assuming ideal obfuscation) which guarantees that the message will be correctly received
with overwhelming probability and the identity of the sender leaks with vanishing probability.
Our results provide strong foundations for the study of the possibility of anonymous com-
munications through authenticated channels, an intriguing goal which we believe to be of
fundamental interest.

1 Introduction

The term whistleblowing denotes “the disclosure by a person, usually an employee in a government
agency or private enterprise, to the public or to those in authority, of mismanagement, corruption,
illegality, or some other wrongdoing” [Whi]. Consider the following scenario. You are happily
employed by some government agency. However, one day, you learn that your employer violates
human rights. You strongly disagree with this breach of trust and law but you are bound by law to
keep internal information secret. Consequently, you are faced with a dilemma: either you ignore the
human rights violation, or you face dishonorable discharge or even jail. In fact, whistleblowers often
take an immense personal risk, and face sentences ranging from exile [BEA14] to incarceration [Phi18]
or worse. Whistleblowing is crucial for democracy to educate the public of misdeeds and to call
those in power to account. Therefore, it is desirable to cryptographically protect the identity of the
whistleblower to allow a low-risk disclosure of wrongdoing.

The importance of this question is well recognized in cryptography and security. It has been the
subject of several influential works (e.g. DC-nets [Cha88], Riposte [CBM15] or Blinder [APY20]).
Concrete solutions include the use of secure messaging apps [CGCD+20; Ber16], mix-nets [Cha03],
onion routing systems such as the Tor network [DMS04], or solutions built on top of DC-nets and
secure computation techniques [CBM15; APY20] (see also [ECZ+21; NSSD21]).

Yet, all current approaches to anonymous whistleblowing rely on trusted parties (or non-
colluding partially trusted servers), which either receive privately the communication, or implement
a distributed protocol to emulate an anonymous network. Therefore, however ingenious and scalable
some of these solutions are, whistleblowers must ultimately trust that they will interact with parties
or servers which will (at least for some of them) remain honest and refuse to collude throughout
the transmission.

In this work, we ask whether this is fundamentally inherent, or whether anonymous whistle-
blowing is possible in theory without having to privately communicate with trusted parties. In its
most basic form, the question we ask is the following:
⋆ Supported by funding from the topic Engineering Secure Systems of the Helmholtz Association (HGF)

and by KASTEL Security Research Labs.
⋆⋆ Supported by ANR SCENE.

Is it possible for a whistleblower (who is communicating solely through
authenticated point-to-point or broadcast channels)

to publicly reveal some message m while remaining anonymous
without assuming trusted participating parties?

We do allow a Common Reference String (CRS) for technical reasons, and stress that while it is
technically also a trust assumption, it is much weaker; instead of trusting a set of parties every
time to follow the exact protocol and to not cheat in any way, we only require a CRS to be set up
once: A CRS that was successfully sampled just once can be used for all future interactions.

The above is, of course, trivially impossible if the whistleblower is the only communicating party.
However, it becomes meaningful in a multiparty setting, where a number of parties (unaware of
the intent of the whistleblower) exchange innocent-looking messages (think of a group of people
having a conversation, or using some public messaging service like Twitter or Facebook to broadcast
information). In this context, the question translates as follows: could the whistleblower somehow
disguise its communication as an innocent-looking conversation with the other parties, such that
the message m can be publicly extracted (by anyone) from the entire conversation, yet the identity
of which party was indeed the whistleblower remains hidden? To our knowledge, this intriguing
question has never been studied in the past. Our main contributions are threefold:

1. A definitional framework. We put forth a formal definition for a cryptographic primitive
that realizes the above goal, which we call an Anonymous Transfer. We study the relation
between variants of the notion.

2. Impossibility results. We prove a strong impossibility result: we show that Anonymous
Transfer with overwhelming correctness and anonymity cannot be realized in any polynomial
number of rounds, by exhibiting a general attack against any such protocol. This non-trivial
result demonstrates that anonymously communicating over authenticated channels is impossible
with standard cryptographic security levels, even assuming strong cryptographic primitives
such as ideal obfuscation.

3. Feasibility result. We complement our impossibility result by an intriguing feasibility result:
we show that fine-grained Anonymous Transfer is possible assuming ideal obfuscation. The term
fine-grained refers to cryptographic constructions which are only guaranteed secure against
adversaries whose computational power is a fixed polynomial in the computing power of the
honest parties (in our case, the gap is quadratic). Our instantiation is a plausible heuristic
candidate when instantiating the ideal obfuscation by candidate indistinguishability obfuscation
schemes.

Both our negative and positive results are highly non-trivial and require a very careful analysis.
We view our work as addressing a fundamental question regarding the a priori possibility of
secure whistleblowing without interacting with trusted parties, through the lens of anonymous
communications over authenticated channels. Nevertheless, our study is of a purely theoretical
nature, and does not have immediate practical relevance. In particular, we do not compare our
results to the practical real-world methods which whistleblowers can employ.

Anonymous Transfer and plausible deniability. The fundamental goal of an Anonymous
Transfer protocol is to achieve plausible deniability: the whistleblower should be able to hide
its identity among a group of parties, such that even if it is strongly suspected that he is the
whistleblower, this cannot be proven – any party could equally be the whistleblower. Importantly,
the involved parties are never required to be aware that a message is being transmitted: their consent
or collaboration is not needed for the Anonymous Transfer to take place, and they themselves have
no advantage in finding out who the whistleblower was.

1.1 Undetectable Secure Computation

Secure Multiparty Computation (MPC) allows a set of parties to jointly evaluate a function on
their inputs without revealing these inputs. In certain scenarios, however, the standard guarantees
of MPC become insufficient: the mere fact that a party is participating to a certain protocol already
reveals information about that party. Consider for example the following scenario: your company

2

was hacked, but you do not have enough forensic data to trace the attackers. If several companies
fell victim to the same hacker, a joint effort may yield enough information to successfully trace the
hacker. However, the very fact that you are initiating such a protocol reveals that your company
has been hacked.

The notion of Covert Multiparty Computation (CMPC) [vHL05; CGO+07] was introduced
to cope with situations in which even revealing one’s participation to the protocol is undesirable.
CMPC allows a set of parties to securely compute a protocol among n parties with the following
two guarantees: (1) If all parties are actually willing to participate in the protocol (and are not
simply having innocent conversations), and if the output of the protocol was acceptable (which is
specified by some function g of the joint input), then everyone learns the result of the protocol. (2)
Otherwise (if at least one party was not participating, or the output was not acceptable), no one
learns anything about who were the participating parties (or even whether there was any).

CMPC is a powerful strengthening of secure computation. However, it still has two important
downsides: a single non-participating party is sufficient to make the entire protocol fail (no one gets
any output), and when all parties participate, they all learn that they participated (hence, no one
can deny anymore having participated in the protocol). One of the primary motivations behind the
study of Anonymous Transfer, which we put forth in this work, is to open the avenue to the study
of a significantly more powerful form of secure computation that provides the strongest deniability
guarantees one can hope for: a secure computation protocol where, even after the successful protocol
execution, no one learns who the participants were. Specifically, we consider the following setting: N
individuals are interacting. Among them, k players are willing to jointly compute a public function
f on their private inputs (x1, . . . , xk), while the remaining (N − k) are not interested in taking part
to the protocol (nor are even aware of the fact that a secure computation might be taking place).
At the end of the protocol, the k participants should all receive the output, but no party should
be able to find out which of the parties were actually participating. We call this strengthening of
secure computation undetectable secure computation.

Since undetectable secure computation is stronger than Anonymous Transfer (which it implies),
our impossibility results for Anonymous Transfer also translate to impossibility results for un-
detectable secure computation3. Furthermore, building on our positive result, we show how to
construct anonymous oblivious transfer (in the fine-grained security setting), a core building block
for constructing undetectable secure computation for more general functionalities.

1.2 Defining Anonymous Transfer

An Anonymous Transfer (AT) protocol describes the interaction between a sender, a receiver and a
non-participant. We assume all parties to interact in the synchronous model over a public broadcast
channel, i.e., in each round each participant broadcasts a message which only depends on messages
from previous rounds. The non-participant is not aware that a protocol takes place, and is only
having an innocent conversation (we call them the “dummy player”, or the “dummy friend”).
We follow [vHL05; CGO+07] and model non-participating parties as parties that only broadcast
uniform randomness in each round, since any ordinary communication pattern can be viewed as
an embedding of the uniform distribution due to standard techniques [vHL05; HLv02; vH04]. The
sender aims to transmit a message to the receiver in a way that does not leak its identity (the notion
easily generalizes to more non-participating parties). We say that an AT protocol is ε-correct if the
probability that the receiver successfully receives the message is at least ε. Further, we say that an
AT protocol is δ-anonymous if no adversary is able to determine the identity of the sender (given the
transcript and the receiver’s random tape) with advantage more than (1− δ)/2 over guessing. These
are the core properties which shape an AT protocol. If the protocol allows the receiver to remain
silent throughout the protocol execution, sending a message corresponds to publicly revealing the
message (i.e., whistleblowing). Eventually, we call fine-grained AT an Anonymous Transfer, where
anonymity is only required to hold against adversaries from a restricted complexity class (typically,
adversaries whose runtime is bounded by a fixed polynomial in the runtime of the honest parties).
3 This follows directly from the fact that given undetectable secure computation for any function f , we can

directly construct AT by computing a function that lets two potential senders insert either a bitstring for
transfer or ⊥ and outputs one of them (i.e. the one input that is not ⊥) to the receiver.

3

1.3 Impossibility Result

Our first main result shows that AT is impossible in a strong sense.
Theorem 1 (Impossibility of AT, informal). There is no Anonymous Transfer protocol with
overwhelming correctness and anonymity, with any polynomial number of rounds and any number
n ≥ 1 of non-participating parties, even for transmitting a single bit message.

Our proof proceeds in several steps. First, we show that any Anonymous Transfer for transmitting
a single bit with n non-participants, with overwhelming correctness and anonymity implies (in
a black-box way) a silent-receiver Anonymous Transfer (where the receiver never speaks) for
transmitting κ bits (where κ is some security parameter) with a single non-participating party. This
reduction uses a relatively standard indistinguishability-based hybrid argument.

Then, the core of the proof rules out the existence of κ-bit silent-receiver 1-non-participant
Anonymous Transfer with overwhelming correctness and anonymity. The key intuition is the
following: let P0, P1 be the two parties interacting with the receiver, where Pb is the sender, and
P1−b is the non-participant. Let Πκ

AT be the protocol which these two parties execute, and assume
that it satisfies ε-correctness and δ-anonymity. Suppose that during their interaction, the parties
produce a transcript π. We consider an adversary A which replaces the last message of P0 by a
random value, before running the receiver algorithm to reconstruct the transmitted message. Then
if b = 1, the adversary just replaced the last (random) message of the non-participating party by
another random message, and the transcript is still a perfectly valid transcript for Πκ

AT , hence
the reconstruction algorithm must still output the right string Σ with overall probability ε. On
the other hand, if b = 0, then the transcript is a valid transcript for a “round-reduced” version of
Πκ

AT , where the last round is replaced by two random messages. By the δ-anonymity, A should
not distinguish between the two situations with advantage better than (1 − δ)/2. This implies
that the correctness of the round-reduced protocol cannot be much lower than ε, hence that we
constructed a δ-anonymous (c− 1)-round protocol with non-trivial correctness guarantees. Then, A
keeps repeating this procedure until we reach a 0-round protocol, which cannot possibly have any
non-trivial correctness guarantee.

While the above provides an intuition of the approach, the real strategy is much more involved. In
particular, using A to distinguish between a random transcript of Πκ

AT and a random round-reduced
transcript does not suffice to rule out arbitrary polynomial-round protocols (more precisely, it
would only rule out logarithmic-round protocols, since the correctness guarantees would decrease
roughly by a factor two at each step of round reduction). Instead, A will replace independently the
last message of each party by a random value, getting two distinct transcripts (π0, π1). Then, A
attempts to distinguish whether π0 is a transcript of Πκ

AT and π1 is a round-reduced transcript, or
the other way around. While this is the proper way to attack the protocol, the analysis is more
involved, since now π0, π1 are not independent random variables anymore, as they share a common
prefix (the transcript of the first c− 1 rounds). Nevertheless, a more careful analysis shows that
this dependency cannot significantly lower the distinguishing probability of A.

In Section 4.3 we further prove that no AT protocol for N > 3 parties with overwhelming
correctness and anonymity can exist unless a N = 3-party protocol exists with overwhelming
correctness and anonymity—which cannot exist. It suffices to prove that any N -party Silent
Receiver AT for N > 3 implies a (N)-party “normal” (i.e. with an actively participating receiver)
AT, without losing the overwhelming correctness and anonymity in the process.

Intuitively, the receiver does not broadcast any messages in the N -party protocol; all commu-
nication comes from the (N − 1) potential senders. We construct an (N − 1)-party protocol by
letting the receiver play one non-participant, with the one difference being that this party is known
not to be the sender (since it is the receiver); the sender can only be one of the (N − 2) other
parties. While the correctness remains unaffected, the anonymity decreases due to the fact that
guessing with one party less yields better results; yet we show that the anonymity still remains
overwhelming in the security parameter. We then transform any N -party AT to an N -party SR-AT
as described above and that to a (N − 1)-party AT, until we have a 3-party AT that, assuming
that the N -party AT has overwhelming anonymity and correctness, maintains these properties.

On a high level, this process lets the actual participants simulate non-participants behavior in
their head; one-by-one their random tape is moved to the CRS until only three parties are left: a
sender, a receiver, and a non-participant.

4

Our negative result applies to a weak model. In particular, non-participants are modeled to be
semi-honest. Hence, our negative result does not leave much room for positive results.

1.4 A Candidate Fine-Grained Anonymous Transfer

To circumvent the above impossibility result, we need to give up asymptotic security and re-
sort to the fine-grained setting: We only require anonymity against adversaries which require
polynomially—quadratically, in our case—more resources than an honest protocol execution.

That is, our second main result shows that (perhaps surprisingly) non-trivial AT is indeed
possible in a weaker setting:

Theorem 2 (Feasibility of AT, informal). Let N = 3 be the number of individuals. Assuming
ideal obfuscation, for any anonymity δ, there is a c-round Anonymous Transfer protocol Π1

AT (for ℓ
bit messages) that has overwhelming correctness, where anonymity δ holds against any adversary A
with runtime ≪ c2.

That is, for our second main contribution we propose a protocol which—assuming ideal ob-
fuscation—allows to reduce the problem of de-anonymizing the sender to a distribution testing
problem. More precisely, we show that determining the real sender in a c-round protocol given only
a transcript of the AT protocol is as hard as differentiating between two Bernoulli oracles, where
one returns 1 with probability p and the other returns 1 with p + 1/(2c). For this distribution
testing problem, strong lower bounds on the number of required samples and thus the adversarial
runtime are known.

The protocol proceeds in rounds, where each honest message from the sender gradually increases
the probability that the transmitted bit is correctly received. The sender first encrypts a verification
key that is to-be-used be the obfuscated circuit, and in each successive round the sender encrypts the
bit and a signature on both messages from the previous round to limit the ability of the adversary to
manipulate the transcript when attacking anonymity. The non-participant only broadcasts random
bits in each round. The Common Reference String contains an obfuscated program with hard-coded
keys for the pseudorandom encryption scheme. The circuit checks the validity of the signatures of
each round. Each consecutive valid round increases the confidence in the transmitted bit. Finally,
the circuit outputs random bit according to the confidence gained. If all rounds are valid, the
correct bit will be output with probability 1, if no round is valid, the correct bit will be output
with probability 0.5.

While the high level intuition of the protocol is relatively clear, its exact instantiation is
particularly delicate – any small variant in the design seems to open the avenue to devastating
attacks. Furthermore, its analysis relies on long and complex hybrid arguments that progressively
reduce the advantage of the adversary to contradictions with respect to known distribution testing
bounds with a limited number of samples. In order not to disturb the general reading flow, most of
the proof is deferred to the Appendix.

Our proof can be split in two parts. The first part exploits properties of the encryption
schemes, the signature scheme, and ideal obfuscation to prove indistinguishability (against even
PPT adversaries) between the actual protocol and a hybrid, where all reported messages are truly
random and independent from the sender and the transferred bit, and the obfuscated circuit only
counts how many input messages are identical to those from the challenge transcript.

This game still contains information on the sending party as it treats those messages differently.
To remove this dependency, we resort to distribution testing and view the obfuscated circuit as a
Bernoulli oracle which follows one of two (known) distributions, and where the goal is to determine
which one.

1.5 Discussions and Implications

In this section, we further discuss some implications and relations of our results to the literature.

‘Philosophical implications:’ between obfustopia and impossibilitopia. There is a small
remaining gap between our negative and positive results: the possibility of building anonymous

5

transfer secure against arbitrary polytime adversaries, but with non-negligible (e.g. inverse poly-
nomial) anonymity error remains open. Closing this gap would have an intriguing philosophical
consequence: stretching the terminology of Impagliazzo on the “worlds” of cryptography, it would
establish the existence of a cryptographic primitive that plausibly exists in obfustopia (the world
where indistinguishability obfuscation is possible) in the fine-grained setting, yet does not exist
(“reside in impossibilitopia”) with standard hardness gaps. Interestingly, there are several known
examples where fine-grained constructions of a “higher world” primitive reside in a lower world; for
example, (exponentially secure) one-way functions (a Minicrypt assumption) imply fine-grained
public-key encryption (a Cryptomania assumption). Our work seems to provide a new example
of this behavior, at the highest possible level of the hierarchy, showing that impossible primitives
might end up existing if we weaken their security to the fine-grained setting.

Relation to the anonymous whistleblowing literature. We clarify how our (positive and
negative) results relate to the literature on anonymous broadcast and secure whistleblowing. In
general, a whistleblower willing to reveal something anonymously has two alternative choices: (1)
the whistleblower has access to an anonymous communication channel, for example by putting their
message (say, encrypted with the receiver public key) on some public website that somehow cannot
be traced to them. However, access to an anonymous channel is typically a ’physical’ assumption,
and one which is very hard to guarantee. This issue is developed in great detail in the literature:
see for example the discussion in Spectrum [NSSD21] about how metadata have been used by
federal judges to trace and prosecute people who leaked data through secure messaging apps, or the
discussion in Riposte [CBM15] and Express [ECZ+21] on how traffic analysis can be used to trace
whistleblowers on the Tor network or the SecureDrop service. Hence, most of the literature focuses
on scenario (2): the individuals interact over a communication network, and we do not assume
that this network guarantees anonymity in itself. In this case, what we want is to emulate this
anonymity, by developing a strategy to help the whistleblower transmit a message anonymously to
the receiver.

The literature on this subject is incredibly vast, but this emulated anonymity is always achieved
using the same template in all solutions we are aware of (including Spectrum, Blinder, Riposte,
Express, Talek, P3, Pung, Riffle, Atom, XRD, Vuvuzela, Alpenhorn, Stadium (or any other Mixnet-
based solution), Karaoke, Dissent, Verdict, and many more): when the whistleblower wants to
anonymously transmit a message, either to everyone (anonymous broadcast) or to a target receiver,
other users generate ‘honest’ traffic in which communications can be hidden. To do so, the users
interact with a set of non-colluding servers (sometimes two servers, sometimes more, some with
honest majority, some without). This is never even discussed or remarked: it is taken as an obvious
fact that this is the structure of an anonymous broadcast (or messaging) protocol. And indeed,
the need to generate honest traffic feels clear – if the whistleblower is the sole sender, observing
traffic directly leaks their identity. That the use of non-colluding servers was never challenged or
even discussed probably means that it also feels clear – but this assumption is precisely what we
challenge in our work: we do assume that some users generate honest traffic, but we ask whether the
assumption of non-colluding participating servers is avoidable. Of course, any scientific treatment
of a broad question (‘are non-colluding helpful participants required for anonymous broadcast?’) is
bound to move from the broad question to a formal model, in which (feasibility or impossibility)
results can be achieved. Nevertheless, we believe that our impossibility result demonstrates that
the use of non-colluding servers in all previous works was indeed unavoidable, at least insofar as
their aim was to achieve anonymity against arbitrary polynomial-time adversaries.

Non-participating parties versus malicious parties. Our choice of formalism, with the
notion of anonymous transfer, allows to study whether the assumption of honest, non-colluding,
participating servers can be replaced by a considerably weaker trust assumption: that of non-
participating parties, not trying to take part to the protocol in any way (and not even required
to be aware of the execution of the protocol) beyond generating traffic. As we show, this weaker
assumption does not suffice against arbitrary polynomial-time adversaries, but possibly suffices
against bounded polynomial-time adversaries (where the bound is sub-quadratic). As a natural next
step, one could push the question even further and ask: what if some of the non-participating parties

6

were in fact planted by a malicious adversary, and now play maliciously during the protocol? It
seems plausible, that our general strategy can be extended to deal with malicious non-participants.
However, we expect the analysis to require different techniques than the ones we used. We leave a
formal proof of this to future work.

1.6 Further Results and Open Questions

In Appendix F, we extend our fine-grained AT such that it transfers ℓ-bit messages directly. To
achieve the same level of security as the single-bit AT, this only stretches the number of required
rounds by a factor of 2. In Appendix E, we provide an asymptotically secure AT instantiation
in the designated-sender setting which achieves non-trivial but not useful parameters for ε and δ.
In Section 6, we define an extension of AT called Strong AT which we require for Undetectable
Computation. We define our novel primitive Undetectable Oblivious Transfer in Section 6 which
allows two parties to hide their OT execution in a group of N individuals and instantiate it using
strong AT in Appendix G. Finally, in Section 7 we provide definitions for Undetectable Multiparty
Computation, which allows a number of k parties to perform an MPC protocol while hiding their
identities among N individuals and instantiate UMPC using Undetectable Oblivious Transfer for
k = 3.

Our work leaves open two exciting questions:

(1) Can our impossibility result for asymptotically secure AT with overwhelming correctness and
anonymity be extended to rule out asymptotically secure AT with anonymity 1− 1/poly(κ)?

(2) Is it possible to instantiate AT in the fine-grained setting from “Obfustopia” standard assumptions
achieving similar parameter as our instantiation?

Given that both our open questions can be answered affirmatively, this would separate the realm of
asymptotic security from the realm of fine-grained security.

1.7 Acknowledgements

We thank Rafael Pass for insightful comments and contributions to early stages of this work.

2 Preliminaries

2.1 Notations

For any party P we denote by T P the random tape of P.
For events (A, B), Ā denotes the complementary even of A, Pr[A | B] denotes the probability

of A happening conditioned on B happening. For values (a, b), the notation Ja = bK denote the
bit value of the corresponding predicate. We let κ be a security parameter; we write negl(κ) to
denote any function negligible in κ and owhl(κ) to denote a function overwhelming in κ (that is,
1− owhl(κ) = negl(κ)). For any probability distribution D, we denote by Supp(D) the support of D,
and by x

$← D we denote that x is uniformly sampled from D.
For probability distributions p and q we write p⊗t as the distribution arising from taking t

sample from p, and p ◦ q as the distribution obtained by sampling one time from p and one time
from q. We write ∥p∥1 to denote the L1 norm of p.

For two bitstrings A, B ∈ {0, 1}m, A⊕B denotes the bitwise XOR of A and B. We write by [n]
for n ∈ N the set of numbers {1, . . . , n}.

A c-round protocol between k parties is defined as the evaluation of the parties’ next message
algorithms on input of all previously exchanged messages. The output of the protocol is the emerging
transcript.

Definition 1 (c-round k-party protocol). Let P1, . . . , Pk be PPT algorithms. A c-round k-party
interaction between P1, . . . , Pk on input x ∈ {0, 1}∗ is the sequence of the strings a1, a2, . . . , ac·k ∈

7

{0, 1}m, where in each round, parties broadcast:

a1 := P1(x; r1,1)
a2 := P2(x; r2,1)

...
ak := Pk(x; rk,1)

ak+1 := P1(x, a1, . . . , ak; r1,2)
...

a2k := Pk(x, a1, . . . , ak; rk,2)
...

ac·k := Pk(x, a1, . . . , ac·k−1; rk,c)

and r i,j is the random tape used by Pi in round j. We write

⟨P1, . . . , Pk⟩(x; r1,1∥ . . . ∥r1,c, . . . , rk,1∥ . . . ∥rk,c)

to make the used random tape of the parties explicit.

At the end of this document we provide a comprehensive list of symbols and acronyms alongside a
detailed glossary.

2.2 Steganography

Informally, steganography describes the art of hiding information in such a way, that no outsider is
able to even notice that any information is hidden at all. The concept has been around for a long
time, yet it was first brought up as a field of scientific research by Simmons [Sim83] and put into a
more complexity-theoretic and cryptographic context by Hopper, Langford, and von Ahn [HLv02].
Simmons [Sim83] described the problem analogously to prison communication: Two prisoners can
talk to each other and want to come up with an escape plan, but a warden hears everything they
say. The problem of steganography can roughly be described by the following question: How can
the two prisoners discuss their escape plan without the warden noticing that the two prisoners are
up to something?

While it is true that in most scenarios, the two prisoners could simply encrypt their messages
and discuss their escape plan through a secure channel, this method is insufficient for the scenario
where a warden is present: If the warden notices that the two prisoners are up to something, they
end up in solitary confinement. Thus the problem is much harder than the one considered in
classical encryption, as the actual communication itself needs to be undetectable for the warden.
In contrast, it suffices for classical encryption schemes if any other person can detect messages as
long as they are unable to decrypt them. We consider the differentiation to be similar to the one
between Multiparty Computation and Covert Multiparty Computation, where the former only
hides information whereas the latter hides the entire execution.

A steganographic channel is modeled as indistinguishable from the uniform channel over m
bits [HLv02; vH04; vHL05], where each party broadcasts uniformly random bitstrings of length m.
This is neither a restriction nor an additional trust assumption: steganographic methods use actual
sources of randomness like the least significant bit in timestamps or the least significant bits of
images (where minor differences can occur due to the noise induced by the camera) that follow
two basic rules: (1) when naturally occurring, they are uniformly random, and (2) it is efficiently
possible by a sender to change this source such that it has a target value, without acting in a
noticeably different way. A random source is suitable for steganography if it fulfills both these
requirements: Unaware parties unknowingly broadcast random bits automatically, while sending
parties can efficiently embed any message.

As a practical example that not only motivates how steganography can be used in practice,
but also illustrates the fact that the natural messages are indistinguishable from a sampling of the

8

uniform channel, think of a public forum where all registered parties can post images of cats. Each
post has its timestamp attached (in UNIX-time, i.e., seconds since the first of January in 1970),
which is set by the sender during the upload and not by the server. As such, this can be exploited
as a steganographic channel: in this (arguably inefficient) steganographic channel the timestamps
of each post encodes a single bit, which can be extracted directly by taking the least significant bit
of the timestamp.

It is easy to see that under normal circumstances, people who are unaware of the fact that the
steganographic channel exists and who only upload images whenever they feel like it can be modeled
as parties that only broadcast random bits. Furthermore, the delay of up to one second ends up
unnoticed, so it is possible to covertly embed a message by manipulating the least significant bit of
the timestamp.

Even though in such forums it might not be the case that all parties send the same number
of messages, which might be required if we execute a protocol over several rounds by embedding
(random looking) messages into the steganographic channel as was done by von Ahn, Hopper,
and Langford [vHL05]), this does not pose a restriction. If party Pi has finished a given round by
publishing m bits, while Pj still only published m′ < m bits, Pi continues as normal and publishes
images at arbitrary timestamps until all other parties also broadcast m bits. The protocol then
only considers the first m messages for each party in each round and ignores all other messages of
the resp. parties until the next round starts.

2.3 Distribution Testing

In this section, we introduce preliminaries for probability testing. We start by describing the Total
Variational Distance between two distributions.

Definition 2 (Total Variational Distance). Let p and q be two probability distributions over
the countable set of possible outcomes Ω. The total variational distance between p and q is defined
as:

dTV(p, q) := 1
2

∑
ω∈Ω

|p(ω)− q(ω)| = 1
2∥p− q∥1 (1)

An important property of the total variational distance is that it acts sublinear when taking many
samples. When taking t samples from a Bernoulli distribution the corresponding distribution can
be described by taking a single sample from a t-bit Binomial distribution. The sub-additivity then
bounds the total variational distance of the corresponding binomial distribution:

Lemma 1 (Total variational distance of a t-fold probability distribution, folklore).
Let p and q be two Bernoulli distributions with total variational distance dTV(p, q). Then it holds
for the binomial distributions p⊗t and q⊗t that result from sampling t times from the respective
distributions:

dTV(p⊗t , q⊗t) ≤ t · dTV(p, q) (2)

Thus we can bound the distinguishing advantage of any distinguisher who has taken t samples
form the same oracle using the total variational distance of the respective distributions directly.

A similar rule also holds for two different distributions, where the distinguisher has to distinguish
whether two samples originate from p⊗ r or from q ⊗ s for known values of p, q, r and s. In this
case the rule states that:

Lemma 2 (Sub-Additivity of the Total Variational Distance for Product Distributions,
folklore). Let p and q be a probability distribution over {0, 1}m with total variational distance
dTV(p, q). Let r and s be two Bernoulli distributions with total variational distance dTV(r, s). Then
it holds for the distribution derived from sampling from each distribution once and concatenating
the outputs (which yields a sample from {0, 1}m+1 originating either from p ◦ r or q ◦ s) that

dTV(p ◦ r, q ◦ s) ≤ dTV(p, q) + dTV(r, s)

The following lemma limits the distinguishing advantage of any distinguisher that tries to
distinguish two distributions p and q based on a single sample.

9

Lemma 3 (Distinguishing distributions based on the Total Variational Distance).
Let p and q be two distributions with total variational distance dTV(p, q). If dTV(p, q) < 1

3 , then no
algorithm can exist that distinguishes p and q with probability ≥ 2

3 based on a single sample.

A proof of this lemma is given in Appendix B.
Using Lemmas 1 and 3 we can provide lower bounds on the sampling complexity of distinguishing

two distributions p and q with advantage α/2.

Corollary 1 (Distinguishing two Bernoulli-Distributions with t samples). Any distin-
guisher D that distinguishes between p and q with probability ≥ 1

2 + α
2 requires t ∈ Ω

(
α

dTV(p,q)

)
samples.

A proof is given in Appendix C.

3 Anonymous Transfer

We consider the following situation: some secret agent Pb is willing to transfer a message Σ to a
receiver R, while hiding his identity b among two individuals. We call Anonymous Transfer (AT) an
interactive protocol that achieves this goal.

3.1 Network Model and Non-Participating Parties

The goal of an anonymous transfer protocol is to hide the transferred message among innocent
conversations by individuals, which are not taking part in the protocol. By a well-established folklore
result in steganography (cf. Section 2.2), this task can be reduced to the simpler task of hiding
the transferred message among uniformly random beacons, broadcast by the other individuals: the
uniform channel, where all protocol messages look uniformly random, can be compiled into any other
ordinary communication pattern [vHL05; HLv02; vH04]. Therefore, as in previous works (see von
Ahn, Hopper, and Langford [vHL05] and Chandran, Goyal, Ostrovsky, and Sahai [CGO+07]),
we consider a set of k parties who interact with each other via broadcast channels and focus,
without loss of generality, on protocols for the uniform channel. Consequently, we will model the
non-participating parties as “dummy parties” that only broadcast uniformly random messages of a
fixed length at each round.

3.2 The Model

Let b ∈ {1, · · · , N − 1} denote the index of the sender and let Σ ∈ {0, 1}ℓ be the message that Pb

wants to transfer to the receiver. We consider an interactive protocol in the Common Reference
String (CRS) model between N players (P1, · · · , PN−1, R), where R and Pb participate in the
protocol, and Pi for i ̸= b are non-participating but present players that only broadcast random
strings. The receiver R gets the CRS as input and the sender Pb gets the CRS and the message
Σ as input. For any player P, let T P denote the random tape from which P draws his random
coins. The players interact through authenticated broadcast channels in the synchronous model: the
protocol proceeds in rounds, and each player broadcasts a message at each round. We denote by
⟨R, P1, · · · , PN−1⟩(crs, b, Σ) the distribution of the possible transcripts of the protocol in this setting
(i.e., the sequence of all messages broadcasted by the players during an execution of the protocol),
where the probabilities are taken over the random coins T P of the players P ∈ {R, P1, · · · , PN−1}
and the random choice of the CRS crs.

Definition 3 ((ε, δ, c, ℓ)-Anonymous Transfer). An N -party (ε, δ, c, ℓ)-Anonymous Transfer
(AT) for ε, δ ∈ R[0,1] and N, c, ℓ ∈ N (all possibly functions in κ) is a tuple containing three PPT
algorithms (Setup, Transfer, Reconstruct). The number of rounds in the Transfer protocol is given as
c and the bitlength ℓ defines the length of the transferred message Σ. The algorithms are defined as
follows:

Setup(1κ) takes as input the security parameter 1κ in unary encoding and outputs a Common
Reference String crs.

10

Transfer(crs, b, Σ) defines a c-round protocol4 that takes as input the Common Reference String crs,
an index b ≤ N − 1 specifying the sender, and the message Σ ∈ {0, 1}ℓ from the sender and
outputs a transcript π. The non-sender sends independent uniformly distributed noise in each
round. All protocol messages sent by the receiver, the sender and the non-participating parties
at each round are bitstrings of length m = m(κ), where m is implicitly specified by the Transfer
protocol.

Reconstruct(crs, π, T R) is a local algorithm executed by the receiver that takes as input the CRS crs,
the protocol transcript π and the receiver’s random tape T R and outputs a message Σ′.

The algorithms additionally satisfy the ε-correctness and the δ-anonymity properties defined in
Definitions 4 and 5.

Definition 4 (ε-Correctness). For any sufficiently large security parameter κ, for any number
of individuals N ∈ poly(κ), for any participant b ∈ [N − 1], for any message length ℓ ∈ poly(κ),
for any message Σ ∈ {0, 1}ℓ, and for any CRS crs ← Setup(1κ), an Anonymous Transfer protocol
Πℓ

AT between players (P1, . . . , PN−1, R) is ε-correct if the following holds:

Pr
[

π
$← Transfer⟨R,P1,...,PN−1⟩(crs, b, Σ)

Σ′ ← Reconstruct(crs, π, T R) : Σ = Σ′
]
≥ ε (3)

Note that ε can take on any value between 0 and 1. The naive algorithm that lets the receiver
sample a uniformly random ℓ-bit string has ε = 1/2ℓ.

Definition 5 (δ-Anonymity). For any PPT algorithm A = (A0, A1), for all sufficiently large
security parameters κ, for any number of individuals N ∈ poly(κ), and for any message length ℓ ∈
poly(κ), an Anonymous Transfer protocol Πℓ

AT between players (P1, . . . , PN−1, R) is δ-anonymous
if it holds that ∣∣∣∣∣ Pr

b
$←[N−1]

[
Expanon

Πℓ
AT

,A,b(κ) = b
]
− 1

N − 1

∣∣∣∣∣ ≤ (1− δ) · N − 2
N − 1 (4)

where Expanon
Πℓ

AT
,A,b(κ) is defined in Fig. 1.

The value δ can take any value between 0 and 1. The higher δ the stronger the provided
anonymity guarantees. If a protocol is δ = 1-anonymous, the advantage over guessing at random
equals 0, and if a protocol is δ = 0-anonymous, the advantage over guessing at random equals 1.
The right-hand-side of Definition 5 contains a scaling factor of (N − 1)/(N − 2). This is due to the
fact that even under perfect anonymity (δ = 1), the receiver can still guess the sender. Knowing
that one of the N parties—namely itself—is not the sender, there are (N − 1) potential senders,
of which (N − 2) are just dummy friends. Thus, the probability of guessing wrong is given by the
aforementioned factor.

Note that we require anonymity to hold, in particular, against the receiver. Therefore, the
adversary in the anonymity game may know the receiver’s random tape T R from the beginning.

The guessing algorithm is split between A0 who is given the CRS and the random tape T R
the receiver is going to use during the protocol, and outputs the target message Σ that should be
transferred and a state st. In the second phase, the algorithm A1 which is given the inputs π and
the state.

Unless stated otherwise, we consider the case N = 3, i.e., one non-participant.

3.3 Fine-grained Anonymous Transfer

Fine-grained cryptographic primitives are only secure against adversaries with an a-priori bounded
runtime which is greater than the runtime of the honest algorithms, [Mer78; DVV16]. We use the
notion of [DVV16]. In the following, C1 and C2 are function classes.
4 A c-round protocol corresponds to a synchronous model, where each message is broadcasted and the

messages in each round only depend on messages from previous rounds, see Definition 1 for a formal
definition.

11

Expanon
Πℓ

AT
,A,N,b

(κ)

crs $← Setup(1κ)

T R
$← {0, 1}poly(κ)

(Σ, st)← A0(crs, T R)

π
$← Transfer⟨R,P1,...,PN−1⟩(crs, b, Σ; T R, ·, ·)

return A1(π, T R, st)

Fig. 1: Definition of the game Expanon
Πℓ

AT
,A,b

(κ).

Definition 6 (C1-fine-grained (ε, δ, c, ℓ)-Anonymous Transfer against C2). The tuple (Setup,
Transfer, Reconstruct) (as defined in Definition 3) is a C1-fine-grained (ε, δ, c, ℓ)-Anonymous Transfer
for ε, δ ∈ R[0,1] and c, ℓ ∈ N against C2 if the following two conditions hold:

Efficiency. The algorithms (Setup, Transfer, Reconstruct) are in C1.
Security. Anonymity (Definition 5) is only required to hold against adversaries in C2.

The definition of correctness remains as in Definition 4.

Example 1 (Merkle-Puzzles). Merkle-Puzzles [Mer78] are a fine-grained protocol to exchange a
shared key from symmetric encryptions where successful encryptions can be efficiently distinguished
from false ones. The sender S creates nmer many ciphertexts, each under a different (relatively
short) key, containing a unique identifier and a symmetric key. The receiver R then randomly picks
one of the ciphertexts and runs a brute-force attack (which we assume to cost mmer many steps) to
recover the key and to send the identifier back to the sender.

Here C1 := O(nmer + mmer) as the sender has to create nmer puzzles and the receiver must use
mmer steps to break one of them, and C2 := O(nmer ·mmer) as an adversary has to break at worst
all the nmer ciphertexts to recover the key.

3.4 Trivial Anonymous Transfers

For simplicity, we focus on 3-party anonymous transfer in the following discussions, with two players
P0, P1 and a receiver R.

Remark 1 (Perfect correctness.). A perfectly correct (i.e. ε = 1) protocol is impossible. Given a
player Pb with input Σ, there is always a probability that the non-participating player P1−b behaves
exactly as a participating player with input Σ′ ̸= Σ, in which case R cannot obtain the correct
output for sure.

Therefore, the best one can hope for is a correctness statistically close to 1. In the following, we
demonstrate ATs with trivial parameters.

Example 2 (Trivial single-bit AT). Consider the following trivial single-round AT to transfer a
single bit σ: Pb broadcasts his input σ (and P1−b broadcasts a random bit). Upon receiving (σ0, σ1)
from P0 and P1, if σ0 = σ1, R outputs σ0; otherwise, R outputs a uniformly random bit. As P1−b

broadcasts a random bit, it holds that σ0 = σ1 with probability 1/2, in which case R obtains the
correct output σ = σb; else, R obtains the correct output with probability 1/2. Overall, R obtains the
correct output with probability 3/4. The protocol is 1/2-anonymous since the adversary knows the
message to be transmitted and can hence determine the sender whenever the transmitted bits are
distinct and guess with probability 1/2 otherwise. Hence, the above protocol is a (3/4, 1/2, 1, 1)-AT.

Example 3 (Trivial ℓ-bit AT). One can also construct a trivial ℓ-bit AT. To transmit a message
Σ ∈ {0, 1}ℓ: Pb simply sends Σ repeated κ times. Clearly, (not only) R finds out both Σ and b with
overwhelming probability. Hence, the above protocol is a (1− negl(κ), negl(κ), κ · ℓ, ℓ)-AT.

In this work, we study whether ATs with non-trivial parameters can exist.

12

3.5 Reductions Among AT Protocols

In this section, we show that several simplified variants of anonymous transfer are equivalent to the
original definition.

AT implies silent-receiver AT. We say that an anonymous transfer has silent receiver if the
receiver never sends messages during the Transfer protocol, and Reconstruct is a deterministic
function of the CRS and the transcript π. Any AT directly implies a silent-receiver AT with the
same parameters for correctness and anonymity, but at the cost of secrecy: Any (non-)participant
is able to reconstruct the message given only the transcript of broadcasted messages, not just the
receiving party of the protocol, which might be undesirable for practical applications. Let Πℓ

AT be
a (ε, δ, c, ℓ)-Anonymous Transfer. Define the silent-receiver AT Πℓ

SR as follows:

Πℓ
SR.Setup(1κ) runs crs ← Πℓ

AT .Setup(1κ) and samples a uniform random tape T R for R. It outputs
(crs, T R).

Πℓ
SR.Transfer(crs, b, Σ) proceeds exactly as Πℓ

AT .Transfer(crs, b, Σ), except that the receiver R does
not broadcast any message. At each round χ = 1 to χ = c, the sender Pb locally appends the
χ-th receiver message xχ in Πℓ

AT .Transfer(crs, b, Σ; T R, ·, ·) to the current transcript π[χ] (note
that xχ can be computed deterministically from π[χ] and T R), and compute its next message
as in Πℓ

AT .Transfer using the transcript π[χ]∥xχ.
Πℓ

SR.Reconstruct(crs, π, T R) is defined exactly as Πℓ
AT .Reconstruct(crs, π, T R), except that it first

expands the transcript π by recomputing (deterministically) the messages of R in Πℓ
AT .Transfer(crs,

b, Σ; T R, ·, ·) and appending them to π at each round.

The notion of silent receiver AT captures the notion of an anonymous transfer whose aim is to
publicly reveal a message (i.e., whistleblowing) rather than sending it to a single receiver. An other
way to look at it is to consider that the silent receiver transformation can be seen as passive to
active security transformation for the receiver: If there is a secure AT protocol against a passive
receiver, then there is a secure silent receiver AT against an active receiver, simply because the
receiver has no option to cheat as no messages are sent.

Lemma 4. Πℓ
SR is an (ε, δ, c, ℓ)-Anonymous Transfer.

Proof (sketch). Correctness and number of rounds follow directly from the description of Πℓ
SR,

which simply mimics Πℓ
AT , except that the random tape of the receiver is made public, and its

messages are computed on the fly locally by the sender and during the reconstruction. Anonymity
follows also immediately by observing that T R is given to the adversary in the anonymity game,
hence making it public cannot harm anonymity. ⊓⊔

Since the converse direction is straightforward, AT and silent receiver AT are therefore equivalent.

Single-bit AT implies many-bit AT. In this section, we analyze how a single-bit AT can be
generically transformed into an AT which allows to transmit bitstrings. We construct an ℓ-bit AT
by executing the single-bit AT ℓ times (sequentially) to transmit the message bit-by-bit. Let Π1

AT

be a C1-fine-grained-(ε, δ, c, 1)-Anonymous Transfer against C2. Further, let Πℓ
AT be the protocol

which uses ℓ instances of Π1
AT to transmit ℓ-bit messages bit-by-bit.

We analyze Πℓ
AT using the fine-grained definition. The results directly apply using asymptotic

security.

Lemma 5. Let Π1
AT be a C1-fine-grained (ε, δ, c, 1)-Anonymous Transfer against C2. Then, the

protocol Πℓ
AT is a C′1 := C1 · ℓ-fine-grained

(
ε′, δ′, c · ℓ, ℓ

)
-AT against C′2 := C2− ℓ ·C1, where ε′ = εℓ

and δ′ = (δℓ− ℓ− δ + 2).5

Proof. For Σ ∈ {0, 1}ℓ, we have ε′ = Prcrs,π,Σ′ [Σ = Σ′] = εℓ.
For the purpose of avoiding notational overhead, we prove anonymity for N = 3 parties, i.e., for

one non-participant. The general case follows by generalizing notation. Let A be an adversary against
5 We slightly abuse notation but we believe the meaning to be clear.

13

the anonymity of Πℓ
AT . We define a sequence of hybrid games H1, . . . , Hℓ between Expanon

Πℓ
AT

,A,0(κ)
and Expanon

Πℓ
AT

,A,1(κ) in Fig. 2. H1 is identical to Expanon
Πℓ

AT
,A,1(κ) and Hℓ is identical to Expanon

Πℓ
AT

,A,0(κ).
We construct an adversary B against the anonymity of Π1

AT in Fig. 2. If B plays Expanon
Π1

AT
,B,0(κ),

then B simulates Hi+1 for A. Otherwise, if B plays Expanon
Π1

AT
,B,1(κ), then B simulates Hi for A.

Hi

for j ∈ [ℓ] do
crsj ← Setup(1κ)

crs′ := (crs1, . . . , crsℓ)

T ′
R := (T R,1, . . . , T R,ℓ)← ({0, 1}poly(κ))ℓ

(Σ, stA)← A0(crs′, T ′
R)

for j ∈ {1, . . . , i− 1} do
πj ← Transfer(crs, 0, Σ[j]; T R,i, ·, ·)

for j ∈ {i, . . . , ℓ} do
πj ← Transfer(crs, 1, Σ[j]; T R,i, ·, ·)

return A1((π1, . . . , πℓ), stA)

B0(crs, T R)

i← {1, . . . , ℓ− 1}
for j ∈ [ℓ] \ {i} do

crsj ← Setup(1κ)

T R,j ← {0, 1}poly(κ)

crsi := crs, T R,i := T R

crs′ := (crs1, . . . , crsℓ)
T ′

R := (T R,1, . . . , T R,ℓ)
(Σ, stA)← A0(crs′, T ′

R)
st := (Σ, i, stA)
return (Σ[i], st)

B1(π, st)

parse st =: (Σ, i, stA)
for j ∈ {1, . . . , i− 1} do

πj ← Transfer(crs, 0, Σ[j]; T R,j , ·, ·)
for j ∈ {i + 1, . . . , ℓ} do

πj ← Transfer(crs, 1, Σ[j]; T R,j , ·, ·)
πi := π

return A1((π1, . . . , πℓ), stA)

Fig. 2: Hybrid games for the expansion of single-bit AT to multi-bit AT (left) and the adversary (middle
and right).

Provided that B is in C2, we have

1− δ ≥ |Pr[Expanon
Πℓ

AT
,B,0(κ)]− Pr[Expanon

Πℓ
AT

,B,1(κ)]|

=
ℓ−1∑
j=1

(
Pr[Expanon

Πℓ
AT

,B,0(κ) ∧ i = j]− Pr[Expanon
Πℓ

AT
,B,1(κ) ∧ i = j]

)

= 1
ℓ− 1

ℓ−1∑
j=1

(Pr[Expanon
Πℓ

AT
,B,0(κ)|i = j]− Pr[Expanon

Πℓ
AT

,B,1(κ)|i = j])

= 1
ℓ− 1

ℓ−1∑
j=1

(Pr[Hj+1]− Pr[Hj])

= 1
ℓ− 1(Pr[Hℓ]− Pr[H1]) = 1

ℓ− 1

(
Pr[Expanon

Πℓ
AT

,A,0(κ)]− Pr[Expanon
Πℓ

AT
,A,1(κ)]

)
We have that T(B) = T(A) + (ℓ− 1) · C1 = T(A) + ℓ · C1. Hence, given that T(A) = T(B)− C1 ∈

C2−ℓ ·C1, the anonymity advantage of A is (1−δ)(ℓ−1)/2, yielding anonymity of δ′ = δℓ−ℓ−δ +2.
⊓⊔

4 Impossibility of Anonymous Transfer

In this section, we prove that no anonymous transfer protocol, with an arbitrary polynomial number
of rounds, can simultaneously enjoy overwhelming correctness (ε = 1− negl(κ)) and overwhelming
anonymity (δ = 1− negl(κ)), even for transmitting single bit messages.

Theorem 3 (Impossibility of AT). Let µ : N 7→ R be any negligible function and p be any
polynomial. There is no (1− µ(κ), 1− µ(κ), p(κ), 1)-Anonymous Transfer, for any number of parties.

Theorem 3 will follow as a corollary from a more general result bounding the relation between ε
and δ in any c-round protocol. Throughout this section we will focus on N = 3, that is, the case
with one dummy player. This is without loss of generality as we will show in Section 4.3 that any
N -party anonymous transfer with N > 3 implies in particular a 3-party anonymous transfer, for
which we will show here that it can not exist.

14

Attacker At = (At
0, At

1)

Algorithm At
0

– On input crs, sample (Σ1, · · · , Σt) $← DR, and set Σt to be an arbitrary element of
{0, 1}κ \ {Σ1, · · · , Σt} (which exists since t≪ 2κ).

– Output (Σt, st = (crs, Σt)).
Algorithm At

1

– On input Σ, st, parse st as (crs, Σt) and π as a triple (π[c− 1], x0, x1), where π[c− 1] is
a transcript for the first c − 1 rounds (if c = 1, it is the empty string), and (x0, x1) ∈
{0, 1}m × {0, 1}m are the last-round messages from P0 and P1 respectively.

– Pick (x′
0, x′

1) $← {0, 1}m × {0, 1}m, set π0 ← (π[c− 1], x0, x′
1), π1 ← (π[c− 1], x′

0, x1), and
compute Σ′

b∗ ← Reconstruct(crs, πb∗) for b∗ = 0, 1.
– Return the following:
• if Σ′

0 = Σt, output 0;
• else, if Σ′

1 = Σt, output 1;
• else, return a uniformly random bit b′ $← {0, 1}.

Fig. 3: Attacker At against the δ-anonymity of the silent-receiver κ-bit AT protocol Πκ
AT , parameterized

by a polynomial t = t(κ).

4.1 The Attacker

From now on, we focus on building a generic attack against 3-party silent-receiver anonymous
transfer for κ-bit messages. The theorem will follow from the reductions from 1-bit anonymous
transfer to multibit silent-receiver anonymous transfer described in Section 3.5.

Let Πκ
AT be a silent-receiver (ε, δ, c, κ)-Anonymous Transfer. Let m = m(κ) be the bitlength of

the message from the non-participating party. Let Rand denote the following procedure: on input
a transcript π of Πκ

AT , Rand(π) truncates π to c− 1 rounds of the AT protocol, and replaces the
messages of the last round by two uniformly random length-m bitstrings6. It outputs the new
rerandomized transcript π′. For every Σ ∈ {0, 1}κ and b ∈ {0, 1}, we let Db,Σ ,D′b,Σ ,DR denote the
following distribution:

Db,Σ = {Σ′ : crs ← Setup(1κ), π ← Transfer(b, Σ), Σ′ ← Reconstruct(crs, π)}
D′b,Σ = {Σ′ : crs ← Setup(1κ), π′ ← Rand(Transfer(b, Σ)), Σ′ ← Reconstruct(crs, Σ′)}
DR = {Σ′ : crs ← Setup(1κ), π

$← ({0, 1}m × {0, 1}m)c, Σ′ ← Reconstruct(crs, π)}

Fix an arbitrary polynomial t. We define an attacker At = (At
0, At

1) against the anonymity of
Πκ

AT , parameterized by the polynomial t, on Figure 3. In the following, we will not use At directly
to attack the full c-round protocol: rather, we will use At as a distinguisher between the c-round
protocol Πκ

AT , and the (c− 1)-round protocol obtained by running Πκ
AT for (c− 1) rounds, and

replacing the messages of the last round by uniformly random m-bit strings. From there, the proof
of impossibility will proceed by induction; we refer the reader to the introduction for a high-level
intuition of our proof.

Base case: advantage of At when c = 1. We start the induction by bounding the ad-
vantage of At in the anonymity game when Πκ

AT is non-interactive (i.e., Transfer consists of a
single message from each of P0, P1 to the receiver). Before proceeding, we make two key observations:

(1) When c = 1, D′b,Σ = DR for any (b, Σ). In particular, this means that D′b,Σ is independent of
(b, Σ).

6 Since the protocol is silent-receiver, there is no message from the receiver; furthermore, assuming that
the sender message is m-bit is without loss of generality, since otherwise the protocol is trivially not
anonymous.

15

(2) When c = 1 and b = 0, the distribution of the values (Σ′0, Σ′1) constructed by At
1 given as input

a random transcript π ← Transfer(0, Σt) is exactly the distribution D0,Σt ×DR. This is because
x0 is a random message from the sender with input b = 0 and value Σt, and (x1, x′0, x′1) are three
uniformly random elements of {0, 1}m, hence (x0, x′1) is exactly a random transcript of Πκ

AT with
(b, Σt), while (x′0, x1) is just a pair of random messages. Similarly, if b = 1, the distribution of
the values (Σ′0, Σ′1) constructed by At

1 given as input a random transcript π ← Transfer(1, Σt) is
exactly the distribution DR×D1,Σt .

Both observations follow directly from the definitions of Db,Σ ,D′b,Σ ,DR and of At
1. Building on

the above observations, we show that for an appropriate choice of t, the advantage of At in the
anonymity game can be made arbitrarily close to (ε− 1)/2:

Claim. For any polynomial n, there is a polynomial t such that∣∣∣∣∣ Pr
b

$←{0,1}

[
Expanon

Πκ
AT

,At,b(κ) = b
]
− 1/2

∣∣∣∣∣ ≥ ε

2 −
1
n

, (5)

which implies that any silent-receiver (ε, δ, 1, κ)-Anonymous Transfer must satisfy δ ≤ 1− ε + 2/n
for any polynomial n; equivalently, δ ≤ 1− ε + negl(κ). In particular, this means that if the AT has
overwhelming correctness (ε = 1− negl(κ)), then δ must be negligible.

Proof. Let t := κ · n, and let Bad ⊂ {0, 1}κ denote the set

Bad =
{

Σ ∈ {0, 1}κ : Pr
Σ′ $←D′

[Σ′ = Σ] >
2
n

}
.

We first show that
Pr

Σt $←At
0(crs)

[
Σt ∈ Bad

]
≤ e−κ.

Fix any Σ ∈ Bad. Then

Pr
Σt $←At

0(crs)
[Σ = Σt] ≤ Pr

Σ1,··· ,Σt
$←D′

[Σ /∈ {Σ1, · · · , Σt}]

= Pr
Σ1,··· ,Σt

$←D′

[t∧
i=1

(Σi ̸= Σ)
]

<

(
1− 2

n

)t

≤ e−2t/n = e−2κ.

Therefore, by a union bound over all Σ ∈ Bad, Pr
Σt $←At

0(crs)
[Σt ∈ Bad] ≤ |Bad| · e−2κ ≤ 2κ · e−2κ ≤

e−κ. Now, denoting b the identity of the sender, we bound the success probability of At = (At
0, At

1)
in guessing b.

Consider first the case b = 0. Then by observation (2), the values (Σ′0, Σ′1) form a random
sample from D0,Σt ×D′ (in particular, they are independent samples from these two distributions).
Now, by definition of At

1, we have

Pr[Expanon
Πκ

AT
,At,b(κ) = 0 | b = 0] = Pr[(Σ′0 = Σt) ∨ ((Σ′0 ̸= Σt) ∧ b′ = 0)]

= Pr[Σ′0 = Σt] + 1
2 · Pr[Σ′0 ̸= Σt]

= 1
2 ·

(
1 + Pr[Σ′0 = Σt]

)
≥ 1 + ε

2 ,

where the second equality is because the events are disjoint, and the last inequality is by the
ε-correctness of the AT. Now, consider the case b = 1; in this case, the values (Σ′0, Σ′1) computed

16

by At
1(π, st) are distributed exactly as a random sample from DR×D1,Σt . Then, if we condition

on Σt being outside of the set Bad, we have

Pr[Expanon
Πκ

AT
,At,b(κ) = 1 | b = 0, Σt /∈ Bad]

= Pr[((Σ′0 ̸= Σt) ∧ (Σ′1 = Σt)) ∨ ((Σ′0 ̸= Σt) ∧ (Σ′1 ̸= Σt) ∧ b′ = 1) | Σt /∈ Bad]

= Pr[(Σ′0 ̸= Σt) ∧ (Σ′1 = Σt) | Σt /∈ Bad] + 1
2 · Pr[(Σ′0 ̸= Σt) ∧ (Σ′1 ̸= Σt) | Σt /∈ Bad]

= Pr[Σ′0 ̸= Σt | Σt /∈ Bad] · Pr[Σ′1 = Σt | Σt /∈ Bad]

+ 1
2 · Pr[Σ′0 ̸= Σt | Σt /∈ Bad] · Pr[Σ′1 ̸= Σt | Σt /∈ Bad]

= 1
2 · Pr[Σ′0 ̸= Σt | Σt /∈ Bad] · (1 + Pr[Σ′1 = Σt | Σt /∈ Bad])

≥
(

1− 2
n

)
· 1 + ε

2 ,

where the third equality follows from the fact that Σ′0 and Σ′1 are independent samples, and the
last inequality follows from ε-correctness and the definition of the set Bad. Now, since

2 · Pr[Expanon
Πκ

AT
,At,b(κ) = b]

= Pr[Expanon
Πκ

AT
,At,b(κ) = 0 | b = 0] + Pr[Expanon

Πκ
AT

,At,b(κ) = 1 | b = 1]

≥ Pr[Expanon
Πκ

AT
,At,b(κ) = 0 | b = 0] + Pr[Expanon

Πκ
AT

,At,b(κ) = 1 | b = 1, Σt /∈ Bad] · Pr[Σt /∈ Bad]

≥ Pr[Expanon
Πκ

AT
,At,b(κ) = 0 | b = 0] + Pr[Expanon

Πκ
AT

,At,b(κ) = 1 | b = 1, Σt /∈ Bad] · (1− e−κ),

we get

Pr[Expanon
Πκ

AT
,At,b(κ) = b] ≥ 1

2 ·
(

1 + ε

2 +
(

1− 2
n

)
· 1 + ε

2 · (1− e−κ)
)

≥ 1 + ε

2 ·
(

1− 1
n

)
· (1− e−κ)

≥ 1 + ε

2 − 1
n

,

where the last inequality uses the fact that (1 + ε) · (1− e−κ)/2n ≤ 1/n. This concludes the proof.
⊓⊔

Induction case. Fix a polynomial number of rounds c(κ) and assume that any silent-receiver
(ε, δ, c− 1, κ)-Anonymous Transfer must satisfy

1− δ

2 ≥ 1
c− 1 ·

(
ε

2 −
1
n

)
for any polynomial n.

equivalently, this means that (1 − δ)/2 ≥ ε/2(c − 1) − negl(κ). Let Πκ
AT be any silent-receiver

(ε, δ, c, κ)-Anonymous Transfer.

Claim. For any polynomial n,
1− δ

2 ≥ 1
c
·
(

ε

2 −
1
n

)
. (6)

Proof. We have

Pr[Expanon
Πκ

AT
,At,b(κ) = b] = 1

2 · Pr[Expanon
Πκ

AT
,At,b(κ) = 0 | b = 0] + 1

2 · Pr[Expanon
Πκ

AT
,At,b(κ) = 1 | b = 1].

17

We bound separately the two probabilities on the right hand side:

Pr[Expanon
Πκ

AT
,At,b(κ) = 0 | b = 0] = Pr[(Σ′0 = Σt) ∨ ((Σ′0 ̸= Σt) ∧ b′ = 0)]

= Pr[Σ′0 = Σt] + 1
2 · Pr[Σ′0 ̸= Σt]

= 1
2 ·

(
1 + Pr[Σ′0 = Σt]

)
≥ 1 + ε

2 ,

where the second equality is because the events are disjoint, and the last inequality is by the
ε-correctness of the AT. Note that nothing really changes when b = 0 compared to the base case,
because the independence of Σ′0 and Σ′1 needs only to be invoked in the case b = 1 (this is because
the attacker “favors Σ′0” in case of tie). Now, consider the case b = 1. In this case, the values
(Σ′0, Σ′1) computed by At

1(π, st) are distributed as correlated samples from D′1,Σt and D1,Σt . We
have

Pr[Expanon
Πκ

AT
,At,b(κ) = 1 | b = 1]

= Pr[((Σ′0 ̸= Σt) ∧ (Σ′1 = Σt)) ∨ ((Σ′0 ̸= Σt) ∧ (Σ′1 ̸= Σt) ∧ b′ = 1)]

= Pr[(Σ′0 ̸= Σt) ∧ (Σ′1 = Σt)] + 1
2 · Pr[(Σ′0 ̸= Σt) ∧ (Σ′1 ̸= Σt)]

= 1
2 ·

(
Pr[(Σ′0 ̸= Σt) ∧ (Σ′1 = Σt)] + Pr[Σ′0 ̸= Σt]

)
,

where the second equality follows from the fact that the events Σ′1 = Σt and Σ′1 ̸= Σt are disjoint.
Now, observe that

Pr[Σ′1 = Σt] = Pr[Σ′1 = Σt | Σ′0 = Σt] · Pr[Σ′0 = Σt] + Pr[Σ′1 = Σt ∧Σ′0 ̸= Σt]
≤ Pr[Σ′0 = Σt] + Pr[Σ′1 = Σt ∧Σ′0 ̸= Σt].

By construction, Pr[Σ′1 = Σt] is exactly the probability that Reconstruct outputs Σt given a random
transcript for b = 1 and transmitted value Σt. By ε-correctness of the protocol, we therefore have
Pr[Σ′1 = Σt] ≥ ε. Plugging this into the previous inequality, we get

Pr[Σ′1 = Σt ∧Σ′0 ̸= Σt] ≥ ε− Pr[Σ′0 = Σt],

which implies that

Pr[Expanon
Πκ

AT
,At,b(κ) = 1 | b = 1] ≥ 1

2 ·
(
ε− Pr[Σ′0 = Σt] + Pr[Σ′0 ̸= Σt]

)
= ε + 1

2 − Pr[Σ′0 = Σt].

It remains to bound Pr[Σ′0 = Σt]. To do so, we define a round-reduced anonymous transfer protocol
(Setup′, Transfer′, Reconstruct′), built on top of Πκ

AT :

Setup′ = Setup
Transfer′(crs, b, Σ) : proceeds as Transfer, except that the parties interrupt the protocol Transfer(crs,

b, Σ) after c − 1 rounds, obtaining a transcript π. In the (c − 1)’s round, P0 and P1 both
additionally broadcast 2m random bits, denoted (r0, r1). Define the final transcript of Transfer′
to be (π, r0, r1).

Reconstruct′(crs, (π, r0, r1)) : on input a transcript (π, r0, r1), set r := r0 ⊕ r1 and parse r as
a concatenation of two m-bit messages (x0, x1). Let π′ be a c-round transcript where the
transcript of the first c − 1 rounds is π, and the last round transcript is (x0, x1). Output
Reconstruct(crs, π′).

A transcript for the round-reduced protocol is exactly a transcript for Πκ
AT where the last two

messages have been replaced by uniform random strings7. Now, observe that when b = 1, replacing
7 We define these strings to be the XOR of two strings sent in the previous rounds by P0 and P1 to

guarantee that Reconstruct remains deterministic; this is just a syntactic manipulation which is not
crucial, but simplifies the rest of the exposition.

18

only the message of b1 by random in the last round still leads to the exact same distribution over
transcript. In other terms, Pr[Σ′0 = Σt] is exactly the probability that Reconstruct′ outputs Σt given
a transcript for the round-reduced protocol. Of course, the round-reduced protocol is δ-anonymous8,
and has c − 1 rounds. Hence, by the induction hypothesis, we can bound the correctness of the
round-reduced protocol:

1− δ

2 ≥ 1
c− 1 ·

(
Pr[Σ′0 = Σt]

2 − 1
n

)
=⇒ Pr[Σ′0 = Σt] ≤ (c− 1) · (1− δ) + 2/n.

Therefore, we get

Pr[Expanon
Πκ

AT
,At,b(κ) = 1 | b = 1] ≥ ε + 1

2 − (c− 1) · (1− δ)− 2
n

.

Putting everything together, we obtain

Pr[Expanon
Πκ

AT
,At,b(κ) = b] ≥ 1

2 ·
(

ε + 1
2 + ε + 1

2 − (c− 1) · (1− δ)− 2
n

)
= ε + 1

2 − (c− 1) · (1− δ)
2 − 1

n
,

hence ∣∣∣∣Pr[Expanon
Πκ

AT
,At,b(κ) = b]− 1

2

∣∣∣∣ ≥ ε

2 −
(c− 1) · (1− δ)

2 − 1
n

.

Now, by definition of δ-anonymity, we also have

1− δ

2 ≥
∣∣∣∣Pr[Expanon

Πκ
AT

,At,b(κ) = b]− 1
2

∣∣∣∣ ≥ ε

2 −
(c− 1) · (1− δ)

2 − 1
n

=⇒ c · 1− δ

2 ≥ ε

2 −
1
n

,

which concludes the proof of the claim. ⊓⊔

4.2 Putting the Pieces Together

With the above analysis, we showed that for any silent-receiver (ε, δ, c, κ)-Anonymous Transfer, it
must necessarily hold that (1− δ)/2 ≥ ε/2c− negl(κ). Since any (ε, δ, c, κ)-Anonymous Transfer
implies a silent-receiver (ε, δ, c, κ)-Anonymous Transfer (with the exact same parameters, see
Section 3.5), we obtain:

Corollary 2. Any (ε, δ, c, κ)-Anonymous Transfer must satisfy

1− δ

2 ≥ ε

2c
− negl(κ).

In particular, this implies that there exists no κ-bit AT with overwhelming correctness and anonymity,
for any polynomial number of rounds.

Furthermore, as shown in Section 3.5, any single-bit c-round AT with correctness ε = 1− negl(κ)
and anonymity δ = 1 − negl(κ) implies a κ-bit AT with correctness ε′ = εκ = (1 − negl(κ))κ =
1− negl(κ), and anonymity δ′ = (δ − 1) · κ− δ + 2 = 1− negl(κ). Combining this reduction with
Corollary 2 concludes the proof of Theorem 3.

8 Πκ
AT is δ-anonymous; truncating the transcript can trivially not decrease anonymity.

19

A c-round Anonymous Transfer Protocol Π1
AT

′ for (N − 1) Parties.

On input (b, σ), Pb follows the role of Pb on input (b, σ) according to Π1
AT .

On input ⊥, Pb′ for b′ ∈ [N − 2] \ b follows the role of Pb′ on input ⊥ according to Π1
AT .

On input ⊥, R follows the role of PN−1 on input ⊥ according to Π1
AT .

For each round χ from 1 to c :
Pb computes the next message according to Pb in Π1

AT with previous messages((
x

(1)
1 , . . . , x

(1)
N−2, x

(1)
R

)
, . . . ,

(
x

(χ−1)
1 , . . . , x

(χ−1)
N−2 , x

(χ−1)
R

))
.

Pb′ for b′ ∈ [N − 2] \ b broadcasts x
(χ)
b′

$← {0, 1}m.
R broadcasts x

(χ)
R

$← {0, 1}m.
R outputs Π1

AT .Reconstruct
((

x
(1)
1 , . . . , x

(1)
N−2, x

(1)
R

)
, . . . ,

(
x

(c)
1 , . . . , x

(c)
N−2, x

(c)
R

))
.

Fig. 4: The protocol Π1
AT

′ that constructs (N − 1)-party AT from a given N -party SR-AT for N parties.

4.3 Impossibility of Anonymous Transfer for N > 3

The impossibility proof showed thus far only considered the setting for N = 3. In this section we
will expand the impossibility proof to an arbitrary N > 3. For that purpose, we prove the following
claim:

Claim. Let Π1
AT be an (ε, δ) Silent Receiver Anonymous Transfer protocol for N parties. Then,

protocol Π1
AT

′ defined in Fig. 4 that makes black-box access to Π1
AT is an (ε, δ′) AT protocol for

(N − 1) parties, where δ′ > 1− (1− δ) · N−2
N−3 .

Combining this with the insight from Lemma 4 that (ε, δ)-AT imply (ε, δ)-SR-AT, this implies that
an (ε, δ)-AT for N parties implies an (ε, δ′)-SR-AT for (N − 1) parties.

We then proceed to show that if δ is overwhelming, then δ′ is overwhelming. The correctness ε
does not change by our transformation. Hence, we can iteratively apply this step for any number
of parties N . Therefore, if there is an N -party (owhl(κ), owhl(κ))-AT, then there is also a three-
party (owhl(κ), owhl(κ))-AT. Since the latter is impossible due to Theorem 3, an N -party AT with
overwhelming correctness and anonymity cannot exist for any polynomial number of parties N .

To prove our claim we construct an (N − 1)-party AT Π1
AT

′ as shown in Fig. 4. The protocol is
based on an (ε, δ)-SR-AT Π1

AT . All parties in Π1
AT

′ follow their respective roles in Π1
AT , which

means that the sender is constructing special messages as advised by Π1
AT whereas the dummy

friends only broadcast random bits. To compensate for the missing party (the N -th party that does
not exist in the N − 1 party protocol) the messages of the N -th party are sent by the receiver,
who takes on the role of one dummy friend. This is possible because the N -party protocol is a
Silent Receiver AT where the receiver sends no messages, whereas in the (N − 1)-party protocol
the receiver is allowed to report messages in each round. Then parties continue with the extended
transcript and proceed to the next round.

Security Analysis of Π1
AT

′

Correctness. Correctness of Π1
AT

′ follows directly from correctness of Π1
AT .

Lemma 6 (Correctness). Let Π1
AT be an N -party (ε, δ)-SR-AT. Then Π1

AT

′ has correctness ε.

Proof. This trivially follows from the fact that the extended transcript is distributed identically to
an execution of Π1

AT : The messages of the first (N − 1) parties are distributed correctly by design,
as they follow the original protocol, and the messages of the N -th party are also distributed the
same, but accounted to a different party. Thus, the reconstruction algorithm is queried with the
same inputs. ⊓⊔

20

Anonymity. Anonymity requires some work, since one party (the non-silent receiver) in Π1
AT

′ is
guaranteed to not be the sender.

Lemma 7 (Anonymity). Let Π1
AT be an N-party (ε, δ)-SR-AT. Then Π1

AT

′ has anonymity
δ′ = 1− (1− δ) · N−2

N−3 .

Proof. We want to find a bound δ′ for the δ′-anonymity of Π1
AT

′, that is, a value δ′ for which the
following holds for any PPT algorithm A′:9

Pr[A′ successful] ≤ 1
(N − 2) + (1− δ′) · N − 3

N − 2 (7)

Now let A′ be an adversary on the anonymity of the (N − 1)-party protocol Π1
AT

′. We will now
demonstrate how A′ can be used by a guessing algorithm A to break the anonymity of Π1

AT :
Upon receiving the challenge transcript πC for the N -party AT, A picks a uniformly random

party from the group of potential senders (i.e., among everyone except the receiver) and erases
that party from the transcript. A reports this party’s messages as coming from the receiver in
Π1

AT

′. Observe that the resulting transcript is perfectly distributed as an honest transcript of Π1
AT

′

(given that a non-participant was erased). Now, A feeds this simulated transcript to A′, and outputs
whatever A′ outputs.

If A selects a non-participant—which is the case with probability (N − 2)/(N − 1) as the
party is uniformly sampled among all parties except for the receiver and there is only one actual
sender—then the modified transcript is a valid transcript of Π1

AT

′ and the probability that A′
returns the correct sender is returned is given by the success probability Pr[A′ successful] of A′.
Otherwise, if A selected the actual sender, then all possible return values for A′ are dummy friends
and the probability that A is correct equals 0.

Hence, the overall probability that A is successful is given by the following term:

Pr[A successful] =N − 2
N − 1 · Pr[A′ successful]

⇐⇒ Pr[A′ successful] =N − 1
N − 2 · Pr[A successful]

(8)

Due to the δ-anonymity of Π1
AT it holds that

Pr[A successful] ≤ 1
N − 1 + (1− δ) · N − 2

N − 1 (9)

By merging Eqs. (8) and (9) we get that

Pr[A′ successful] = N − 1
N − 2 · Pr[A successful]

≤ N − 1
N − 2

(
1

N − 1 + (1− δ) · N − 2
N − 1

)
=⇒ Pr[A′ successful] ≤ 1

N − 2 + (1− δ)

(10)

However, to apply δ′-anonymity we need Eq. (10) to be in the form from Eq. (7), which means
that we have to set:

Pr[A′ successful] ≤ 1
N − 2 + (1− δ) != 1

N − 2 + (1− δ′)N − 3
N − 2

(11)

Solving Eq. (11) for δ′ yields the following result:

δ′ = 1− (1− δ) · N − 2
N − 3

(12)

9 We ignore the absolute value here as by definition, A′ is better than guessing and hence Pr[A successful]−
1/(N − 2) > 0.

21

For this value of δ′, the guessing algorithm A′ on Π1
AT

′ can not be used to violate the δ-anonymity
of Π1

AT .
In contrast, if there is some guessing algorithm A′ which violates the δ′-anonymity for the above

value of δ′, then it holds that:

Pr[A′ successful] >
1

N − 2 + (1− δ′) · N − 3
N − 2

(13)

Then the probability that A can successfully determine the sender in the N -party AT is given
as follows:

Pr[A successful] = N − 2
N − 1 · Pr[A′ successful]

>
N − 2
N − 1 ·

(
1

N − 2 + (1− δ′) · N − 3
N − 2

)
Pr[A successful] >

1
N − 1 + (1− δ′) · N − 3

N − 1

(14)

By inserting the computed value of δ′ from Eq. (12) into Eq. (14) and get:

Pr[A successful] >
1

N − 1 +
(

1−
(

1− (1− δ) · N − 2
N − 3

))
· N − 3

N − 1 (15)

So, in total A would be successful with probability

Pr[A successful] >
1

N − 1 +
(

1− 1 + (1− δ) · N − 2
N − 3

)
· N − 3

N − 1

=⇒ Pr[A successful] >
1

N − 1 + (1− δ) · N − 2
N − 1

(16)

which would contradict the assumed δ-anonymity of Π1
AT . ⊓⊔

From Lemmas 6 and 7 our claim follows:
Corollary 3. If Π1

AT is an (ε, δ) Silent Receiver Anonymous Transfer protocol for N parties, then
there exists a protocol Π1

AT

′ with black-box access to Π1
AT that is an (ε, δ′) AT protocol for (N − 1)

parties, where δ′ > 1− (1− δ) · N−2
N−3 .

This insight yields the following corollary:
Corollary 4. Let Π1

AT be an (ε, δ) Anonymous Transfer protocol for N parties where ε, δ ∈ owhl(κ).
Then there is a protocol three-party (ε, δ′)-AT protocol Π1

AT

′ where ε, δ ∈ owhl(κ).
Proof. Let the number N of parties be given. From Π1

AT we can construct a Silent Receiver AT
with the same values for ε and δ, so the constructed Silent Receiver AT still has overwhelming
correctness and anonymity.

By then applying Corollary 3 it follows that there is a protocol Π1
AT

′ for (N − 1) parties which
still has the same (hence overwhelming) correctness and anonymity δ′ > 1− (1− δ) · N−2

N−3 .
As we assume that δ ∈ owhl(κ) it holds that (1− δ) ∈ negl(κ), and since N−2

N−3 ∈ poly(κ) it holds
that (1− δ) · N−2

N−3 ∈ negl(κ).
So it total it holds that δ′ > 1− negl(κ) ∈ owhl(κ).
By then alternating between an application of Lemma 4 to construct a Silent Receiver AT from

the normal AT and Corollary 3 to reduce the number of parties by one we can proceed until N = 3,
where still it holds that both correctness and anonymity are overwhelming. ⊓⊔

This insight, however, contradicts Theorem 3, which states that no three-party AT with
overwhelming correctness and anonymity can exist, which leads to our final corollary:
Corollary 5. Let κ be the security parameter. Let N ∈ poly(κ) be the number of individuals present
in an execution of Anonymous Transfer. Then for any N -party AT protocol Π1

AT it holds that Π1
AT

is not a (owhl(κ), owhl(κ))-AT.

Proof. This proof is by contradiction. Assuming that Π1
AT is an (owhl(κ), owhl(κ))-AT means that

due to Corollary 4, there is an (owhl(κ), owhl(κ))-AT for three parties. However, such a protocol
cannot exist due to Theorem 3. ⊓⊔

22

4.4 Extensions and Limitations

The adversary in our impossibility result makes a black-box use of an arbitrary 3-party silent
receiver multibit anonymous transfer; the reduction to N -party single-bit anonymous transfer is
black-box as well. In particular, this means that our impossibility result relativizes: it remains true
relative to any oracle, where access to the oracle is granted to all participants and all algorithms
(including the adversary).

In the next section, we will provide a heuristic construction of fine-grained anonymous transfer.
The aim of this construction is to complement our impossibility result, and to draw an interesting
and surprising picture: anonymous transfer appears to be impossible to realize with the standard
superpolynomial cryptographic hardness gaps, but becomes feasible if one settles for a small
polynomial hardness gap. Our fine-grained construction is described and formally proven secure
using an ideal obfuscation scheme; instantiating the scheme with candidate indistinguishability
obfuscation schemes gives a plausible heuristic construction (the same way that instantiating the
random oracle model with standard hash functions gives plausible heuristic constructions of various
cryptographic primitives, when the construction is not pathological). Because our impossibility
result relativizes, in contrast, standard anonymous transfer remains provably impossible relative to
an ideal obfuscation oracle (while fine-grained anonymous transfer, as we will see, provably exist
relative to such an oracle).

Impossibility of fine-grained multibit AT with overwhelming correctness and anonymity.
In the multibit setting, where the sender wants to transmit ω(log κ) bits to the receiver, our result
further demonstrates that there exists no fine-grained anonymous transfer with overwhelming
correctness and anonymity 1− negl(κ), even with an arbitrary small polynomial gap between the
runtime of the honest parties and that of the adversary. Indeed, let r = O(c ·m) be a lower bound on
the runtime of the honest parties (r is the total number of bits sent by the sender, hence it is a clear
lower bound on its running time), and consider an adversary At with t = κ · cg, where g > 0 is an
arbitrarily small constant. Then by construction, the runtime of At is O(κ · r · cg) ≤ O(κ · r1+g) (as
it is dominated by the cost of sampling t random transcripts for At

0). Then this adversary satisfies

1− δ

2 ≥
∣∣∣∣Pr[Expanon

Πκ
AT

,At,b(κ) = b]− 1
2

∣∣∣∣ ≥ 1
c
·
(

ε

2 −
1
cg

)
, (17)

which implies that δ and ε cannot be simultaneously equal to 1− negl(κ) (since 1/(2c)− 1/c1+g

cannot be a negligible function for any polynomial c and any constant g > 0).

Limitations of the impossibility result. Even putting aside the heuristic security guarantee of
our fine-grained construction (or its security in an idealized model), a gap remains between our
impossibility result and our construction: our impossibility result does not rule out the possibility
of having, say, a (1− negl(κ), 1− 1/c, c, κ)-Anonymous Transfer – that is, an anonymous transfer
with overwhelming correctness, and vanishing anonymity error 1/c in c rounds, with standard
(superpolynomial) security. In contrast, our heuristic construction only achieves overwhelming
correctness and anonymity arbitrarily close to 1/c against fine-grained adversaries. It is an interesting
open question to close this gap. We conjecture that the true answer is negative:
Conjecture 1. There exists no (1− negl(κ), 1− 1/c, c, κ)-Anonymous Transfer.

What follows assumes that the reader is familiar with standard philosophical considerations on
the worlds of Impagliazzo. Proving the above conjecture would have a very interesting (theoretical)
consequence: it would demonstrate the existence of a natural cryptographic primitive that plausibly
exists within the realm of fine-grained cryptography, yet is impossible with standard hardness gap.
It is known that fine-grained constructions sometimes allow building “high-end” cryptographic
primitives in “low-end” cryptographic realms. For example, Merkle puzzles, which can be instanti-
ated under exponentially strong one-way functions [BGI08], provide a fine-grained key exchange;
borrowing Impagliazzo’s terminology [Imp95], this places “fine-grained Cryptomania” inside (a
strong form of) Minicrypt. Proving the conjecture would induce a comparable result, but at the
highest level of the hierarchy: it would, in a sense, place fine-grained Impossibilitopia (a world of
cryptographic primitives so powerful that they simply cannot exist) inside Obfustopia.

23

Fine-grained Protocol Π1
AT .

Upon activation, R draws OTP $← {0, 1} and computes (kR, vkR) ← Sig.KeyGen(1κ). Then R sets
x

(0)
R ← Pke.Enc(pkP , (OTP, vkR)) and broadcasts x

(0)
R .

On input (b, σ), Pb computes a signature key pair (vkb, kb) ← Sig.KeyGen(1κ) and a symmetric key
skb ← Ske.KeyGen(1κ).
Then, Pb computes a signature µ ← Sig.Sig(kb, x

(0)
R) and broadcasts x

(0)
b ←

Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (σ, µ)).
Upon activation , P1−b sets uniformly random x

(0)
1−b.

For each round χ from 1 to c :
Pb computes µ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1)) and sets x

(χ)
b ← Ske.Enc(skb, (σ, µ)).

P1−b: Broadcast x
(χ)
1−b

$← {0, 1}m.
R: computes µ ← Sig.Sig(kR, (x(0)

R , (x(0)
0 , x

(0)
1), . . . , (x(c)

0 , x
(c)
1))), compute σ′ :=

P AT (x(0)
R , (x(0)

0 , x
(0)
1), . . . , (x(c)

0 , x
(c)
1), µ) and output OTP ⊕ σ′.

Fig. 5: The protocol Π1
AT for fine-grained Anonymous Transfer. The circuit P AT is defined in Fig. 6.

P AT [pkP , c]
(

x
(0)
R ,

(
x

(0)
0 , x

(0)
1

)
,
(

x
(1)
0 , x

(1)
1

)
. . . ,

(
x

(c)
0 , x

(c)
1

))
(OTP, vkR) := Pke.Dec∗(skP , x

(0)
R),

(sk0, vk0) := Pke.Dec∗(skP , x
(0)
0 [1 : m]), (σ0, µ0) := Ske.Dec∗(sk0, x

(0)
0 [m + 1: 2m]),

(sk1, vk1) := Pke.Dec∗(skP , x
(0)
1 [1 : m]), (σ1, µ1) := Ske.Dec∗(sk1, x

(0)
1 [m + 1: 2m]),

if ¬Sig.Vfy(vkR, (x(0)
R , (x(0)

0 , x
(0)
1), . . . , (x(c)

0 , x
(c)
1))) then :

return CointossS(π)
(0.5)(0, 1)

χ0 := JSig.Vfy(µ0, vk0, x
(0)
R)K · (c + 1), χ1 := JSig.Vfy(µ1, vk1, x

(1)
R)K · (c + 1),

foreach χ ∈ {1, . . . , c} do :
foreach b ∈ {b′|b′ ∈ {0, 1}, χb = (c + 1)} do : // Take on the role of each potential sender.

Xb := Ske.Dec∗(skb, x
(χ)
b), σ′

b := Xb[0], µb := Xb[1 : |Xb|]
if ¬Sig.Vfy(µb, vkb, π[χ− 1]) ∨ σb ̸= σ′

b then :
χb := χ // Remember first bad round.

b′ := argmaxb(χb)

return OTP ⊕ CointossS(π)
(1/2·(1+χb′ /c))(σb′ , (1− σb′))

Fig. 6: Obfuscated program P AT for the fine-grained setting with c rounds.

5 Fine-Grained AT from Ideal Obfuscation

In this section, we focus on realizing Anonymous Transfer with fine-grained security according to
Definition 6. More precisely, we construct a c-round protocol which achieves anonymity δ, where the
honest parties have runtime in C1 := O(c) against adversaries in C2 := o(c2(1− δ)), where c = c(κ)
is a polynomial in κ. For the sake of simplicity we introduce the protocol with N = 3, implying a
single dummy friend. However, expanding this protocol to an arbitrary N ∈ N is straightforward
as the behavior of all dummy friends is the same by definition and instead of two messages, each
round now contains N − 1 messages.

We exploit the limited runtime of the adversary and provide a protocol in Fig. 5 with c rounds. In
each new round (or with each valid sender message) the probability that the correct bit is eventually
returned increases, i.e., each valid round increases the receiver’s confidence in the message. Each
round lets the sender compute a signature µ using a sEUF-CMA secure signature scheme10 for
the transcript of the previous round. The transferred bit σ and the signature µ are then sent. The
verification key for the signature scheme is transmitted by the sender in the first round. In order to
10 See Appendix A.3 for a definition of sEUF-CMA.

24

make the sent messages look random the message is not sent directly. Instead, the sender encrypts
the message using an IND$-CCA secure encryption scheme11, [Rog04]. Since not every length m
bitstring is a valid ciphertext, we use a special function Dec∗ instead of the normal function Dec,
which is defined as follows: If Dec on input ct returns ⊥ then Dec∗ returns F(ct), otherwise Dec∗
returns Dec(ct). Hence, every possible input allows an interpretation as a cleartext. We use those
for both the asymmetric and symmetric schemes.

In order to make the output unusable for any other party, the receiver draws a One-Time-Pad as
first message which eventually masks the final output, and a verification key of a signature scheme.
The latter is used to ensure that the receiver approves with the transcript; after the two potential
senders provided all messages, the receiver signs the entire transcript and only if this signature
verifies the entire previous transcript, the circuit continues. The first message of the receiver is
broadcast, while the signature is only used locally.

The receiver obtains its output by computing the signature as described above and feeding the
final transcript alongside the signature into an obfuscated circuit which is supplied in a common
reference string. The circuit is obfuscated using ideal obfuscation12. It hides a PRF key and a secret
decryption key skP for the IND$-CCA secure PKE. The corresponding encryption key pkP is also
part of the CRS and, hence, known to all parties. This encryption scheme is used by the sender
and the receiver to hide their respective first message. This uniquely determines the symmetric
key used to decrypt the remaining messages of each potential sender. The message also contains a
verification key used to sign the previous messages in future rounds, the bit that the sender wants
to transfer, and the initial signature on the receivers message. The remaining rounds of the sender
are encrypted using a symmetric scheme, namely the IND$-CCA secure SKE scheme, using the key
transferred to the circuit in the first round.

The circuit is shown in Fig. 6. It starts by extracting the verification keys and symmetric
encryption keys (one per potential sender) alongside the bits that the respective party wants to
transfer and the initial signatures on the first receiver messages from the respective initial messages
of both parties, and the receivers OTP and verification key from the receiver message. Then the
circuit starts by verifying the signature of the receiver on the entire transcript, and if that does not
match, returns a uniformly random bit13. Otherwise, if the receiver’s signature is valid, the circuit
searches for the first faulty round of each potential sender. That is, the first round of each potential
sender where the signature on the previous round fails to verify or where the encoded bit differs
from the bit extracted from the initial message. The party who sent the most consecutive valid
rounds is selected as the sending party. The circuit outputs the bit transmitted by that party with
probability depending on the ratio between valid sender messages and the total number of rounds,
which ranges between 1/2 (i.e., a uniformly random bit) if no round was valid for any party and
1 (i.e., deterministically returning the correct bit) if all rounds were correct. However, as stated
before, the circuit does not output that bit directly, but instead masks it using the OTP extracted
from the receiver’s first message. This ensures secrecy, as other parties only get a masked output
which information-theoretically hides the actual bit.

5.1 Security Analysis

Theorem 4 (Correctness). If the protocol from Fig. 5 is instantiated with an Ideally Obfuscated
version of the circuit from Fig. 6 the protocol is ε-correct with ε = (1− negl(κ)).

At the end of an honest protocol execution, the maximum round in which a valid signature
has been provided equals the number of rounds c. With overwhelming probability, the sending
parties’ input is the only one that contains c many valid rounds. Hence, the correctly masked bit
is returned. Since the mask is input by the receiver and later applied to the output, the receiver
obtains the correctly masked bit. We refer the reader to Appendix D.1 for a formal proof.
11 See Appendix A.2 for a definition of IND$-CCA.
12 See Appendix A.4 for a definition of ideal obfuscation.
13 This is denoted in the figure by the CointossS(π)

(p) (σ, σ) function, which returns σ, i.e. the first argument,
with probability p, and σ, i.e. the second argument, with the complementary probability (1− p), where
the randomness for p is extracted from the argument provided by π.

25

Oracle Oβ
i

if β = 0 then

pi := i + c− 1
2c

else

pi := i + c

2c

return Ber(pi)

C(c)

β
$← {0, 1}

return AOβ
1 ,...,Oβ

c (1κ)

A(1κ)

for j = 1 . . . t do
ij ← Computations

xj
$← Oij

β′ ← Computations((ij , xj)t
j=1)

return β′

Fig. 7: Game to distinguish whether Bernoulli oracles follow a given distribution p or q = p− 1/2c.

Theorem 5 (Anonymity). Let Pke be an IND$-CCA secure asymmetric encryption scheme,
let Ske be a tightly secure multi-challenge IND$-CCA secure symmetric encryption scheme, let Sig
be an sEUF-CMA secure signature scheme, let O be an ideal obfuscator, let F be a secure PRF, and
let κ be the security parameter. Then the c-round protocol Π1

AT for N = 3 satisfies δ-anonymity for
all adversaries in C2 := o(c2(1− δ)).

Proof (sketch). An outline of the entire proof is given in Appendix D.2. On a high level, the
proof is structured into two parts. In the first part, we successively modify the anonymity game
Expanon

Π1
AT

,A,b(κ) and the obfuscated circuit oracle P AT to remove as much computationally hidden
information about b as possible. More precisely, we exploit the non-malleability of Pke and sEUF-
CMA security of Sig to unnoticeably alter the oracle to determine the number of valid rounds by
counting how many rounds of the input transcript are identical to the challenge transcript provided
by Expanon

Π1
AT

,A,b(κ). The first round which is not entirely identical to the challenge transcript (i.e.
either the sender message or the non-sender message differ) increases the valid rounds count only if
the input sender message is identical to the challenge sender message or if the input sender message
decrypts to the same content as the challenge sender message. The following round will be counted
as invalid since the signature verification will fail. After this step, the decryption keys of Ske and
Pke are not necessary for chosen-ciphertext simulation anymore. Then, we first replace the sender
messages which are encrypted using Ske and then the first round sender message which is encrypted
using Pke with uniform randomness exploiting the IND$-CCA security of both encryption schemes.

The only information about the bit b that is left in the present game is due to the oracle which
counts valid sender messages by comparing the input sender message with the challenge sender
message. Clearly, the final modification of the game must be the removal of this dependency on
b. However, this removal will noticeably alter the output distribution of the oracle. Hence, an
adversary with arbitrary polynomial runtime will be able to distinguish this hop with constant
probability [CDV+14]. However, if we can limit the runtime of the adversary to be sub-quadratic in
the runtime of the honest protocol execution, we are able to apply results from distribution testing
to achieve a good bound for this distinguishing advantage. We will elaborate on this final game hop
in more detail below and will refer to the second last game as Gameσ

7 (κ) and to the last game (i.e.
the game, where no information about b remains) as Gameσ

8 (κ). For detailed game descriptions
and the remaining game hops, we refer the reader to Appendices D.2 and D.3, respectively.

For the sake of reducing complexity of the problem of proving indistinguishability between
Gameσ

7 (κ) and Gameσ
8 (κ) we describe an intermediate game in Fig. 7 that is provably as hard to

solve as distinguishing the two games.
The key idea is the following: The challenger C creates c oracles where the probability to return

1 is equally distributed between 1/2 and 1 in c steps.
On β = 0 the oracles are distributed equally between [1/2, 1). On β = 1 the oracles are

distributed equally between (1/2, 1]. That is, on β = 0 the oracle χ returns 1 with probability
(c + χ− 1)/(2c) and on β = 1 it returns 1 with probability (c + χ)/(2c).

We now stress that this game is as hard as the problem of distinguishing the two games from
Gameσ

7 (κ) and Gameσ
8 (κ):

Lemma 8. Let D be a distinguisher distinguishing Gameσ
7 (κ) and Gameσ

8 (κ) with advantage α
over guessing. Let t be the number of queries that D sends to the obfuscated circuit. There is a
reduction adversary A that uses D which has advantage α over guessing in winning Fig. 7.

26

Proof. Creating the Transcript. Upon activation the adversary samples a bit σ ∈ {0, 1} that is to
be transferred in the transcript and a bit b ∈ {0, 1} that defines the sending party. Using c as the
number of rounds and m as the length of each message A creates the transcript by reporting two
uniformly sampled messages of length m for each round inside the loop, and for the preparational
round two messages of length 2m each for the dummy friend and the sender and one message of
length m for the receivers messages. The resulting transcript πC is reported to the distinguisher D.

Simulating the Circuit. When receiving a transcript π, A checks if π[0] ̸= πC[0]. If this is the
case A executes the program honestly as defined in Gameσ

7 (κ) and returns the output bit. Note
that the normal execution of a different transcript is entirely independent of the secret β chosen
by C and effectively of the whole change induced in the transition from Gameσ

7 (κ) to Gameσ
8 (κ).

Hence A has all the information to simulate new transcripts.
Otherwise, if π[0] = πC[0], A embeds the challenge oracle by finding χ∗ = maxχ π[0 . . . χ] =

πC [0 . . . χ] by comparing the input to the previously reported challenge transcript. Then A checks
the messages π[χ∗ + 1]. Let xC0 and xC1 be the message from the challenge transcript at round
χ∗ + 1 of parties P0 and P1, respectively, and let x0 and x1 be the respective messages from the
transcript that was input by D.
A only considers the message reported for Pb; if xb = xCb, that is, if at round χ∗ + 1, the input

transcript contains the same message of the sending party, A sends χ∗ to the oracle Oχ∗ provided
by C and obtains a binary output σ∗. Since the output of C is going towards 1, whereas the bit σC
was uniformly distributed, A has to adjust the output if σC = 0, such that 0 is output with higher
probability. Hence, A sends σ∗ ⊕ σ̄C back as output to D; this essentially flips the output bit iff
σC = 0, in which case the output of the oracle lies between 0 and 1/2.

Otherwise, if xb ̸= xCb, A locally samples a Bernoulli-distributed bit according to pχ∗ and sends
the result back to D.

Translating the Result. After (at most) t queries the distinguisher terminates and sends its
guess. If D guesses it was playing Gameσ

8 (κ) then A reports β′ = 0 to C, thus guessing that the
χ-th oracle returns 1 with probability (χ + c− 1)/2c. If D guesses it was playing Gameσ

7 (κ) then A
sends the output β′ = 1 to C, indicating that the probabilities were given as (χ + c)/2.

For a tight reduction it remains to show that the view of D is statistically close to that from
Gameσ

7 (κ) and Gameσ
8 (κ), depending on the choice of C:

First, note that the way that C handles the queries in Fig. 7 mimics exactly the situation from
the game change: either a query for χ returns the 1 with probability χ+c

2c or with probability χ−1+c
2c .

The former implies that the sending parties message is still considered as in Gameσ
7 (κ), the latter

representing Gameσ
8 (κ) where the oracle ignores a valid message in round χ + 1 and only considers

the round χ∗ until both messages match the challenge transcript.
The challenge oracle is only queried when the right sending message for the following round is

used. This is also the only instance where Gameσ
7 (κ) and Gameσ

8 (κ) differ from each other.
Finally, note that at most t sample were sent to the challenge oracle. Thus, the view is simulated

perfectly and the view of D corresponds to Gameσ
8 (κ) iff the additional factor of −1/2c is ignored

and to Gameσ
7 (κ) otherwise.

So if D has non-negligible advantage α over guessing then A inherits this advantage for winning
the game from Fig. 7, albeit if D sends t queries to A, less than t queries are forwarded to C. ⊓⊔

Proving indistinguishability has thus been reduced to showing that no fine-grained adversary
can win the game from Fig. 7 with non-negligible advantage. The interface of an adversary in this
game is given as a set of 2c oracles. Each oracle follows a Bernoulli distribution that returns the
correct bit σC with probability p. For each round χ < c any distinguisher D is given access to two
oracles. Each oracle can be queried by copying the first χ messages of both parties, but then using
(exactly) one new message for round (χ + 1)—which replaces either the sending parties message or
that of the dummy friend. Any upper bound on winning the game from Fig. 7 translates to the
underlying problem of distinguishing the final two games.

Analyzing the game from Fig. 7 comes down to probability theory. Recall from Corollary 1
that in order to distinguish two Bernoulli distributions p and q with advantage α/2 we require
Ω(α/dTV(p, q)) many samples. Applying this corollary to Fig. 7 implies that we have c instances
where the χ-th instance is to distinguish p = χ+c

2c from q = χ+c−1
2c . This implies the following

27

L1-norm between p and q in round χ:

dTV(p, q) = 1
2(|Pr[p = 1]− Pr[q = 1]|+ |Pr[p = 0]− Pr[q = 0]|)

= 1
2

(∣∣∣∣c + χ

2c
− c + χ− 1

2c

∣∣∣∣ +
∣∣∣∣c− χ

2c
− c− χ + 1

2c

∣∣∣∣) = 1
2

(
1
2c

+ 1
2c

)
= 1

2c

(18)

Note here that the total variational distance in round χ is independent from the round χ and
the same for all c oracles. Combining this information with Lemma 2 means that any distribution
p and q resulting from sampling t times from arbitrary oracles results in a total variational distance
≤ t 1

2c . 14

We now merge this insight with the result of Eq. (18) and the bound of Corollary 1. This leads
a lower bound of:

t ∈ Ω
(

α

dTV(p, q)

)
= Ω(αc) (19)

We thus have:
Corollary 6. Let D be a distinguisher in Fig. 7 that uses t samples and has runtime in C2 :=
o(c2/α). Let the cost of acquiring a single sample be O(c). Then the distinguisher D is correct with
probability at most 1/2 + α/2.

Proof. The bound from Eq. (19) covers any adversary trying to win Fig. 7 regardless of how the t
samples are distributed between the c oracles. This follows from the subadditional property of the
total variational distance shown in Lemma 2 and the computation in Eq. (18) showing that the
total variational distance is the same between all oracles; thus the bound from Lemma 1 still is
valid and the total variational distance between any pair of t-fold distributions is at most t · 1

2c .
Thus Lemma 3 maintains its validity. Hence the lower bound of Eq. (19) matches our setting.

The bound is linear in c with the linear cost of querying a single sample (as the adversary has to
evaluate the entire circuit for each sample, which requires O(c) runtime) this limits the distinguisher
in such a way that only strictly less samples can be drawn than required according to Eq. (19). ⊓⊔

Putting everything together, we have that for all PPT distinguishers D, |Pr[out0,D = 1] −
Pr[out8,D = 1]| is negligible in κ. In particular, |Pr[out0,D = 1] − Pr[out8,D = 1]| is negligible for
distinguishers D in C2. Additionally, the employed reductions are in C1 = O(c). Furthermore, for
all adversaries A, |Pr[out8,A = 1|b = 0]− Pr[out8,A = 1|b = 1]| ≤ α, where the runtime of the game
also is in C1. Hence, we may conclude that for all adversaries A in C2, |Pr

b
$←{0,1}

[Expanon
Π1

AT
,A,b(κ) =

b]− 1/2| ≤ α/2. ⊓⊔

On the Need for Stronger Obfuscation. Due to [CLT+15], indistinguishability obfuscation (or more
precisely, its probabilistic variant) can only guarantee indistinguishability if the distance between
the output distributions of two circuits is statistically close to zero. This is not the case in our final
game hop. Therefore, we crucially require a stronger form of obfuscation such as virtual black-box
obfuscation or ideal obfuscation. Due to [JLL+22], employing ideal obfuscation yields a heuristic
candidate proven secure in an idealized model. Hence, our result constitutes a first step towards
instantiating anonymous transfer.

Stronger Anonymity Notions. Our positive result demonstrates that despite our strong negative
result, some non-trivial anonymity is achievable. Note, however, that our positive result is still weak
in many regards. Strengthening the achieved notion to, for instance, achieve anonymity against
malicious non-participants, seems highly non-trivial. In particular, malicious non-participants may
easily nullify any correctness guarantee by behaving exactly like a sender. Straightforward attempts
to address this problem, e.g. letting the obfuscated circuit output all messages with equal confidence,
open the gates for new attacks. For instance, in the above setup, replacing the last message of half
of all possible senders causes the circuit to output either both the sender message and the injected
message or only the injected message, depending on whether the real sender is part of the parties
whose messages are replaced. This strategy allows to de-anonymize the sender in runtime O(c log c).
14 This is in contrast to the Hellinger-distance H which yields tighter bounds but where the amount of

information from a single query really depends on the oracle Oχ which is queried. This makes it harder
to provide meaningful bounds for adversaries querying different oracles with their t samples.

28

5.2 Final Result

Let c = c(κ) be a polynomial in κ. Let C1 := O(c) and let C2 := o(c2(1− δ)) for some δ ∈ R[0,1].
Putting Theorems 4, 5 and 6 together, we have:

Corollary 7. The protocol Π1
AT is a strong C1-fine-grained (1 − negl(κ), δ, 1 − negl(κ), c, 1)-AT

against C2.

Applying Lemma 5 to transform our single-bit AT into an ℓ-bit AT yields:

Corollary 8. The protocol Πℓ
AT is a strong C′1-fine-grained (1 − negl(κ), (δℓ − ℓ − δ + 2), 1 −

negl(κ), c · ℓ, ℓ)-AT against C′2, where C′1 = ℓ · C1 and C′2 = C2 − ℓ · C1.

Using δ = 1 − 1√
c

and c = Ω(ℓ2) for the single-bit AT Π1
AT we get that δ′ := 1 − ℓ−1

c and
C′1 = O(ℓ · c) and C′2 = o(c2(1− δ)− ℓ · c) = o(c2(1− δ)) = o(c1.5).

A non-black-box change to the protocol Π1
AT from Figs. 5 and 6 leads to better overall parameters.

We introduce the necessary changes to the protocol alongside a security analysis in Appendix F.

Corollary 9. The protocol Πℓ
AT

′ defined in Appendix F is a strong C1-fine-grained (1−negl(κ), δ, 1−
negl(κ))-AT against C2, where C1 := O(c) and C2 := o(c2(1− δ)).

6 Undetectable Oblivious Transfer

For a candidate application of Anonymous Transfer we propose Undetectable Oblivious Transfer
(UOT): An N party protocol with k = 2 participants, one sender and one receiver, performing
classical Oblivious Transfer without (1) the sender knowing which of the N − 1 other individuals is
the receiver, (2) the receiver knowing which of the N − 1 other individuals is the sender, and (3)
the dummy friends knowing that a computation is in progress at all.

To that end we require an additional property for Anonymous Transfer protocols which we
define in Section 6.1 which hides the output of an AT from the dummy friends.

We then define in Section 6.2 the security properties of an Undetectable Oblivious Transfer
scheme. We additionally provide a candidate instantiation for N = 3 that can be canonically
extended to any number N > 3 in Appendix G.

6.1 Strong Anonymous Transfer

For several applications we require the additional property that the real message can only be
extracted by the real receiver. This gives rise to a stronger definition of AT:

Definition 7 (Strong (ε, δ, ς, c, ℓ)-Anonymous Transfer). A strong (ε, δ, ς, c, ℓ)-Anonymous
Transfer is defined analogously to a (ε, δ, c, ℓ)-Anonymous Transfer from Definition 3 but additionally
satisfies ς-secrecy from Definition 8.

The additional property we require formally states that without the receivers random tape, the
message cannot be successfully reconstructed from the transcript. We focus on the 3-party case,
since case captures the primitive we will need to construct undetectable oblivious transfer; the
definition can however easily be generalized to any number of parties.

Definition 8 (ς-Secrecy). For any sufficiently large security parameter κ, any message length ℓ ∈
poly(κ), any message Σ ∈ {0, 1}ℓ, any number of individuals N ∈ poly(κ), any PPT reconstruction
algorithm A, and any CRS crs ← Setup(1κ), an Anonymous Transfer protocol Πℓ

AT between players
(P0, P1, R) is ς-secret if it holds that:∣∣∣∣Pr

[
π ← Transfer⟨R,P0,P1⟩(crs, b, Σ)

Σ′ ← A(crs, π) : Σ = Σ′
]
− 1

2ℓ

∣∣∣∣ ≤ (1− ς) · 2ℓ − 1
2ℓ

(20)

The secrecy is a value between 0 and 1, where ς = 0 implies that A can reconstruct Σ with
absolute certainty and ς = 1 means that Σ can at best be guessed. Note that secrecy requires T R to
remain secret. Hence, the transformation to silent receiver AT from Section 3.5 does not preserve
secrecy.

29

Expanon-ot
Π

UOT
,A,ϖ(κ)

crs $← Setup(1κ)
(Σ0, Σ1, P, st)← A0(crs)

π
$← OTϖ(P1,...,PN)(crs, b, Σ)

return A1(π, T P, st)

Fig. 8: Definition of the game Expanon-ot
Π

UOT
,A,ϖ(κ).

6.2 Definitions for Undetectable Oblivious Transfer

Towards our goal of undetectable multiparty computation we consider a notion of undetectable
oblivious transfer. In Undetectable Oblivious Transfer we have a set of N parties. Two of which
want to run an Oblivious Transfer protocol without the participants learning with whom they
executed the OT, and without the N − 2 other parties realizing that the protocol is executed.

Definition 9 ((ε, δ, c, ℓ)-Undetectable Oblivious Transfer). An (ε, δ, c, ℓ)-Undetectable Obliv-
ious Transfer for ε, δ ∈ R[0,1] and ℓ, c ∈ N is a tuple containing three PPT algorithms (Setup, OT,
Reconstruct). The number of rounds in the OT protocol is given as c and the bitlength ℓ defines the
length of the transferred message Σσ.

The algorithms are defined as follows:

Setup(1κ) takes as input the security parameter 1κ in unary encoding and outputs a Common
Reference String crs.

OT(crs, ϖ, Σ0, Σ1, σ) is a c-round protocol that takes as input the Common Reference String crs,
a permutation ϖ ∈ SN to determine which of (P1, . . . , PN) is the sender, which is the receiver
and which are the dummy friends, two messages Σ0 and Σ1 ∈ {0, 1}ℓ from the sender and one
bit σ ∈ {0, 1} from the receiver and outputs a transcript π. The non-sender send independent
uniformly distributed noise in each round.

Reconstruct(crs, π, T R) is a local algorithm executed by the receiver that takes as input the CRS crs,
protocol transcript π and the receiver’s random tape T R and outputs a message Σσ.

The algorithms additionally satisfy the ε-correctness, the δ-anonymity and the privacy from
Definitions 10 to 12.

Definition 10 (ε-Correctness). An Undetectable Oblivious Transfer protocol between players
(P1, . . . , PN) is ε-Correct if for any ϖ ∈ SN , any (Σ0, Σ1) ∈ {0, 1}2ℓ, any σ ∈ {0, 1} and any
crs ← Setup(1κ),

Pr
[

π
$← OT⟨ϖ(P1,...,PN)⟩(crs, (Σ0, Σ1), σ)

Σ′σ ← Reconstruct(crs, π, T R) : Σσ = Σ′σ

]
≥ ε (21)

This is quite similar to the definition of correctness for AT from Definition 4.

Definition 11 (δ-Anonymity). An Undetectable Oblivious Transfer protocol between players
(P1, . . . , PN) is δ-Anonymous if for any PPT guessing algorithm A = (A0, A1), it holds that∣∣∣∣∣ Pr

ϖ
$←SN

[
Expanon-ot

Π
UOT

,A,ϖ(κ) = ϖ
]
− 1/(N − 1)

∣∣∣∣∣ ≤ (1− δ) · (N − 2)
(N − 1) (22)

SN is the symmetric group over N elements alongside all possible bijections into themselves and ϖ
is a random permutation drawn from that set. This reflects the intuition that a participant is trying
to recover the permutation after finishing the execution. The guessing algorithm A0 selects which
party to corrupt (in a semi-honest setting, hence post-execution) and which messages should be
transferred. A1 gets the random tape of the corrupted party and the state st of the adversary that
selected which party to corrupt. The definition implies uncertainty of the sender regarding which of
the two parties was acting as receiver and of the receiver regarding which of the two parties was
the sender. Additionally we require that the dummy friend can only guess as well.

30

Definition 12 (Privacy). An Undetectable Oblivious Transfer protocol between players (P1, . . . , PN)
is private for the sender and the receiver if for any guessing algorithm A, any ϖ ∈ SN , any
(Σ0, Σ1) ∈ {0, 1}2ℓ, any σ ∈ {0, 1} and any crs ← Setup(1κ), the following two conditions hold
against every PPT guessing algorithm A:

Pr
[

π ← OTϖ(P1,...,PN)(crs, (Σ0, Σ1), σ)
Σ′σ ← A(π, T R) : Σσ = Σ′σ

]
∈ negl(κ) (23)

∣∣∣∣Pr
[

π ← OTϖ(P1,...,PN)(crs, (Σ0, Σ1), σ)
σ′ ← A(π, T S) : σ = σ′

]
− 1/2

∣∣∣∣ ∈ negl(κ) (24)

For the sender this means that even with the random tape T R of the receiver it is not efficiently
possible for the guessing algorithm A to predict the message Σσ that was not transferred. For the
receiver this implies security of the choice despite having the random tape T S of the sender.

7 Towards Undetectable Multiparty Computation

In this section, we make a first step to define Undetectable Multiparty Computation by providing
an informal definition of the security requirement in Section 7.1 and a candidate instantiation for
Undetectable Two-Party Computation (U2PC) in Section 7.2.

7.1 Defining Undetectable Multiparty Computation

In this section, we informally define the security requirements of Undetectable Multiparty Com-
putation as the increment to the respective definition of Undetectable Oblivious Transfer from
Section 6.2.

Again, we have N individuals, but now k of them are trying to compute a function f on k secret
inputs.

ε-Correctness: This definition states that all players obtain the correct result of f evaluated on
the k inputs.

δ-Anonymity: This definition states that any of the N players, each of the
(

N−1
k−1

)
subsets of

remaining individuals is equally likely to have participated in the execution.
Privacy: This definition enforces that each participants individual input remains private; that is,

after the computation no party learns more on the other participants’ input than what can be
inferred from the result of the computation.

7.2 Towards constructing Undetectable Two-Party Computation from Undetectable
Oblivious Transfer

We provide a candidate construction for the simpler case of k = 2 which we call Undetectable
Two-Party Computation. That is, two parties out of N try to compute a bivariate function f on
their respective secret inputs. To that end we use a covert two-party computation protocol like that
from von Ahn, Hopper, and Langford [vHL05] that uses COT for communication and replace all
invocations of COT between the sender and the receiver by invocations of Undetectable Oblivious
Transfer between all participants. That way, the message is transferred from the sender to the
receiver without leaking information regarding the identity of the respective parties.

Assuming a (ε, δ, c, ℓ)-Undetectable Oblivious Transfer with ε ∈ owhl(κ), the protocol ΠUMP C

for computing a bivariate function f using Undetectable Two-Party Computation we obtain by
replacing all COTs by UOTs in [vHL05, Protocol 3] is a (ε, δ, c · |f |)-Undetectable Two-Party
Computation.

The protocol by von Ahn, Hopper, and Langford [vHL05] essentially uses garbled circuits [Yao86]
and distributes the keys using COT instead of using classical OT. The protocol we propose replaces
the COTs with UOTs where from the N parties only two are actually participating, one as sender
and one as receiver.

31

Assuming that each UOT is correct with overwhelming probability the correctness of the entire
scheme then follows from the correctness of garbled circuits.

Anonymity remains the same as in order to determine any of the participating parties, the only
way is to de-anonymize any of the UOTs, the success probability of which is bounded by δ.

Privacy is inherited by the Garbled Circuits; since the Undetectable Oblivious Transfers are
private as well our changes induce no additional leakage.

Finally, note that for a garbled circuit we require |f | many OTs and each requires c rounds,
resulting in the new number of rounds.

References

[APY20] I. Abraham, B. Pinkas, and A. Yanai. Blinder - scalable, robust anonymous committed
broadcast. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020,
pages 1233–1252. ACM Press, November 2020.

[BEA14] B. Burrough, E Ellison, and S. Andrews. The snowden saga: a shadowland of secrets
and light. Vanity Fair, 23, 2014.

[Ber16] C. Berret. Guide to securedrop, 2016.
[BGI08] E. Biham, Y. J. Goren, and Y. Ishai. Basing weak public-key cryptography on strong

one-way functions. In R. Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 55–
72. Springer, Heidelberg, March 2008.

[CBM15] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte: an anonymous messaging
system handling millions of users. In 2015 IEEE Symposium on Security and Privacy,
pages 321–338. IEEE Computer Society Press, May 2015.

[CDV+14] S. Chan, I. Diakonikolas, P. Valiant, and G. Valiant. Optimal algorithms for testing
closeness of discrete distributions. In 25th SODA, pages 1193–1203, 2014.

[CGCD+20] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. A formal
security analysis of the signal messaging protocol. Journal of Cryptology, 33(4):1914–
1983, 2020.

[CGO+07] N. Chandran, V. Goyal, R. Ostrovsky, and A. Sahai. Covert multi-party computation.
In 48th FOCS, pages 238–248. IEEE Computer Society Press, October 2007.

[Cha03] D. Chaum. Untraceable electronic mail, return addresses and digital pseudonyms. In
D. Gritzalis, editor, Secure Electronic Voting. Volume 7, Advances in Information
Security, pages 211–219. Springer, 2003.

[Cha88] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, 1(1):65–75, January 1988.

[CLT+15] R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan. Obfuscation of probabilistic
circuits and applications. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 468–497. Springer, Heidelberg, March 2015.

[DMS04] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: the second-generation onion
router. In M. Blaze, editor, USENIX Security 2004, pages 303–320. USENIX Associ-
ation, August 2004.

[DVV16] A. Degwekar, V. Vaikuntanathan, and P. N. Vasudevan. Fine-grained cryptography.
In M. Robshaw and J. Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 533–562. Springer, Heidelberg, August 2016.

[ECZ+21] S. Eskandarian, H. Corrigan-Gibbs, M. Zaharia, and D. Boneh. Express: lowering
the cost of metadata-hiding communication with cryptographic privacy. In M. Bailey
and R. Greenstadt, editors, USENIX Security 2021, pages 1775–1792. USENIX
Association, August 2021.

[HLv02] N. J. Hopper, J. Langford, and L. von Ahn. Provably secure steganography. In
M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 77–92. Springer,
Heidelberg, August 2002.

[Imp95] R. Impagliazzo. A personal view of average-case complexity. In Proceedings of
Structure in Complexity Theory. Tenth Annual IEEE Conference, pages 134–147.
IEEE, 1995.

32

[JLL+22] A. Jain, H. Lin, J. Luo, and D. Wichs. The pseudorandom oracle model and ideal
obfuscation. Cryptology ePrint Archive, Report 2022/1204, 2022. https://eprint.iacr.
org/2022/1204.

[Mer78] R. C. Merkle. Secure communications over insecure channels. Commun. ACM,
21(4):294–299, 1978.

[NSSD21] Z. Newman, S. Servan-Schreiber, and S. Devadas. Spectrum: high-bandwidth anony-
mous broadcast with malicious security. Cryptology ePrint Archive, Report 2021/325,
2021. https://eprint.iacr.org/2021/325.

[Phi18] D. Philipps. Reality winner, former nsa translator, gets more than 5 years in leak of
russian hacking report. New York Times, 23, 2018.

[Rog04] P. Rogaway. Nonce-based symmetric encryption. In B. K. Roy and W. Meier, editors,
FSE 2004, volume 3017 of LNCS, pages 348–359. Springer, Heidelberg, February
2004.

[Sim83] G. J. Simmons. The prisoners’ problem and the subliminal channel. In D. Chaum,
editor, CRYPTO’83, pages 51–67. Plenum Press, New York, USA, 1983.

[vH04] L. von Ahn and N. J. Hopper. Public-key steganography. In C. Cachin and J.
Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 323–341.
Springer, Heidelberg, May 2004.

[vHL05] L. von Ahn, N. J. Hopper, and J. Langford. Covert two-party computation. In H. N.
Gabow and R. Fagin, editors, 37th ACM STOC, pages 513–522. ACM Press, May
2005.

[Whi] Whistleblowing. https://legal- dictionary.thefreedictionary.com/Whistleblowing.
Accessed: 2021-09-29 from West’s Encyclopedia of American Law, edition 2. (2008).

[Yao86] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th
FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

33

https://eprint.iacr.org/2022/1204
https://eprint.iacr.org/2022/1204
https://eprint.iacr.org/2021/325
https://legal-dictionary.thefreedictionary.com/Whistleblowing

Appendix

Table of Contents

1 Introduction . 1
1.1 Undetectable Secure Computation . 2
1.2 Defining Anonymous Transfer . 3
1.3 Impossibility Result . 4
1.4 A Candidate Fine-Grained Anonymous Transfer . 5
1.5 Discussions and Implications . 5
1.6 Further Results and Open Questions . 7
1.7 Acknowledgements . 7

2 Preliminaries . 7
2.1 Notations . 7
2.2 Steganography . 8
2.3 Distribution Testing . 9

3 Anonymous Transfer . 10
3.1 Network Model and Non-Participating Parties . 10
3.2 The Model . 10
3.3 Fine-grained Anonymous Transfer . 11
3.4 Trivial Anonymous Transfers . 12
3.5 Reductions Among AT Protocols . 13

4 Impossibility of Anonymous Transfer . 14
4.1 The Attacker . 15
4.2 Putting the Pieces Together . 19
4.3 Impossibility of Anonymous Transfer for N > 3 . 20
4.4 Extensions and Limitations . 23

5 Fine-Grained AT from Ideal Obfuscation . 24
5.1 Security Analysis . 25
5.2 Final Result . 29

6 Undetectable Oblivious Transfer . 29
6.1 Strong Anonymous Transfer . 29
6.2 Definitions for Undetectable Oblivious Transfer . 30

7 Towards Undetectable Multiparty Computation . 31
7.1 Defining Undetectable Multiparty Computation . 31
7.2 Towards constructing Undetectable Two-Party Computation from Undetectable

Oblivious Transfer . 31
A Preliminaries . 36

A.1 Covert Oblivious Transfer . 36
A.2 Indistinguishability from Random Bits under Chosen Ciphertext Attacks 36
A.3 Strong Existential Unforgeability under Chosen Message Attacks 37
A.4 Ideal Obfuscation . 37

B Proof of Lemma 3 . 37
C Proof of Corollary 1 . 38
D Security proof for the Fine-Grained Protocol . 38

D.1 Full Proof of Correctness . 38
D.2 Graphical Depiction of the Anonymity Proof . 39
D.3 Full Proof of Anonymity . 47
D.4 Proof of Lemma 9 . 48
D.5 Proof of Lemma 10 . 48
D.6 Proof of Lemma 11 . 55
D.7 Proof of Lemma 12 . 55
D.8 Proof of Lemma 13 . 57

D.9 Proof of Lemma 14 . 57
D.10 Graphical Depiction of the Secrecy Proof Outline . 58
D.11 Full Proof of Secrecy . 63

E Asymptotically Secure AT in the Designated Sender Model . 65
E.1 A two-round protocol . 65
E.2 A c-rounds protocol. 98
E.3 On the security . 103

F A fine-grained Anonymous Transfer for ℓ-bit messages . 103
G Undetectable Oblivious Transfer from Anonymous Transfer and two-round Covert

Oblivious Transfer . 123
G.1 Correctness . 124
G.2 Privacy . 125
G.3 Anonymity . 126

35

A Preliminaries

In this section we introduce some additional preliminaries we consider necessary for understanding
the remainder of the appendix.

A.1 Covert Oblivious Transfer

Covert Oblivious Transfer is an extension of classical Oblivious Transfer first defined and used
by von Ahn, Hopper, and Langford [vHL05]. It extends classical OT by two important properties
that ensure the computation cannot be distinguished from an innocent-looking conversation: (1)the
sender cannot distinguish between the case that the receiver is following the COT protocol or if the
receiver is sending uniformly random messages, and (2)if the transferred messages are uniformly
random, the receiver cannot distinguish between the case that the sender is following the COT
protocol and the case where the sender is sending uniformly random messages.

The latter has to hold even after the protocol execution is finished, as the authors use Covert
Oblivious Transfer during the execution of their Covert Multiparty Computation protocol and
actual participation should not be revealed before the computation finishes.

Definition 13 (Covert Oblivious Transfer, [vHL05, Appendix A]). A 2-party Covert
Oblivious Transfer (COT) between a sender S and a receiver R is an Oblivious Transfer but
additionally fulfills the following two requirements:

(1) S cannot distinguish between the case that R is following the COT protocol and the case that R
is drawing uniformly random messages from Um.

(2) If Σ0, Σ1
$← Um, R cannot distinguish between the case that S is following the COT protocol

and the case that S is drawing uniformly random messages from Um.

A.2 Indistinguishability from Random Bits under Chosen Ciphertext Attacks

For our instantiations it is crucial that protocol messages can be transferred covertly, that is, without
bystanders noticing. To that end we require an encryption that yields ciphertexts which look like
uniformly random strings. A formal property ensuring this was defined by Rogaway [Rog04] as
Indistinguishability from Random Bits.

While the paper also defines IND$-CPA, we focus on chosen ciphertext attacks only and provide
definitions for symmetric and asymmetric schemes. For symmetric encryption schemes the definition
looks as follows:

Definition 14 (IND$-CCA for Symmetric Encryption). A Symmetric Encryption Scheme
Ske = (KeyGen, Enc, Dec) fulfills Indistinguishability from Random Bits under Chosen Ciphertext
Attacks (IND$-CCA) if the following condition holds for all PPT valid adversaries A that do not
decrypt a challenge:

|Pr[sk← KeyGen(1κ) : AEnc(sk,·),Dec(sk,·) = 1]
−Pr[sk← KeyGen(1κ) : AF(·),Dec(sk,·) = 1]| ∈ negl(κ)

(25)

F is a random function. It is hence the adversaries task to distinguish whether it is interacting with
a random oracle or with an actual encryption oracle.

The definition for asymmetric schemes is equivalent except that the adversary is additionally
given a public key. Yet the challenge still comes from either an encryption oracle or a random oracle.

Definition 15 (IND$-CCA for Asymmetric Encryption). An Asymmetric Encryption Scheme
Pke = (KeyGen, Enc, Dec) fulfills Indistinguishability from Random Bits under Chosen Ciphertext
Attacks (IND$-CCA) if the following condition holds for all PPT valid adversaries A that do not
decrypt a challenge:

|Pr[(pk, sk)← KeyGen(1κ) : AEnc(sk,·),Dec(sk,·)(pk) = 1]
−Pr[(pk, sk)← KeyGen(1κ) : AF(·),Dec(sk,·)(pk) = 1]| ∈ negl(κ)

(26)

36

A.3 Strong Existential Unforgeability under Chosen Message Attacks

For our construction we rely on a signature scheme. Their security is defined as follows [Gol04]:

Definition 16 (Strong Existential Unforgeability under Chosen Message Attacks for
Signatures). A signature scheme Sig = (KeyGen, Sig, Vfy) fulfills Strong Existential Unforgeability
under Chosen Message Attacks (sEUF-CMA) if for every PPT-adversary A with access to a signing
oracle Sig(k, ·) it holds that:

Pr
[

(vk, k)← Sig.KeyGen(1κ)
(µ∗, X∗)← ASig(k,·)(vk, 1κ) : Sig.Vfy(vk, µ∗, X∗) = 1

]
∈ negl(κ) (27)

and for all queries X to Sig(k, ·) which were returned by a signature µ it holds that X ̸= X∗ and
µ ̸= µ∗.

A.4 Ideal Obfuscation

We use an abstract concept of idealized obfuscation which replaces a given program P directly with
an oracle that evaluates the program on the given input. This notion has recently been rigorously
studied by Jain, Lin, Luo, and Wichs [JLL+22], who treat it as a theoretical, idealized concept
(comparable to the Random Oracle Model), rather than a security property (like Virtual Black-Box
Obfuscation). Due to Jain, Lin, Luo, and Wichs [JLL+22], a proof under ideal obfuscation can
be seen as heuristic evidence that the protocol is secure. In the following we adapt the definitions
provided by Jain, Lin, Luo, and Wichs [JLL+22, Section 5].

Definition 17 (Ideal Obfuscation). An ideal obfuscator describes the existence of two oracles
(Obfuscate, Evaluate), where

Obfuscate takes as input a program P and randomly samples a handle h ∈ {0, 1}κ, saves (P , h) in
a list and returns h;

Evaluate takes as input a handle h and an input x and searches for h in the list. If h is in the list,
evaluate the corresponding program P on the given input x and return its output, otherwise
output ⊥.

Ideal obfuscation is called secure if for all efficient adversaries A = (A1,A2) there are efficient
simulators S = (S1,S2,S3) such that the following advantage is negligible:

Pr
[

(P , st)← AObf
1 (1κ)

P ∗ ← Obfuscate(1κ, P) : AObf
2 (P ∗, st) = 1

]
− Pr

[
(P , st)← AS1

1 (1κ)
P ∗ ← SP

2 (1κ, 1|P |, P) : AS
P
3

2 (P ∗, st) = 1
]

B Proof of Lemma 3

As this lemma is crucial for proving security of our fine-grained construction of Anonymous Transfer
in Section 5 we provide a formal proof here for the following lemma:

Lemma 3 (Distinguishing distributions based on the Total Variational Distance). Let
p and q be two distributions with total variational distance dTV(p, q). If dTV(p, q) < 1

3 , then no
algorithm can exist that distinguishes p and q with probability ≥ 2

3 based on a single sample.

We stress here that this is not our proof but instead adapted from http://cs.brown.edu/courses/
csci1951-w/lec/lec%2011%20notes.pdf. Since we did not find a citeable source our adapted proof
follows, which basically follows the source:

Proof. Let D be the distinguisher between p and q. Due to symmetry it holds for the correctness
that the optimal algorithm has:

Pr[outD = p|p]− Pr[outD = p|q] = Pr[outD = p|q]− Pr[outD = q|q]
= dTV(p, q)

(28)

37

http://cs.brown.edu/courses/csci1951-w/lec/lec%2011%20notes.pdf
http://cs.brown.edu/courses/csci1951-w/lec/lec%2011%20notes.pdf

With a single sample the adversary can only output a single bit indicating whether it thinks the
sample is from p or from q. This can not be done with better than dTV(p, q). To get an intuition as
to why this is the case, the total variational distance can also be written as:

dTV(p, q) := sup
X⊆[n]

p(X)− q(X) (29)

that is, it corresponds to the largest difference in the probability of occurrence of some output. Thus,
no distinguisher can—with a single sample—guess correctly with larger advantage than dTV(p, q).
Guessing is always an option, which would result in the distinguisher being correct with probability
1/2. Thus, there can be no distinguisher which fulfills both these inequalities:

Pr[outD = p|p] >
1
2 + 1

2 · dTV(p, q)

Pr[outD = q|q] >
1
2 + 1

2 · dTV(p, q)
(30)

as this would imply an overall correctness larger than dTV(p, q).
By using the requirement that dTV(p, q) < 1/3 in Eq. (30) we get the bound of 2/3 on the

correctness of D. ⊓⊔

C Proof of Corollary 1

In this section we provide a full proof of the following corollary:

Corollary 1 (Distinguishing two Bernoulli-Distributions with t samples). Any distin-
guisher D that distinguishes between p and q with probability ≥ 1

2 + α
2 requires t ∈ Ω

(
α

dTV(p,q)

)
samples.

Proof. The total variational distance limits the advantage as α = dTV(p⊗t , q⊗t).
We know from the subadditivity of dTV that

dTV(p⊗t , q⊗t) ≤ t · dTV(p, q) (31)

and as such,
Pr[D correct] ≤ 1/2 + 1/2 · t · dTV(p, q) (32)

We have that t ∈ Ω
(

α
dTV(p,q)

)
=⇒ t ≥ α·C

dTV(p,q) . We claim that this even holds for C = 1
4 . This

implies for Lemma 1 that
dTV(p⊗t , q⊗t) ≤ C · α

dTV(p, q)dTV(p, q)

= αC = α

4

(33)

Thus, the total variation distance is less than α/4 for α ≤ 1, which in term is less than 1/3.
Remember that dTV(p⊗t , q⊗t) corresponds to distinguishing the t-fold (binomial) distribution

with a single sample. Thus Lemma 3 states that with total variation distance less than 1/3 no
distinguisher D can successfully distinguish with probability ≥ 2/3. ⊓⊔

D Security proof for the Fine-Grained Protocol

D.1 Full Proof of Correctness

In this section we provide the full proof of correctness for the fine-grained instantiation of Anonymous
Transfer. In particular, we provide a proof for the following lemma:

Theorem 4 (Correctness). If the protocol from Fig. 5 is instantiated with an Ideally Obfuscated
version of the circuit from Fig. 6 the protocol is ε-correct with ε = (1− negl(κ)).

38

Proof. In a correct execution, there is one sender Pb who encodes the bit σb in the first round.
Every round that follows has to have a valid signature µ on both messages of the previous round.
With honest people doing that, the only way that correctness is not given is if the circuit confuses
P1−b to be Pb. This only happens if the inputs sent by P1−b are interpreted as valid inputs, causing
the argmax to return the bit of P1−b.

Since we assume the sending party to act honestly, the value of χb is c which is as high as this
variable can go. Thus, if the argmax ever returns (1− b), then P1−b has sent for c rounds a valid
encryption of σ1−b := (1− σb) (if we assume a non-correct output, the bit has to differ, naturally)
and a valid signature on π[χ− 1] in each of the c rounds.

By requirement, Pke has sparse ciphertexts. With P1−b sending uniformly random ciphertexts,
the probability that this is a valid ciphertext is negligible in κ.

Assuming that P1−b had a valid ciphertext by chance, the probability that it encodes the same
bit that was decrypted in the first round is given by 1/2; yet the probability that the signature
verifies the previous round is negligible.

Now we have χ rounds. In each round we have a probability of negl(κ) · 1/2 · negl(κ) that the
message is valid. So for P1−b to accidentally send valid messages of 1− σb, the probability is given
by (negl(κ) · 1/2 · negl(κ))c. Additionally, in round 0 there has to be a valid encryption of 1− σb,
which also happens with negligible probability as once more we have the sparseness of Pke. And in
the negligible case that the message counts as cipher, there is only a probability of 1/2 that the
message encodes the correct bit.

Thus, in an honest protocol execution, the output of the circuit is σ′b = OTP ⊕ σb with
overwhelming probability. Thus by outputting OTP ⊕ σ′b = OTP ⊕OTP ⊕ σb = σb the receiver
will output the correct bit with overwhelming probability.

Thus according to the definition of ε-correctness from Eq. (3) we get ε ∈ (1 − negl(κ)). This
concludes our proof. ⊓⊔

D.2 Graphical Depiction of the Anonymity Proof

39

Game1(κ)
1 : −
2 : −
3 : −
4 : −
5 : −
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −
14 : (OTP, vkR) := Pke.Dec∗(skP , x

(0)
R)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game2(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : −
4 : −
5 : −
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −
14 : (OTP, vkR) := Pke.Dec∗(skP , x

(0)
R)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game2(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : −
4 : −
5 : −
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −
14 : (OTP, vkR) := Pke.Dec∗(skP , x

(0)
R)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game3(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −
14 : (OTP, vkR) := Pke.Dec∗(skP , x

(0)
R)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game3(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC[0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −
14 : (OTP, vkR) := Pke.Dec∗(skP , x

(0)
R)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game4(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game4(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC[0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game5(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC[χ′])

8 : if π[xχ∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) = (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (σC , σC)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game5(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC[0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xχ∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) = (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (σC , σC)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game6(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xχ∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) = (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (σC , σC)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b

$← {0, 1}m∥Ske.Enc(skb, (σ, µ(0)))
10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game6(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC[0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xχ∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) = (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (σC , σC)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b

$← {0, 1}m∥Ske.Enc(skb, (σ, µ(0)))
10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game7(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xχ∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) = (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (σC , σC)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game7(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC[0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xχ∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) = (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (σC , σC)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game8(κ)
1 : if π = πC then
2 : return OTPC ⊕ σC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : −

9 : −

10 : −
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (σC , σC)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µχ
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

D.3 Full Proof of Anonymity

Theorem 5 (Anonymity). Let Pke be an IND$-CCA secure asymmetric encryption scheme,
let Ske be a tightly secure multi-challenge IND$-CCA secure symmetric encryption scheme, let Sig
be an sEUF-CMA secure signature scheme, let O be an ideal obfuscator, let F be a secure PRF, and
let κ be the security parameter. Then the c-round protocol Π1

AT for N = 3 satisfies δ-anonymity for
all adversaries in C2 := o(c2(1− δ)).

We proceed over a series of games.

Gameσ
1 (κ) This is the original game (after replacing the obfuscated circuit with oracle access to the circuit,

the PRF with an actual random oracle and the adversary with the simulator), where the sending
party Pb is chosen uniformly at random.

Gameσ
2 (κ) This game follows Gameσ

1 (κ), but during the simulation of the oracle P AT from Fig. 5 the
simulation enforces correctness of the challenge transcript πC : if the input transcript π matches
the challenge transcript πC , it returns OTPC ⊕ σC . Due to Theorem 4, no PPT adversary can
distinguish between Gameσ

1 (κ) and Gameσ
2 (κ).

Gameσ
3 (κ) This game follows Gameσ

2 (κ) but during simulation of the circuit the adversary aborts if any
of the first-round messages from P0 or P1 differ from the messages reported in the challenge
transcript and the decryptions still yield the same verification key or symmetric key. This game
hop is justified by the non-malleability of Pke. See Appendix D.5 for the full proof.

Gameσ
4 (κ) This game follows Gameσ

3 (κ) but simulates the circuit slightly different: If the first receiver
message of the input transcript π is the same as that of the challenge transcript πC , instead of
decrypting it the circuit directly sets OTP = OTPC and vkR = vkCR as the values used in the
creation of the challenge transcript. This game hop is justified by the perfect correctness of
Pke, as we show in Appendix D.6.

Gameσ
5 (κ) This game follows Gameσ

4 (κ) but simulates the oracle differently if the first-round messages of
both parties match the first-round messages in the challenge transcript πC. In this case, the
program compares the input transcript π with the challenge transcript πC until it finds the first
round χ∗ in which the input differs from the challenge transcript. It then checks round χ∗ + 1,
and if it contains the same message from the sending party, it adds one to χ.
Finally, the circuit flips a biased coin, which returns the correct bit σC with probability
p := 1/2 + χ∗/2c and the complementary bit (1− σC) otherwise.
This game hop is indistinguishable due to the sEUF-CMA security of Sig. The only way to
make the output distribution of the circuit oracle differ in both games is by supplying a valid
signature forgery. See Appendix D.7 for the full proof.

Gameσ
6 (κ) This game is the same as Gameσ

5 (κ), but in creating the challenge transcript πC , this game only
reports randomness for the first-round message x0

b that specifies the symmetric key skb and the
verification key vkb to be used for the remaining communication with the circuit alongside the
receiver message x

(0)
R that specifies the One-Time-Pad and the verification key. Note that all

keys are still created as they are needed for the remaining rounds.
This game hop is justified by the IND$-CCA security of Pke. See Appendix D.8 for the full
proof.

Gameσ
7 (κ) This game is the same as Gameσ

6 (κ) but in creating the challenge transcript πC, this game
also reports randomness instead of transcripts for all messages xχ

b for χ ∈ [c] that shift the
bit towards σC. That means that instead of using the IND$-CPA secure symmetric scheme
Ske with the symmetric key skb the challenge transcript now only contains randomly sampled
messages.
We also do not let the adversary create the keys for Sig and Ske as they are no longer needed
for creating the transcript.
This game hop is justified by the IND$-CCA security of Ske. See Appendix D.9 for the full
proof.

Gameσ
8 (κ) This game follows Gameσ

7 (κ), but instead of choosing a random sender at the beginning of the
game and considering this message to be the right one, the oracle ignores the additional check
and only looks for the first round where both messages are identical to the challenge.

Note that Gameσ
8 (κ) is entirely independent of the real sender, hence given a challenge transcript,

it is trivially impossible to obtain a non-negligible advantage to determine the sending party.

47

D.4 Proof of Lemma 9

Lemma 9 (Indistinguishability of Gameσ
1 (κ) and Gameσ

2 (κ)). Let Pke be an IND$-CCA
secure asymmetric encryption scheme, let Ske be a tightly secure multi-challenge IND$-CCA secure
symmetric encryption scheme, let Sig be an sEUF-CMA secure signature scheme, let O be an ideal
obfuscator, and let F be a secure PRF. Then, for all PPT guessing algorithms A, the distinguishing
advantage for Gameσ

1 (κ) and Gameσ
2 (κ) is bounded by:

|Pr[outGameσ
1 (κ) = 1]− Pr[outGameσ

2 (κ) = 1]| ∈ negl(κ)

Proof. Indistinguishability automatically follows from the fact that both simulated circuits behave
identical with overwhelming probability due to Theorem 4. ⊓⊔

D.5 Proof of Lemma 10

Lemma 10 (Indistinguishability of Gameσ
2 (κ) and Gameσ

3 (κ)). Let Pke be an IND$-CCA
secure asymmetric encryption scheme, let Ske be a tightly secure multi-challenge IND$-CCA secure
symmetric encryption scheme, let Sig be an sEUF-CMA secure signature scheme, let O be an ideal
obfuscator, and let F be a secure PRF. Then, for all PPT guessing algorithms A, the distinguishing
advantage for Gameσ

2 (κ) and Gameσ
3 (κ) is bounded by:

|Pr[outGameσ
2 (κ) = 1]− Pr[outGameσ

3 (κ) = 1]| ∈ negl(κ)

Proof. In order to successfully cause a situation where Gameσ
2 (κ) would yield output whereas

Gameσ
3 (κ) aborts a distinguisher D would have to essentially rerandomize the first ciphertext.

To that end we use several hybrids to capture all the cases in which rerandomization might
occur. We start with the case where the same verification key vk is encoded and then handle the
case that the ciphertext has the same symmetric key sk.

48

H0

if π = πC then
return OTPC ⊕ σC

H1

if π = πC then
return OTPC ⊕ σC

elseif Pke.Dec∗(skP , xbC) = (·, vkbC)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

H2

if π = πC then
return OTPC ⊕ σC

elseif Pke.Dec∗(skP , xbC) = (·, vkbC)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP , xC(0)
b̄C

) ̸= ⊥∧

Pke.Dec∗(skP , xb̄C
) = (·, vkb̄C

)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort
H3

if π = πC then
return OTPC ⊕ σC

elseif Pke.Dec∗(skP , xbC) = (·, vkbC)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP), xC(0)
b̄C
̸= ⊥∧

Pke.Dec∗(skP , xb̄C
) = (·, vkb̄C

)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP), xC(0)
b̄C

= ⊥∧

Pke.Dec∗(skP , xb̄C
) = (·, vkb̄C

)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

H4

if π = πC then
return OTPC ⊕ σC

elseif Pke.Dec∗(skP , xbC) = (·, vkbC)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP), xC(0)
b̄C
̸= ⊥∧

Pke.Dec∗(skP , xb̄C
) = (·, vkb̄C

)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP), xC(0)
b̄C

= ⊥∧
Pke.Dec∗(skP , xb̄C

) = (·, vkb̄C
)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort
elseif Pke.Dec∗(skP , xbC) = (·, vkbC)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) ̸= ⊥ then

abort

H5

if π = πC then
return OTPC ⊕ σC

elseif Pke.Dec∗(skP , xbC) = (·, vkbC)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP), xC(0)
b̄C
̸= ⊥∧

Pke.Dec∗(skP , xb̄C
) = (·, vkb̄C

)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP), xC(0)
b̄C

= ⊥∧
Pke.Dec∗(skP , xb̄C

) = (·, vkb̄C
)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort
elseif Pke.Dec∗(skP , xbC) = (·, vkbC)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) ̸= ⊥ then

abort
elseif Pke.Dec(skP , xC

b̄C
) ̸= ⊥∧

Pke.Dec∗(skP , xb̄C
) = (·, vkb̄C

)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
b̄C

) ̸= ⊥ then

abort

H6

if π = πC then
return OTPC ⊕ σC

elseif Pke.Dec∗(skP , xbC) = (·, vkbC)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort
elseif Pke.Dec∗(skP , xb̄C

) = (·, vkb̄C
)∧

Pke.Dec(skP), xC(0)
b̄C
̸= ⊥∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort
elseif Pke.Dec∗(skP , xb̄C

) = (·, vkb̄C
)∧

Pke.Dec(skP), xC(0)
b̄C

= ⊥∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort
elseif Pke.Dec∗(skP , xbC) = (·, vkbC)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) ̸= ⊥ then

abort
elseif Pke.Dec∗(skP , xb̄C

) = (·, vkb̄C
)∧

Pke.Dec(skP , xC
b̄C

) ̸= ⊥∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
b̄C

) ̸= ⊥ then

abort
elseif Pke.Dec∗(skP , xb̄C

) = (·, vkb̄C
)∧

Pke.Dec(skP), xC(0)
b̄C

= ⊥∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) ̸= ⊥ then

abort

H7

if π = πC then
return OTPC ⊕ σC

elseif ∃b∈{0,1}xC(0)
b ̸= x

(0)
b ∧

Pke.Dec∗(skP , x
(0)
b) = (·, vkb) then

abort

H8

if π = πC then
return OTPC ⊕ σC

elseif ∃b∈{0,1}xC(0)
b ̸= x

(0)
b ∧

Pke.Dec∗(skP , x
(0)
b) = (·, vkb) then

abort
elseif Pke.Dec∗(skP , xbC) = (skbC , ·)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

H9

if π = πC then
return OTPC ⊕ σC

elseif ∃b∈{0,1}xC(0)
b ̸= x

(0)
b ∧

Pke.Dec∗(skP , x
(0)
b) = (·, vkb) then

abort
elseif Pke.Dec∗(skP , xbC) = (skbC , ·)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP , xC(0)
b̄C

) ̸= ⊥∧

Pke.Dec∗(skP , xb̄C
) = (skb̄C

, ·)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

H10

if π = πC then
return OTPC ⊕ σC

elseif ∃b∈{0,1}xC(0)
b ̸= x

(0)
b ∧

Pke.Dec∗(skP , x
(0)
b) = (·, vkb) then

abort
elseif Pke.Dec∗(skP , xbC) = (skbC , ·)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP), xC(0)
b̄C
̸= ⊥∧

Pke.Dec∗(skP , xb̄C
) = (skb̄C

, ·)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP), xC(0)
b̄C

= ⊥∧

Pke.Dec∗(skP , xb̄C
) = (skb̄C

, ·)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

H11

if π = πC then
return OTPC ⊕ σC

elseif ∃b∈{0,1}xC(0)
b ̸= x

(0)
b ∧

Pke.Dec∗(skP , x
(0)
b) = (·, vkb) then

abort
elseif Pke.Dec∗(skP , xbC) = (skbC , ·)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP), xC(0)
b̄C
̸= ⊥∧

Pke.Dec∗(skP , xb̄C
) = (skb̄C

, ·)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP), xC(0)
b̄C

= ⊥∧
Pke.Dec∗(skP , xb̄C

) = (skb̄C
, ·)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort
elseif Pke.Dec∗(skP , xbC) = (skbC , ·)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) ̸= ⊥ then

abort

H12

if π = πC then
return OTPC ⊕ σC

elseif ∃b∈{0,1}xC(0)
b ̸= x

(0)
b ∧

Pke.Dec∗(skP , x
(0)
b) = (·, vkb) then

abort
elseif Pke.Dec∗(skP , xbC) = (skbC , ·)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP), xC(0)
b̄C
̸= ⊥∧

Pke.Dec∗(skP , xb̄C
) = (skb̄C

, ·)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort

elseif Pke.Dec(skP), xC(0)
b̄C

= ⊥∧
Pke.Dec∗(skP , xb̄C

) = (skb̄C
, ·)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort
elseif Pke.Dec∗(skP , xbC) = (skbC , ·)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) ̸= ⊥ then

abort
elseif Pke.Dec(skP , xC

b̄C
) ̸= ⊥∧

Pke.Dec∗(skP , xb̄C
) = (skb̄C

, ·)∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
b̄C

) ̸= ⊥ then

abort

H13

if π = πC then
return OTPC ⊕ σC

elseif ∃b∈{0,1}xC(0)
b ̸= x

(0)
b ∧

Pke.Dec∗(skP , x
(0)
b) = (·, vkb) then

abort
elseif Pke.Dec∗(skP , xbC) = (skbC , ·)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort
elseif Pke.Dec∗(skP , xb̄C

) = (skb̄C
, ·)∧

Pke.Dec(skP), xC(0)
b̄C
̸= ⊥∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort
elseif Pke.Dec∗(skP , xb̄C

) = (skb̄C
, ·)∧

Pke.Dec(skP), xC(0)
b̄C

= ⊥∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) = ⊥ then

abort
elseif Pke.Dec∗(skP , xbC) = (skbC , ·)∧

x
(0)
bC
̸= xC(0)

bC ∧

Pke.Dec(skP , x
(0)
bC

) ̸= ⊥ then

abort
elseif Pke.Dec∗(skP , xb̄C

) = (skb̄C
, ·)∧

Pke.Dec(skP , xC
b̄C

) ̸= ⊥∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
b̄C

) ̸= ⊥ then

abort
elseif Pke.Dec∗(skP , xb̄C

) = (skb̄C
, ·)∧

Pke.Dec(skP), xC(0)
b̄C

= ⊥∧

x
(0)
b̄C
̸= xC(0)

b̄C
∧

Pke.Dec(skP , x
(0)
bC

) ̸= ⊥ then

abort

H14

if π = πC then
return OTPC ⊕ σC

elseif ∃b∈{0,1}xC(0)
b ̸= x

(0)
b ∧(

Pke.Dec∗(skP , x
(0)
b) = (skb, ·)∨

Pke.Dec∗(skP , x
(0)
b) = (·, vkb)

)
then

abort

H0 is the game from Gameσ
2 (κ).

H1 is as H0 but the circuit aborts only if the first-round message of the sending party PbC in the
input transcript encrypts the same verification key as that from the challenge transcript and the
decryption of the new first-round message is from the random oracle—that is, the decryption of
that message using the first-round message of the input transcript using the actual decryption
algorithm yields the error symbol ⊥.
So the goal of the adversary is to distinguish, which is only possible if a different pre-image for
the random oracle is found which evaluates to something that shares the same verification key
as the random oracle when evaluated with the first sending parties ciphertext. However, as we
already use a genuine random oracle in this game, this is information-theoretically impossible
and hence the adversary cannot distinguish.
Thus it holds that

AdvD = |Pr[outD,H1 = 1]− Pr[outD,H0=1]| ∈ negl(κ) (34)

Now let E be the event that D can find a collision for a fixed value. We can incorporate this
event into Eq. (34) as follows:

AdvD =|Pr[outD,H1 = 1]− Pr[outD,H0 = 1]|
=|Pr[E] · (Pr[outD,H1 = 1|E]− Pr[outD,H0 = 1|E])

+ (1− Pr[E]) · (Pr[outD,H1 = 1|¬E]− Pr[outD,H0 = 1|¬E])|
(35)

52

It trivially holds that ¬E =⇒ Pr[outD,H1 = 1] = Pr[outD,H0] as there the two games act
exactly the same. Hence it holds for the second line of Eq. (35) that (1−Pr[E]) · (Pr[outD,H1 =
1|¬E]− Pr[outD,H0 = 1|¬E]) = 0. So it holds that:

AdvD =|Pr[E] · (Pr[outD,H1 = 1|E]− Pr[outD,H0 = 1|E])| (36)

Which holds information-theoretically due to the properties of the random oracle. Thus it holds
that Pr[E] ∈ negl(κ) and hence AdvD is negligible.
This concludes our proof.

H2 is as H1 only that the circuit additionally aborts if (1) the first message of the dummy friend in
the challenge transcript is a valid ciphertext, and (2) the first message of the dummy friend in
the input transcript is an invalid ciphertext, and (3) the first message of the dummy friend
in the challenge transcript differs from the first message of the dummy friend in the input
transcript, and (4) the Dec∗ algorithm outputs the same verification key for the challenge- and
input-transcript.
With the message in the challenge transcript being a valid ciphertext we can reduce a distin-
guisher D between H2 and H1 to an adversary breaking the pre-image resistance of the random
oracle. Let E be the event that D can find a different pre-image for which the second half,
which is interpreted as the verification key, is the same as for the challenge message. In this
case this pre-image has to be a value that is mapped by the random oracle to the value that
was reported by the adversary as first dummy-friend message.
First note that the distinguisher can only ever win this game if the challenge-transcript contains
an invalid ciphertext for the dummy friend in the first round. Denote by C the event that
while sampling a random value for the first message of the dummy friend the message is not a
valid ciphertext. We stress that ¬C implies that the two games can not be distinguished as the
change induced by the gamehop will never be noted; simply because the additional check will
never succeed.
We can thus conclude for now that with probability (1 − Pr[C]) the gamehop is perfectly
indistinguishable and focus on the case where the adversary reported a dummy-friend message
that is not a valid cipher. Note that in this case we can use the same argument as in the last
game hop, as any distinguisher would fail if ¬E where E is the event that D breaks the collision
resistance, and Pr[E] is negligible due to the collision resistance of the random oracle.

H3 is as H2 only that the circuit additionally aborts if (1) the first message of the dummy friend
in the challenge transcript is an invalid ciphertext, and (2) the first message of the dummy
friend in the input transcript is an invalid ciphertext, (3) the first message of the dummy
friend in the challenge transcript differs from the first message of the dummy friend in the input
transcript, and (4) the Dec∗ algorithm outputs the same verification key for the challenge- and
input-transcript of the dummy friend. This then means that both decryptions are internally
replaced by the PRF. Thus for distinguishing (which only works by causing an abort in H3
where H2 would have continued with the execution as the remaining part of the two games do
not differ) the distinguisher would have to find a different message—which is a valid pre-image
for the random oracle—that points to an output that shares the same second half as the value
reported in the challenge transcript, which violates the collision resistance of the random oracle.
Hence the two games can not be distinguished.

H4 is as H3 but the circuit aborts only if the first-round message of the sending party PbC in the
input transcript encrypts the same verification key as that from the challenge transcript and
the decryption of the new first-round message yields a valid message—that is, the message is a
valid cipher and the random oracle is not used for this message.
We want to show that for all PPT distinguishes D the following statement is true:

|Pr[outD,H4 = 1]− Pr[outD,H3 = 1]| ∈ negl(κ)

53

We first define an intermediate event ED as the event that D can rerandomize parts of a
ciphertext. This leads to the following observation:

AdvD :=|Pr[outD,H4 = 1]− Pr[outD,H3] = 1|
=E ∧ |Pr[outD,H4 = 1]− Pr[outD,H3] = 1|∨
¬E ∧ |Pr[outD,H4 = 1]− Pr[outD,H3 = 1]|

=E ∧ |Pr[outD,H4 = 1]− Pr[outD,H3 = 1]|+
¬E ∧ |Pr[outD,H4 = 1]− Pr[outD,H3 = 1]|

(37)

Now note that ¬E implies an equivalent behavior in both games, hence:

¬E ∧ Pr[outD,H4 = 1] = ¬E ∧ Pr[outD,H3 = 1]

Note next that E is negligible due to the IND-CCA-property of the encryption system Pke; if
E /∈ negl the following attack on the IND-CCA security would be possible: (1) The adversary
creates two random messages x0 = (·, vk0) and x1 = (·, vk1), where the first half is not important
but the second half differs, and sends them as challenges. (2) The challenger returns a ciphertext
y. (3) The adversary rerandomizes y to y′ such that the second half remains the same and sends
y′ to the decryption oracle. (4) If the second half of the result is vk0 then A returns β = 0 and
if it is vk1 it returns β = 1. Otherwise it returns a uniformly random bit. If E can occur with
non-negligible probability then A would violate the IND-CCA security (which is implied by the
IND$-CCA security of Pke), thus we stress that Pr[E] is at most negligible.
Our claim follows.

H5 is as H4 only that the circuit additionally aborts if (1) the first message of the dummy friend
in the challenge transcript is a valid ciphertext, and (2) the first message of the dummy
friend in the input transcript is a valid ciphertext, (3) the first message of the dummy friend
in the challenge transcript differs from the first message of the dummy friend in the input
transcript, and (4) the Dec∗ algorithm outputs the same verification key for the challenge- and
input-transcript.
In this case we would have a distinguisher D that can effectively partially re-randomize
transcripts. This distinguisher could be used in order to break the IND-CCA property of Pke
as was the case in H4.

H6 is as H5 only that the circuit additionally aborts if (1) the first message of the dummy friend
in the challenge transcript is an invalid ciphertext, and (2) the first message of the dummy
friend in the input transcript is a valid ciphertext, and (3) the first message of the dummy
friend in the challenge transcript differs from the first message of the dummy friend in the input
transcript, and (4) the Dec∗ algorithm outputs the same verification key for the challenge- and
input-transcript.
Essentially, to distinguish the distinguisher D has to create a ciphertext that encodes the same
verification key that is in the image domain of the random oracle. Since this is truly random
and the distinguisher can not query the oracle it follows that this is possible with negligible
probability only which proves our claim.

H7 This game-hop is purely cosmetic and hence does not change the distribution.
H8 is as H7 but the circuit aborts only if the first-round message of the sending party PbC in the

input transcript encrypts the same symmetric key as that from the challenge transcript and the
decryption of the new first-round message is from the random oracle—that is, the decryption of
that message using the first-round message of the input transcript using the actual decryption
algorithm yields the error symbol ⊥.
This is similar to the game hop from H1 and hence indistinguishable.

H9 is as H8 only that the circuit additionally aborts if (1) the first message of the dummy friend in
the challenge transcript is a valid ciphertext, and (2) the first message of the dummy friend in
the input transcript is an invalid ciphertext, and (3) the first message of the dummy friend
in the challenge transcript differs from the first message of the dummy friend in the input
transcript, and (4) the Dec∗ algorithm outputs the same symmetric key for the challenge- and
input-transcript.
This is the same situation as the game hop between H2 and H1 and thus indistinguishable.

54

H10 is as H9 only that the circuit additionally aborts if (1) the first message of the dummy friend
in the challenge transcript is an invalid ciphertext, and (2) the first message of the dummy
friend in the input transcript is an invalid ciphertext, (3) the first message of the dummy
friend in the challenge transcript differs from the first message of the dummy friend in the input
transcript, and (4) the Dec∗ algorithm outputs the same symmetric key for the challenge- and
input-transcript of the dummy friend. This then means that both decryptions are internally
replaced by the PRF. Showing indistinguishability here is similar to that of H3 and H2.

H11 is as H10 but the circuit aborts only if the first-round message of the sending party PbC in the
input transcript encrypts the same verification key as that from the challenge transcript and
the decryption of the new first-round message yields a valid message—that is, the message is a
valid cipher and the random oracle is not used for this message.
Indistinguishability follows from the indistinguishability between H3 and H4 as the proof is
almost identical.

H12 is as H11 only that the circuit additionally aborts if (1) the first message of the dummy friend
in the challenge transcript is a valid ciphertext, and (2) the first message of the dummy
friend in the input transcript is a valid ciphertext, (3) the first message of the dummy friend
in the challenge transcript differs from the first message of the dummy friend in the input
transcript, and (4) the Dec∗ algorithm outputs the same symmetric key for the challenge- and
input-transcript.
Again the proof is analogous to the indistinguishability of H11 and H12 and we do not write it
up specifically.

H13 is as H12 only that the circuit additionally aborts if (1) the first message of the dummy friend
in the challenge transcript is an invalid ciphertext, and (2) the first message of the dummy
friend in the input transcript is a valid ciphertext, and (3) the first message of the dummy
friend in the challenge transcript differs from the first message of the dummy friend in the input
transcript, and (4) the Dec∗ algorithm outputs the same symmetric key for the challenge- and
input-transcript.
The non-existence of a successful PPT distinguisherD which is better than the naive distinguisher
that randomly guesses a bit follows from the non-existence of a distinguisher for the hybrid
game hop from H5 to H6.

H14 This game-hop is purely cosmetic and hence does not change the distribution. We only include
it for consistency with Gameσ

3 (κ).

⊓⊔

D.6 Proof of Lemma 11

Lemma 11 (Indistinguishability of Gameσ
3 (κ) and Gameσ

4 (κ)). Let Pke be an IND$-CCA
secure asymmetric encryption scheme, let Ske be a tightly secure multi-challenge IND$-CCA secure
symmetric encryption scheme, let Sig be an sEUF-CMA secure signature scheme, let O be an ideal
obfuscator, and let F be a secure PRF. Then, for all PPT guessing algorithms A, the distinguishing
advantage for Gameσ

3 (κ) and Gameσ
4 (κ) is bounded by:

|Pr[outGameσ
3 (κ) = 1]− Pr[outGameσ

4 (κ) = 1]| ∈ negl(κ)

Proof. Indistinguishability easily follows from the perfect correctness of the encryption scheme Pke.
If there was any message x

(0)
R created by the adversary as Pke.Enc(pkP , (OTP, vkR)) which does not

decrypt with skP to (OTP, vkR) this would mean that Pke.Dec(skP , Pke.Enc(pkP , (OTP, vkR))) ̸=
(OTP, vkR). As this can not happen by requirement indistinguishability follows. ⊓⊔

D.7 Proof of Lemma 12

Lemma 12 (Indistinguishability of Gameσ
4 (κ) and Gameσ

5 (κ)). Let Pke be an IND$-CCA
secure asymmetric encryption scheme, let Ske be a tightly secure multi-challenge IND$-CCA secure
symmetric encryption scheme, let Sig be an sEUF-CMA secure signature scheme, let O be an ideal
obfuscator, and let F be a secure PRF. Then, for all PPT guessing algorithms A, the distinguishing
advantage for Gameσ

4 (κ) and Gameσ
5 (κ) is bounded by:

|Pr[outGameσ
4 (κ) = 1]− Pr[outGameσ

5 (κ) = 1]| ∈ negl(κ)

55

Proof. We reduce a distinguisher D who differentiates between Gameσ
4 (κ) and Gameσ

5 (κ) to an
adversary A breaking the sEUF-CMA security of the used signature scheme Sig.

Creating the Transcript. The creation of the transcript works similar in both games, hence the
transcript can be created by letting the adversary play all three parties roles according to Gameσ

2 (κ)
for a randomly chosen sender PbC and a randomly transmitted bit σC. The only change is with
respect to signatures. While the verification key from the challengers signature oracle is known
to the adversary and hence can be embedded into the senders first message all signatures of the
form µ ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1)) created in line 11 of the protocol are replaced by queries

(x(χ−1)
0 , x

(χ−1)
1) to the signing oracle.

The complete transcript πC is then sent to the distinguisher D.

Simulating the Oracle. When D sends some transcript π for evaluation to the oracle the adversary A
behaves according to Item Gameσ

5 (κ): If the challenge transcript corresponds to the input transcript
then it returns the correct bit, and if any of the first-round messages differ it simulates the circuit
entirely:

If both parties input different messages than in the original transcript then we know due to the
check in line 3 of the circuit code that both encrypt a different message and hence a use a new
verification key (and also a symmetric key) for the remaining rounds. By knowing the secret key
skP the adversary can thus extract both and simulate accordingly.

The same reasoning is true if only the sending parties message is replaced as then still both
parties messages are independent from the challenge.

Special care thus only has to be taken into the simulation for transcripts where the first sending
party message matches.

If the dummy friends message differs then the circuit also executes the same circuit, which the
adversary can simulate as it has all the required information; the only thing that depends on the
challenge oracle are the signatures and being in possession of the verification key the simulator can
efficiently verify a given signature.

If the dummy friends message also matches then the circuit acts by counting rounds until the
messages differ for the first time. Let D be a distinguisher that uses this behavior to distinguish. In
Gameσ

5 (κ) the round χ∗ is fixed due to lines 7− 11 as the first round where any of the messages
differs from the challenge transcript, where potentially 1 is added in case the sending parties message
for the next round is different. Thus for a given transcript π we can fix p for Gameσ

5 (κ); in order
to distinguish this value p′ must differ in Gameσ

3 (κ). (i) p′ < p, meaning that the circuit outputs
the correct bit with a lower probability when the message is handled by the original code of the
circuit. This, however, would contradict the correctness of the scheme. (ii) p′ > p, meaning that the
probability of output σC is larger when the transcript is handled by the actual code than when it
is handled by our modification. By requirement we know that up until round χ∗ all messages are
takes directly from the challenge transcript, and that χ∗ < c (as otherwise the case would have been
handled by the code in line 1). We can now differentiate between the two possible replacements
n round (χ∗ + 1): (i.1) If the sending parties message has been replaced in this round then χ∗

stays the same and p := 1/2 + χ∗/2c. In order to get a larger p′ the adversary would have to
create a replacement message which encrypts the same bit and a different signature on the same
round-(χ∗ − 1)-messages. Knowing the secret key used for the transcript the reduction adversary
can extract this signature and send it as valid signature on (x(χ∗−1)

0 , x
(χ∗−1)
1) to the challenger.

Since the content of the message differs but the bit has to be the same (as otherwise the message
would be rejected in Gameσ

3 (κ)) it follows that the distinguisher created a new signature that
was never returned from the challenge-oracle. (ii.2) If the dummy friend parties message has been
replaced in this round then χ∗ is increased by 1 and in order to get p′ > p the distinguisher has to
create a message for round (χ∗ + 2) that contains a valid signature for this new message. Since by
requirement the dummy friends message has been replaced in round (χ∗ + 1) this too corresponds
to a new message and hence is a valid forgery for the challenger.

As A can only have a negligible chance to create a forgery due to the sEUF-CMA security of
the signature scheme Sig it follows that α ∈ negl(κ). ⊓⊔

56

D.8 Proof of Lemma 13

Lemma 13 (Indistinguishability of Gameσ
5 (κ) and Gameσ

6 (κ)). Let Pke be an IND$-CCA
secure asymmetric encryption scheme, let Ske be a tightly secure multi-challenge IND$-CCA secure
symmetric encryption scheme, let Sig be an sEUF-CMA secure signature scheme, let O be an ideal
obfuscator, and let F be a secure PRF. Then, for all PPT guessing algorithms A, the distinguishing
advantage for Gameσ

5 (κ) and Gameσ
6 (κ) is bounded by:

|Pr[outGameσ
5 (κ) = 1]− Pr[outGameσ

6 (κ) = 1]| ∈ negl(κ)

Proof. Let D be an efficient distinguisher that can predict if it is in Gameσ
5 (κ) or in Gameσ

6 (κ) with
probability 1/2 + α. Out of D we can construct an adversary A on the IND$-CCA property of Pke.

The reduction algorithm A starts by creating the key-pair for the signature scheme and the key
for the symmetric scheme honestly and follows Gameσ

5 (κ) the creation of the transcript, only that
instead of encrypting the first message using the public-key scheme Pke directly, A forwards the
messages (OTP, vkR) and (skb, vkb) as challenge to the challenger C of the IND$-CCA game.

For further evaluation of the oracle the reduction adversary uses the decryption oracle from the
challenger C for any first-round message that is not from the reported transcript π and continues
simulation using the extracted secret key of that respective party; the same first-round message is
covered automatically since Gameσ

5 (κ) and the same receiver message in Gameσ
4 (κ).

The reported transcript contains exactly the same views that are required by the two games: if
the output is a proper encryption then the view is equivalent to Gameσ

5 (κ), and if the output of
the oracle is uncorrelated randomness, the view corresponds to Gameσ

6 (κ).
Thus, if D can differentiate the two games with probability 1/2 + α, then A can differentiate the

oracles with the same probability. The IND$-CCA requirement for Pke thus implies α ∈ negl(κ).
⊓⊔

D.9 Proof of Lemma 14

Lemma 14 (Indistinguishability of Gameσ
6 (κ) and Gameσ

7 (κ)). Let Pke be an IND$-CCA
secure asymmetric encryption scheme, let Ske be a tightly secure multi-challenge IND$-CCA secure
symmetric encryption scheme, let Sig be an sEUF-CMA secure signature scheme, let O be an ideal
obfuscator, and let F be a secure PRF. Then, for all PPT guessing algorithms A, the distinguishing
advantage for Gameσ

6 (κ) and Gameσ
7 (κ) is bounded by:

|Pr[outGameσ
6 (κ) = 1]− Pr[outGameσ

7 (κ) = 1]| ∈ negl(κ)

Proof. We reduce a distinguisher D that distinguishes Gameσ
6 (κ) from Gameσ

7 (κ) to an adversary A
on the IND$-CPA property of the symmetric encryption scheme Ske. Again, we adapt the LR-view
of Rogaway [Rog04] to account for the multiple challenges required, in that the game is played via
oracle access to an oracle which either outputs valid encryptions of the input, or which outputs
uncorrelated randomness.

We now describe how the adversary A behaves in order to embed the challenge of the IND$-CCA
challenger C into a challenge for the distinguisher D.

The adversary starts by following the protocol according to Gameσ
6 (κ) and creating the messages,

with the one exception that any call to Ske.Enc(skb, σ∥µ) is replaced by an oracle call to the challenge
oracle with input (σ∥µ). This causes the transcript to either only have truly random messages (in
which case the view corresponds to Gameσ

7 (κ)) or actual encryptions under the challengers secret
key sk (which results in a valid transcript for Gameσ

6 (κ)).
Thus the adversary inherits the advantage α as long as A can simulate the decryption oracle

accordingly. Fortunately this is the case here. Further, as we assume a lazy evaluation of the or15

the decryption oracle is only called on the first round message which differs from the challenge
transcript and, hence, the decryption oracle is never called on the challenge ciphertext. The leaked
public key pkP is controlled by the reduction adversary and hence any new transcript that contains
15 This means that first the simulator checks for equal messages and if that is already true, the second

condition is ignored, and hence the sending parties message is only forwarded to the decryption oracle if
it differs from the challenge.

57

a different first-round message than the challenge transcript can be simulated by first decrypting the
secret key (which is different from the one used by the challenger with overwhelming probability)
and then decrypting each round individually. ⊓⊔

D.10 Graphical Depiction of the Secrecy Proof Outline

58

Game1(κ)
1 : −
2 : −
3 : −
4 : −
5 : −
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −

14 : (OTP, vkR) := Pke.Dec∗(skP , x
(0)
R)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µ
(χ)
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (0, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, 0, µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game2(κ)
1 : if π = πC then
2 : return OTPC ⊕ 0
3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC[χ′])

8 : if π[xc∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) = (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (0, 1)

13 : if π[x(0)
R] = πC [x(0)

R] then

14 : (OTP, vkR) := (OTPC , vkCR)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µ
(χ)
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game2(κ)
1 : if π = πC then
2 : return OTPC ⊕ 0
3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC[0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xc∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) = (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (0, 1)

13 : if π[x(0)
R] = πC [x(0)

R] then

14 : (OTP, vkR) := (OTPC , vkCR)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µ
(χ)
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game3(κ)
1 : if π = πC then
2 : return OTPC ⊕ 0
3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xc∗+1
bC

] = πC[xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) = (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (0, 1)

13 : if π[x(0)
R] = πC [x(0)

R] ∧ π ̸= πC then

14 : return CointossS(π)
(1/2)(0, 1)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µ
(χ)
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game3(κ)
1 : if π = πC then
2 : return OTPC ⊕ 0
3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC[0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xc∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) = (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (0, 1)

13 : if π[x(0)
R] = πC [x(0)

R] ∧ π ̸= πC then

14 : return CointossS(π)
(1/2)(0, 1)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µ
(χ)
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game4(κ)
1 : if π = πC then
2 : return OTPC ⊕ 1
3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xc∗+1
bC

] = πC[xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) = (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (1, 0)

13 : if π[x(0)
R] = πC [x(0)

R] ∧ π ̸= πC then

14 : return CointossS(π)
(1/2)(0, 1)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µ
(χ)
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game4(κ)
1 : if π = πC then
2 : return OTPC ⊕ 1
3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC[0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xc∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) = (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (1, 0)

13 : if π[x(0)
R] = πC [x(0)

R] ∧ π ̸= πC then

14 : return CointossS(π)
(1/2)(0, 1)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µ
(χ)
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game5(κ)
1 : −
2 : −
3 : −
4 : −
5 : −
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −

14 : return CointossS(π)
(1/2)(0, 1)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then

20 : return CointossS(π)
(1/2)(0, 1)

21 : χ0 := JSig.Vfy(µ(0)
0 , vk0, x

(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : σ′
b := Xb[0]

27 : µ
(χ)
b := Xb[1 : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨ σb ̸= σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(1/2+χb/2c)(σ

(b′), 1− σ(b′))

32 :
1 : R :
2 : OTP $← {0, 1}
3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (1, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, (1, µ(χ)))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

D.11 Full Proof of Secrecy

Here we provide a full proof of the following theorem:

Theorem 6 (Secrecy). Let Pke be an IND$-CCA secure asymmetric encryption scheme, let Ske
be an IND$-CCA secure symmetric encryption scheme, let Sig be a sEUF-CMA secure signature
scheme, let O be an ideal obfuscator, and let F be a secure PRF. Then, Π1

AT satisfies ς-secrecy with
ς ∈ owhl(κ).

Essentially the proof shows that no PPT distinguisher that gets the transcript but not the
receivers transcript can exist that can distinguish between the case where we always transfer a 0
and where we always transfer the 1 better than by guessing. This follows from the fact that the
One-Time-Pad chosen uniformly at random by the receiver masks the output bit. As this masking
bit is never revealed and only sent in an encrypted form with the key of the circuit our claim follows.

Gameσ
1 (κ) This is the original game (after replacing the obfuscated circuit with oracle access to the circuit,

the PRF with an actual random oracle and the adversary with the simulator), where the sending
party Pb is chosen uniformly at random but the sending party always sends σ = 0.

Gameσ
2 (κ) This game follows Gameσ

1 (κ), but with the following changes:
– During the simulation of the oracle P AT from Fig. 5 the simulation enforces correctness of

the challenge transcript πC : if the input transcript π matches the challenge transcript πC , it
returns OTPC ⊕ σC .

– During simulation of the circuit the adversary aborts if any of the first-round messages from
P0 or P1 differ from the messages reported in the challenge transcript and the decryptions
still match.

– During simulation of the circuit, if the first receiver message of the input transcript π is the
same as that of the challenge transcript πC , instead of decrypting it the circuit directly sets
OTP = OTPC and vkR = vkCR as the values used in the creation of the challenge transcript.

– During simulation of the oracle, if the first-round messages of both parties match the
first-round messages in the challenge transcript πC. In this case, the program compares
the input transcript π with the challenge transcript πC until it finds the first round χ∗ in
which the input differs from the challenge transcript. It then checks round χ∗ + 1, and if it
contains the same message from the sending party, it adds one to χ.
Finally, the circuit flips a biased coin, which returns the correct bit σC with probability
p := 1/2 + χ∗/2c and the complementary bit (1− σC) otherwise.

Lemma 15. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Ske be an
IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA secure signature
scheme. For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

1 (κ) and
Gameσ

2 (κ) is bounded by:

|Pr[outGameσ
1 (κ) = 1]− Pr[outGameσ

2 (κ) = 1]| ∈ negl(κ)

Proof. Follows from Lemmas 9 to 14. ⊓⊔

Gameσ
3 (κ) This game follows Gameσ

2 (κ) but the oracle is simulated slightly different: If the first receiver
message is the same as the one reported in the challenge transcript and the input transcript is
not the challenge transcript, then the circuit reports a uniformly random bit.
Note that this does not work in the anonymity proof as there we assume that the adversary is
given access to the receivers random tape, and hence can create their own new signature on the
modified transcript.

Lemma 16. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Ske be an
IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA secure signature
scheme. For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

3 (κ) and
Gameσ

4 (κ) is bounded by:

|Pr[outGameσ
3 (κ) = 1]− Pr[outGameσ

4 (κ) = 1]| ∈ negl(κ)

Proof. We reduce a distinguisher D between these two games to an adversary A on the
EUF-CMA security of the signature scheme Sig.

63

Creating the Transcript. The creation of the transcript is straightforward and works by sampling
random messages for each party.

Simulating the Oracle. The used verification key vkR is set to be the verification key of the
challenger. Thus the final signature µ on the entire transcript, which is required for the circuit to
not abort (by outputting a random bit), needs to be forged. Hence for each input transcript the
adversary first checks if the receiver message is equivalent to that from the challenge transcript.
If it isn’t then the transcript can not be used for distinguishing anyways. If it is, the adversary
checks if the remaining transcript is the same as well. If it is, the transcript can not be used for
distinguishing and simulation just continues as the path taken is equivalent in both games. If it
isn’t then the adversary checks if the signature µ verifies under the used key. If it doesn’t then
both games act exactly the same and output a random bit. Hence to distinguish the signature
has to verify. Then, however, the signature is a valid forgery.

Translating the Result. If no valid signature was queried then—as mentioned above—the
distinguishing advantage must be negligible. For a non-negligible advantage the distinguisher
has to query at least one signature. This can be used as forgery to break the EUF-CMA security
of Sig.
As stated above, the advantage of the distinguisher is directly related to the probability of
successfully distinguishing. Hence A will have a valid forgery with non-negligible advantage.
This would contradict the EUF-CMA security of the signature scheme and thus completes our
proof. ⊓⊔

Gameσ
4 (κ) This game is as Gameσ

3 (κ) but instead of fixing σ := 0, we now act as if the sending party sends
σ := 1.
Lemma 17. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Ske be an
IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA secure signature
scheme. For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

3 (κ) and
Gameσ

4 (κ) is bounded by:

|Pr[outGameσ
3 (κ) = 1]− Pr[outGameσ

4 (κ) = 1]| ∈ negl(κ)

Proof. Security automatically follows from the statistical security of the One-Time-Pad encryp-
tion: if there was a distinguisher D with non-negligible advantage α in distinguishing these two
games then there would be an adversary A which can decrypt One-Time-Pad encrypted bits
with non-negligible advantage.

Simulating the Transcript. As the transcript is the same in both games, we construct the
transcript by uniformly sampling each message.

Simulating the Oracle. If A is given a ciphertext ct (which by definition is defined as OTP ⊕ σ
for some random OTP and σ) we simulate the oracle as described in both games (since they
are equivalent) and whenever the code says return CointossS(π)

(p) (OTPC ⊕ σ, OTPC ⊕ σ), we
replace OTPC ⊕ σ with x and OTPC ⊕ σ with x.

Translating the Result. If the distinguisher assumes Gameσ
3 (κ) then A assumes σ = 0 (in which

case the transferred bit is σC := x), and if the distinguisher assumes Gameσ
4 (κ) then A guesses

σ = 1 (and the transferred bit is σC := x).
Note that if D is correct with advantage α over guessing, hence the guess of A is correct with
advantage α as well. ⊓⊔

Gameσ
5 (κ) This game follows Gameσ

4 (κ) but undoes all the changes from the first-to-second gamehop and
that from Gameσ

3 (κ).
Lemma 18. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Ske be an
IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA secure signature
scheme. For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

4 (κ) and
Gameσ

5 (κ) is bounded by:

|Pr[outGameσ
4 (κ) = 1]− Pr[outGameσ

5 (κ) = 1]| ∈ negl(κ)

64

Two-round protocol Π1
AT in the designated sender setting.

We assume three parties are present in this protocol, two of which are participating. Let P0 and P1 be
the potential sender, one of which is not participating, and let R denote the receiver.
Let Pke = (KeyGen, Enc, Dec) be a public-key IND$-CCA-secure encryption scheme with Pseudorandom
Ciphertexts.
Let Sig be an sEUF-CMA-secure signature scheme.
Let P AT be an obfuscated program from Fig. 10, which hides a verification key vk and a secret key
skP , the corresponding public key pkP is leaked.
The protocol Π1

AT works as follows:

On input (⊥), R samples a uniformly random bit OTP $← {0, 1} and broadcasts x
(0)
R ←

Pke.Enc(pkP , OTP).
On input (b, σ, k), Pb computes µ

(0)
b ← Sig.Sig(k, (σ, x

(0)
R)) and broadcasts x

(0)
b ←

Pke.Enc(pkP , σ∥µ).
On input (⊥), P1−b sets uniformly random x

(0)
1−b.

Pb computes µ
(1)
b ← Sig.Sig(k, π[0]) and broadcasts x

(1)
b ← Pke.Enc(pkP , σ∥µ(1)

b).
P1−b samples uniformly random x

(1)
1−b.

R outputs OTP ⊕ P AT

(
x

(0)
0 , x

(0)
1 , x

(0)
R , x

(1)
0 , x

(1)
1

)
.

Fig. 9: The designated sender protocol for Anonymous Transfer. We generally assume that once all messages
of one round have been determined, parties publish them.

Proof. Follows from Lemmas 9 to 14 and 16. ⊓⊔

Thus our theorem follows:

Theorem 6 (Secrecy). Let Pke be an IND$-CCA secure asymmetric encryption scheme, let Ske
be an IND$-CCA secure symmetric encryption scheme, let Sig be a sEUF-CMA secure signature
scheme, let O be an ideal obfuscator, and let F be a secure PRF. Then, Π1

AT satisfies ς-secrecy with
ς ∈ owhl(κ).

E Asymptotically Secure AT in the Designated Sender Model

E.1 A two-round protocol

In this section, we introduce a candidate protocol for Anonymous Transfer in the designated sender
setting. The sender is given secret information which is in some known relation with the Common
Reference String. The protocol itself is displayed in Fig. 9. It requires a Common Reference String,
which contains an ideally obfuscated circuit which behaves as described in Fig. 10.

The protocol consists only of two rounds. The ideally obfuscated circuit knows a verification
key vk, to which the sending party is given the signing key k. For both messages, the sending party
adds a signature created with k. In the first round, the sender only enters the bit σ that should be
transferred and attaches a signature µ on σ with k. In the second round, the sender again enters
the bit σ, but attaches a signature on the first round.

The circuit then checks for both second-round messages if either of them contains an encryption
of a signature on the first round; if this is the case for at least one second-round message16, it flips
two biased coins, which return tails with probability 2d. If the first coin lands tails, the program
returns the bit encoded in the second message. Otherwise, the second coin is considered. If this
lands on tails, then the bit encoded in the first round is returned. Otherwise, the program returns
a random bit.
16 In case both second-round messages contain a valid signature, always use the message of P0.

65

P AT [pkP]
((

x
(0)
R , x

(0)
0 , x

(0)
1 , x

(1)
0 , x

(1)
1

))
OTP := Pke.Dec(skP , xR)(

σ
(0)
0 , µ

(0)
0

)
:= Pke.Dec

(
skP , x

(0)
0

)
,

(
σ

(0)
1 , µ

(0)
1

)
:= Pke.Dec

(
skP , x

(0)
1

)
(

σ
(1)
0 , µ

(1)
0

)
:= Pke.Dec

(
skP , x

(1)
0

)
,

(
σ

(1)
1 , µ

(1)
1

)
:= Pke.Dec

(
skP , x

(1)
1

)
if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ

(1)
b , π[0]) then :

b := argminb′ (Sig.Vfy(vk, µ
(1)
b′ , π[0]))

coin ← Cointoss(2d)(x(1)
b)

if coin = tails then :

return OTP ⊕ σ
(1)
b

elseif coin = heads then :

coin ← Cointoss(2d)(x(0)
b)

if coin = tails then :

return OTP ⊕ σ
(0)
b

elseif coin = heads then :

return CointossS(x
(1)
0 ∥x

(1)
1)

(1/2) (0, 1)

elseif ∃b : Sig.Vfy(vk, µ
(0)
b , σ

(1)
b) then :

// No valid round-2 message whatsoever, but round 1 is okay

b := argminb′ (Sig.Vfy(vk, µ
(0)
b′ , σ

(1)
b′))

coin ← Cointoss(2d)(x(0)
b)

if coin = tails then :

return OTP ⊕ σ
(0)
b

elseif coin = heads then :

return CointossS(x
(1)
0 ∥x

(1)
1)

(1/2) (0, 1)

else :

return CointossS(x
(1)
0 ∥x

(1)
1)

(1/2) (0, 1)

Fig. 10: Obfuscated program P AT for the designated sender setting.

If there is no second-round message with a valid encryption of the first round, the program
continues by considering the first round messages. If there is a message that decrypts to a bit σ
and a valid signature µ on σ with respect to vk17, then the program flips a single coin which lands
on tails with probability 2d. In this case, the bit is returned. Otherwise, the circuit again returns a
uniformly random bit.

It is crucial that the randomness inside the ideally obfuscated circuit is derived from designated
parts of the circuit input only, the source of which is explicitly given inside the figures. We note
that this is in contrast to the established way of obfuscating probabilistic circuits due to [CLT+15].
Recall that in [CLT+15], the obfuscated circuit always derives its randomness from the entire input.
In our case, the randomness of, e.g., the first coin-toss is taken from the second sender message
only, whereas the randomness of the second coin-toss is taken from the first sender message. This
ensures a one-shot behavior, in that attacks which involve changing only a single message result in
a circuit which behaves deterministic, regardless of the new value of the changed message. Thereby,
this prevents attacks using repeated sampling to estimate output probabilities.

17 Again, in case both first-round messages contain a valid signature, always use the message of P0.

66

Security analysis.

Correctness. We first investigate the correctness of our protocol. That is, we prove the following
lemma:

Lemma 19 (Correctness). Let Π1
AT be instantiated as described in Fig. 9. Then Π1

AT is correct
with ε = 1− (1−2d)2

2 according to Eq. (3).

Hence, an honest protocol run guarantees that the bit σ will be received successfully with
probability at least 2d(1− d) + 1/2 = 1− (1−2d)2

2 .

Proof. We assume as input an honest transcript. Without loss of generality we ignore the One-
Time-Pad encoded by the receiver in this analysis by assuming that OTP = 0; the case for OTP = 1
is symmetrical only that the inverse bit is output by the circuit which is then flipped again by the
receiver. An honest transcript is handled by P AT as follows:

– The signature of the first round verifies on the sending parties input. With probability (1−
negl(κ)), this is the only signature that verifies, meaning that with probability (1− negl(κ)) +
negl(κ)

2 , this branch is taken. Now a biased coin is flipped:
• The first coin yield tails with probability 2d, in which case the correct output σ =: σ

(1)
b

encoded in the second-round message by Pb is returned.
• With probability (1− 2d), the coin yields heads, in which case a second coin is flipped:

∗ With probability 2d, the coin yields tails, in which case the correct output σ =: σ
(0)
b

encoded in the first-round message by Pb is returned.
∗ With probability (1− 2d), the coin lands on the heads-side. In this case, a new unbiased

coin is flipped:
· With probability 1/2, this new coin returns σ.
· With probability 1/2, this new coin returns (1− σ).

– With negligible probability negl(κ), the signature of the first round verifies on the dummy
friends input. In case of two signatures verifying, we deterministically choose the message from
party P0, which is correct with probability 1/2; hence we enter this branch with probability
(negl(κ))

2 . This too causes a coin flip.
• The first coin yield tails with probability 2d, in which case the encoded bit σ

(1)
1−b encoded

in the second-round message of the dummy friend P1−b is returned. Since the message was
random, this bit is uniformly distributed.

∗ σ1−b = σ with probability 1/2, meaning a correct output.
∗ σ1−b ̸= σ with probability 1/2, causing a faulty output.

• With probability (1− 2d), the coin yields heads, in which case a second coin is flipped:
∗ With probability 2d, the coin yields tails, in which case the first-round message of P1−b

is considered.
· With probability (1−negl(κ)), this has the wrong form, that is, the attached message

does not verify the encoded bit. In this case, the output bit is chosen at random:
– With probability 1/2, the output is σ.
– With probability 1/2, the output is (1− σ).

· With probability (negl(κ)), the first-round message contains a valid signature. This
causes a new coin flip:
– With probability 2d, this coin lands on tails, causing the output to be the bit
encoded in the first round. With this bit being uniformly distributed, we obtain:
=⇒ σ with probability 1/2.
=⇒ (1− σ) with probability 1/2.

– With probability (1− 2d), the coin lands on heads. In this case, the output is
taken at random, which implies we get
=⇒ σ with probability 1/2.
=⇒ (1− σ) with probability 1/2.

67

∗ With probability (1− 2d), the coin lands on the heads-side. In this case, a new unbiased
coin is flipped:
· With probability 1/2, this new coin returns σ.
· With probability 1/2, this new coin returns (1− σ).

So a wrong output is obtained with probability(
(1− negl(κ)) + negl(κ)

2

)
·
(

(1− 2d) ·
(

(1− 2d) ·
(

1
2

)))
+

(
negl(κ)

2

)
· 1

2

≈ (1− 2d)2

2

(38)

The approximation comes from setting negl(κ) = 0.
Thus, the correct output is returned with the complementary probability, which according to

Eq. (3) yields:

ε = 1− (1− 2d)2

2
(39)

This concludes our proof. ⊓⊔

Anonymity. We now focus on the anonymity of Π1
AT by proving the following lemma:

Lemma 20 (Anonymity (informal)). Let Π1
AT be instantiated as described in Fig. 9. Then

Π1
AT is anonymous with δ = 1− 2d according to Eq. (4).

Our proof looks as follows:

68

Game1(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : −

3 : −

4 : −
5 : −

6 : −

7 : −

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : −
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game2(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : −
5 : −

6 : −

7 : −

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game2(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : −
5 : −

6 : −

7 : −

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game3(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : −

7 : −

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game3(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : −

7 : −

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game4(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game4(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game5(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

9 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game5(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

9 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game6(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

9 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

12 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game6(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

9 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

12 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game7(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

9 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

12 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

15 : return CointossS(πC [x(1)
0])

(2d) (OTP ⊕ σC ,−)

16 : return CointossS(πC [x(0)
0])

(2d) (OTP ⊕ σC ,−)

17 : return CointossS(π[0])
(0.5) (0, 1)

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game7(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

9 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

12 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

15 : return CointossS(πC [x(1)
0])

(2d) (OTP ⊕ σC ,−)

16 : return CointossS(πC [x(0)
0])

(2d) (OTP ⊕ σC ,−)

17 : return CointossS(π[0])
(0.5) (0, 1)

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (σ, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , σ∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , σ∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game8(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

9 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

12 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

15 : return CointossS(πC [x(1)
0])

(2d) (OTP ⊕ σC ,−)

16 : return CointossS(πC [x(0)
0])

(2d) (OTP ⊕ σC ,−)

17 : return CointossS(π[0])
(0.5) (0, 1)

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R

$← {0, 1}m

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game8(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

9 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

12 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ σC ,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

15 : return CointossS(πC [x(1)
0])

(2d) (OTP ⊕ σC ,−)

16 : return CointossS(πC [x(0)
0])

(2d) (OTP ⊕ σC ,−)

17 : return CointossS(π[0])
(0.5) (0, 1)

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R

$← {0, 1}m

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game9(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

9 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

12 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

15 : return CointossS(πC [x(1)
1])

(2d) (OTP ⊕ σC ,−)

16 : return CointossS(πC [x(0)
1])

(2d) (OTP ⊕ σC ,−)

17 : return CointossS(π[0])
(0.5) (0, 1)

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R

$← {0, 1}m

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game9(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

9 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

12 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

15 : return CointossS(πC [x(1)
1])

(2d) (OTP ⊕ σC ,−)

16 : return CointossS(πC [x(0)
1])

(2d) (OTP ⊕ σC ,−)

17 : return CointossS(π[0])
(0.5) (0, 1)

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R

$← {0, 1}m

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game10(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

9 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

12 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

15 : return CointossS(πC [x(1)
1])

(2d) (OTP ⊕ σC ,−)

16 : return CointossS(πC [x(0)
1])

(2d) (OTP ⊕ σC ,−)

17 : return CointossS(π[0])
(0.5) (0, 1)

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

Game10(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

9 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

12 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

15 : return CointossS(πC [x(1)
1])

(2d) (OTP ⊕ σC ,−)

16 : return CointossS(πC [x(0)
1])

(2d) (OTP ⊕ σC ,−)

17 : return CointossS(π[0])
(0.5) (0, 1)

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

Game11(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

9 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

12 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

Game11(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

9 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

12 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

Game12(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

9 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

Game12(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

9 : return CointossS(πC [x(0)
1])

(d) (OTP ⊕ σC ,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

Game13(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

Game13(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

Game14(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : −

7 : −

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

Game14(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : −

7 : −

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

Game15(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : −
5 : −

6 : −

7 : −

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : −
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

Game15(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(σC , σC)

4 : −
5 : −

6 : −

7 : −

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : −
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

Game16(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : −

3 : −

4 : −
5 : −

6 : −

7 : −

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : −
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : µ

(0)
1 ← Sig.Sig(k, (σ, x

(0)
R))

9 : x
(0)
1 ← Pke.Enc(pkP , σ∥µ)

10 : P0 :
11 : −
12 : x

(1)
b

$← {0, 1}m

13 : P1 :
14 : µ

(1)
1 ← Sig.Sig(k, π[0])

15 : x
(1)
1 ← Pke.Enc(pkP , σ∥µ)

16 : return SP AT
A (π, T R)

83

That is, we use the following games:

Gameσ
1 (κ) This is the original game in which party P0 is the sender, but where the obfuscated circuit has

been replaced with oracle-access to the circuit and the PRF within the circuit is replaced by a
random oracle.

Gameσ
2 (κ) This game follows Gameσ

1 (κ), but during the simulation of the oracle P AT from Fig. 10, the
simulation enforces correctness of the challenge transcript πC by initially checking if the input
matches the challenge transcript and in that case, returning the output of a biased coin that
returns OTP ⊕ σC with probability (1− (1− 2d)2/2) and OTP ⊕ σC with the complementary
probability ((1− 2d)2/2). The randomness is taken over the entire transcript.

Lemma 21 (Indistinguishability of Gameσ
1 (κ) and Gameσ

2 (κ)). Let Pke be an IND$-CCA
secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For
all PPT guessing algorithms A, the distinguishing advantage for Gameσ

1 (κ) and Gameσ
2 (κ) is

bounded by:
|Pr[outGameσ

1 (κ) = 1]− Pr[outGameσ
2 (κ) = 1]| ∈ negl(κ)

Proof. See Lemma 19. ⊓⊔

Gameσ
3 (κ) This game follows Gameσ

2 (κ), but during simulation of the oracle P AT from Fig. 10, if the
input has a different first-round message of the sender or of the receiver, the simulated program
outputs a uniformly random bit. The randomness is taken over all three zero-round messages,
that is, over x

(0)
0 , x

(0)
1 and x

(0)
R .

Lemma 22 (Indistinguishability of Gameσ
2 (κ) and Gameσ

3 (κ)). Let Pke be an IND$-CCA
secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For
all PPT guessing algorithms A, the distinguishing advantage for Gameσ

2 (κ) and Gameσ
3 (κ) is

bounded by:
|Pr[outGameσ

2 (κ) = 1]− Pr[outGameσ
3 (κ) = 1]| ∈ negl(κ)

Proof. In the first step, we simulate the oracle by first checking if the first sending parties
message is a valid rerandomization of the message from the challenge transcript, i.e., if the
message differs but decrypts to the same value. We then additionally add a check whether the
first sending parties message differs and has a different decryption.
We can then combine the two branches to obtain the behavior described in Gameσ

3 (κ).

H0

−
−
p := −1
if π = πC then

p := 1− (1− 2d)2/2
fi

H1

if x
(0)
0 = πC [x(0)

0] then

(σ(0)
0 , µ

(0)
0) := πC [(σ(0)

0 , µ
(0)
0)]

p := −1
if π = πC then

p := 1− (1− 2d)2/2
fi

84

H2

if x
(0)
0 = πC [x(0)

0] then

(σ(0)
0 , µ

(0)
0) := πC [(σ(0)

0 , µ
(0)
0)]

p := −1
if π = πC then

p := 1− (1− 2d)2/2

elseif
(
π[x(0)

0] ̸= πC [x(0)
0]∧

Pke.Dec(skP , x
(0)
0) = πC [(σ(0)

0 , µ
(0)
0)]

)
then

p := 1/2
−
−
fi

H3

if x
(0)
0 = πC [x(0)

0] then

(σ(0)
0 , µ

(0)
0) := πC [(σ(0)

0 , µ
(0)
0)]

p := −1
if π = πC then

p := 1− (1− 2d)2/2

elseif
(
π[x(0)

0] ̸= πC [x(0)
0]∧

Pke.Dec(skP , x
(0)
0) = πC [(σ(0)

0 , µ
(0)
0)]

)
then

p := 1/2

elseif π[x(0)
0] ̸= πC [x(0)

0] then
p := 1/2

fi

H4

p := −1
if π = πC then

p := 1− (1− 2d)2/2

elseif π[x(0)
0] ̸= πC [x(0)

0] then
p := 1/2

fi

H0 This hybrid is identical to Gameσ
2 (κ).

H1 The oracle programs the content of the first sender message of the challenge transcript into
the circuit. Due to perfect correctness of Pke, games H0 and H1 are distributed identically.
This step prevents that decryption is called on the first sender message of the challenge
transcript.

H2 The oracle performs an initial check. If the first sending parties message is different from
the message reported in πC , but still contains the same content, then the oracle returns a
uniformly random bit.
This game hop is justified by the NM-CCA security of Pke, which Pke satisfies since it is
IND$-CCA secure, [BDP+98]. Consider a PPT distinguisher D between H1 and H2. We
construct an adversary A breaking the NM-CCA security of Pke as follows. A simulates H2
for D by first uniformly sampling a bit σ

(0)
0

$← {0, 1} to-be-transferred, creating a signature
key-pair (k, vk) ← Sig.KeyGen(1κ) and computing the signature µ

(0)
0 ← Sig.Sig(k, σ

(0)
0).

Next, A is sending the message (σ(0)
0 , µ

(0)
0) to its NM-CCA challenger C who in return

providesA with the challenge ciphertext ct∗.A simulates the oracle P AT using the previously
created verification key vk for signature checks and by forwarding all decryption queries to
the decryption oracle provided by C. Note that the decryption oracle is never queried for
ct∗ due to the changes made in H1.
H1 and H2 behave fully identically except if D makes an oracle query that causes the
simulated oracle to enter the newly introduced elseif-branch. If this event occurs, A returns
x

(0)
0 and the relation “equality”. Hence, D’s advantage in distinguishing H1 and H2 is upper

bounded by some negligible function.
H3 In this step, we additionally consider first sender-party messages which decrypt to a different

message.
Let D be a PPT distinguisher between H2 and H3. We build an adversary A breaking the
sEUF-CMA security of Sig as follows. A simulates H2 for D by choosing the encryption
parameters via Pke.KeyGen and by using oracle-queries to obtain valid signatures of σ for
the first round and of π[1] for the second round.
In order to distinguish H2 and H3, a distinguisher D must cause the oracle to behave
differently. That is, D needs to make the oracle in H3 take the newly introduced elseif-
branch such that the oracle in H2 produces a different output distribution. Given the event
that the oracle in H3 enters the new elseif-branch and the oracle in H2 does not behave
identically, i.e. does not return a uniformly random bit. Then, either

Sig.Vfy(vk, µ
(1)
b , π[0]) or (40)

Sig.Vfy(vk, µ
(0)
b , σ

(0)
b) (41)

85

for b = 0 needs to be satisfied to ensure differing behavior. Let E1 denote the event that
Eq. (40) occurs and let E2 denote the event that Eq. (41) occurs. Due to the changes
introduced in H2, the new elseif-branch can only be executed if π[x(0)

0] ̸= πC [x(0)
0] and

(σ(0)
0 , µ

(0)
0) := Pke.Dec(skP , x

(0)
0) ̸= πC [(σ(0)

0 , µ
(0)
0)].

Hence, if E2 occurs, the sEUF-CMA adversary A outputs (σ(0)
0 , µ

(0)
0) which is either a valid

signature for message 1− σ
(0)
0 (which has never been queried via the Sig oracle18) or a fresh

valid signature for σ
(0)
0 . If E1 occurs, µ

(1)
b is a valid signature for the first round transcript,

i.e., particularly for the message [x(0)
0] ̸= πC [x(0)

0]. In this case, the sEUF-CMA adversary A
outputs (π[0], µ

(1)
b). The message π[0] contains [x(0)

0] and has hence never been sent to the
Sig oracle. Hence, the advantage of D in distinguishing H2 and H3 is upper bounded by
some negligible function.

H4 The oracle in H3 and H4 behaves identically, hence H3 and H4 are identically distributed.
Further, H4 is identical to Gameσ

3 (κ).
This concludes the proof that |Pr[outGameσ

3 (κ) = 1]− Pr[outGameσ
2 (κ) = 1]| is negligible.

⊓⊔

Gameσ
4 (κ) This game is as Gameσ

3 (κ), but during simulation of the oracle P AT from Fig. 10, if the input
shares the same first-round message of the sender but has a different first-round message of the
receiver, the program outputs a uniformly random bit where the randomness is taken over all
three first-round messages.

Lemma 23 (Indistinguishability of Gameσ
3 (κ) and Gameσ

4 (κ)). Let Pke be an IND$-CCA
secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For
all PPT guessing algorithms A, the distinguishing advantage for Gameσ

3 (κ) and Gameσ
4 (κ) is

bounded by:
|Pr[outGameσ

3 (κ) = 1]− Pr[outGameσ
4 (κ) = 1]| ∈ negl(κ)

Proof. Let D be a distinguisher between Gameσ
3 (κ) and Gameσ

4 (κ) with non-negligible advantage
α. From D we can construct an adversary A on the sEUF-CMA security of the used signature
scheme Sig.
In order to differentiate D has to input a transcript π that in Gameσ

4 (κ) returns a uniformly
random bit, but that in Gameσ

3 (κ) returns some bit σ with probability 1/2 + α∗ with non-
negligible bias α∗. Yet the only difference in those two games is the case where the first sending
parties message is the same as in the challenge transcript and the receiver message differs from
the challenge transcript. Thus, in order to differentiate D has to insert a transcript π with the
property that π[x(0)

0] = πC [x(0)
0]. Due to the overwhelming correctness of Pke this fixes both

the bit σC and the signature µ. The signature, however, is on (σC , x
(0)
R). Thus, this fixes the

first receiver message.
Assuming that D also uses the same second-round message for the sender, that is, if π[x(1)

0] =
πC [x(1)

0], then the check in line 23 fails as well as the one in line 26, causing the circuit to return
a uniformly random bit. The only way to cause a differentiating behavior is thus to forge a
second-round message of the sender as well. This would be a valid forgery of a signature on a
message not queried before and thus would violate the sEUF-CMA security.
More formally, A works as follows:

Creation of the Transcript. The creation of the transcript is the same in both games. Thus the
adversary samples a uniformly random bit σC and completely simulates the encryption scheme
Pke. It replaces the signature creations of P0 with queries to the signature oracle provided by
the sEUF-CMA challenger. A reports the transcript πC to the distinguisher D.

18 Note that the reduction only uses the Sig oracle to produce the challenge transcript and, hence, never
queries the Sig oracle on 1− σ

(0)
0 .

86

Simulation of the Oracle. To provide an output the adversary A uniformly randomly selects
whether to return the bit according to the code from Gameσ

3 (κ) or Gameσ
4 (κ).

It then follows the respective code, which is trivially possible as A gets the verification key
from the sEUF-CMA challenger. Additionally, on each input π, the adversary checks if the
following conditions hold: (1)π[x(0)

0] = πC[x(0)
0], (2)π[x(0)

R] ̸= πC[x(0)
R], (3)π[x(1)

0] ̸= πC[x(1)
0] (4)

The signature µ encoded in π[x(1)
0] is a valid signature on (x(0)

R , x
(0)
0 , x

(0)
1).

There are two possibilities. Either none of the queries made by D fulfills all four conditions,
then—as mentioned before—the behavior of the circuit is exactly the same in both games and
hence α = 0. Or at least one of the queries made by D fulfills all four conditions—which by
assuming α /∈ negl(κ) has to be the case. Then the signature µ stored in x

(1)
0 is a valid forgery

to a message that was not previously queried by the adversary, hence µ can be used to break
the sEUF-CMA security of the signature scheme Sig with non-negligible probability.
Since we assumed this not to be the case due to the sEUF-CMA security of Sig, it follows that
D has at most a negligible advantage which proves our claim. ⊓⊔

Gameσ
5 (κ) This game follows Gameσ

4 (κ), but during simulation of the oracle P AT from Fig. 10, if the input
shares the same first-round message of the sender and receiver but has a different first-round
message of the dummy-friend, the program outputs the correct bit σC with probability 1/2 + d
and the wrong bit with the complementary probability.

Lemma 24 (Indistinguishability of Gameσ
4 (κ) and Gameσ

5 (κ)). Let Pke be an IND$-CCA
secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For
all PPT guessing algorithms A, the distinguishing advantage for Gameσ

4 (κ) and Gameσ
5 (κ) is

bounded by:
|Pr[outGameσ

4 (κ) = 1]− Pr[outGameσ
5 (κ) = 1]| ∈ negl(κ)

Proof. Again, the protocol messages are equivalent, we only take a shortcut in the simulation
of the oracle.
The case we’re in implies that the first sending parties message to be equivalent to the challenge
transcript, but the first dummy friend message is different. In this case, the game essentially
claims that the only path that is taken is the one where the verification of the signature in
the second sending parties message fails, and the first sending parties message is valid, thus
returning the output with probability 1/2 + d.
Again, a distinguisher D would have to cause some sort of different behavior; that is, creating
some input transcript π that shares the first sending parties message with πC , has a different
dummy friend first message than πC , and arbitrary second-round messages.
While the second dummy friend message is independent of the bit σ, as it was chosen randomly,
the second sending parties message will be considered invalid by the circuit, since the signature
is on a different dummy friend parties message.
As such, in order to obtain a different output probability, subject to the fact that the first
sending parties message remains the same and the first dummy friends message is changed,
the distinguisher D would either have to create a valid second-round message that contains a
signature on the first round (which is equally hard for any party) or forge a valid first-round
dummy-friend message that is considered a valid sending parties input.
However, assuming again Non-Malleability of Pke and sEUF-CMA of Sig, we can show that
no adversary can cause an altering behavior in Gameσ

4 (κ), that is, providing an input with the
same first sending-party message and a different dummy-friend message that causes a different
output distribution than the one that is biased with 1/2 + d towards σ.

⊓⊔

Gameσ
6 (κ) This game follows Gameσ

5 (κ), but during simulation of the oracle P AT from Fig. 10, if the input
shares the same first-round messages in the transcript, but a different second-round message
than the sending party, the program outputs the correct bit σC with probability 1/2 + d and
the wrong bit with the complementary probability.

Lemma 25 (Indistinguishability of Gameσ
5 (κ) and Gameσ

6 (κ)). Let Pke be an IND$-CCA
secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For

87

all PPT guessing algorithms A, the distinguishing advantage for Gameσ
5 (κ) and Gameσ

6 (κ) is
bounded by:

|Pr[outGameσ
5 (κ) = 1]− Pr[outGameσ

6 (κ) = 1]| ∈ negl(κ)

Proof. This proof again just takes a shortcut in the simulation of the protocol. More precisely,
we immediately capture the case where the second sending parties message is wrong.
Let π be a transcript that helps the distinguisher D in distinguishing these two games. We
know from the two previous games that π differs from πC in at least one second-round message,
but the first-round messages are equivalent to the challenge transcript.
If the second dummy-friend message, x

(1)
1 , differs, then the two games are actually equivalent,

leaking absolutely no distinguishing information. Hence, in order to distinguish, D has to query
the oracle with some input π where π[x(1)

0] ̸= πC [x(1)
0].

In the general program flow of Gameσ
5 (κ), the probability is that one hard-coded in Gameσ

6 (κ)
unless either the first if in line 20 results in true, or the elseif in line 23 is false.
Line 23 is fixed, however, since the randomness in both games is taken from the same source,
which we know to be equivalent to the challenge transcript.
Against line 20, we can create an efficient reduction algorithm breaking the sEUF-CMA-property
of Sig, since this message has to contain a valid signature on the first round transcript.

⊓⊔

Gameσ
7 (κ) This game follows Gameσ

6 (κ), but during simulation of the oracle P AT from Fig. 10, if the input
is equivalent to the challenge transcript except for the second dummy-friend message, output
the correct bit with probability 1− (1− 2d)2/2.

Lemma 26 (Indistinguishability of Gameσ
6 (κ) and Gameσ

7 (κ)). Let Pke be an IND$-CCA
secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For
all PPT guessing algorithms A, the distinguishing advantage for Gameσ

6 (κ) and Gameσ
7 (κ) is

bounded by:
|Pr[outGameσ

6 (κ) = 1]− Pr[outGameσ
7 (κ) = 1]| ∈ negl(κ)

Proof. In both games, the only distinguishing behavior can be induced by messages which
differ from the challenge transcript πC exactly in the final dummy-friend message. However,
this message information-theoretically contains no information regarding the transferred bit.
Replacing randomness with randomness changes nothing, so the only way a distinguisher can
detect the change is by inserting a new message for the dummy friend, which contains a valid
signature on the first round. Similar to Gameσ

6 (κ), the games can be sufficiently well simulated
to allow a reduction to the sEUF-CMA property of Sig.

⊓⊔

Gameσ
8 (κ) This game follows Gameσ

7 (κ), but reports uniformly random messages for all parties in the
challenge transcript.

Lemma 27 (Indistinguishability of Gameσ
7 (κ) and Gameσ

8 (κ)). Let Pke be an IND$-CCA
secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For
all PPT guessing algorithms A, the distinguishing advantage for Gameσ

7 (κ) and Gameσ
8 (κ) is

bounded by:
|Pr[outGameσ

7 (κ) = 1]− Pr[outGameσ
8 (κ) = 1]| ∈ negl(κ)

Proof. Let D be a distinguisher between Gameσ
7 (κ) and Gameσ

8 (κ) with success probability
1/2 + α. Out of D, we construct an efficient adversary A on the IND$-CPA property of Pke:
Let C be the IND$-CPA challenger. We once more adapt the Left-Right (LR) view, where the
challenger initially sets up an oracle and decides in the preparation phase, if on input x the
oracle should always return Pke.Enc(sk, x), or if it always returns a uniformly random string
of the same size. The adversary A wins, iff it can guess which oracle was used.
After obtaining oracle access from C, A samples a random OTP and sends OTP to the oracle.
The result is used as receiver message. Now A creates a signature-pair (k, vk)← Sig.KeyGen(1κ)
and draws a random bit σ

$← {0, 1}. Then, A computes a signature µ from σ using k and

88

sends (σ∥µ) to the oracle. The output is added to the challenge transcript πC as x
(0)
0 . The

adversary then samples some uniformly random x
(0)
1 of the same size and adds it to the challenge

transcript.
A then computes a signature µ on both those first-round messages and sends x∥µ to the oracle,
the returning value is taken as x

(1)
0 . Again, the dummy-friend message is chosen at random.

The adversary A then reports πC to D, who is allowed to make queries to the obfuscated circuit
on its own. Note that simulation of the circuit is trivially possible: Due to our previous games,
no input manages to pass line 15 in the depiction of the oracle, so all that A does is comparing
similarity of inputs π with the challenge transcript πC and acting accordingly.
Eventually, D outputs one of Gameσ

7 (κ) or Gameσ
8 (κ). On output Gameσ

7 (κ), A reports that
a genuine encryption oracle has been used, on output Gameσ

8 (κ), A reports that the oracle
returned randomness.
Those two cases are equivalent, as an encryption oracle yields exactly the distribution from
Gameσ

7 (κ), meaning that the message was actually an encryption, and a random oracle causes
all reported messages to be random; just as in Gameσ

8 (κ).
It thus follows that the success probability of A is 1/2 + α for α ∈ negl(κ) from the IND$-CPA
security of Pke, and since α from A is the same as the one from D, this implies D cannot be
better than 1/2 + α. ⊓⊔

Gameσ
9 (κ) This game follows Gameσ

8 (κ), but changes the oracle simulation. Instead of considering P0 to be
the sending party of the challenge transcript, the oracle in Gameσ

9 (κ) acts as if P1 is the sender
and P0 is the dummy friend. Note that this also implies a changed message to-be-considered for
the resp. coin-tosses.

Lemma 28 (Indistinguishability of Gameσ
8 (κ) and Gameσ

9 (κ)). Let Pke be an IND$-CCA
secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. Let c
be chosen such that c ≥ t. For all PPT guessing algorithms A, the distinguishing advantage for
Gameσ

8 (κ) and Gameσ
9 (κ) is bounded by:

|Pr[outGameσ
8 (κ) = 1]− Pr[outGameσ

9 (κ) = 1]| ≤ d · (3− 2d)

Proof. Based on the randomness of the coin toss involved in creating the challenge messages,
we can fix the world we are in based on the outcomes of the coin-tosses from F.
Fig. 11 shows the different worlds that exist based on the randomness involved in the creation
of the challenge transcript. A node contains three parts: The top part shows the output of the
correct challenge transcript and, if it exists, the corresponding world in the description that
follows. The middle part shows the probability that we end up in this world. The bottom part
shows the probability that an adversary can correctly guess the sender in this world; note that
the adversary can always guess, so the optimum here is at 1/2.
As we can see in Fig. 11, the randomness extracted by the PRF brings us in one of several
worlds:

World1 fixes the randomness extracted from the two first-round messages to yield the correct
bit, and contains a first sender message that causes the coin-toss to land on heads and
hence to ignore the bit contained in this round. This is the optimal world, as any changes
performed in the second round result in the circuit outputting the correct bit—there is no
path that causes the circuit to output anything other than σC . Similarly, since the original
first message round is ignored due to the coin landing on heads, changing any first-round
message replaces randomness with new randomness and hence only causes a new uniformly
distributed bit.
Hence, in this world, an adversary can trivially only guess.
Finally, note that the adversary can uniquely identify this world: It is the only world in
Fig. 11, where the correct bit σC is output, yet any new message of any party yields a new
uniformly random bit.

World2 contains a first-round message-pair where the corresponding coin-toss still yields the correct
bit, but the first-round sender-message additionally fixes the bit to σC . Unlike World1, this
allows for an efficient attack; the adversary can try out a polynomial number of random
messages for x

(0)
0 and then a polynomial number of random messages for x

(0)
1 with the resp.

89

CointossS
(π

C
[0])

(0
.5)

(σ
C
,σ

C)

σ
C

1
/2?

CointossS
(x

(0)
bC

)

(2d)
(T

,H
)

W
orld

1
/

σ
C

1
/2
−

d

0

Heads

(1−2d)

W
orld

2
/

σ
C

d1

Tails
2d

σC

1/2

?1/2?

CointossS
(x

(0)
bC

)

(2d)
(T

,H
)

?

1
/2
−

d

?

CointossS
(x

(1)
bC

)

(2d)
(T

,H
)

W
orld

5
/

σ
C

1
/2
·(1
−

2d) 2

0

Heads

(1−2d)

W
orld

4
/

σ
C

d
·(1
−

2d)

1

Tails
2d

Heads

(1−2d)

W
orld

3
/

σ
C

d1

Tails
2d

σC

1/2

F
ig.11:

Tree
show

casing
the

different
w

orlds,based
on

the
random

ness
from

a
uniform

ly
random

challenge
transcript.

90

other message taken from the challenge transcript. If the new message is from the sender,
then the circuit always falls back to the uniform output, and the output is a uniform bit. If
the new message is from the dummy friend, then the circuit extracts the correct bit from
the sending parties first message and always outputs the correct bit. Hence, the adversary
is able to clearly identify the sender.

World3 has the first round messages such that the coin-toss yields a different bit σC . This line is
more dangerous, as the path where all coin-tosses fail can now be efficiently distinguished
from the one where any of the coin-tosses succeeds. Furthermore, in this world, the first
sending parties coin lands on tails, thus fixing the bit immediately.
Note that in this world, the adversary can launch the same attack as in World2; changing
x

(0)
b yields a new output with every new message.

We stress that this world is indistinguishable to World2 for any (even statistical) adversary
A; the challenge transcript does not even consider the coin-toss based on both parties first-
round messages, and any new first-round message of either the dummy friend or the sender
yields new randomness to be used by F. But since they both share the same attack, output
and probability, we stress that there is no advantage for any adversary in distinguishing
World2 and World1. However, note that the adversary can trivially distinguish the cases
of being in either World2 or World1 from being in any of the other worlds mentioned in
Fig. 11.

World4 has a first-round challenge transcript that causes the PRF to output the wrong bit, a first
round sender-message that does not fix the output, but a second-round sender-message that
does fix the bit.
In this world, the distinguishing attack is similar to the one for the first round, only that
those messages are now taken from the challenge transcript, resulting in a one-shot behavior.
With the entire challenge transcript outputting σC, the circuit will also output σC for
any other arbitrarily chosen dummy-friend message. But since the second sending parties
message fixes the bit, changing that one causes all coin-tosses to fail and hence the circuit
to output bit σC .
This world can again be uniquely recognized by the adversary, as it is the only world where
changing any of the first-round message results in uniformly random output, but only a
new second-round sending parties message flips the output bit.

World5 again has the initial round challenge such that the PRF outputs the wrong bit σC , and the
two sending parties messages such that none of the coin-tosses results in the circuit fixing
the bit.
In this world, only randomness is involved, and the final output of even the challenge
transcript is σC—the wrong bit.
This world is unique to the adversary, as it is the only one where the wrong bit is output.
However, note that since no identifying information whatsoever is contained in the challenge
transcript, an adversary trapped in this world can only guess who the sender is.

So we have seen that after any randomly sampled two-rounds challenge transcript πC, the
adversary can be placed in one of five worlds. In Fig. 11, we additionally annotated the
probability of ending up in this world. Since we have a binary outcome—the adversary can
either uniquely determine the sender with 100% correctness, yielding an advantage of 1 in
figuring out which game has been played, or do none better than guessing, which ends up with
an advantage of 0. The advantage α of any distinguisher in correctly differentiating Gameσ

8 (κ)
from Gameσ

9 (κ) comes down to the following formula:

α ≤
5∑

i=1
Pr[Worldi] · αW orldi

=(1/2− d + 1/2 · (1− 2d)2) · 0 + (d + d + d · (1− 2d)) · 1
=d · (3− 2d)

(42)

⊓⊔

Gameσ
10(κ) This game follows Gameσ

9 (κ), but reports messages for an honest sender in the name of P1.

91

Lemma 29 (Indistinguishability of Gameσ
9 (κ) and Gameσ

10(κ)). Let Pke be an IND$-
CCA secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme.
For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

9 (κ) and Gameσ
10(κ)

is bounded by:
|Pr[outGameσ

9 (κ) = 1]− Pr[outGameσ
10(κ) = 1]| ∈ negl(κ)

Proof. See Lemma 27. ⊓⊔

Gameσ
11(κ) This game follows Gameσ

10(κ), but simulates the oracle in such a way, that the explicit check
regarding equality of the second dummy friends message between the challenge transcript and
the actual input is dropped.

Lemma 30 (Indistinguishability of Gameσ
10(κ) and Gameσ

11(κ)). Let Pke be an IND$-
CCA secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme.
For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

10(κ) and Gameσ
11(κ)

is bounded by:
|Pr[outGameσ

10(κ) = 1]− Pr[outGameσ
11(κ) = 1]| ∈ negl(κ)

Proof. See Lemma 26. ⊓⊔

Gameσ
12(κ) This game follows Gameσ

11(κ), but simulates the oracle in such a way, that the explicit check
regarding equality of the second senders message between the challenge transcript and the
actual input is dropped.

Lemma 31 (Indistinguishability of Gameσ
11(κ) and Gameσ

12(κ)). Let Pke be an IND$-
CCA secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme.
For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

11(κ) and Gameσ
12(κ)

is bounded by:
|Pr[outGameσ

11(κ) = 1]− Pr[outGameσ
12(κ) = 1]| ∈ negl(κ)

Proof. See Lemma 25 ⊓⊔

Gameσ
13(κ) This game follows Gameσ

12(κ), but simulates the oracle in such a way, that the explicit check
regarding equality of the first dummy friends message between the challenge transcript and the
actual input is dropped.

Lemma 32 (Indistinguishability of Gameσ
12(κ) and Gameσ

13(κ)). Let Pke be an IND$-
CCA secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme.
For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

12(κ) and Gameσ
13(κ)

is bounded by:
|Pr[outGameσ

12(κ) = 1]− Pr[outGameσ
13(κ) = 1]| ∈ negl(κ)

Proof. See Lemma 24. ⊓⊔

Gameσ
14(κ) This game follows Gameσ

13(κ), but simulates the oracle in such a way, that the explicit check
regarding equality of the receivers message between the challenge transcript and the actual
input is dropped.

Lemma 33 (Indistinguishability of Gameσ
13(κ) and Gameσ

14(κ)). Let Pke be an IND$-
CCA secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme.
For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

13(κ) and Gameσ
14(κ)

is bounded by:
|Pr[outGameσ

13(κ) = 1]− Pr[outGameσ
14(κ) = 1]| ∈ negl(κ)

Proof. See Lemma 23. ⊓⊔

Gameσ
15(κ) This game follows Gameσ

14(κ), but simulates the oracle in such a way, that the explicit check
regarding equality of the first sending parties message between the challenge transcript and the
actual input is dropped.

92

Lemma 34 (Indistinguishability of Gameσ
14(κ) and Gameσ

15(κ)). Let Pke be an IND$-
CCA secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme.
For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

14(κ) and Gameσ
15(κ)

is bounded by:
|Pr[outGameσ

14(κ) = 1]− Pr[outGameσ
15(κ) = 1]| ∈ negl(κ)

Proof. See Lemma 22. ⊓⊔

Gameσ
16(κ) This game follows Gameσ

15(κ), but simulates the oracle in such a way, that the explicit check
regarding equality of the challenge transcript and the actual input is dropped.

Lemma 35 (Indistinguishability of Gameσ
15(κ) and Gameσ

16(κ)). Let Pke be an IND$-
CCA secure public-key encryption scheme. Let Sig be an sEUF-CMA secure signature scheme.
For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

15(κ) and Gameσ
16(κ)

is bounded by:
|Pr[outGameσ

15(κ) = 1]− Pr[outGameσ
16(κ) = 1]| ∈ negl(κ)

Proof. See Lemma 21. ⊓⊔

We thus can go from a valid transcript for P0 as sending party to a valid transcript for P1
as sending party using only gamehops with negligible distinguishing advantage and one gamehop
(Gameσ

9 (κ)) with advantage d. Thus, no algorithm for deanonymizing the sending party can have
advantage significantly better than d.

Corollary 10 (Anonymity). Let Π1
AT be instantiated as described in Fig. 9. No guessing

algorithm A can extract the identity b of the sending party Pb better than with probability 1/2 + d.

We can now investigate the actual privacy of our algorithm.

Lemma 36 (δ-Anonymity). The protocol from Fig. 9 is δ-anonymous with δ = (1− 2d).

Proof. The formula for δ-anonymity is given in Eq. (4) as∣∣∣∣∣ Pr
b

$←{0,1}

[
Expanon

Π1
AT

,A,b(κ) = b
]
− 1/2

∣∣∣∣∣ ≤ (1− δ)/2

We have seen in Corollary 10 that the probability of winning ExpΠ1
AT

,A,b is bounded by 1/2 + d,
which yields

|1/2 + d − 1/2| = d ≤ (1− δ)/2
This can be reformulated into δ ≤ 1− 2d. Since δ is the maximum number that that fulfills this
equation, we obtain our claim that δ = 1− 2d. ⊓⊔

Secrecy. Now we analyze the chances of an algorithm A being able to output the correct bit
without knowing the receivers random tape. Those chances are low due to the One-Time-Pad—our
proof basically proves that (1) without the One-Time-Pad the output can not be reconstructed
better than by randomly guessing a bit, and (2) without the secret key skP hidden by the P AT

the One-Time-Pad can not be reconstructed. Thus secrecy follows from the statistical security of
One-Time-Pads and the IND$-CCA-security of Pke.

We now show indistinguishable of the transferred bit to any guessing algorithm A that does not
use the receiver’s random tape. To that end, we have to show indistinguishability of the following
two distributions against any adversary that does not know the receiver’s random tape:

{σ := 0; π
$← ⟨R, P0, P1⟩(b, σ) : π}

≈ {σ := 1; π
$← ⟨R, P0, P1⟩(b, σ) : π}.

(43)

We thus provide a proof reminiscent of that for anonymity but we deviate on different spots.
Essentially the game hops are the same until Gameσ

8 (κ) which is distinguishable from Gameσ
1 (κ)

with only negligible advantage as shown in the anonymity proof. Our major difference is that we
start with a sender who always transfers σ = 0, and in the situation resembling Gameσ

8 (κ) we swap
the message to be σ = 1. We claim that this can not be distinguished and hence show overwhelming
secrecy ς ∈ (1− negl(κ)).

93

Game1(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : −

3 : −

4 : −
5 : −

6 : −

7 : −

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : −
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (0, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , 0∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , 0∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game2(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(0, 1)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

9 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ 0,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

12 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ 0,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

15 : return CointossS(πC [x(1)
0])

(2d) (OTP ⊕ 0,−)

16 : return CointossS(πC [x(0)
0])

(2d) (OTP ⊕ 0,−)

17 : return CointossS(π[0])
(0.5) (0, 1)

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R

$← {0, 1}m

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : −
12 : x

(1)
0 ← {0, 1}m

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game2(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(0, 1)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

9 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ 0,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

12 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ 0,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

15 : return CointossS(πC [x(1)
0])

(2d) (OTP ⊕ 0,−)

16 : return CointossS(πC [x(0)
0])

(2d) (OTP ⊕ 0,−)

17 : return CointossS(π[0])
(0.5) (0, 1)

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R

$← {0, 1}m

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : −
12 : x

(1)
0 ← {0, 1}m

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game3(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(1, 0)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

9 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ 1,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

12 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ 1,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

15 : return CointossS(πC [x(1)
0])

(2d) (OTP ⊕ 1,−)

16 : return CointossS(πC [x(0)
0])

(2d) (OTP ⊕ 1,−)

17 : return CointossS(π[0])
(0.5) (0, 1)

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R

$← {0, 1}m

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : −
12 : x

(1)
0 ← {0, 1}m

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game3(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : if π = πC then

3 : return OTP ⊕ CointossS(πC)
(1−(1−2d)2/2)(1, 0)

4 : elseif π[x(0)
0] ̸= πC [x(0)

0] then

5 : return CointossS(π[0])
(0.5) (0, 1)

6 : elseif π[x(0)
R] ̸= πC [x(0)

R] then

7 : return CointossS(π[0])
(0.5) (0, 1)

8 : elseif π[x(0)
1] ̸= πC [x(0)

1] then

9 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ 1,−)

10 : return CointossS(π[0])
(0.5) (0, 1)

11 : elseif π[x(1)
0] ̸= πC [x(1)

0] then

12 : return CointossS(πC [x(0)
0])

(d) (OTP ⊕ 1,−)

13 : return CointossS(π[0])
(0.5) (0, 1)

14 : elseif π[x(1)
1] ̸= πC [x(1)

1] then

15 : return CointossS(πC [x(1)
0])

(2d) (OTP ⊕ 1,−)

16 : return CointossS(πC [x(0)
0])

(2d) (OTP ⊕ 1,−)

17 : return CointossS(π[0])
(0.5) (0, 1)

18 : fi
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R

$← {0, 1}m

4 : P0 :
5 : −
6 : x

(0)
0

$← {0, 1}m

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : −
12 : x

(1)
0 ← {0, 1}m

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

Game4(κ)
1 : (OTP) := Pke.Dec(skP , x

(0)
R)

2 : −

3 : −

4 : −
5 : −

6 : −

7 : −

8 : −

9 : −

10 : −

11 : −

12 : −

13 : −

14 : −

15 : −

16 : −

17 : −

18 : −
19 : (σ(0)

0 , µ
(0)
0) := Pke.Dec(skP , x

(0)
0)

20 : (σ(0)
1 , µ

(0)
1) := Pke.Dec(skP , x

(0)
1)

21 : (σ(1)
0 , µ

(1)
0) := Pke.Dec(skP , x

(1)
0)

22 : (σ(1)
1 , µ

(1)
1) := Pke.Dec(skP , x

(1)
0)

23 : if ∃b ∈ {0, 1} : Sig.Vfy(vk, µ
(1)
b , π[0]) then

24 : return CointossS(x
(1)
b

)
(2d) (OTP ⊕ σ

(1)
b ,−)

25 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

26 : elseif ∃b : Sig.Vfy(vk, µ0
b , (σ(0)

b , x
(0)
R)) then

27 : return CointossS(x
(0)
b

)
(2d) (OTP ⊕ σ

(0)
b ,−)

28 : fi

29 : return CointossS(π[0])
(1/2) (0, 1)

30 :
1 : R :
2 : OTP $← {0, 1}
3 : x

(0)
R ← Pke.Enc(pkP , OTP)

4 : P0 :
5 : µ

(0)
0 ← Sig.Sig(k, (1, x

(0)
R))

6 : x
(0)
0 ← Pke.Enc(pkP , 1∥µ)

7 : P1 :
8 : −
9 : x

(0)
1

$← {0, 1}m

10 : P0 :
11 : µ

(1)
0 ← Sig.Sig(k, π[0])

12 : x
(1)
0 ← Pke.Enc(pkP , 1∥µ)

13 : P1 :
14 : −
15 : x

(1)
1

$← {0, 1}m

16 : return SP AT
A (π, T R)

96

Gameσ
1 (κ) This is the original game, in which party P0 is the sender who transmits σ = 0.

Gameσ
2 (κ) This game follows Gameσ

1 (κ), but with the following changes:
During the simulation of the oracle P AT from Fig. 10 the simulation enforces correctness of
the challenge transcript πC by initially checking if the input matches the challenge transcript
and in that case, returning the output of a biased coin that returns OTP ⊕ σC with probability
(1 − (1 − 2d)2/2) and OTP ⊕ σC with the complementary probability ((1 − 2d)2/2). The
randomness is taken over the entire transcript.
During simulation of the oracle P AT from Fig. 10:

– if the input has a different first-round message of the sender or of the receiver, the simulated
program outputs a uniformly random bit. The randomness is taken over all three zero-round
messages, that is, over x

(0)
0 , x

(0)
1 and x

(0)
R .

– if the input shares the same first-round message of the sender but has a different first-round
message of the receiver, the program outputs a uniformly random bit where the randomness
is taken over all three first-round messages.

– if the input shares the same first-round message of the sender and receiver but has a different
first-round message of the dummy-friend, the program outputs the correct bit σC with
probability 1/2 + d and the wrong bit with the complementary probability.

– if the input shares the same first-round messages in the transcript, but a different second-
round message than the sending party, the program outputs the correct bit σC with
probability 1/2 + d and the wrong bit with the complementary probability.

– if the input is equivalent to the challenge transcript except for the second dummy-friend
message, output the correct bit with probability 1− (1− 2d)2/2.

Additionally, it reports uniformly random messages for the challenge transcript.

Lemma 37. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Sig be an
sEUF-CMA secure signature scheme. For all PPT guessing algorithms A, the distinguishing
advantage for Gameσ

1 (κ) and Gameσ
2 (κ) is bounded by:

|Pr[outGameσ
1 (κ) = 1]− Pr[outGameσ

2 (κ) = 1]| ∈ negl(κ)

Proof. See Lemmas 21 to 27. ⊓⊔

Gameσ
3 (κ) This game follows Gameσ

2 (κ), but changes the simulation of the circuit. Instead of using σC = 0
for answering queries, this game uses σC := 1.

Lemma 38. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Sig be an
sEUF-CMA secure signature scheme. For all PPT guessing algorithms A, the distinguishing
advantage for Gameσ

2 (κ) and Gameσ
3 (κ) is bounded by:

|Pr[outGameσ
2 (κ) = 1]− Pr[outGameσ

3 (κ) = 1]| ∈ negl(κ)

Proof. Indistinguishability of these two games easily follows from the statistical security of
One-Time-Pad encryption. Due to the messages being random the one-time-pad used to mask
the bit is never shown directly to the distinguisher, and without the random tape it cannot be
guessed. Hence in both games the distinguisher only ever gets a random bit. Indistinguishability
follows. ⊓⊔

Gameσ
4 (κ) This game is as Gameσ

3 (κ) but undoes all the changes performed in Gameσ
2 (κ).

Lemma 39. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Sig be an
sEUF-CMA secure signature scheme. For all PPT guessing algorithms A, the distinguishing
advantage for Gameσ

3 (κ) and Gameσ
4 (κ) is bounded by:

|Pr[outGameσ
3 (κ) = 1]− Pr[outGameσ

4 (κ) = 1]| ∈ negl(κ)

Proof. See Lemmas 21 to 27. ⊓⊔

Corollary 11 (Secrecy). Let Π1
AT be instantiated as described in Fig. 9. No guessing algorithm

A that works without knowledge of the receivers random tape T R can extract the transferred bit using
only the transcript and oracle-access to P AT .

97

Protocol Π1
AT

(c) in the designated sender setting for c > 2 rounds.

We assume three parties are present in this protocol, two of which are participating. Let P0 and P1 be
the potential sender, one of which is not participating, and let R denote the receiver.
Let Pke = (KeyGen, Enc, Dec) be an asymmetric IND$-CCA-secure encryption scheme with Pseudo-
random Ciphertexts.
Let Sig be an sEUF-CMA-secure signature scheme.
Let P AT be an obfuscated program from Fig. 10, which hides a verification key vk and a secret key
skP , the corresponding public key pkP is leaked.
The protocol Π1

AT
(c) works as follows:

On input (b, σ, k), Pb enters (b, σ, k) into Π1
AT

(c−1).
On input (⊥), P1−b enters (⊥) into Π1

AT
(c−1).

On input (⊥), R does nothing.
On input π(c−1) from Π1

AT
(c−1), Pb computes µ ← Sig.Sig(k, π(c−1)) and sets x

(c)
b ←

Pke.Enc(pkP , σ∥µ).
P1−b samples uniformly random x

(c)
1−b.

R outputs OTP ⊕ P AT (x(1)
R , x

(1)
0 , x

(1)
1 , . . . , x

(c)
0 , x

(c)
1).

Fig. 12: The designated sender protocol for Anonymous Transfer. We generally assume that once all
messages of one round have been determined, parties publish them.

P AT [pkP]
((

x
(1)
R , x

(1)
0 , x

(1)
1 , . . . , x

(c)
0 , x

(c)
1

))
OTP := Pke.Dec(skP , x

(1)
R),(

σ
(c)
0 , µ0

)
:= Pke.Dec

(
skP , x

(c)
0

)
,

(
σ

(c)
1 , µ1

)
:= Pke.Dec

(
skP , x

(c)
1

)
if ∃b ∈ {0, 1} : Sig.Vfy

(
vk, µb,

(
x

(1)
0 , x

(1)
1 , . . . , x

(c−1)
0 , x

(c−1)
1

))
then :

coin ← Cointoss(2d)(x(c)
b)

if coin = tails then :

return OTP ⊕ σ
(1)
b

return P AT

(
x

(1)
R , x

(1)
0 , x

(1)
1 , . . . , x

(c−1)
0 , x

(c−1)
1

)
Fig. 13: Obfuscated program P AT for the designated sender setting.

Corollary 12 (ς-Secrecy). Π1
AT from Fig. 9 is ς-secret with ς ∈ (1− negl(κ)).

Proof. For ℓ = 1 the formula from Eq. (20) is given as:∣∣∣∣Pr
[

π ← Transfer⟨R,P0,P1⟩(crs, b, σ)
σ′ ← A(crs, π)

]
− 1/2

∣∣∣∣ ≤ (1− ς)/2 (44)

where the former probability was shown to be ≤ 1/2 + negl(κ). Thus the equation becomes
negl(κ) ≤ (1− ς)/2 =⇒ ς = 1− negl(κ) where we use that 2 · negl(κ) ∈ negl(κ). ⊓⊔

Corollary 13 (Security). Π1
AT is a (4d(1− d), 1− 2d, 1− negl(κ))-AT.

E.2 A c-rounds protocol.

We now provide a recursive definition on how to extend the two-rounds protocol from Fig. 9 to a
general c-rounds protocol.

98

The protocol is defined for any c > 2 and works as follows: In each round χ, both messages
are decrypted. If either of them contains a valid signature on the transcript up to round χ − 1,
the program returns the bit encoded in the same message with probability 2d. We require the
signature to be on the full transcript, since otherwise, an adversary can learn if this round has
been considered by the circuit for the transfer, by replacing both messages in round χ ∈ [1, c]. The
program recursively returns its own output on the same input except for the last round, if the coin
lands on heads (i.e. with probability (1− 2d)), or if the last-round messages do not contain a valid
signature.

Security Analysis.

Correctness. We will now analyze the correctness of the new protocol:

Lemma 40 (Correctness). Let Π1
AT be given as described in Fig. 12. Let c ∈ N > 1 be the number

of rounds. Π1
AT returns the correct bit with probability 1−(1−2d)c/2, and hence ε = 1−(1−2d)c/2.

Proof. We perform this proof by mathematical induction.

Base: c = 2. Here our claim states that σ is returned with probability 1 − (1−2d)2

2 , which was
shown in Lemma 19 (see Eq. (39)).

Inductive Step: If Π1
AT

(c) can transfer the bit σ with correctness 1− (1− 2d)c/2, then Π1
AT

(c+1)

can transfer the bit σ with correctness 1− (1−2d)c+1/2. On honest inputs, only the signature of
party Pb verifies, the random input of P1−b is a valid signature only with negligible probability,
which we drop here. The protocol Π1

AT

(c+1) returns the bit with the following probability:(
2d · 1 + (1− 2d) · Pr[Π1

AT

c returns correct bit]
)

=
(

2d + (1− 2d) ·
(

1− (1− 2d)c

2

))
=

(
2d + (1− 2d)− (1− 2d) · (1− 2d)c

2

)
=

(
1− (1− 2d)c+1

2

)
(45)

Conclusion: The claim is true.

Plugging this into the Definition 4 for ε-correctness yields:

ε = 1− (1− 2d)c/2 (46)

⊓⊔

Anonymity. We now also analyze our new protocol with respect to anonymity. But we first prove
two lemmas we’ll need later.

Lemma 41 (Changing the Senders Message). Let Π1
AT

(c) be given as in Fig. 12. Let c ∈ N > 1
be the number of rounds. Changing the sending parties message in round χ ∈ [1, c] yields the correct
output with probability 1− ((1− 2d)χ−1)/2

Proof. This proof follows from the correctness properties combined with the signatures on all
previous messages: A changed sending parties message in round χ causes all signatures from rounds
χ + 1 to c to fail to verify, and in itself has a valid signature only with negligible probability; as
such, the output is the same if two random messages are used for each future round.

Hence, our claim follows from the correctness property of Lemma 40, since this protocol is now
equivalent to a valid c− 1-round protocol. ⊓⊔

Lemma 42 (Changing the Dummy Friends Message). Let Π1
AT

(c) be given as in Fig. 12.
Let c ∈ N > 1 be the number of rounds. Changing the dummy friends message in round χ ∈ [1, c]
yields the correct output with probability 1− ((1− 2d)χ)/2

99

Proof. Likewise, this follows from the correctness property. A changed dummy friend message in
round χ causes the sending parties signature to fail from round χ + 1 onward. Due to the recursion,
all messages from rounds c to message χ + 1 are ignored, as they have an invalid signature. The
output of the χ-message protocol is returned, which is correct with probability 1− ((1− 2d)χ)/2,
according to Lemma 40. ⊓⊔

Lemmas 41 and 42 imply that most of the steps from Lemma 36 can be canonically extended
from two to c rounds by introducing new hybrid games. The only game that requires further
investigation is Lemma 28. In fact, the following diff is added to the games:

Gameσ
1 (κ) This game follows the protocol execution from Fig. 12 where the obfuscated circuit is

replaced with oracle-access to the circuit and the PRF within the circuit is now a random
oracle.

Gameσ
2 (κ) When the correct transcript is input, the oracle returns the correct bit with probability

(1− (1− 2d)c/2), simulating correctness according to Lemma 40. The randomness is taken over
the whole transcript.

Gameσ
3 (κ) to Gameσ

7 (κ) Those games hard-code the one-shot behavior for different input messages.
We replace these four game by a series of 2c games, which alternate between hard-coding
behaviors for the sending party and for the dummy friend in an increasing order. More precisely,
for each round χ ∈ [2c], there are 2 consecutive games 2χ − 1 and 2χ, where the (2χ − 1)-
th game adds a new check regarding the sending parties input in round χ, and returns the
correct bit with probability (1− (1−2d)χ−1

2), and the (2χ)-th game adds a check regarding the
dummy-friends input in round χ, where the correct bit is returned with probability (1− (1−2d)χ

2).
Indistinguishability of the (2χ− 1)-th new game follows from Lemma 41, indistinguishability of
the (2χ)-th new game is implied by Lemma 42.

Gameσ
8 (κ) This is adjusted canonically to all c rounds. By exploiting the LR-view used in the proof,

no further adjustments are required.

The adjustment of the inverse games, Gameσ
10(κ) to Gameσ

16(κ), is analogous to the above. The
one missing game is Gameσ

9 (κ), which requires a more rigorous analysis.

Lemma 43 (Adapting Gameσ
9 (κ) to c rounds). Let Pke be an IND$-CCA secure public-key

encryption scheme. Let Sig be an sEUF-CMA secure signature scheme. For all PPT guessing
algorithms A, the distinguishing advantage for a changed sender after adjusting Gameσ

8 (κ) to c
rounds is bounded by:

|Pr[outP0 = 1]− Pr[outP1 = 1]| ≤ 2d + 1− (1− 2d)c

2

Proof. We use the same basic technique as in Lemma 28, in that we discretize the set of possible
worlds based on the coin-toss outcomes of an honestly created, fixed transcript.

We claim that the view provided in Fig. 14 implies our claim. We once again use mathematical
induction.

Base: c = 2. Here our claim states that the change is detected with probability 2d+1−(1−2d)2

2 =
d(3− 2d), with the tree from Fig. 14 corresponding to Fig. 11. This was proven in Lemma 28.

Inductive Step: This step contains two parts. First, we show that, assuming that the view from
Fig. 14 correctly represents the different worlds alongside their anonymity- and occurrence-
guarantees, an additional round only adds one more relevant world to the one edge where the
initial coin-toss yields σ̄C and all other coin-tosses land on heads. We then show that, given
the view from Fig. 14, the probability of successfully distinguishing the change induced by this
game hop is 2d+1−(1−2d)c

2 .
We start by the former, namely showing that our tree-expansion mechanism can be canonically
expanded from c to (c + 1) rounds. For that, we refer to the following worlds:

World1 is as World2 in the two-round setting. Here, there already is an attack that de-anonymizes
the sender, hence allows detection of the game hop. Hence a new round brings absolutely
no advantage.

100

Co
in

to
ss

S(π
C

[0
])

(0
.5

)
(σ

C
,σ

C
)

σ
C

1/
2 ?

Co
in

to
ss

S(x
(0

)
b

C
)

(2
d)

(T
,H

)

W
or

ld
2

/
σ

C

1/
2
−

d

0
Heads

(1 −
2d)

W
or

ld
1

/
σ

C

d 1

Tails
2d

σC

1/2

? 1/
2 ?

Co
in

to
ss

S(x
(0

)
b

C
)

(2
d)

(T
,H

)

?

1/
2
−

d

?

Co
in

to
ss

S(x
(1

)
b

C
)

(2
d)

(T
,H

)

?

1/
2
·(

1
−

2d
)2

?

Co
in

to
ss

S(2
d)

(x
(c

−
1)

b
C

)(T
,H

)

W
or

ld
6
/σ

C

1/
2
·(

1
−

2d
)c

0

Heads

(1 −
2d)

W
or

ld
5
/σ

C

d
·(

1
−

2d
)c

−
1

1

Tails
2d

..
.

Heads

(1 −
2d)

W
or

ld
4

/
σ

C

d
·(

1
−

2d
)

1

Tails
2d

Heads

(1 −
2d)

W
or

ld
3

/
σ

C

d 1

Tails
2d

σC

1/2

F
ig

.1
4:

Tr
ee

sh
ow

ca
si

ng
th

e
di

ffe
re

nt
w

or
ld

s,
ba

se
d

on
th

e
ra

nd
om

ne
ss

fr
om

a
un

ifo
rm

ly
ra

nd
om

ch
al

le
ng

e
tr

an
sc

rip
t.

101

World2 is as World1 in the two-round setting. We refer to this world as optimal in the following
sense: Every new input of any first-round message yields a fresh random output, but every
new input of any other message—regardless from which party—yields the correct bit σC .
Hence, here it automatically follows that no new round induces any changes, as the result
does not change regardless of the output of the new coin-toss.

World3 is as World3 in the two-round setting. As we have already shown in Lemma 28 that there
is an attack on the first round here, which works regardless of the number of rounds.

World4 represents all worlds that have a sequence where the first coin-toss lands on σ̄C , followed
by (χ− 1) rounds of coin-tosses that land on heads and have a coin-toss in round χ that
ends with tails. We stress that the same attack that was possible on round one of World4
in Lemma 28 also works here, and that the respective probability of being in either of these
worlds is given by 1/2 · (1− 2d)χ−1 · d. Whatever follows is irrelevant, as the attack already
works on round χ.

World5 is the first of the two relevant new worlds that come up when we add a new round: We only
are in this world, if the previous transcript has been such that all coin-tosses landed on
heads, and the initial coin-toss yields the wrong bit σ̄C . If the new round yields a coin-toss
that lands on tail in the new round only, then this final round is susceptible to the same
attack that was used in World4 on trying new inputs for the final round. Any new sending
parties message yields σ̄C, but the same transcript with any new dummy-friend message
causes the correct bit to be output, making it trivial to detect the change.

World6 is the second and final of the two new relevant worlds. In this world, the game change is
impossible to detect, as all coin-tosses in the challenge transcript land on heads, and all
sending parties messages are ignored just like the dummy friends inputs; the output bit is
determined by the coin-toss on both first-round messages, which in these worlds yield σ̄C .
While the output is wrong, we stress that the anonymity in here is perfectly, meaning that
we get an advantage of 0.

Knowing that the world-view from Fig. 14 is consistent with the c rounds protocol, we can now
put a bound on the success probability of the adversary. Intuitively, the adversary can perfectly
detect the game hop, unless we are in World2 or World6, where detection is (even statistically)
impossible. Hence, the probability of an adversary to successfully distinguish the two games is
given by

1− Pr[World2]− Pr[World6]

=1−
(

1− 2d
2

)
−

(
1
2 · (1− 2d)c

)
=2− 1 + 2d − (1− 2d)c

2

=1 + 2d − (1− 2d)c

2

(47)

Conclusion: The claim is true for any c round protocol.

⊓⊔

Thus, we have shown that all games for Lemma 36 can be canonically adjusted to c > 2 rounds,
with the distinguishing advantage between the transcript where P0 is the sending party and P1
being the sending party being limited by 1+2d−(1−2d)c

2 .
We now analyze what this means for our overall anonymity guarantee.

Lemma 44 (Anonymity of the c-round protocol). The protocol from Fig. 12 is δ-anonymous
with δ ≤ 1− |2d − (1− 2d)c|.

Proof. Recall from Eq. (4) that the anonymity δ is the maximum δ for which it holds that∣∣∣∣∣ Pr
b

$←{0,1}

[
ExpΠ1

AT
,A,b(κ) = b

]
− 1/2

∣∣∣∣∣ ≤ (1− δ)/2 (48)

102

and that the former probability has been shown to be limited by 1+2d−(1−2d)c

2 . Hence, we get that

δ = max
δ′

∣∣∣∣1 + 2d − (1− 2d)c

2 − 1
2

∣∣∣∣ ≤ 1− δ′

2

= max
δ′

∣∣∣∣2d − (1− 2d)c

2

∣∣∣∣ ≤ 1− δ′

2

(49)

This implies that δ ≤ 1− |2d − (1− 2d)c|, which proves our claim. ⊓⊔

We now focus on the secrecy of the protocol. Note that the output is still encrypted by a OTP
and hence the additional rounds do not change the fact that the actually transferred bit can not be
extracted by any party other than the receiver.

We thus get

Lemma 45. The protocol from Fig. 12 is ς-secret with ς ∈ (1− negl(κ)).

Thus, by combining Lemmas 40, 44 and 45, we obtain:

Corollary 14 (Security of the c-round protocol). Π1
AT

(c) from Fig. 12 is a ((1 − (1 −
2d)c), (1− |2d − (1− 2d)c|), (1− negl(κ)))-AT.

E.3 On the security

For a practical instantiation, we assume that the parameter d is chosen subject to a given correctness
guarantee and then chosen according to the formula from Lemma 40. For example, for a 10-round
AT which is correct with 90% probability, we have to solve 1 − (1 − 2d)10/2 = 0.9, resulting in
d ≈ 0.07433. This would then yield a (0.9, 0.94)-AT, where the adversary is able to determine the
sending party with a probability of 0.47433.

In Fig. 15, we show the trade-of between correctness and anonymity for a correctness of 0.9999,
0.9, 0.75 and 0.6, respectively.

F A fine-grained Anonymous Transfer for ℓ-bit messages

Instead of using the limited composability guarantees established in Lemma 5 to extend our fine-
grained AT from transferring a single bit towards transforming an ℓ-bit string we perform some
slight modifications of the protocol introduced in Section 5 to see how it can handle the transfer of
ℓ-bit messages directly.

103

(a) The relation between correctness and anonymity for up to 100-round protocols.

(b) The relation between correctness and anonymity for up to 10.000-round protocols.

Fig. 15: Two images showing the anonymity obtained for a given correctness requirement. The x-axis
showcases the number of rounds for the protocol, which for clarity we scaled to 100 and 10.000. The y-axis
shows the anonymity guarantee, i.e. the maximum advantage of an adversary in finding the sending party.

104

Fine-grained Protocol Πℓ
AT for ℓ-bit messages Σ ∈ {0, 1}ℓ.

We assume three parties are present in this protocol, two of which are participating. Let P0 and P1 be
the potential sender, one of which is not participating, and let R denote the receiver.
Let Pke = (KeyGen, Enc, Dec) be a IND$-CCA-secure public-key encryption scheme.
Let Ske = (KeyGen, Enc, Dec) be a multi-challenge IND$-CPA-secure symmetric encryption scheme.
Let Sig : {0, 1}∗ × {0, 1}κ 7→ {0, 1}m be a EUF-CMA-secure signature scheme.
Let P AT be an obfuscated program from Fig. 17.
The protocol Πℓ

AT works as follows:

Upon activation , R draws a random OTP $← {0, 1}ℓ and computes (kR, vkR) ← Sig.KeyGen(1κ).
Then R sets x

(0)
R ← Pke.Enc(pkP , (OTP, vkR)) and broadcasts x

(0)
R .

On input (b, Σ), Pb computes a signature key pair (vkb, kb)← Sig.KeyGen(1κ) and a symmetric key
skb ← Ske.KeyGen(1κ).
Then, Pb computes a signature µ ← Sig.Sig(kb, x

(0)
R) and broadcasts x

(0)
b ←

Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, Σ).
Upon activation , P1−b sets uniformly random x

(0)
b

.
For each round χ from 1 to c :

Pb computes µ← Sig.Sig
(

kb,
(

x
(χ−1)
0 , x

(χ−1)
1

))
and sets x

(χ)
b ← Ske.Enc(skb, (Σ, µ)).

P1−b: Broadcast x
(χ)
1−b

$← {0, 1}m.

R: computes µ ← Sig.Sig
(

kR,
(

x
(0)
R ,

(
x

(0)
0 , x

(0)
1

)
, . . . ,

(
x

(c)
0 , x

(c)
1

)))
, compute Σ′ :=

P AT

(
x

(0)
R ,

(
x

(0)
0 , x

(0)
1

)
, . . . ,

(
x

(c)
0 , x

(c)
1

)
, µ

)
and output OTP ⊕Σ′.

Fig. 16: A protocol for fine-grained ℓ-bit Anonymous Transfer.

P AT [pkP , c]
(

x
(0)
R ,

(
x

(0)
0 , x

(0)
1

)
,
(

x
(1)
0 , x

(1)
1

)
. . . ,

(
x

(c)
0 , x

(c)
1

))
(OTP, vkR) := Pke.Dec∗

(
skP , x

(0)
R

)
,

(sk0, vk0) := Pke.Dec∗(skP , x
(0)
0 [1 : m]), (Σ0, µ0) := Ske.Dec∗(sk0, x

(0)
0 [m + 1: 2m]),

(sk1, vk1) := Pke.Dec∗(skP , x
(0)
1 [1 : m]), (Σ1, µ1) := Ske.Dec∗(sk1, x

(0)
1 [m + 1: 2m]),

if ¬Sig.Vfy(vkR, (x(0)
R , (x(0)

0 , x
(0)
1), . . . , (x(0)

0 , x
(c)
1))) then :

return ⊥

χ0 := JSig.Vfy(µ0, vk0, x
(0)
R)K · (c + 1), χ1 := JSig.Vfy(µ1, vk1, x

(1)
R)K · (c + 1),

foreach χ ∈ {1, . . . , c} do :
foreach b ∈ {b′|b′ ∈ {0, 1}, χb = (c + 1)} do : // Take on the role of each potential sender.

Xb := Ske.Dec∗
(

skb, x
(χ)
b

)
, Σ′

b := Xb[0 : (m− 1)], µb := Xb[m : |Xb|]

if ¬Sig.Vfy(µb, vkb, π[χ− 1]) ∨Σb ̸= Σ′
b then :

χb := χ // Remember first bad round.

b′ := argmaxb(χb)

return OTP ⊕ CointossS(π)
((χb′ /c))

(Σb′ ,⊥)

Fig. 17: Obfuscated program P AT for the fine-grained setting. c ∈ poly(κ) denotes the number of rounds.

105

The protocol is given in Fig. 16, the corresponding obfuscated program in Fig. 17. The protocol
in Fig. 16 is essentially the same as the one in Fig. 5 for single-bit AT, where the bit σ ∈ {0, 1}
was replaced by a message Σ ∈ {0, 1}ℓ and the circuit is now the one from Fig. 17 instead of the
one from Fig. 6. The same is true for the circuit Fig. 17, which is the one from Fig. 6 but with a
message Σ instead of a bit σ but one additional thing had to be changed: Instead of returning the
actual bit σ with probability proportional to the amount of correct rounds of the sender Pb and the
complementary bit with the remaining probability the new circuit from Fig. 17 separates between
returning either the message Σb or a dedicated error state ⊥. The actual message Σb is implicitly
defined by the respective first-round messages. Accordingly, the probability does not start at 50%
between 0 and 1 but starts at returning ⊥ with probability 100% and each new round moves this
towards returning Σb with probability 100%.

We start by analyzing the correctness of the new protocol.

Lemma 46 (Correctness). If the protocol from Fig. 16 is instantiated with an Ideally Obfuscated
version of the circuit from Fig. 17 the protocol is ε-correct with ε = (1− negl(κ)).

Proof. Again, in an honest execution the value of χb = c and hence the correct message is returned
with probability 1, the argumentation here is similar to that of Theorem 4. We only have to assume
that there is a dedicated failure-state ⊥ differs from any message a party would ever send. ⊓⊔

Once again, the anonymity takes a lot more effort to analyze. However, the proof is still relatively
close to that of single-bit AT leading to the anonymity in Corollary 7.

106

Game1(κ)
1 : −
2 : −
3 : −
4 : −
5 : −
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −
14 : (OTP, vkR) := Pke.Dec∗(skP , x

(0)
R)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (Σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, Σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game2(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : −
4 : −
5 : −
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −
14 : (OTP, vkR) := Pke.Dec∗(skP , x

(0)
R)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (Σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, Σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game2(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : −
4 : −
5 : −
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −
14 : (OTP, vkR) := Pke.Dec∗(skP , x

(0)
R)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (Σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, Σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game3(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −
14 : (OTP, vkR) := Pke.Dec∗(skP , x

(0)
R)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (Σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, Σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game3(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −
14 : (OTP, vkR) := Pke.Dec∗(skP , x

(0)
R)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (Σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, Σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game4(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (Σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, Σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game4(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (Σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, Σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game5(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC[χ′])

8 : if Ske.Dec∗(skbC , x
(χ∗+1)
bC

) == (σC, µC
(χ∗+1))∨

9 : π[xχ∗+1
bC

] = πC [xχ∗+1
bC

] then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (ΣC ,⊥)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (Σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, Σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game5(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if Ske.Dec∗(skbC , x
(χ∗+1)
bC

) == (σC , µC
(χ∗+1))∨

9 : π[xχ∗+1
bC

] = πC [xχ∗+1
bC

] then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (ΣC ,⊥)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (Σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, Σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game6(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if Ske.Dec∗(skbC , x
(χ∗+1)
bC

) == (σC , µC
(χ∗+1))∨

9 : π[xχ∗+1
bC

] = πC [xχ∗+1
bC

] then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (ΣC ,⊥)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b

$← {0, 1}m∥Ske.Enc(skb, (Σ, µ(0)))
10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, Σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game6(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC[χ′])

8 : if Ske.Dec∗(skbC , x
(χ∗+1)
bC

) == (σC, µC
(χ∗+1))∨

9 : π[xχ∗+1
bC

] = πC [xχ∗+1
bC

] then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (ΣC ,⊥)

13 : if π[x(0)
R] = πC[x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b

$← {0, 1}m∥Ske.Enc(skb, (Σ, µ(0)))
10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ(χ) ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, Σ∥µ(χ))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game7(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if Ske.Dec∗(skbC , x
(χ∗+1)
bC

) == (σC , µC
(χ∗+1))∨

9 : π[xχ∗+1
bC

] = πC [xχ∗+1
bC

] then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (ΣC ,⊥)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game7(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC[χ′])

8 : if Ske.Dec∗(skbC , x
(χ∗+1)
bC

) == (σC, µC
(χ∗+1))∨

9 : π[xχ∗+1
bC

] = πC [xχ∗+1
bC

] then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (ΣC ,⊥)

13 : if π[x(0)
R] = πC[x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game8(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : −

9 : −

10 : −
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (ΣC ,⊥)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ0, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (Σ1, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Gameσ
1 (κ) This is the original game (after replacing the obfuscated circuit with oracle access to the circuit,

the PRF with an actual random oracle and the adversary with the simulator), where the sending
party Pb is chosen uniformly at random.

Gameσ
2 (κ) This game follows Gameσ

1 (κ), but during the simulation of the oracle P AT from Fig. 16 the
simulation enforces correctness of the challenge transcript πC : if the input transcript π matches
the challenge transcript πC , it returns ΣC .

Lemma 47 (Indistinguishability of Gameσ
1 (κ) and Gameσ

2 (κ)). Let Pke be an IND$-CCA
secure asymmetric encryption scheme. Let Ske be an IND$-CCA secure symmetric encryption
scheme. Let Sig be an sEUF-CMA secure signature scheme. For all PPT guessing algorithms
A, the distinguishing advantage for Gameσ

1 (κ) and Gameσ
2 (κ) is bounded by:

|Pr[outGameσ
1 (κ) = 1]− Pr[outGameσ

2 (κ) = 1]| ∈ negl(κ)

Proof. See Lemma 46. ⊓⊔

Gameσ
3 (κ) This game follows Gameσ

2 (κ) but during simulation of the circuit the adversary aborts if any of
the first-round messages differ from the messages reported in the challenge transcript and the
decryptions still match.

Lemma 48 (Indistinguishability of Gameσ
2 (κ) and Gameσ

3 (κ)). Let Pke be an IND$-CCA
secure asymmetric encryption scheme. Let Ske be an IND$-CCA secure symmetric encryption
scheme. Let Sig be an sEUF-CMA secure signature scheme. For all PPT guessing algorithms
A, the distinguishing advantage for Gameσ

2 (κ) and Gameσ
3 (κ) is bounded by:

|Pr[outGameσ
2 (κ) = 1]− Pr[outGameσ

3 (κ) = 1]| ∈ negl(κ)

Proof. The claim is similar to that from Lemma 10 and thus follows from their proof. ⊓⊔

Gameσ
4 (κ) This game follows Gameσ

3 (κ) but simulates the circuit slightly different: If the first receiver
message of the input transcript π is the same as that of the challenge transcript πC , instead of
decrypting it the circuit directly sets OTP = OTPC and vkR = vkCR as the values used in the
creation of the challenge transcript.

Lemma 49 (Indistinguishability of Gameσ
3 (κ) and Gameσ

4 (κ)). Let Pke be an IND$-CCA
secure asymmetric encryption scheme. Let Ske be an IND$-CCA secure symmetric encryption
scheme. Let Sig be an sEUF-CMA secure signature scheme. For all PPT guessing algorithms
A, the distinguishing advantage for Gameσ

3 (κ) and Gameσ
4 (κ) is bounded by:

|Pr[outGameσ
3 (κ) = 1]− Pr[outGameσ

4 (κ) = 1]| ∈ negl(κ)

Proof. This proof also follows from the correctness of the encryption scheme Pke just as
Lemma 11. ⊓⊔

Gameσ
5 (κ) This game follows Gameσ

4 (κ) but simulates the oracle differently if the first-round messages of
both parties match the first-round messages in the challenge transcript πC. In this case, the
program compares the input transcript π with the challenge transcript πC until it finds the first
round χ∗ in which the input differs from the challenge transcript. It then checks round χ∗ + 1,
and if it contains the same message from the sending party, it adds one to χ.
Finally, the circuit flips a biased coin, which returns the correct message ΣC with probability
p := 1/2 + χ∗/2c and an error symbol ⊥ otherwise.

Lemma 50 (Indistinguishability of Gameσ
4 (κ) and Gameσ

5 (κ)). Let Pke be an IND$-CCA
secure asymmetric encryption scheme. Let Ske be an IND$-CCA secure symmetric encryption
scheme. Let Sig be an sEUF-CMA secure signature scheme. For all PPT guessing algorithms
A, the distinguishing advantage for Gameσ

4 (κ) and Gameσ
5 (κ) is bounded by:

|Pr[outGameσ
4 (κ) = 1]− Pr[outGameσ

5 (κ) = 1]| ∈ negl(κ)

114

Proof. Note that the unforgeability of a valid round-zero message required for detecting the
new branch is similar to Lemma 12. Thus we can focus entirely on the second claim, namely
that the behavior inside the branch reflects that of the actual circuit.
In fact, we have to show that at line 31 in Gameσ

2 (κ) if the maximum round is χb then the
input transcript is equal to the challenge transcript until at least round (χb − 1).
Let D be a PPT distinguisher who can create input π for which it holds that χ∗ is such that
any of the messages from round (χ∗− 2) differ from the challenge transcript. Then the only way
that the verification in round (χ∗− 1) succeeds is if the sending parties message encodes a valid
signature on the changed message from round (χ∗ − 2), which would violate the EUF-CMA
security of the used signature scheme Sig.
Thus the claim follows. ⊓⊔

Gameσ
6 (κ) This game is the same as Gameσ

5 (κ), but in creating the challenge transcript πC , this game only
reports randomness for the first-round message x̂0

b that specifies the symmetric key skb to be
used for the remaining communication with the circuit. Note that both the signature- and the
symmetric-key are still created for the sending party Pb as they are needed for the remaining
rounds.

Lemma 51 (Indistinguishability of Gameσ
5 (κ) and Gameσ

6 (κ)). Let Pke be an IND$-CCA
secure asymmetric encryption scheme. Let Ske be an IND$-CCA secure symmetric encryption
scheme. Let Sig be an sEUF-CMA secure signature scheme. For all PPT guessing algorithms
A, the distinguishing advantage for Gameσ

5 (κ) and Gameσ
6 (κ) is bounded by:

|Pr[outGameσ
5 (κ) = 1]− Pr[outGameσ

6 (κ) = 1]| ∈ negl(κ)

Proof. See Lemma 13. ⊓⊔

Gameσ
7 (κ) This game is the same as Gameσ

6 (κ) but in creating the challenge transcript πC, this game
also reports randomness instead of transcripts for all messages xχ

b for χ ∈ [c] that shift the
message towards ΣC . That means that instead of using the IND$-CPA secure symmetric scheme
Ske with the symmetric key skb the challenge transcript now only contains randomly sampled
messages.
We also do not let the adversary create the keys for Sig and Ske as they are no longer needed
for creating the transcript.

Lemma 52 (Indistinguishability of Gameσ
6 (κ) and Gameσ

7 (κ)). Let Pke be an IND$-CCA
secure asymmetric encryption scheme. Let Ske be an IND$-CCA secure symmetric encryption
scheme. Let Sig be an sEUF-CMA secure signature scheme. For all PPT guessing algorithms
A, the distinguishing advantage for Gameσ

6 (κ) and Gameσ
7 (κ) is bounded by:

|Pr[outGameσ
6 (κ) = 1]− Pr[outGameσ

7 (κ) = 1]| ∈ negl(κ)

Proof. See Lemma 14. ⊓⊔

Gameσ
8 (κ) This game follows Gameσ

7 (κ), but instead of choosing a random sender at the beginning of the
game and considering this message to be the right one, the oracle ignores the additional check
and only looks for the first round where both messages are identical to the challenge.
Note that this game is entirely independent of the real sender, hence given a challenge transcript
it is trivially impossible to obtain a non-negligible advantage to determine the sending party.

Claim (Indistinguishability of Gameσ
7 (κ) and Gameσ

8 (κ)). Let D be a distinguisher with runtime
o(c2/α). Let the cost of acquiring a single sample be O(c). Then the distinguishing advantage
is limited by

|Pr[outGameσ
7 (κ) = 1]− Pr[outGameσ

8 (κ) = 1]| ≤ α (50)

The actual proof is similar to the single-bit case, only that we do not differentiate a Bernoulli
oracle that returns a single bit but one that returns either a ℓ-bit message or an error state.
However, we slightly adapt the game from Fig. 7 to our new scenario; basically instead of
ranging from 0.5 to 1 the oracles now range from 0 to 1 in equally-sized steps:

115

C(c)

β
$← {0, 1}

Create c orales {Oi}c
i=1

foreach Oracles Oi do
if β = 0 then

Pr[outOi = 1] := i− 1
c

else

Pr[outOi = 1] := i

c

fi done

A(1κ)

for j = 1 . . . t do
ij ← Computations

xj
$← Oij

done

β′ ← Computations((ij , xj)t
j=1)

return β′

Fig. 18: Game to determine whether c Bernoulli-oracle have a common offset ξ in their probability
distribution or if they follow the distribution they were given.

Lemma 53. Let D be a distinguisher distinguishing Gameσ
7 (κ) and Gameσ

8 (κ) with advantage
α over guessing. Let t be the number of queries that D sends to the obfuscated circuit. There is
a reduction adversary A that uses D which has advantage α over guessing in winning Fig. 18.

Proof. The overall idea of the proof is similar to that used in Fig. 7 but has some minor changes
in order to incorporate the different range of the oracles and the fact that instead of 0 or 1, the
oracle returns ⊥ or Σ.

Creating the Transcript. The transcript is the same in both games and hence can be created
canonically. Upon activation the adversary A samples the required information for the challenge
transcript, that is, ΣC

$← {0, 1}ℓ and b
$← {0, 1}, and creates and stores a transcript πC by

sampling uniformly random messages for both parties. This transcript is then reported to the
distinguisher.

Simulating the Circuit. When D sends some input to the simulated circuit A has to return
some message Σ according to the respective distributions. There are several possible inputs for
the circuit but the below list covers all the possibilities:
(At least) one of the first-round messages is different. Then the adversary simulates

the circuit by following the actual protocol. This case is equivalent for both games.
Same input until round χ, then different message for both parties. Then the adver-

sary flips a biased coin that lands on heads with probability p := χ/c and on heads A
returns Σ and otherwise A returns ⊥.

Same input until round χ, then different message for Pb only. This case is equivalent
to the one before and does not change in the game hop.

Same input until round χ, then different message for Pb only. This is the interesting
case as this class contains all the transcripts that are actually treated differently in the two
games.
In this case the adversary queries the χ + 1-th oracle that returns 1 with probability χ/c
if β = 0 and with probability (χ + 1)/c if β = 1. When receiving output 0 the adversary
returns ⊥ as oracle-output. On output 1 the adversary returns the challenge message ΣC .
It is easy to see that this reflects the two games; if β = 0 then Σ is returned with probability
χ/c as it is in Item Gameσ

7 (κ), and if β = 1 then Σ is returned with probability (χ + 1)/c
as in Item Gameσ

8 (κ).

Using the Response. After (at most) t queries the distinguisher terminates and sends its guess.
If D guesses it was playing Gameσ

8 (κ) then A reports β′ = 1 to C. And if D guesses it was
playing Gameσ

7 (κ) then A sends the output β′ = 0 to C.
As was described above the two distributions can be perfectly simulated, hence the probability
that D guesses the correct game is the same that A has to correctly guess β. So if D has

116

non-negligible advantage α over guessing then A inherits this advantage for winning the game
from Fig. 18, albeit if D sends t queries to A, less than t queries are forwarded to C. ⊓⊔

We now have a new game in Fig. 18 which we used for a more intuitive proof, however we still
need to analyze how hard winning Fig. 18 really is. Fortunately, the game is already quite close
to Fig. 7 only with a larger range. We thus borrow ideas from the proof of the single-bit case
and adapt them to our new scenario.
Note that Lemma 3 can also be applied, and that Corollary 1 also holds for Fig. 18.
We can thus skip towards adjusting Corollary 6, for which we first need to embed Corollary 1 into
our problem setting: We have c instances where the χ-th instance corresponds to distinguishing
p := (χ− 1)/c from q := (χ)/c. This implies the following L1-norm between p and q in round χ:

dTV(p, q) = ∥p− q∥1

2
= 1

2(|Pr[p = 1]− Pr[q = 1]|+ |Pr[p = 0]− Pr[q = 0]|)

= 1
2

(∣∣∣∣χ− 1
c
− χ

c

∣∣∣∣ +
∣∣∣∣χ + 1

c
− χ

c

∣∣∣∣)
= 1

2(2
c

)

= 1
c

(51)

This implies again that the total variational distance in round χ is independent of the round χ
and hence the same for all oracles. So when combining this observation with the subadditivity of
the total variational distance (Lemma 2) we get that any distribution resulting from t samples
have a total variational distance of at most t

c . Thus we get:

t ∈ Ω(α/dTV(p, q)) = Ω(α · c) (52)

We thus end up with the following corollary.

Corollary 15. Let D be a distinguisher playing the game from Fig. 18 using a fixed number t
of samples and has runtime o(c2/α). Let the cost to acquire a single sample be O(c). Then the
distinguisher D is correct with probability at most 1/2 + α/2.

Proof. See Corollary 6. Eq. (52) yields a lower bound for the number of samples required by D
to distinguish with advantage α. With each sample having a cost of O(c) an advantage of α
requires runtime in O(c2 · α) to get the samples alone. With the runtime of D being bounded
as o(c2/α) it follows that D can not have constant advantage. ⊓⊔

Secrecy. We conclude this section with a secrecy analysis of the protocol. Fortunately, this proof is
quite close to that from the single-bit protocol from Theorem 6. The main difference is that we
have to change an entire message instead of only changing the single bit.

However, the crucial part is still the statistical security of the One-Time-Pad, which holds also
in the multi-bit case. To prove our claim we thus show that the transfer of a uniformly random
message cannot be distinguished efficiently from the transfer of the all-zero bitstring without the
receiver’s random tape.

In total we want to show that:

{π ← Transfer⟨R,P0,P1⟩(crs, b, Σ)}
≈ {π ← Transfer⟨R,P0,P1⟩(crs, b, 0⃗ℓ)}

(53)

With that in mind we adjust the gamehops as follows:

117

Game1(κ)
1 : −
2 : −
3 : −
4 : −
5 : −
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −
14 : (OTP, vkR) := Pke.Dec∗(skP , x

(0)
R)

15 : (sk0, vk0) := Pke.Dec(skP , x
(0)
0 [1 : m])

16 : (Σ, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (⃗0ℓ, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (Σ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ

(χ)
b ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, Σ∥µ(χ)

b)
16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game2(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC[χ′])

8 : if π[xc∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) == (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (ΣC ,⊥)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (⃗0ℓ, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game2(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xc∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) == (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (ΣC ,⊥)

13 : if π[x(0)
R] = πC [x(0)

R] then
14 : (OTP, vkR) := (OTPC , vkCR)
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (⃗0ℓ, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game3(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xc∗+1
bC

] = πC[xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) == (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (ΣC ,⊥)

13 : if π[x(0)
R] = πC [x(0)

R] ∧ π ̸= πC then
14 : return ⊥
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (⃗0ℓ, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game3(κ)
1 : if π = πC then
2 : return OTPC ⊕ΣC

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC[χ′])

8 : if π[xc∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) == (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (ΣC ,⊥)

13 : if π[x(0)
R] = πC [x(0)

R] ∧ π ̸= πC then
14 : return ⊥
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (⃗0ℓ, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game4(κ)
1 : if π = πC then
2 : return OTPC ⊕ 0⃗ℓ

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC [χ′])

8 : if π[xc∗+1
bC

] = πC[xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) == (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (⃗0ℓ,⊥)

13 : if π[x(0)
R] = πC [x(0)

R] ∧ π ̸= πC then
14 : return ⊥
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (⃗0ℓ, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game4(κ)
1 : if π = πC then
2 : return OTPC ⊕ 0⃗ℓ

3 : elseif Pke.Dec∗(skP , π[0]) = Pke.Dec∗(skP , πC [0])∧
4 : π[0] ̸= πC [0] then
5 : abort
6 : elseif π[0] = πC [0] then
7 : χ∗ := argminχ′ (π[χ′] ̸= πC[χ′])

8 : if π[xc∗+1
bC

] = πC [xχ∗+1
bC

]∨

9 : Ske.Dec∗(skbC , x
(χ∗+1)
bC

) == (σC∥µC
(χ∗+1)) then

10 : χ∗ := χ∗ + 1
11 : p := 1/2 + χ∗/2c

12 : return OTPC ⊕ CointossS(π)
(p) (⃗0ℓ,⊥)

13 : if π[x(0)
R] = πC [x(0)

R] ∧ π ̸= πC then
14 : return ⊥
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (⃗0ℓ, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R

$← {0, 1}m

5 : Pb :
6 : −
7 : −
8 : −
9 : x

(0)
b

$← {0, 1}2m

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : −
15 : x

(χ)
b

$← {0, 1}m

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Game5(κ)
1 : −
2 : −
3 : −
4 : −
5 : −
6 : −
7 : −

8 : −

9 : −

10 : −
11 : −

12 : −

13 : −
14 : return ⊥
15 : (sk0, vk0) := Pke.Dec(skP , x

(0)
0 [1 : m])

16 : (Σ, µ
(0)
0) := Ske.Dec(sk0, x

(0)
0 [m + 1: 2m])

17 : (sk1, vk1) := Pke.Dec(skP , x
(0)
1 [1 : m])

18 : (⃗0ℓ, µ
(0)
1) := Ske.Dec(sk1, x

(0)
1 [m + 1: 2m])

19 : if ¬Sig.Vfy(vkR, π) then
20 : return ⊥
21 : χ0 := JSig.Vfy(µ(0)

0 , vk0, x
(0)
R)K · (c + 1)

22 : χ1 := JSig.Vfy(µ(0)
1 , vk1, x

(0)
R)K · (c + 1)

23 : foreach χ ∈ {1, . . . , c} do
24 : foreach b ∈ {0, 1}|χb > c do

25 : Xb := Ske.Dec∗(skb, x
(χ)
b)

26 : Σ′
b := Xb[0 : ℓ− 1]

27 : µ
(χ)
b := Xb[ℓ : |Xb|]

28 : if ¬Sig.Vfy(µ(χ)
b , vkb, π[χ− 1]) ∨Σb ̸= Σ′

b then
29 : χb := χ

30 : b′ := argmaxb(χb)

31 : return OTP ⊕ CointossS(π)
(χb/c)(Σ

(b′),⊥)

32 :
1 : R :
2 : OTP $← {0, 1}ℓ

3 : (kR, vkR)← Sig.KeyGen(1κ)

4 : x
(0)
R ← Pke.Enc(pkP , (OTP, vkR))

5 : Pb :
6 : (kb, vkb)← Sig.KeyGen(1κ)
7 : (skb)← Ske.KeyGen(1κ)
8 : (µ(0)

b)← Sig.Sig(kb, x
(0)
R)

9 : x
(0)
b ← Pke.Enc(pkP , (skb, vkb))∥Ske.Enc(skb, (⃗0ℓ, µ(0)))

10 : Pb :

11 : x
(0)
b

$← {0, 1}2m

12 : foreach χ ∈ {1, . . . , c} do
13 : Pb :
14 : µ

(χ)
b ← Sig.Sig(kb, (x(χ−1)

0 , x
(χ−1)
1))

15 : x
(χ)
b ← Ske.Enc(skb, (⃗0ℓ, µ

(χ)
b))

16 : Pb :
17 : −

18 : x
(χ)
b

$← {0, 1}m

19 : R :
20 : µ← Sig.Sig(kR, π)

21 : return SP ′
AT

A (π, T R)

Gameσ
1 (κ) This is the original game (after replacing the obfuscated circuit with oracle access to the circuit,

the PRF with an actual random oracle and the adversary with the simulator), where the sending
party Pb is chosen uniformly at random and the sender uses the input message Σ.

Gameσ
2 (κ) This game follows Gameσ

1 (κ), but with the following changes:
– During the simulation of the oracle P AT from Fig. 16 the simulation enforces correctness of

the challenge transcript πC : if the input transcript π matches the challenge transcript πC , it
returns OTPC ⊕ΣC .

– During simulation of the circuit the adversary aborts if any of the first-round messages from
P0 or P1 differ from the messages reported in the challenge transcript and the decryptions
still match.

– During simulation of the circuit, if the first receiver message of the input transcript π is the
same as that of the challenge transcript πC , instead of decrypting it the circuit directly sets
OTP = OTPC and vkR = vkCR as the values used in the creation of the challenge transcript.

– During simulation of the oracle, if the first-round messages of both parties match the
first-round messages in the challenge transcript πC. In this case, the program compares
the input transcript π with the challenge transcript πC until it finds the first round χ∗ in
which the input differs from the challenge transcript. It then checks round χ∗ + 1, and if it
contains the same message from the sending party, it adds one to χ.
Finally, the circuit flips a biased coin, which returns the correct message OTPC ⊕ΣC with
probability p := χ∗/c and an error message ⊥ otherwise.

Lemma 54. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Ske be an
IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA secure signature
scheme. For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

1 (κ) and
Gameσ

2 (κ) is bounded by:

|Pr[outGameσ
1 (κ) = 1]− Pr[outGameσ

2 (κ) = 1]| ∈ negl(κ)

Proof. Follows from Lemmas 47 to 52. ⊓⊔

Gameσ
3 (κ) This game follows Gameσ

2 (κ) but the oracle is simulated slightly different: If the first receiver
message is the same as the one reported in the challenge transcript and the input transcript is
not the challenge transcript, then the circuit outputs an error symbol ⊥.
Note that this does not work in the anonymity proof as there we assume that the adversary is
given access to the receivers random tape, and hence can create their own new signature on the
modified transcript.

Lemma 55. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Ske be an
IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA secure signature
scheme. For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

3 (κ) and
Gameσ

4 (κ) is bounded by:

|Pr[outGameσ
3 (κ) = 1]− Pr[outGameσ

4 (κ) = 1]| ∈ negl(κ)

Proof. We reduce a distinguisher D between these two games to an adversary A on the
EUF-CMA security of the signature scheme Sig.

Creating the ranscript. The creation of the transcript is straightforward and works by sampling
random messages for each party.

Simulating the Oracle. The used verification key vkR is set to be the verification key of the
challenger. Thus the final signature µ on the entire transcript, which is required for the circuit to
not abort (by outputting a random bit), needs to be forged. Hence for each input transcript the
adversary first checks if the receiver message is equivalent to that from the challenge transcript.
If it isn’t then the transcript can not be used for distinguishing anyways. If it is, the adversary
checks if the remaining transcript is the same as well. If it is, the transcript can not be used for
distinguishing and simulation just continues as the path taken is equivalent in both games. If
it isn’t then the adversary checks if the signature µ verifies under the used key. If it doesn’t
then both games act exactly the same and output an error state ⊥. Hence to distinguish the
signature has to verify. Then, however, the signature is a valid forgery.

122

Translating the Result. If no valid signature was queried then—as mentioned above—the
distinguishing advantage must be negligible. For a non-negligible advantage the distinguisher
has to query at least one signature. This can be used as forgery to break the EUF-CMA security
of Sig.
As stated above, the advantage of the distinguisher is directly related to the probability of
successfully distinguishing. Hence A will have a valid forgery with non-negligible advantage.
This would contradict the EUF-CMA security of the signature scheme and thus completes our
proof. ⊓⊔

Gameσ
4 (κ) This game is as Gameσ

3 (κ) but instead of using a uniformly random Σ for the transferred
message during simulation of the circuit we now fix Σ = 0⃗ℓ as the all-zero bitstring of appropriate
size.

Lemma 56. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Ske be an
IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA secure signature
scheme. For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

3 (κ) and
Gameσ

4 (κ) is bounded by:

|Pr[outGameσ
3 (κ) = 1]− Pr[outGameσ

4 (κ) = 1]| ∈ negl(κ)

Proof. Again indistinguishability follows for any adversary who does not have the receivers
random tape. The message is only ever used in its encrypted form via the uniformly random
One-Time-Pad, and distinguishing two bitstrings after they have been masked is statistically
impossible to do with non-negligible advantage. Thus indistinguishability follows. ⊓⊔

Gameσ
5 (κ) This game follows Gameσ

4 (κ) but undoes all the changes from the first-to-second gamehop and
that from Gameσ

3 (κ).

Lemma 57. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Ske be an
IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA secure signature
scheme. For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

4 (κ) and
Gameσ

5 (κ) is bounded by:

|Pr[outGameσ
4 (κ) = 1]− Pr[outGameσ

5 (κ) = 1]| ∈ negl(κ)

Proof. Follows from Lemmas 47 to 52 and 55. ⊓⊔

Thus OTP is hidden to any guessing algorithm and so is Σ.

Corollary 16. The Anonymous Transfer from Fig. 16 is ς-secret with ς ∈ owhl(κ).

In total, we thus have:

Corollary 9. The protocol Πℓ
AT

′ defined in Appendix F is a strong C1-fine-grained (1−negl(κ), δ, 1−
negl(κ))-AT against C2, where C1 := O(c) and C2 := o(c2(1− δ)).

G Undetectable Oblivious Transfer from Anonymous Transfer and
two-round Covert Oblivious Transfer

In this section we present an instantiation of Undetectable Oblivious Transfer based on any two-
round Covert Oblivious Transfer (COT)19 protocol such as the one from von Ahn, Hopper, and
Langford [vHL05, Protocol 4]. The protocol is fairly canonical and basically just uses a different
communication structure where messages are sent via Anonymous Transfer.

In Fig. 19 we present a generic transformation that takes any two-round Covert Oblivious
Transfer protocol and a strong (ε, δ, ς, c, ℓ)-Anonymous Transfer and constructs a (ε, δ)-Undetectable
Oblivious Transfer. For the sake of simplicity we only introduce a generic three-party protocol (that
has one dummy friend), but we stress that the same technique can easily be modified to incorporate
more parties at the cost of using 2 more ATs with the respective dummy friend as the receiver.
19 See Appendix A.1 for a definition of COT.

123

Protocol ΠUOT in the F (2,3)
AT -hybrid model.

On input (Σ0, Σ1), PS stores both Σ0 and Σ1 and sets x0 := ⊥.
On input σ ∈ {0, 1}, PR chooses x1 as the first message the receiver sends to the sender in ΠCOT for bit

σ.
On input ⊥, PD sets xD := ⊥.
Each party Pi sends xi to both instances of F (2,3)

AT where party Pj for j ̸= i is the receiver.
On input x∗

0 from F (2,3)
AT where PS is the receiver, PS computes x0 according to ΠCOT on input (Σ0, Σ1)

and first message x∗
0.

On input ⊥ from F (2,3)
AT where PR is the receiver, PR sets x1 := ⊥.

On input ⊥ from F (2,3)
AT where PD is the receiver, PD sets x2 := ⊥.

Each party Pi sends xi to both instances of F (2,3)
AT where party Pj for j ̸= i is the receiver.

On input ⊥ from F (2,3)
AT where PS is the receiver, PS outputs ⊥.

On input x0 from F (2,3)
AT where PR is the receiver, PR reconstructs Σσ according to ΠCOT on inputs

(x0, x1, σ) and outputs Σσ.
On input ⊥ from F (2,3)

AT where PD is the receiver, PD outputs ⊥.

Fig. 19: A protocol for Undetectable Oblivious Transfer.

G.1 Correctness
For analyzing the correctness we assume that the Covert Oblivious Transfer protocol reconstructs
the bit correctly with overwhelming probability. Then it holds for the correctness of the Undetectable
Oblivious Transfer:
Lemma 58 (Correctness of the Undetectable Oblivious Transfer protocol). Let ΠCOT be
correct with overwhelming probability. Let Πℓ

AT be a strong (ε, δ, ς, c, ℓ)-AT. Then the Undetectable
Oblivious Transfer protocol from Fig. 19 is correct with εUOT = ε2+2ε−1

2 .
Proof. We assume that when executed directly, ΠCOT is correct assuming that all messages are
present and wrong if a message was transferred incorrectly. Thus the probability that the message has
been transferred correctly corresponds to the probability that both messages have been transferred
correctly—the first-round message by the receiver to the sender and the second-round message by
the sender to the receiver.

With the AT being ε-correct it follows from Eq. (3) that

Pr
[
σ

$← {0, 1}; π
$← ⟨R, P0, P1⟩(b, σ); σ′ ← f(π, T R) : σ = σ′

]
≥ (ε + 1)/2 (54)

and the probability that both messages are transferred correctly squares that value. As such it holds
that: (

Pr
[
σ

$← {0, 1}; π
$← ⟨R, P0, P1⟩(b, σ); σ′ ← f(π, T R) : σ = σ′

])2
≥((ε + 1)/2)2

=1
4(ε2 + 2ε + 1)

(55)

So we have for the correctness of the OT:
Pr[ϖ $← S3, (x0, x1) $← {0, 1}2, σ

$← {0, 1},

x′σ ← Ot(ϖ{(x0, x1), σ,⊥}) : xσ = x′σ] ≥ 1
4(ε2 + 2ε + 1)

= ε2

4 + ε

2 + 1
4

Pr[ϖ $← S3, (x0, x1) $← {0, 1}2, σ
$← {0, 1},

x′σ ← Ot(ϖ{(x0, x1), σ,⊥}) : xσ = x′σ]− 1
2 ≥ ε2

4 + ε

2 −
1
4

= 1
2 ·

(
ε2 + 2ε− 1

2

)
(56)

Thus we get that according to Eq. (21) we have εUOT := ε2+2ε−1
2 . ⊓⊔

124

G.2 Privacy

The analysis of (input-) privacy is pretty straightforward, simply because our transformation leaves
no extra insecurities that would allow extraction of either the choice bit σ or the message Σσ not
selected by the receiver. Yet in the following we provide a full proof of privacy.

Sender Privacy We first define the privacy notion of classical OT protocols in a game-based
notion:

Definition 18 (Sender-Privacy in Oblivious Transfer). Let Ot be an oblivious transfer
protocol. Ot provides computational sender-privacy if for all PPT adversaries A it holds that:

Pr[(x0, x1) = (x∗0, x∗1)|(x0, x1) $← {0, 1}2ℓ, (σ, st)← A0(1κ),
π ← Ot((x0, x1), σ), (x∗0, x∗1)← A1(π, st, T R)] ∈ negl(κ)

(57)

The definition enforces that the adversary cannot extract both bits input by the sender. While
the bit xσ is easy to extract given the transcript, the state of A0 and the random tape T R, we
enforce that the other bit xσ can not be determined better than by guessing.

Definition 19 (Receiver-Privacy in Oblivious Transfer). Let Ot be an Oblivious Transfer
protocol. Ot provides computational receiver-privacy if for all PPT adversaries A it holds that:

|Pr[σ = σ∗|(x0, x1, st)← A0(1κ), σ
$← {0, 1},

π ← Ot((x0, x1), σ), σ∗ ← A1(π, st, T S)]− 1/2| ∈ negl(κ)
(58)

This definition is practically the same as that for sender-privacy in Definition 18 but lets the
adversary play as the (semi-honest) sender who has to recover the choice bit by the receiver.

With that we can prove the following claim:

Lemma 59 (Privacy of the Undetectable Oblivious Transfer protocol). Let ΠCOT be an
OT protocol with overwhelming sender-privacy. Then ΠUOT from Fig. 19 is private for both parties.

Proof. Sender-Privacy
Any COT protocol automatically fulfills the privacy requirement of an ordinary OT from

Definition 18, as such we reduce sender privacy of ΠUOT to the sender privacy of ΠCOT . To that
end, let A be a guessing algorithm that breaks the sender privacy of ΠUOT with non-negligible
advantage α. From A we construct an adversary A who breaks the condition from Eq. (57) as
follows:
A asks A0 for receiver input σ and hands this to the challenger C of the COT sender privacy.

From C, A obtains a transcript π of sent messages. A simulates inserting each sender message of π

into Πℓ
AT with receivers PR and PD and each receiver message into F (2,3)

AT with receivers PS and PD.
This results in a transcript of ΠUOT which A hands to A. Eventually A returns a tuple (x∗0, x∗1)

which A hands directly to the challenger C.
Note that if A is correct, then so is A, and if A is incorrect then the guess of A is also wrong, as

the simulation did not change the sent messages.
Thus if A has non-negligible advantage then so has A, which it does not have by requirement.
Receiver Privacy
We let A be a guessing algorithm attacking the receiver privacy of ΠUOT and construct an

adversary A attacking the receiver privacy of ΠCOT with the same success probability. The adversary
asks A for the senders input (x0, x1) ∈ {0, 1}2 and forwards that to the challenger C. The obtained
transcript π is translated into a transcript for ΠUOT by simulating the AT with the inputs being
the messages reported by the respective parties, where the input by the dummy friend is constantly
⊥.
A then hands the transcript over to A who guesses a bit σ. The bit is then forwarded to C.
Again, the transformation did not change any values, hence if A is correct with probability

1/2 + α then A is also correct with probability 1/2 + α. The latter, however, is not possible by
requirement from ΠCOT , which concludes our proof. ⊓⊔

125

G.3 Anonymity

As the adversary is given the choice to corrupt any party we consider each potential party individually
and show the two distributions that need to be indistinguishable.

P0 sender

F (2,3)
AT with receiver PS :

(xCOT R ,⊥)

F (2,3)
AT with receiver P0 :

(⊥,⊥)

F (2,3)
AT with receiver P1 :

(xCOT R ,⊥)

F (2,3)
AT with receiver PS :

(⊥,⊥)

F (2,3)
AT with receiver P0 :

(xCOT S ,⊥)

F (2,3)
AT with receiver P1 :

(xCOT S ,⊥)

P1 sender

F (2,3)
AT with receiver PS :

(xCOT R ,⊥)

F (2,3)
AT with receiver P0 :

(xCOT R ,⊥)

F (2,3)
AT with receiver P1 :

(⊥,⊥)

F (2,3)
AT with receiver PS :

(⊥,⊥)

F (2,3)
AT with receiver P0 :

(xCOT S ,⊥)

F (2,3)
AT with receiver P1 :

(xCOT S ,⊥)

Fig. 20: The two distributions we have to prove indistinguishable in case the adversary A0 picks the sender.

Corrupted Sender The guessing algorithm has to distinguish the following two distributions:

{(Σ0, Σ1) $← {0, 1}2ℓ, σ
$← {0, 1} : π

$← ⟨PR, P0, P1⟩(σ, (Σ0, Σ1),⊥)}
≈{(Σ0, Σ1) $← {0, 1}2ℓ, σ

$← {0, 1} : π
$← ⟨PR, P0, P1⟩(σ,⊥, (Σ0, Σ1))}

(59)

In this section we prove anonymity against any adversary that corrupts the sender after the
execution. This adversary then has to guess which of the remaining parties acted as a receiver and
which was the dummy friend.

The two possible transcripts if he sender is fixed are depicted in Fig. 20.

126

Game1(κ)
1 : PS :
2 : x

(0)
S

$← {0, 1}m

3 : PR :
4 : x

(0)
R ← ΠCOT R(σ)

5 : PD :
6 : x

(0)
D

$← {0, 1}m

7 : Pi :
8 : ∀j ̸=i : x

(0)
i → F (2,3)

AT (j)
9 : PS :

10 : Σ ← F (2,3)
AT (S)

11 : x
(1)
S := ΠCOT S(x0, x1, Σ)

12 : PR :
13 : x

(1)
R

$← {0, 1}m

14 : PD :
15 : x

(1)
D

$← {0, 1}m

16 : Pi :
17 : ∀j ̸=i : x

(1)
i → F (2,3)

AT (j)
18 : PR :
19 : Σ ← F (2,3)

AT (R)
20 : return ΠCOT (x(0)

R , Σ)

Game2(κ)
1 : PS :
2 : x

(0)
S

$← {0, 1}m

3 : PR :
4 : x

(0)
R

$← {0, 1}m

5 : PD :
6 : x

(0)
R ← ΠCOT R(σ)

7 : Pi :
8 : ∀j ̸=i : x

(0)
i → F (2,3)

AT (j)
9 : PS :

10 : Σ ← F (2,3)
AT (S)

11 : x
(1)
S := ΠCOT S(x0, x1, Σ)

12 : PR :
13 : x

(1)
R

$← {0, 1}m

14 : PD :
15 : x

(1)
D

$← {0, 1}m

16 : Pi :
17 : ∀j ̸=i : x

(1)
i → F (2,3)

AT (j)
18 : PR :
19 : Σ ← F (2,3)

AT (R)
20 : return ΠCOT (x(0)

R , Σ)

The single game required for that—which is actually the same as in Fig. 20.
The formal description is as follows:

Gameσ
1 (κ) is the original game where the sender is PS and the receiver is PR.

Gameσ
2 (κ) is as Item Gameσ

1 (κ) but in providing the transcript the simulator follows Item Gameσ
1 (κ) for

the first round but inserts x
(0)
R in the name of the dummy friend and x

(0)
D in the name of the

receiver into F (2,3)
AT (S). Note that this corresponds to the final distribution from Fig. 20.

Lemma 60. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Ske be an
IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA secure signature
scheme. For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

1 (κ) and
Gameσ

2 (κ) is bounded by:

|Pr[outGameσ
1 (κ) = 1]− Pr[outGameσ

2 (κ) = 1]| ∈ negl(κ)

Proof. We reduce to the δ-anonymity of F (2,3)
AT . If there was some distinguisher D who can

distinguish Gameσ
1 (κ) from Gameσ

2 (κ) with advantage 1/2 + α then there is some adversary A
(which implies a guessing algorithm A) who can determine the sender with advantage α. The
limit δ then provides an upper bound on α.

Creating the Transcript. We denote by C the challenger for the anonymity-game of F (2,3)
AT . A

determines the message to-be-transferred as ΠCOT R(σ), that is, the first message sent by a
receiver in ΠCOT who wants to receive xσ. From that C returns a transcript of the F (2,3)

AT

instance, which A inserts into the transcript provided to the distinguisher D instead of honestly
simulating the first F (2,3)

AT instance where the sender S of the AT is the receiver, the remainder
is simulated as-is.

Translating the Result. Eventually D returns a guess which is either Gameσ
1 (κ) or Gameσ

2 (κ).
In case D assumes to be in Gameσ

1 (κ) we assume the party we refer to as PR is the sender, and
if D assumes to be in Gameσ

2 (κ) we let A refer to PD as the sender in the AT.
As can be seen the distributions match perfectly, as the only change is the sender and that one
perfectly translates to our problem of de-anonymization.

127

Thus it follows that D is correct with probability

Pr[D correct] ≤ 1/2 + α

=⇒ |Pr[D correct]− 1/2| = |α| = α ≤ (1− δ)/2
(60)

and thus if the adversary corrupts the sender then the protocol provides δ-Anonymity where δ

is inherited from F (2,3)
AT . ⊓⊔

P0 sender

F (2,3)
AT with receiver P0 :

(xCOT R ,⊥)

F (2,3)
AT with receiver P1 :

(xCOT R ,⊥)

F (2,3)
AT with receiver PR :

(⊥,⊥)

F (2,3)
AT with receiver P0 :

(⊥,⊥)

F (2,3)
AT with receiver P1 :

(xCOT S ,⊥)

F (2,3)
AT with receiver PR :

(xCOT S ,⊥)

P1 sender

F (2,3)
AT with receiver P0 :

(xCOT R ,⊥)

F (2,3)
AT with receiver P1 :

(xCOT R ,⊥)

F (2,3)
AT with receiver PR :

(⊥,⊥)

F (2,3)
AT with receiver P0 :

(xCOT S ,⊥)

F (2,3)
AT with receiver P1 :

(⊥,⊥)

F (2,3)
AT with receiver PR :

(xCOT S ,⊥)

Fig. 21: The two distributions we have to prove indistinguishable in case the adversary A0 picks the
receiver.

Corrupted Receiver In this section we analyze the anonymity of the remaining parties provided
that the adversary corrupts the receiver of the message. In this case the party PR is fixed and the
adversary has to distinguish between the two cases depicted in Fig. 21: Either P0 is the sender and
P1 is the dummy friend or vice versa. The guessing algorithm has to distinguish the following two
distributions:

{(Σ0, Σ1) $← {0, 1}2ℓ, σ
$← {0, 1} : π

$← ⟨PR, P0, P1⟩(σ, (Σ0, Σ1),⊥)}
≈{(Σ0, Σ1) $← {0, 1}2ℓ, σ

$← {0, 1} : π
$← ⟨PR, P0, P1⟩(σ,⊥, (Σ0, Σ1))}

(61)

To prove the hardness of distinguishing these two cases we proceed as follows:

128

Game1(κ)
1 : PS :
2 : x

(0)
S

$← {0, 1}m

3 : PR :
4 : x

(0)
R ← ΠCOT R(σ)

5 : PD :
6 : x

(0)
D

$← {0, 1}m

7 : Pi :
8 : ∀j ̸=i : x

(0)
i → F (2,3)

AT (j)
9 : PS :

10 : Σ ← F (2,3)
AT (S)

11 : x
(1)
S := ΠCOT S(x0, x1, Σ)

12 : PR :
13 : x

(1)
R

$← {0, 1}m

14 : PD :
15 : −
16 : x

(1)
D

$← {0, 1}m

17 : Pi :
18 : ∀j ̸=i : x

(1)
i → F (2,3)

AT (j)
19 : PR :
20 : Σ ← F (2,3)

AT (R)
21 : return ΠCOT (x(0)

R , Σ)

Game2(κ)
1 : PS :
2 : x

(0)
S

$← {0, 1}m

3 : PR :
4 : x

(0)
R ← ΠCOT R(σ)

5 : PD :
6 : x

(0)
D

$← {0, 1}m

7 : Pi :
8 : ∀j ̸=i : x

(0)
i → F (2,3)

AT (j)
9 : PS :

10 : −
11 : x

(1)
S

$← {0, 1}m

12 : PR :
13 : x

(1)
R

$← {0, 1}m

14 : PD :
15 : Σ ← F (2,3)

AT (S)
16 : x

(1)
D := ΠCOT S(x0, x1, Σ)

17 : Pi :
18 : ∀j ̸=i : x

(1)
i → F (2,3)

AT (j)
19 : PR :
20 : Σ ← F (2,3)

AT (R)
21 : return ΠCOT (x(0)

R , Σ)

The formal description is as follows:

Gameσ
1 (κ) is the original game where the sender is PS and the receiver is PR.

Gameσ
2 (κ) is as Gameσ

1 (κ) but in providing the transcript the simulator follows Item Gameσ
1 (κ) for the

first round but inserts x
(1)
S in the name of the dummy friend and x

(1)
D in the name of the sender

into F (2,3)
AT (R). Note that this corresponds to the final distribution from Fig. 21.

Lemma 61. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Ske be an
IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA secure signature
scheme. For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

1 (κ) and
Gameσ

2 (κ) is bounded by:

|Pr[outGameσ
1 (κ) = 1]− Pr[outGameσ

2 (κ) = 1]| ∈ negl(κ)

Proof. We reduce to the δ-anonymity of F (2,3)
AT . If there was some distinguisher D who can

distinguish Gameσ
1 (κ) from Gameσ

2 (κ) with advantage 1/2 + α then there is some adversary A
(which implies a guessing algorithm A) who can determine the sender with advantage α. The
limit δ then provides an upper bound on α.

Creating the Transcript. We denote by C the challenger for the anonymity-game of F (2,3)
AT . A

determines the message to-be-transferred as ΠCOT S(x0, x1, Σ), that is, the response sent by
a sender in ΠCOT after having received the first message by the receiver. Note that Σ is the
result of the first F (2,3)

AT instance where R inserts the message, and we take the output of that
which only corresponds to the desired message ΠCOT R(σ) with probability 1/2 + ε/2. However,
we stress that this is not important to our proof, as the relevant part is only the insertion of
that message as transferred message into the instance of F (2,3)

AT where PR is the receiver and
which is played with the challenger C.
C returns a transcript of the F (2,3)

AT instance, which A inserts into the transcript provided to
the distinguisher D instead of honestly simulating the second F (2,3)

AT instance where the receiver
R of the AT is also the receiver of the OT, the remainder is simulated as-is.

129

Translating the Result. Eventually D returns a guess which is either Gameσ
1 (κ) or Gameσ

2 (κ).
In case D assumes to be in Gameσ

1 (κ) we assume the party we refer to as PS is the sender, and
if D assumes to be in Gameσ

2 (κ) we let A refer to PD as the sender in the AT.

As can be seen the distributions match perfectly, as the only change is the sender and that one
perfectly translates to our problem of de-anonymization.

Thus it follows that D is correct with probability

Pr[D correct] ≤ 1/2 + α

=⇒ |Pr[D correct]− 1/2| = |α| = α ≤ (1− δ)/2
(62)

and thus if the adversary corrupts the sender then the protocol provides δ-Anonymity where δ

is inherited from F (2,3)
AT . ⊓⊔

P0 sender

F (2,3)
AT with receiver PD :

(xCOT R ,⊥)

F (2,3)
AT with receiver P0 :

(xCOT R ,⊥)

F (2,3)
AT with receiver P1 :

(⊥,⊥)

F (2,3)
AT with receiver PD :

(xCOT S ,⊥)

F (2,3)
AT with receiver P0 :

(⊥,⊥)

F (2,3)
AT with receiver P1 :

(xCOT S ,⊥)

P1 sender

F (2,3)
AT with receiver PD :

(xCOT R ,⊥)

F (2,3)
AT with receiver P0 :

(⊥,⊥)

F (2,3)
AT with receiver P1 :

(xCOT R ,⊥)

F (2,3)
AT with receiver PD :

(xCOT S ,⊥)

F (2,3)
AT with receiver P0 :

(xCOT S ,⊥)

F (2,3)
AT with receiver P1 :

(⊥,⊥)

Fig. 22: The two distributions we have to prove indistinguishable in case the adversary A0 picks the dummy
friend.

Corrupted Dummy Friend If the adversary corrupts the dummy friend after the execution of
the Undetectable Oblivious Transfer protocol then it is guaranteed that the two remaining parties
are the sender and the receiver.

{(Σ0, Σ1) $← {0, 1}2ℓ, σ
$← {0, 1} : π

$← ⟨P0, P1, PD⟩((Σ0, Σ1), σ,⊥)}
≈{(Σ0, Σ1) $← {0, 1}2ℓ, σ

$← {0, 1} : π
$← ⟨P0, P1, PD⟩(σ, (Σ0, Σ1),⊥)}

(63)

However, distinguishing which is which is hard; to prove this claim we use the following games:

130

Game1(κ)
1 : PS :
2 : x

(0)
S

$← {0, 1}m

3 : PR :
4 : x

(0)
R ← ΠCOT R(σ)

5 : PD :
6 : x

(0)
D

$← {0, 1}m

7 : Pi :
8 : ∀j ̸=i : x

(0)
i → F (2,3)

AT (j)
9 : PS :

10 : Σ ← F (2,3)
AT (S)

11 : x
(1)
S := ΠCOT S(x0, x1, Σ)

12 : PR :
13 : −
14 : x

(1)
R

$← {0, 1}m

15 : PD :
16 : x

(1)
D

$← {0, 1}m

17 : Pi :
18 : ∀j ̸=i : x

(1)
i → F (2,3)

AT (j)
19 : PR :
20 : Σ ← F (2,3)

AT (R)
21 : return ΠCOT (x(0)

R , Σ)

Game2(κ)
1 : PS :
2 : x

(0)
S ← ΠCOT R(σ)

3 : PR :
4 : x

(0)
R

$← {0, 1}m

5 : PD :
6 : x

(0)
D

$← {0, 1}m

7 : Pi :
8 : ∀j ̸=i : x

(0)
i → F (2,3)

AT (j)
9 : PS :

10 : Σ ← F (2,3)
AT (S)

11 : x
(1)
S := ΠCOT S(x0, x1, Σ)

12 : PR :
13 : −
14 : x

(1)
R

$← {0, 1}m

15 : PD :
16 : x

(1)
D

$← {0, 1}m

17 : Pi :
18 : ∀j ̸=i : x

(1)
i → F (2,3)

AT (j)
19 : PR :
20 : Σ ← F (2,3)

AT (R)
21 : return ΠCOT (x(0)

R , Σ)

Game2(κ)
1 : PS :
2 : x

(0)
S ← ΠCOT R(σ)

3 : PR :
4 : x

(0)
R

$← {0, 1}m

5 : PD :
6 : x

(0)
D

$← {0, 1}m

7 : Pi :
8 : ∀j ̸=i : x

(0)
i → F (2,3)

AT (j)
9 : PS :

10 : Σ ← F (2,3)
AT (S)

11 : x
(1)
S := ΠCOT S(x0, x1, Σ)

12 : PR :
13 : −
14 : x

(1)
R

$← {0, 1}m

15 : PD :
16 : x

(1)
D

$← {0, 1}m

17 : Pi :
18 : ∀j ̸=i : x

(1)
i → F (2,3)

AT (j)
19 : PR :
20 : Σ ← F (2,3)

AT (R)
21 : return ΠCOT (x(0)

R , Σ)

Game3(κ)
1 : PS :
2 : x

(0)
S ← ΠCOT R(σ)

3 : PR :
4 : x

(0)
R

$← {0, 1}m

5 : PD :
6 : x

(0)
D

$← {0, 1}m

7 : Pi :
8 : ∀j ̸=i : x

(0)
i → F (2,3)

AT (j)
9 : PS :

10 : −
11 : x

(1)
S

$← {0, 1}m

12 : PR :
13 : Σ ← F (2,3)

AT (R)
14 : x

(1)
R := ΠCOT S(x0, x1, Σ)

15 : PD :
16 : x

(1)
D

$← {0, 1}m

17 : Pi :
18 : ∀j ̸=i : x

(1)
i → F (2,3)

AT (j)
19 : PR :
20 : Σ ← F (2,3)

AT (R)
21 : return ΠCOT (x(0)

R , Σ)

Gameσ
1 (κ) is the original game where the sender is PS and the receiver is PR.

Gameσ
2 (κ) is as Gameσ

1 (κ) but in providing the transcript the simulator follows Gameσ
1 (κ) for the first

round but inserts x
(0)
R in the name of the sender and x

(0)
S in the name of the receiver into

F (2,3)
AT (D).

Lemma 62. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Ske be an
IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA secure signature

131

scheme. For all PPT guessing algorithms A, the distinguishing advantage for Gameσ
1 (κ) and

Gameσ
2 (κ) is bounded by:

|Pr[outGameσ
1 (κ) = 1]− Pr[outGameσ

2 (κ) = 1]| ∈ negl(κ)

Proof. We reduce to the δ-anonymity of F (2,3)
AT . If there was some distinguisher D who can

distinguish Gameσ
1 (κ) from Gameσ

2 (κ) with advantage 1/2 + α then there is some adversary A
(which implies a guessing algorithm A) who can determine the sender with advantage α. The
limit δ then provides an upper bound on α.

Creating the Transcript. We denote by C the challenger for the anonymity-game of F (2,3)
AT . A

determines the message to-be-transferred as ΠCOT R(σ), that is, the first message sent by a
receiver in ΠCOT who wants to receive xσ. From that C returns a transcript of the F (2,3)

AT

instance, which A inserts into the transcript provided to the distinguisher D instead of honestly
simulating the first F (2,3)

AT instance where the sender S of the AT is the dummy friend, the
remainder is simulated as-is.

Translating the Result. Eventually D returns a guess which is either Gameσ
1 (κ) or Gameσ

2 (κ).
In case D assumes to be in Gameσ

1 (κ) we assume the party we refer to as PR is the sender, and
if D assumes to be in Gameσ

2 (κ) we let A refer to PS as the sender in the AT.
As can be seen the distributions match perfectly, as the only change is the sender and that one
perfectly translates to our problem of de-anonymization.
Thus it follows that D is correct with probability

Pr[D correct] ≤ 1/2 + α

=⇒ |Pr[D correct]− 1/2| = |α| = α ≤ (1− δ)/2
(64)

and thus if the adversary corrupts the sender then the protocol provides δ-Anonymity where δ

is inherited from F (2,3)
AT . ⊓⊔

Gameσ
3 (κ) is as Gameσ

2 (κ) but in providing the transcript the simulator follows Gameσ
2 (κ) but inserts x

(1)
S

in the name of the receiver and x
(1)
R in the name of the sender into F (2,3)

AT (D).

Lemma 63. Let Pke be an IND$-CCA secure public-key encryption scheme. Let Ske be an
IND$-CCA secure secret-key encryption scheme. Let Sig be an sEUF-CMA secure signature
scheme. For all PPT guessing algorithms A, the distinguishing advantage for Gameσ

2 (κ) and
Gameσ

3 (κ) is bounded by:

|Pr[outGameσ
2 (κ) = 1]− Pr[outGameσ

3 (κ) = 1]| ∈ negl(κ)

Proof. We reduce to the δ-anonymity of F (2,3)
AT . If there was some distinguisher D who can

distinguish Gameσ
2 (κ) from Gameσ

3 (κ) with advantage 1/2 + α then there is some adversary A
(which implies a guessing algorithm A) who can determine the sender with advantage α. The
limit δ then provides an upper bound on α.

Creating the Transcript. We denote by C the challenger for the anonymity-game of F (2,3)
AT . A

determines the message to-be-transferred as ΠCOT S(x0, x1, Σ), that is, the response sent by
a sender in ΠCOT after having received the first message by the receiver. Note that Σ is the
result of the first F (2,3)

AT instance where S inserts the message and sends it to R since Gameσ
2 (κ)

(where the roles for the first round has been changed), and we take the output of that which
only corresponds to the desired message ΠCOT R(σ) with probability 1/2 + ε/2. However, we
stress that this is not important to our proof, as the relevant part is only the insertion of that
message as transferred message into the instance of F (2,3)

AT where PR is the receiver and which is
played with the challenger C.
C returns a transcript of the F (2,3)

AT instance, which A inserts into the transcript provided to
the distinguisher D instead of honestly simulating the second F (2,3)

AT instance where the receiver
R of the AT is also the receiver of the OT, the remainder is simulated as-is.

132

Translating the Result. Eventually D returns a guess which is either Gameσ
2 (κ) or Gameσ

3 (κ).
In case D assumes to be in Gameσ

2 (κ) we assume the party we refer to as PS is the sender, and
if D assumes to be in Gameσ

3 (κ) we let A refer to PR as the sender in the AT.
As can be seen the distributions match perfectly, as the only change is the sender and that one
perfectly translates to our problem of de-anonymization.
Thus it follows that D is correct with probability

Pr[D correct] ≤ 1/2 + α

=⇒ |Pr[D correct]− 1/2| = |α| = α ≤ (1− δ)/2
(65)

and thus if the adversary corrupts the sender then the protocol provides δ-Anonymity where δ

is inherited from F (2,3)
AT . ⊓⊔

Given that this is the least efficient strategy it thus follows that the anonymity is bounded by δ
for any possible A0 corrupting any party.

References

[BDP+98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of
security for public-key encryption schemes. In H. Krawczyk, editor, CRYPTO’98,
volume 1462 of LNCS, pages 26–45. Springer, Heidelberg, August 1998.

[CLT+15] R. Canetti, H. Lin, S. Tessaro, and V. Vaikuntanathan. Obfuscation of probabilistic
circuits and applications. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II,
volume 9015 of LNCS, pages 468–497. Springer, Heidelberg, March 2015.

[Gol04] O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, Cambridge, UK, 2004.

[JLL+22] A. Jain, H. Lin, J. Luo, and D. Wichs. The pseudorandom oracle model and ideal
obfuscation. Cryptology ePrint Archive, Report 2022/1204, 2022. https://eprint.iacr.
org/2022/1204.

[Rog04] P. Rogaway. Nonce-based symmetric encryption. In B. K. Roy and W. Meier, editors,
FSE 2004, volume 3017 of LNCS, pages 348–359. Springer, Heidelberg, February
2004.

[vHL05] L. von Ahn, N. J. Hopper, and J. Langford. Covert two-party computation. In H. N.
Gabow and R. Fagin, editors, 37th ACM STOC, pages 513–522. ACM Press, May
2005.

133

https://eprint.iacr.org/2022/1204
https://eprint.iacr.org/2022/1204

134

Acronyms

AT Anonymous Transfer
CMPC Covert Multiparty Computation
COT Covert Oblivious Transfer
CRS Common Reference String
EUF-CMA Existential Unforgery under Chosen Message Attacks
IND-CCA Indistinguishability under Chosen Ciphertext Attacks
IND$ Indistinguishability from Random Bits
IND$-CCA Indistinguishability from Random Bits under Chosen Ciphertext Attacks
IND$-CPA Indistinguishability from Random Bits under Chosen Plaintext Attacks
ITM Interactive Turing Machine
LR Left-Right
MPC Multiparty Computation
NM Non-Malleability
NM-CCA Non-Malleability under Chosen Ciphertext Attacks
OT Oblivious Transfer
OTP One-Time-Pad
PKE Public Key Encryption
PPT Probabilistic Polynomial-Time
PRF Pseudorandom Function
ROM Random Oracle Model
sEUF-CMA Strong Existential Unforgeability under Chosen Message Attacks
SKE Symmetric Key Encryption
SR Silent Receiver
U2PC Undetectable Two-Party Computation
UMPC Undetectable Multiparty Computation
UOT Undetectable Oblivious Transfer
VBB Virtual Black-Box Obfuscation

136

Symbols

A: The adversary in a cryptographic framework.
A: An algorithm that guesses the identity of the participating player of any AT.
α: The advantage of a distinguisher over guessing.
B: An algorithm that guesses the identity of the participating player of any AT.
b: A value between 1 and N describing which player Pb participates in the protocol.
bC: The challenge player in a game-based proof.
Ber: A bernoulli-distribution which returns 1 with probability p.
β: The bit that is sampled by a challenger C in a security game which has to be guessed by the

adversary.
C : The constant factor that binds a given function in Landau notation. That is, f ∈ O(g) ⇐⇒

limx→∞|f(x)|/|g(x)| ≤ C .
C: A function class, that is, the set of functions that belong in a certain complexity class.
C: The challenger in a game-based proof.
ct: Cipher text, that is, an encryption of a message.
c: Number of rounds of an interactive protocol.
χ: The current round of an interactive protocol.
coin: The result of a coin toss.
Cointoss: A function realizing a (biased) coin toss. We write Cointoss(p)(r) to denote the coin toss

that returns tails with probability p and tails with probability (1− p), where the randomness is
taken from a PRF on input r .

CointossS: A function realizing a (biased) coin toss. We write CointossS(r)
(p)(x, y) to denote the coin

toss that returns x with probability p and y with probability (1− p), where the randomness is
taken from a PRF on input r .

crs: A common reference string.
D: The dummy friend who is not participating in any protocol but is still present for some reason.
D: The distinguisher, i.e. a PPT ITM which distinguishes two distributions.
D: A distribution.
d: Tweaking parameter which acts as a compromise between anonymity and correctness; if d = 0,

we have a perfectly correct protocol, but if d = 1, we have a perfectly anonymous protoocl.
Dec: A decryption protocol.
δ: The measurement of anonymity for an AT or UOT protocol.
dTV: The Total Variational Distance, defined over two probability distributions p and q as

dTV(p, q) := 1
2

∑
i|pi − qi|.

Enc: An encryption protocol.
ε: The measurement of correctness for an AT or UOT protocol.
Evaluate: The method of an obfuscator O to evaluate a given program given only the handle.
Exp: An experiment as part of a game.
F: A Pseudorandom Function.
F : The functionality in a simulation-based framework.
f : The to-be-computed function for deniable secure computation.
F (2,3)

AT : Ideal functionality for realizing Anonymous Transfer with three parties, two of which are
aware that the protocol is executed.

Game: The game in a game-hop based proof.
H: The Hellinger Distance, defined over two probability distributions p and q as H(p, q) :=

1√
2

√∑
i

(√
pi −

√
qi

)2.
H: A hybrid, that is, a minor change in a simulation which we claim to be not efficiently noticable.
h: The handle an obfuscator returns that enables evaluating the program.
heads: The heads-side of a coin toss.
k: The signing key of a signature scheme, can be used to sign a given message such that third

parties can verify the authenticity.
k: The number of players, that is, participants.

κ: The security parameter.
KeyGen: A key generation protocol.
ℓ: The length of the message.
m: The length of the protocol messages.
µ: The signature of a given message.
µC: The signature used in the challenge transcript.
N : The number of individuals, that is, (non-)participants.
negl: The set of negligible functions with respect to a given argument.
O: An ideal obfuscator that obfuscates a given program.
O: An oracle.
Obf: An ideal obfuscation scheme.
Obfuscate: The method of an obfuscator O to obfuscate a given program.
OT: Transfer algorithm for an UOT.
Ot: An Oblivious Transfer scheme.
OTP: A one-time pad.
OTPC: The used One-Time-Pad in the challenge transcript.
out: Output of a game.
owhl: The set of overwhelming functions with respect to a given argument.
P: An individual present during the protocol execution.
P : An obfuscated program that takes as input a transcript π outputs a message Σ for the receiver.
Π: A protocol.
ϖ: A random permutation on a given set.
π: Transcript of a protocol.
Π1

AT : A protocol realizing single-bit Anonymous Transfer.
Πℓ

AT : A protocol realizing ℓ-bit Anonymous Transfer.
Πκ

AT : A protocol realizing κ-bit Anonymous Transfer.
πC: The challenge transcript of a game-based proof.
ΠCOT : A protocol for realizing Covert Oblivious Transfer.
Πℓ

SR: The Silent Receiver AT protocol, i.e. the AT protocol where the receiver sends no messages.
ΠUMP C : The Undetectable MPC protocol that allows k parties to hide a computation inside

innocent-looking conversations of N individuals.
ΠUOT : A protocol for realizing Undetectable Oblivious Transfer.
pk: The public key of an encryption scheme, can be used to encrypt a message into a cipher text.
Pke: A public-key encryption scheme.
poly: An arbitrary polynomial.
p: Probability
R: The receiving party.
r: A random / undefined bitstring.
Rand: The rerandomization of the last round of an AT.
Reconstruct: Reconstruction algorithm for an AT.
S: A symmetric group, that is, the group of elements alongside all bijections/permutations onto

itself.
S: The sending party.
S: The simulator in a cryptographic framework.
Setup: The setup algorithm that creates a Common Reference String.
Sig A signature scheme.
Sig: The function to compute the signature of a given message.
Σ: The to-be-transferred message of an AT or UOT.
σ: The to-be-transferred bit of an AT.
ς: The measurement of secrecy for an AT, which is high if the non-receiver is unable to reconstruct

the transferred bit better than by guessing.
ΣC: The transferred message in the challenge transcript.
σC: The transferred bit in the challenge transcript.
sk: The secret key of an encryption scheme, can be used to decrypt a cipher text.
Ske: A (symmetric) encryption scheme.
st: The (secret) state of a party.
Supp: The support of a distribution.

138

T: The runtime of a turing machine.
T : The (random) tape of a player.
t: The number of samples an adversary is given from a given distribution.
tails: The tails-side of a coin toss.
Transfer: The transfer protocol for an AT.
U : The uniform distribution.
Vfy: The verification function of a given MAC or Signature scheme.
vk: The verification key of a signature scheme, suffices to check authenticity of a signature over a

known message.
vkC: The verification key used in the challenge transcript.
X : Parameterized by a value b ∈ [N − 1], this is the value obtained in the program P AT after

decrypting the message xb with the supposed secret key skb.
x: Message sent during a protocol execution.
xC: A message reported in the challenge transcript.
ξ: The slack, that is, the difference between two variables x and y: if x < y, we can write x + ξ = y,

allowing for an easier analysis.

139

	Introduction
	Undetectable Secure Computation
	Defining *AT
	Impossibility Result
	A Candidate Fine-Grained *AT
	Discussions and Implications
	Further Results and Open Questions
	Acknowledgements

	Preliminaries
	Notations
	Steganography
	Distribution Testing

	*AT
	Network Model and Non-Participating Parties
	The Model
	Fine-grained Anonymous Transfer
	Trivial Anonymous Transfers
	Reductions Among AT Protocols

	Impossibility of Anonymous Transfer
	The Attacker
	Putting the Pieces Together
	Impossibility of *AT for numIndiv> 3
	Extensions and Limitations

	Fine-Grained AT from Ideal Obfuscation
	Security Analysis
	Final Result

	*UOT
	Strong *AT
	Definitions for *UOT

	Towards *UMPC
	Defining *UMPC
	Towards constructing *U2PC from *UOT

	Preliminaries
	*COT
	*INDD-CCA
	*sEUF-CMA
	Ideal Obfuscation

	Proof of lem:tvdis
	Proof of cor:DistWithT
	Security proof for the Fine-Grained Protocol
	Full Proof of Correctness
	Graphical Depiction of the Anonymity Proof
	Full Proof of Anonymity
	Proof of lem:fg:origpb:correctness
	Proof of lem:fg:correctness:abortifrerand
	Proof of lem:fg:abortifrerand:samefirstreceivermessage
	Proof of lem:fg:samefirstreceivermessage:samefirstround
	Proof of lem:fg:samefirstround:randommessagepke
	Proof of lem:fg:randommessagepke:randommessagesske
	Graphical Depiction of the Secrecy Proof Outline
	Full Proof of Secrecy

	Asymptotically Secure AT in the Designated Sender Model
	A two-round protocol
	A rounds-rounds protocol.
	On the security

	A fine-grained *AT for msglength-bit messages
	*UOT from *AT and two-round *COT
	Correctness
	Privacy
	Anonymity

