
HAL Id: hal-03860742
https://hal.science/hal-03860742

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sublinear Secure Computation from New Assumptions
Elette Boyle, Geoffroy Couteau, Pierre Meyer

To cite this version:
Elette Boyle, Geoffroy Couteau, Pierre Meyer. Sublinear Secure Computation from New Assumptions.
TCC 2022 - Theory of Cryptography Conference, Nov 2022, Chicago, United States. �hal-03860742�

https://hal.science/hal-03860742
https://hal.archives-ouvertes.fr

Sublinear Secure Computation from New
Assumptions

Elette Boyle1, Geoffroy Couteau2, and Pierre Meyer3

1 Reichman University and NTT Research. eboyle@alum.mit.edu
2 Université Paris Cité, IRIF, CNRS. couteau@irif.fr

3 Reichman University and Université Paris Cité, IRIF, CNRS.
pierre.meyer@irif.fr

Abstract. Secure computation enables mutually distrusting parties to
jointly compute a function on their secret inputs, while revealing nothing
beyond the function output. A long-running challenge is understanding
the required communication complexity of such protocols—in particular,
when communication can be sublinear in the circuit representation size of
the desired function. For certain functions, such as Private Information
Retrieval (PIR), this question extends to even sublinearity in the input
size.
We develop new techniques expanding the set of computational assump-
tions for sublinear communication in both settings:
– Circuit size. We present sublinear-communication protocols for se-

cure evaluation of general layered circuits, given any 2-round rate-1
batch oblivious transfer (OT) protocol with a particular “decompos-
ability” property. In particular, this condition can be shown to hold
for the recent batch OT protocols of (Brakerski et al. Eurocrypt
2022), in turn yielding a new sublinear secure computation feasi-
bility: from Quadratic Residuosity (QR) together with polynomial-
noise-rate Learning Parity with Noise (LPN).
Our approach constitutes a departure from existing paths toward
sublinear secure computation, all based on fully homomorphic en-
cryption or homomorphic secret sharing.

– Input size. We construct single-server PIR based on the Computa-
tional Diffie-Hellman (CDH) assumption, with polylogarithmic com-
munication in the database input size n. Previous constructions from
CDH required communication Ω(n). In hindsight, our construction
comprises of a relatively simple combination of existing tools from
the literature.

Keywords: Foundations · Private Information Retrieval · Secure Mul-
tiparty Computation

1 Introduction

Secure computation enables mutually distrusting parties to jointly compute a
function on their secret inputs, while revealing nothing beyond the function

output. We focus on the case of two-party computation with semi-honest (pas-
sive) security. Since the seminal feasibility results of the 1980s [Yao86,GMW87,
BGW88,CCD88], a major challenge in the area of secure computation has been if
and when it is possible to break the “circuit-size barrier.” This barrier refers to the
fact that all classical techniques for secure computation required a larger amount
of communication than the size of a boolean circuit representing the function
to be computed. In contrast, insecure computation only requires exchanging the
inputs, which are usually considerably smaller than the entire circuit.

Early positive results with sublinear communication either required exponen-
tial computation [BFKR91,NN01], or (as discussed later) were limited to very
simple functions such as point functions [CGKS95, KO97, CG97] or constant-
depth circuits [BI05].

Beyond the circuit-size barrier. This situation changed with the breakthrough
result of Gentry [Gen09] on fully homomorphic encryption (FHE). FHE is a pow-
erful primitive supporting computation on encrypted data, which can be used
to build optimal-communication protocols in the computational setting [DFH12,
AJL+12], by having parties perform the desired computation locally on encrypted
inputs without additional communication. However, despite significant efforts,
the set of assumptions under which we know how to build FHE is very narrow.
Standard approaches are restricted to lattice-based assumptions, such as Learn-
ing With Errors (LWE), and in particular do not include any of the traditional
assumptions which were used in the 20th century. Very recent developments in
indistinguishability obfuscation imply results based on an alternative (relatively
exotic) bundle of assumptions [CLTV15,JLS22].4

The work of [BGI16] first showed that secure computation with commu-
nication sublinear in the circuit size could also be based on assumptions not
known to imply FHE, via a new primitive of homomorphic secret sharing (HSS).
HSS can be viewed as a relaxation of FHE, where homomorphic evaluation can
be distributed among two parties who do not interact with each other. More
concretely, from the Decisional Diffie-Hellman (DDH) assumption, [BGI16] con-
structed a form of HSS for branching programs (including NC1), implying secure
computation for the corresponding function class with asymptotically optimal
communication. In turn, this was shown to yield secure computation for general
layered circuits5 of size s with sublinear communication O(s/ log s), by evaluat-
ing in (log s)-depth blocks, and communicating only between blocks.

Since then, the HSS-based approach and variations have resulted in sublinear-
communication secure protocols from an additional assortment of assumptions.
Following the [BGI16] blueprint, the works of [FGJI17,OSY21,RS21] were able to
replace the DDH assumption with Decision Composite Residuosity (DCR). The

4 Namely, subexponential security of the combination of: Learning Parity with Noise,
plus polynomial-stretch pseudorandom generators in NC0, plus the Decision Linear
assumption on symmetric bilinear groups of prime order [JLS22].

5 A depth-d circuit is layered if it can be divided into d layers such that any wire
connects adjacent layers.

2

framework was recently abstracted and extended to further algebraic structures,
including a class of assumptions based on class groups of imaginary quadratic
fields [ADOS22]. In addition, the work of [CM21] built HSS for log log-depth
circuits (yielding O(s/ log log s) communication secure computation for layered
circuits) based on a strong flavor of the Learning Parity with Noise (LPN) as-
sumption: with a small number of samples, but assuming super-polynomial hard-
ness, with inverse-superpolynomial noise rate.

To date, these two approaches—FHE and HSS—still comprise the only known
paths to sublinear-communication secure computation for general circuit classes,
without resorting to superpolynomial computation or setup assumptions such as
correlated randomness [IKM+13, DNNR17, Cou19]. It remains a motivated re-
search agenda not only to continue expanding the set of distinct computational
assumptions upon which sublinear secure computation can be built, but addi-
tionally of exploring new types of approaches toward this goal.

Private Information Retrieval. As mentioned, one exception to the above treat-
ment is the special case of specific simple functionalities: most prominently, the
task of Private Information Retrieval (PIR) [CGKS95,KO97]. A (single-server)
PIR protocol roughly amounts to a secure computation protocol (with one-sided
privacy) for the specific function f(x, i) = xi with x ∈ {0, 1}n and i ∈ [n]. Un-
like the case of general computation (where the communication complexity of the
underlying function may be Ω(n) even without security), PIR can admit secure
protocols with communication sublinear (even polylogarithmic) in the input size.

For many years, protocols for PIR with polylogarithmic communication in n
were known only from the Decisional Composite Residuosity (DCR), Learning
with Errors (LWE), or Phi-hiding assumptions [CMS99, Cha04, Lip05, OS07].
More recently, such constructions were achieved from Quadratic Residuosity
(QR), or Decisional Diffie-Hellman (DDH) [DGI+19].

1.1 Our Results

We present new approaches and techniques for both of the above settings, ul-
timately extending the set of computational assumptions under which we can
achieve sublinear-communication secure computation protocols.

Our results fall within two primary categories:

– We obtain (slightly) sublinear secure two-party computation for general lay-
ered circuits, through a new path of low-communication batch oblivious
transfer.

– We explore the specific goal of Private Information Retrieval (PIR), and
provide a new construction with polylogarithmic communication based on
Computational Diffie-Hellman (CDH).

We emphasize that our protocols execute in polynomial runtime, and do not rely
on any correlated randomness assumptions.

3

Sublinear 2PC for layered circuits. We present a new approach toward secure
two-party computation protocols for general layered circuits, with communica-
tion complexity that scales sublinearly in the circuit size. As opposed to building
FHE or HSS, our approach begins with protocols for “batch Oblivious Transfer”
with low communication.

Oblivious Transfer (OT) is an atomic functionality in which sender and re-
ceiver parties begin with inputs m0,m1 ∈ {0, 1} and b ∈ {0, 1}, respectively; at
the conclusion the receiver learns the selected message mb; and neither party
learns further information about one another’s inputs. OT was shown to be a
complete functionality for general secure computation [Kil00], where OT proto-
col execution(s) take place for each nonlinear gate of the corresponding circuit.

OT protocols are known from a number of standard assumptions, in just two
rounds of communication (i.e., one message from receiver to sender, and one
message in return); but, the communication complexity for all such solutions is
(inherently) significantly larger than the input size. Very recently, it was shown
by Brakerski et al. [BBDP22] how to achieve a batched version of OT, still in
two rounds, and with rate-1 communication. That is, for a collection of message
pairs ({m(i)

0 ,m
(i)
1 })i∈[k] and selection bits (b(i))i∈[k], a sender and receiver could

perform k parallel batched executions of OT in communication roughly k.
We prove that any such protocol which satisfies an additional decomposabil-

ity property suffices to imply secure computation protocols for general layered
circuits with sublinear communication complexity. To define decomposability,
consider the communication structure of any 2-round rate-1 batch OT protocol.
In the first round, the receiver sends k + o(k) bits to the sender,6 somehow en-
coding its selection bits b(i). In response, the sender performs some computation
as a function of its message pairs {m(i)

0 ,m
(i)
1 }, and returns k + o(k) bits in re-

sponse, somehow encoding the k selected messages, m(i)

b(i)
. For the constructions

of [BBDP22], the sender’s message size is just k + polylog(k).
We say that the (2-round, rate-1) batch OT protocol is decomposable if for any

agreed subset S ⊂ [k] of indices, the sender can choose a corresponding subset of
|S|+ polylog(k) of its return message bits, such that sending this partial sender
response reveals exactly the corresponding subset of selected messages (m(i)

b(i)
)i∈S

to the receiver. Namely, given the partial response, these |S| messages can be
recovered, and no information is revealed about m(i)

b(i)
for i /∈ S.

Theorem 1 (Sublinear 2PC from Decomposable Batch OT - informal).
Assume existence of 2-round rate-1 batch OT with the above “decomposability”

property. Then for any k, we can securely compute layered (synchronous) circuits
of depth d and size s using poly(22

k

, s) computation and O(22
k ·d ·poly(λ)+s/k)

communication.
In particular, for k = O(log log s), we obtain communication O(s/ log log s+

d1/3 ·s2(1+ε)/3 ·poly(λ)), for an arbitrary small constant ε. The latter is sublinear
in s whenever d = o(s1−ε/poly(λ)), i.e., the circuit is not too “tall and skinny”.
6 Our construction can actually handle arbitrary constant client-to-server upload rate,
as long as the sender-to-receiver download rate is 1.

4

This decomposability property is not simply hypothetical, but rather was in-
spired by the batch-OT protocols of Brakerski et al. [BBDP22], which we show
to satisfy the requirement. At a high level, the sender’s message in their protocols
consists of an encryption of the selected message bits (computed homomorphi-
cally as a function of receiver-sent ciphertexts of its selection bits, together with
the message pairs {m(i)

0 ,m
(i)
1 }), compressed à la [DGI+19] to rate 1. The re-

sulting rate-1 ciphertexts have the structure of a polylog(k)-size “header” string,
independent of the messages, together with a single bit of information for each
encrypted message bit. Decomposability thus follows (pseudo)directly, by simply
omitting those information bits corresponding to encrypted messages the sender
wishes to drop (i.e., [k] \ S).7

In turn, we obtain the following corollary.

Corollary 2 (Sublinear 2PC from QR+LPN - informal). The conclusion
of Theorem 1 holds based on Quadratic Residuosity (QR) and Learning Parity
with Noise (LPN) for any inverse-polynomial noise rate.

Our result is summarized on Table 1, where we also recall the state of the art
in sublinear secure computation. We remark that while sublinear O(s/ log log s)-
communication protocols were known from a variant of LPN from [CM21], their
result must assume superpolynomial hardness of LPN with a small inverse-
superpolynomial error rate. In contrast, our result requires only polynomial
hardness of LPN, with any inverse-polynomial error rate (as inherited by the
construction of [BBDP22]).

We finally mention that this result is also not implied by the construc-
tions of pseudorandom correlation functions (PCF) [BCG+20] from QR+LPN
of [OSY21] (or in fact any of the line of work on pseudorandom correlation
generators (PCG) [BCG+19]). While PCG/PCFs enable the generation of large
quantities of random instances of OT with sublinear communication, the best
known approaches for utilizing these random correlations within an actual se-
cure computation protocol require communication that scales linearly with the
circuit size.

Private Information Retrieval. Motivated by the goal of building decomposable
rate-1 batch OT from new assumptions, we then turn to a deeper exploration
of one of the required underlying components from the [BBDP22] batch OT
construction: (single-server) Private Information Retrieval (PIR).

We succeed in constructing PIR with polylogarithmic communication from
the Computational Diffie-Hellman assumption. While this is only one sub-component
required to obtain the necessary batch OT from LPN+CDH,8 this provides one
step toward this direction. But, more importantly, it constitutes a new feasibility
result of its own right. From CDH, previously no PIR protocol was known with
communication o(n).
7 We are of course sweeping details under the rug here, and refer the reader to the
main body for a more complete treatment.

8 Indeed, the approach of [BBDP22] requires also a form of homomorphic encryption
compressible to rate 1.

5

Table 1: Existing protocols for secure computation with sublinear communication under various
assumptions, in the computational setting.

Assumptions Circuit class Sublinearity1

[Gen09] LWE P/poly O(n+m)

[BGI16] DDH Layered circuits O(n+m+ s/ log s)

[OSY21,RS21] DCR Layered circuits O(n+m+ s/ log s)

[CM21] superpoly LPN2 Layered circuits O(n+m+ s/ log log s)

[ADOS22] Class groups Layered circuits O(n+m+ s/ log s)

This work LPN + QR3 Layered circuits O
(
n+m+ d1/3 · s2(1+ε)/3 · poly(λ) + s

log log s

)
1 We use n for input size, m for output size, s for circuit size, and d for circuit depth.
2 [CM21] assumes the superpolynomial hardness of the LPN assumption with dimension N , O(N) samples,
and noise rate No(1)−1.

3 We assume the polynomial hardness of LPN with dimension N , poly(N) samples, and inverse-polynomial
noise rate.

Theorem 3 (PIR from CDH - informal). Based on the Computational
Diffie-Hellman (CDH) assumption, there exists single-server PIR on n-bit databases
with communication polylog(n) and O(log(n)) rounds.

In hindsight, our construction forms a surprisingly simple and clean combi-
nation of two existing tools from the literature. Along the way, we identify an
improved procedure for converting between a weak form of “semi-PIR” as consid-
ered in [BIP18], which reveals the client’s queried index with some probability,
to full-blown secure PIR. We refer the reader to the Technical Overview for more
details.

2 Technical Overview

We assume familiarity with standard cryptographic assumptions such as QR,
LPN, CDH, and DDH, and refer the reader to the full version for a formal state-
ment of these assumptions.

2.1 Sublinear 2PC for Layered Circuits from Decomposable Batch
OT

We consider Boolean circuits over any base of gates with fan-in two.
Toward our sublinear 2PC result for layered circuits, we begin by focusing

on circuits of low depth k (e.g., think of k = log log log s), and devise a secure
protocol with communication n + m + (22

k · poly(λ)), for input size n, output
size m, circuit size s, and security parameter λ. Given such a tool, we can
appropriately divide a larger layered circuit into depth-k blocks where the sum
of all block input and output sizes is s/k, and then iteratively compute (secret
shares of) each layer output via the sub-protocol. Combined, this yields a secure
computation for the layered circuit with overall communication O(s/k+22

k · d ·
poly(λ)), as desired.

6

Starting point: An SPIR viewpoint. Consider a circuit with input size n, out-
put size m, and low depth k. Given fan-in 2, each output bit is computed as
a function of at most 2k input bits. We may thus view the circuit output as
dictated by m separate truth tables, each of size 22

k

, indexed by the values of
the corresponding relevant 2k input bits. More concretely, think of one party
as holding the (partially collapsed) truth tables incorporating its known inputs,
and the second party as holding its own input string, dictating the relevant po-
sition of each truth table. We will refer to the first party as “sender” and second
as “receiver.”

Given this perspective, protocols for (Symmetric) Private Information Re-
trieval (SPIR) immediately come to mind. An SPIR protocol is a strengthened
version of PIR, where the client additionally learns nothing beyond its queried
value of the database. Secure computation of our circuit precisely amounts to m
instances of SPIR, where the receiver party learns exactly the desired indexed
values of the m truth tables.

However, the situation is not so simple: Even the best known (S)PIR proto-
cols have communication polylogarithmic in the database size. Applying m in-
stances of SPIR for the m outputs would thus yield communication polylog(2k) ·
m ∈ Ω(km), killing sublinearity.

In order to obtain sublinear communication, we must somehow leverage that
the m SPIR instances are not completely independent, but rather are made
with correlated queries. That is, although there are m instances each with (2k)-
bit index values, them·2k selection bits have several repeats, collectively coming
from different subsets of only n < m · 2k input bits.

Toward batch SPIR with correlated queries. Our task becomes precisely to con-
struct such an object: m-instance batch SPIR, with significantly lower commu-
nication complexity given correlated queries.

For purposes of discussion, suppose there existed a 2-round rate-1 protocol for
oblivious transfer, where each sender and receiver (magically) sends only a single
bit. Given access to such a tool, then by leveraging ideas from the literature (e.g.,
achieving PIR from linearly homomorphic encryption [KO97]), we would be set.
Indeed, the receiver would simply send 1 bit for each input bit, corresponding
to the first OT message using this value as a selector bit. These first messages
could then be reused by the sender in multiple, recursive executions.

More concretely, suppose the server holds a database of N bits and that the
receiver wants to retrieve the element stored at index x = (x1, . . . , xlogN). If the
receiver sends a message otr1 generated as its first-round OT-receiver message
for the first bit x1 of the desired index, the server can take the database, pair
up elements whose indices differ only on the first bit, then apply the OT-server
computation with respect to otr1 on each pair in order to retrieve a single-bit
response for each, creating a new “database” of half the number of elements, each
corresponding to a 1-bit sender answer message. If instead the receiver sends
messages (otr1, . . . , otrlogN), one for each bit of the desired index, the server
can now iteratively compress the database down to a single bit by building a
“Merkle tree” where in each recursive iteration corresponding to input index

7

bit xi, the new “database” is split into pairs of messages whose indices differ
only in this index, and performing the OT-server computation on each pair
produces a new list of 1-bit sender answer messages of again half the length.
At the conclusion, the server will be left with a single message value remaining,
which by construction precisely enables the receiver to recover the target value
stored at index x. This approach extends directly for m distinct databases with
the same total receiver message (otr1, . . . , otrlogN), since the corresponding OT-
receiver messages can be used independently in any mix and match format across
databases. In turn, the sender would need to send only m total bits response,
one bit for each database query.

Of course, unfortunately, we do not have such a strong rate-1 OT. We thus
turn to the next closest alternative which does exist: 2-round rate-1 batch OT, as
recently achieved by Brakerski et al. [BBDP22]. Batch OT considers a collection
of ` message pairs ({m(i)

0 ,m
(i)
1 })i∈[`] and selection bits (b(i))i∈[`], and enables a

sender and receiver to perform ` parallel batched executions of OT with com-
munication roughly `. Attempting to apply the above strategy with rate-1 batch
OT, however, poses significant challenges.
– The batching structure restricts the “mix and match” abilities of the sender

when using the receiver’s OT message. The sender must respond to the
entire batched vector of receiver’s selection bits at any stage, without freely
accessing subsets of selection bits. Instead, the above approach involves using
each selection bit b(i) within a different number (N/2i) of message pairs.

– Even worse, the sender’s (batch) response in general is only defined given all
` pairs of messages to be selected by the bits b(1), . . . , b(`). In contrast, the
above approach crucially relies on the ability to choose the message pairs for
selection bit b(i) dynamically as a function of the server’s responses given the
previous selection bits b(1), . . . , b(i−1).

– Finally, it is no longer the case that for each selected message the sender has
a single corresponding response bit. In fact, rate 1 here does not even mean
that for ` instances that exactly ` bits are sent in each direction, but rather
just asymptotically `+o(`). This means that in each recursive OT execution,
the sender’s messages (and thus “database entry” size) may grow, leading to
large growth and ultimately large communication upon further recursions.

Decomposable batch OT. With this motivation, we introduce the notion of de-
composable (2-round, rate-1) batch oblivious transfer, which can be seen as a
strengthening of two-round batch OT with constant upload-rate (i.e. the size of
the receiver message is linear in the batch size `) and download-rate asymptot-
ically one (i.e. the size of the sender message is ` + o(`)). The differences boil
down to a notion of decomposability which we impose on the sender message.

At a high level, what we want to capture is the fact that the receiver should
be able to retrieve the ith selected message in the batch if and only it also has
access to the ith bit of the sender message (using its own internal state saved
from generating the receiver message). More generally, given only a subset of the
bits of the sender message, the receiver should able to retrieve the corresponding
subset of selected messages in the batch.

8

Slightly more formally, we say that the (2-round, rate-1) batch OT protocol
is decomposable if for any agreed subset S ⊂ [`] of indices, the sender can choose
a corresponding subset of |S| + polylog(`) of its return message bits, such that
sending this partial sender response reveals exactly the corresponding subset of
selected messages (m(i)

b(i)
)i∈S to the receiver. Namely, given the partial response,

these |S| messages can be recovered, and no information is revealed about m(i)

b(i)

for i /∈ S.
For our purposes, it will suffice to consider a relaxation of the notion we just

described, and allow the sender message to have some small overhead rather than
having a one-to-one correspondence between the bits on the sender message and
the ` selected messages. In this relaxed form, we require that the sender message
be comprised of two parts: a “reusable” part (of size o(`)), and a “decomposable”
part (of size `). On its own, the reusable part should reveal nothing about the
messages, but can be used to “decode” each bit of the decomposable part so as
to retrieve (exactly) the corresponding selected message in the batch. Among
other benefits of this relaxation, it allows us to consider constructions whose
download-rate is only asymptotically one.

This decomposability property is not only enough for our needs, but perhaps
more importantly, is achievable, in fact achieved by the batch OT constructions
of [BBDP22]. Roughly speaking, the sender message in their construction is com-
posed of a rate-1 encryption of the vector of requested message bits, with struc-
ture consisting of a short “header” independent of the message bits, together
with a single ciphertext bit encoding each message bit separately. Decompos-
ability can then be achieved by sending only those ciphertext bits encoding the
desired subset of messages.

Slightly more accurately, this describes the situation for all but an inverse-
polynomial fraction of message bits (corresponding to noisy coordinates of an
LPN ciphertext sent by the receiver), which actually encode the incorrect mes-
sages. In order to separately address these values, they employ a “co-PIR” (or
“punctured OT” [BGI17]) to efficiently mask out the undesired values from the
receiver, and a separate PIR to learn the correct values for these positions. The
separate PIR query responses appear as part of the short “header” information
of the server’s response, which may sound like an issue, as this portion should
not reveal information directly about any message bits. However, this problem
does not occur, because the extra PIR queries are set up to actually reveal the
difference between the masked-out incorrect message (ri⊕m1−b) and the target
message mb. Because of the mask, this difference value (revealed in the header)
provides no information about any message in the absence of the corresponding
value (ri ⊕ m1−b) from the payload portion of the ciphertext, as required by
decomposability. We refer the reader to Section 3.2 for further details.

Sublinear 2PC from decomposable batch OT. This decomposability property di-
rectly allows us to address one of the above challenges of batch OT: we will not
have issues with exponential growth of the database entry size in the recursive
OT executions. Instead, the result of one iteration of the batch OT on n inputs

9

will result in a short o(n)-size header together with n bits that each provide
information about a distinct queried message. The header string we will put to
the side (ultimately we will send the collection of all the headers, which is still
sufficiently short). The remaining n bits induce the recursive sender-message
database that, as desired, consists of exactly 1 bit per message.

In fact, if we temporarily suppose that the assignment graph structure of n
input bits to m = n output bits can be decomposed as the disjoint union of
2k matchings, then we have a solution. Each disjoint matching will correspond
directly to a different instance of n-input batch OT, where each of the n inputs
is simultaneously used to index a different database. Applying the recursive
solution as above, the sender will ultimately compute a single bit for each output,
as well as a collection of header strings from each of the batch OT executions.

The remaining challenge is that general circuits do not have such nice regular
structure, instead with inputs appearing in different numbers of output compu-
tations, with inconvenient correlations, demanding a stronger form of “mix and
match” of batched OT queries beyond a direct approach.

To address this issue, we modify the structure of batch OT receiver queries,
effectively extending the batch size (say from n to 2n), and employing a careful
choice of how to pack extra copies of more highly influential input bits into the
queried vector, so that the overall total number of batch OT instances remains
sufficiently small that the overhead of extra header strings does not negatively
impact the final communication complexity. We refer the reader to the technical
body for a detailed treatment of this procedure.

2.2 Polylogarithmic PIR from CDH

We now turn our attention to our second contribution: private information
retrieval with polylogarithmic communication from the computational Diffie-
Hellman assumption. A private information retrieval (PIR) is a two party proto-
col between a server S holding a string z (the database) and a client C holding
an integer i. At the end of the interaction, the client should learn zi, without
revealing i to the server. A polylogarithmic PIR is a PIR where the total com-
munication is poly(λ, log |z|), where λ is the security parameter.

Below, we sketch our approach to building polylogarithmic PIR from CDH.
In hindsight, our construction is in fact relatively straightforward, and follows
from an elegant combination of two recent results. We outline the sequence of
implications below.

CDH Laconic PSI Half-PIR Random-index
PIR PIR=⇒ =⇒ =⇒ =⇒

[ABD+21] Lemma 19 Lemma 22 [GHM+21]

Laconic PSI. A private set intersection protocol is a two-party protocol allow-
ing a receiver to securely compute the intersection of its input set SR with the

10

set SS of a sender: at the end of the protocol, the receiver learns SR ∩ SS and
nothing more. A laconic PSI protocol, introduced in [ABD+21], additionally
enforces that the protocol is two-round (receiver to sender, then sender to re-
ceiver), and both the total communication and the sender runtime are bounded
by poly(λ, log |SR|, |SS |). The work of [ABD+21] showed that laconic PSI can
be constructed from anonymous hash encryption, a primitive that can be con-
structed (in particular) from the CDH assumption [DG17b,DG17a,BLSV18].

From Laconic PSI to Half-PIR. Given a laconic PSI protocol, we exhibit a
construction of polylogarithmic-communication PIR, using in addition a pseu-
dorandom function. However, our construction only achieves a very weak form
of security: it only guarantees that the index i is kept hidden from the server
with probability 1/2. This notion, which we call half-PIR, has been introduced
in [BIP18] (under the name Rand 1

2PIR). It was shown in [BIP18] that polyloga-
rithmic half-PIR already suffices to construct slightly sublinear PIR (with com-
munication O(|z|/ log |z|)); looking ahead, we will provide a stronger reduction
and show that it actually implies polylogarithmic PIR.

Our construction of half-PIR proceeds as follows: the client and the server
agree on a PRF key K. The server with input z builds the set SR = {FK(1||z1),
· · · , FK(|z|||z|z|)}, and the client with input i builds the set SS = {FK(i||b)},
where b is a uniformly random bit. The core properties that this achieves are:

– If b = zi, then |SR ∩ SS | = 1 (note that |SS | = 1), and
– If b 6= zi, then |SR ∩ SS | = 0 with high probability.

To show the second property, we rely on the security of the PRF to argue that
a collision between PRF evaluations on distinct inputs is highly unlikely (pro-
vided the PRF outputs are large enough). Note, therefore, that we rely on the
PRF security to argue the correctness of the construction (while this is slightly
unusual, this kind of arguments has been used a few times in the literature).

Now, the server and the client execute a laconic PSI, which has total com-
munication poly(λ, log |z|) (since |SS | = 1). At the end of the protocol, the
server, who plays the role of the receiver, sends |SR ∩ SS | to the client. Note
that |SR ∩ SS | = (1− b)⊕ zi, hence the client can decode zi from this informa-
tion. Yet, whenever |SR ∩ SS | = 0, the security of the laconic PSI implies that
the server actually learns nothing about i: this guarantees client security with
probability 1/2. When |SR ∩SS | = 1, however, the server learns the intersection
SR ∩ SS = FK(i||zi), and can in particular retrieve i easily.

From Half-PIR to PIR. We now turn to constructing a polylogarithmic PIR from
a polylogarithmic half-PIR. Here, our construction is mostly a simple observa-
tion: half-PIR implies random-index PIR via a straightforward construction. A
random-index PIR, introduced in [GHM+21], is a PIR protocol where the client
has no input, and receives (i, zi) where the index i is picked uniformly at ran-
dom between 1 and |z|. Given a half-PIR, building a random-index PIR is almost
immediate: the client and the server execute λ parallel instances of a half-PIR
protocol, where the client uses uniformly random independent indices in each

11

instance. With overwhelming probability, at least one of these instances will be
secure (in the sense that the server does not learn the index); the client simply
outputs (i∗, zi∗) where i∗ is the index used in the first such execution.

Eventually, random-index PIR was recently shown in [GHM+21] to imply
full-fledged PIR, with a log |z| blowup in communication and round complex-
ity. The key observation underlying this reduction is that a single invocation
of a random-index PIR, together with sending log |z| bits, allows to reduce the
task of executing a PIR on a size-|z| database to that of executing a PIR on a
size-|z|/2 database. The construction follows by recursively invoking this con-
struction (we provide a more detailed description of this construction in Sec-
tion 4.3). Combining all these building blocks together leads to a logarithmic-
round, polylogarithmic-communication PIR from the CDH assumption.

3 Sublinear Computation for log log-Depth Circuits

3.1 Decomposable Two-Round Batch Oblivious Transfer

We introduce the notion of decomposable two-round batch oblivious transfer (def-
inition 4), which can be seen as a strengthening of two-round batch OT with
constant upload-rate and download-rate asymptotically one. The differences boil
down to a notion of decomposability which we impose on the sender message,
which should be comprised of a (small) reusable part and a linear-size decom-
posable part : the receiver should be able to retrieve the ith selected message in
the batch if and only it also has access to the ith bit of the decomposable part
of the sender message (along with the reusable part).

Definition 4 (Decomposable Two-Round Batch Oblivious Transfer).
Let k ∈ N? and α(·) = o(n). A semi-honest two-round decomposable batch OT
protocol with α(·)-overhead between a sender and a receiver is defined as a triple
of PPT algorithms dec-OT = (dec-OTR, dec-OTS, dec-OTD) with the following
syntax and properties:

– Syntax.
dec-OTR : On input the security parameter 1λ and a vector of selection bits

~b = (b1, . . . , bk) ∈ {0, 1}k, dec-OTR outputs a receiver message
otr ∈ {0, 1}O(k) and an internal state st; without loss of gener-
ality we assume that st contains all the random coins used by
dec-OTR as well as ~b.

dec-OTS : On input the security parameter 1λ, a receiver message otr, and a
database ((m(i)

0 ,m
(i)
1))i∈[k] ∈ {0, 1}2k comprised of k pairs of bits,

dec-OTS outputs a sender message ots = (ots?, otsdec), which is
comprised of a reusable part ots? ∈ {0, 1}α(k) and a decomposable
part otsdec ∈ {0, 1}k.

dec-OTD : On input a batch subset K ⊆ [k], a partial sender message ots′ ∈
{0, 1}α(k)+|K|, and an internal state st, dec-OTD outputs a vector
of messages (m̃i)i∈K ∈ {0, 1}|K|.

12

– Decomposable Correctness. For every λ ∈ N?, K ⊆ [k], every ~b =

(b1, . . . , bk) ∈ {0, 1}k, and every ~m = ((m
(i)
0 ,m

(i)
1))i∈[k] ∈ {0, 1}2k,

Pr

(m̃1, . . . , m̃|K|) = (m
(i)
bi
)i∈K :

(otr, st)
$← dec-OTR(1λ,~b)

(ots?, otsDB)
$← dec-OTS(1λ, otr, ~m)

(m̃1, . . . , m̃|K|)
$← dec-OTD(K, (ots?, [otsdec]K), st)

 = 1 .

– Receiver Security (against Semi-Honest Sender). There exists an ex-
pected polynomial time simulator SimS such that for every λ ∈ N? and every
~b = (b1, . . . , bk) ∈ {0, 1}k,{

otr : (otr, st)
$← dec-OTR(1λ,~b)

}
c
≈
{
SimS(1

λ)
}
.

– Decomposable Sender Security (against Semi-Honest Receiver).
There exists an expected polynomial time simulator SimR such that for every
λ ∈ N?, every K ⊆ [k], every ~b = (b1, . . . , bk) ∈ {0, 1}k, and every ~m =

((m
(i)
0 ,m

(i)
1))i∈[k] ∈ {0, 1}2k,{

(ots?, [otsdec]K , otr, st) :
(otr, st)

$← dec-OTR(1λ,~b)

(ots?, otsBD)
$← dec-OTS(1λ, otr, ~m)

}
c
≈{

(sim?, simdec, otr, st) :
(otr, st)

$← dec-OTR(1λ,~b)

(sim?, simdec)
$← SimR(1

λ,K, (m
(i)
bi
)i∈K ,~b, otr, st)

}
.

3.2 Instantiation under QR + LPN, Adapted from [BBDP22]

As noted previously, two-round decomposable batch oblivious transfer can be
seen as a strengthening of two-round batch OT with constant upload-rate and
download-rate asymptotically one. As a matter of fact, the construction of batch
OT with optimal rate from [BBDP22] natively satisfies the extra requirements
and can be cast as two-round decomposable batch OT with sublinear overhead.

Theorem 5 (Corollary of [BBDP22, Section 7]). Assume the QR assump-
tion and the binary LPN assumption LPN(dim, num, ρ) with dimension dim =
poly(λ), number of samples num = dimc (for any constant c > 1), and noise rate
ρ = numε−1 (for some constant ε < 1). Then for any ` = `(λ), there exists a
decomposable two-round batch oblivious transfer for batch size k = ` · num where

– The receiver message otr has size (`2 · dim+ ` · numε) · poly(λ) + k
– The sender message ots = (ots?, otsdec) has size |ots?| = (num + ` · numε) ·

poly(λ) and |otsdec| = k.

In particular, for appropriate parameters (sufficiently large `, and num suffi-
ciently larger than `), |otr| = k + o(k), and |ots?| = o(k).

The proof of theorem 5 is deferred to the full version of this paper. Note that
the construction of batch OT in [BBDP22] from LPN plus DDH or LPN plus
polynomial-modulus LWE can similarly be shown to be decomposable. However,
two-party sublinear secure computation is already known under these assump-
tions, via HSS for NC1 [BGI16,BKS19].

13

3.3 Bounded Query Repetitions

At a high level the goal of this section is to show how a receiver message of dec-OT
can be re-used, possibly with imbalances in how many times each selection bit in
the batch is re-used, while asymptotically preserving upload- and download-rate.

Definition 6 (Decomposable Two-Round Batch Oblivious Transfer with
Bounded Query Repetitions). Let k ∈ N? and α = o(n). A semi-honest two-
round decomposable batch OT protocol with α(·)-overhead and T -bounded query
repetitions between a sender and a receiver can be defined as a triple of PPT al-
gorithms rep-OT = (rep-OTR, rep-OTS, rep-OTD) with the following syntax and
properties:

– Syntax.
• rep-OTR : On input the security parameter 1λ and a vector of selection
bits ~b = (b1, . . . , bk) ∈ {0, 1}k, rep-OTR outputs a receiver message otr ∈
{0, 1}O(k) and an internal state st; without loss of generality we assume
that st contains all the random coins used by rep-OTR as well as ~b.

• rep-OTS : On input the security parameter 1λ, a query otr, a database
((m

(i)
0 ,m

(i)
1))i∈[k′] ∈ {0, 1}2k

′
(where k ≤ k′ ≤ k · T), and a vector of

repetitions rep = (rep1, . . . , repk) ∈ [0, T]k such that
∑k
i=1 repi = k′,

rep-OTS outputs a sender message ots = (ots?, otsdec), which is comprised
of a reusable part ots? ∈ {0, 1}α(k) and a decomposable part otsdec ∈
{0, 1}k′ , as well as rep.

• rep-OTD : On input a batch subset K ⊆ [k′], a partial sender message
ots′ ∈ {0, 1}α(k)+|K|, a vector of repetitions rep = (rep1, . . . , repk) ∈
[0, T]k such that

∑k
i=1 repi = k′, and an internal state st, rep-OTD out-

puts a vector of messages (m̃i)i∈K ∈ {0, 1}|K|.
– Decomposable Correctness. For every λ ∈ N?, K ⊆ [k′], every ~b =

(b1, . . . , bk) ∈ {0, 1}k, and every ~m = ((m
(i)
0 ,m

(i)
1))i∈[k′] ∈ {0, 1}2k

′
,

Pr

(m̃1, . . . , m̃|K|) = (m
(i)
σi)i∈K :

(otr, st)
$← rep-OTR(1λ,~b)

((ots?, otsdec), rep)
$← rep-OTS(1λ, otr, ~m, rep)

(m̃1, . . . , m̃|K|)
$← rep-OTD(K, (ots?, [otsdec]K), rep, st)

 = 1 ,

where σi := bmax{j : (
∑
j′<j repj′)≤i} .

– Receiver Security (against Semi-Honest Sender). There exists an ex-
pected polynomial time simulator SimS such that for every λ ∈ N? and every
~b = (b1, . . . , bk) ∈ {0, 1}k,{

otr : (otr, st)
$← rep-OTR(1λ,~b)

}
c
≈
{
SimS(1

λ)
}
.

– Decomposable Sender Security (against Semi-Honest Receiver).
There exists an expected polynomial time simulator SimR such that for every
λ ∈ N?, every rep = (rep1, . . . , repk) ∈ [0, T]k such that ‖rep‖1 = k′, every

14

K ⊆ [k′], every~b = (b1, . . . , bk) ∈ {0, 1}k, and every ~m = ((m
(i)
0 ,m

(i)
1))i∈[k′] ∈

{0, 1}2k′ ,{
(ots?, [otsdec]K , otr, st) :

(otr, st)
$← rep-OTR(1λ,~b)

(ots?, otsdec)
$← rep-OTS(1λ, otr, ~m, rep)

}
c
≈{

(sim?, simdec, otr, st) :
(otr, st)

$← rep-OTR(1λ,~b)

(sim?, simdec)
$← SimR(1

λ,K, (m
(i)
σi)i∈K ,~b, rep, otr, st)

}
where σi := bmax{j : (

∑
j′<j repj′)≤i} .

Decomposable Two-Round Batch Oblivious Transfer with Bounded
Query Repetition

Parameters: Batch number k, Repetition bound T .
Requires: A two-round decomposable batch dec-OT protocol
dec-OT = (dec-OTR, dec-OTS, dec-OTD) with α-overhead such that
α(k) = o(k/T).

rep-OTR: On input the security parameter 1λ and a vector of selection bits
~b = (b1, . . . , bk) ∈ {0, 1}k:

1. Compute (otr, st)
$← dec-OTR(1λ,~b).

2. Output (otr, st).

rep-OTS: On input the security parameter 1λ, a receiver message otr, a
database ~m ∈ {0, 1}2k′ , and a vector of repetitions rep = (rep1, . . . , repk) ∈
[0, T]k such that ||rep||1 = k′:

1. Parse ~m as ((m(j,i)
0 ,m

(j,i)
1))j∈[k],i∈[repj] .

2. For j ∈ [k] and i ∈ [repj + 1, T], set (m(j,i)
0 ,m

(j,i)
1)← (0, 0).

3. For i ∈ [T] set ~mi := ((m
(j,i)
0 ,m

(j,i)
1))j∈[k].

4. For j = 1 . . . T :
Compute (ot?S,j , ot

dec
S,j)

$← dec-OTS(1λ, otr, ~mj).
5. Set ots? ← ot?S,1‖ . . . ‖ot?S,T and otdecS ←

([otdecS,1]1‖ . . . ‖[otdecS,rep1]1)‖ . . . ‖([ot
dec
S,1]k‖ . . . ‖[otdecS,repk]k).

6. Output (ot?S , ot
dec
S).

rep-OTD: On input a sender message ots, a vector of repetitions rep =
(rep1, . . . , repk) ∈ [0, T]k such that ||rep||1 = k′, and an internal state st:

1. Parse ots as (ot?S , ot
dec
S).

2. Parse ot?S as ot?S,1‖ . . . ‖ot?S,T .
3. Parse otdecS as ([otdecS,1]1‖ . . . ‖[otdecS,rep1]1)‖ . . . ‖([ot

dec
S,1]k‖ . . . ‖[otdecS,repk]k).

15

4. For i = 1 . . . T :
(a) Set Ki := {j : j ∈ [k], repj ≤ i}, ordered according to the natural

order on N.
(b) Set ~vi ←

∥∥
j∈Ki

[otdecS,i]j .

(c) Compute (m̃i,j)j∈Ki
$← dec-OTD(Ki, (ot

?
S,i, vi), st).

5. Output (m̃1,1, . . . , m̃rep1,1, m̃1,2, . . . , m̃rep2,2, . . . , m̃repk,k).

Fig. 1: From dec-OT with α overhead to rep-OT with α · T overhead.

Lemma 7 (From dec-OT to rep-OT). If dec-OT is a semi-honest two-round
decomposable batch OT protocol with α overhead, then the construction rep-OT
from fig. 1 is a semi-honest two-round decomposable batch OT protocol with α ·T
overhead and T -bounded repetitions.

The proof of lemma 7 is deferred to the full version of this paper.

3.4 Two-Round Batch SPIR with Correlated Queries

We next introduce and achieve a notion of batch symmetric PIR with correlated
queries. This corresponds to batch SPIR where the queries are not independent;
rather, the total entropy w used to describe the queries is small, and the queried
indices can be reconstructed via a public function that “mixes and matches” the
individual bits of entropy ~α = (α1, . . . , αw) in a public manner. This will allow
us to compress k size-N databases each down to a single bit—achieving batch
SPIR—using batch OT on the selection bit vector ~α, by building a “Merkle-like
forest” (seeing each 1-out-of-2 OT in the batch as a roughly length-halving
hash function): the correlation in the queries across different databases is what
allows the nodes of the Merkle forest to be batched.

In more detail, if the w bits of entropy are α1, . . . , αw, “mixing and matching”
means that each of the (n = logN)-bit queries to a single database can be
obtained by concatenating n of the bits αi, possibly permuted. In the notation
below, the jth query is given by vector (αsj,1 , . . . , αsj,n). We will be interested
in how many times a given αi appears within the k queries (counted by the
occurrence function ti below), as well as how many times it appears in specific
position j′ ∈ [n] within the k queries (denoted below by ti,j′). If all ti,j′ are
bounded by T , then for each level j′ ∈ [n] in the “Merkle forest” we can achieve
the desired length-halving compression by using at most T batch OT sender
computations on the original batch OT selection vector ~α.

Definition 8 (“Mix and Match” Functions). A “mix and match” function
MixAndMatch : {0, 1}w → [N]k is one parameterised by k ordered subsets of n :=
logN elements of [w], Sj = (sj,1, . . . , sj,n) ∈ [w]n for j ∈ [k] such that:

∀~α = (α1, . . . , αw) ∈ {0, 1}w,MixAndMatch(α1, . . . , αw) := (x1, . . . , xk),

with xj := αsj,1 · · ·αsj,n ∈ [N].

16

Such a function is associated with an occurrence function, which counts the oc-
currences of each input position in the outputs:

t· : [w]→ [k]

i 7→ ti =
k∑
j=1

1i∈Sj

Each ti (i ∈ [w]) can be decomposed as ti = ti,1 + · · · + ti,n, where ti,j′ is equal
to the number of values of j ∈ [k] such that sj,j′ = i.

– MixAndMatch is said to be T -balanced if ∀i ∈ [w],∀j′ ∈ [n], ti,j′ ≤ T .
– MixAndMatch is said to be T -balanceable if it can be expressed as

the function MixAndMatch = (MixAndMatch′ ◦ replicate), where
MixAndMatch : {0, 1}w′ → [N]k is a T -balanced mix-and-match function and
replicate is defined as:

replicate : {0, 1}w → {0, 1}w′

(b1, . . . , bw) 7→ (b
‖dt1/Te
1 ‖ . . . ‖b‖dtw/Tew)

where w′ :=
∑
i∈[w]

dti/T e.

Lemma 9. Let w, n ∈ N be a sufficiently large integers. For any family of un-
ordered subsets S1, . . . , Sk ∈

(
[w]
n

)
there exists an ordering of each subset Sj such

that the mix-and-match function induced by the resulting (S̃j)j∈[k] is polylog(w)-
balanceable.
Furthermore, such orderings can be found in expected constant time.

The proof of lemma 9 is deferred to the full version of this paper.

Definition 10 (Two-Round Batch Computational Batch SPIR with
Correlated “Mix and Match” Queries). A semi-honest two-round batch
SPIR protocol with correlated “mix and match” queries between a sender and
a receiver can be defined as a triple of PPT algorithms corrSPIR = (corrSPIRR,
corrSPIRS , corrSPIRD) parameterised by a public T -balanceable “mix and match”
function (definition 8) MixAndMatch : {0, 1}w → [N]k with the following syntax
and properties:

– Syntax.
• corrSPIRR : On input the security parameter 1λ and a vector of selection
bits ~b = (b1, . . . , bw) ∈ {0, 1}w, corrSPIRR outputs a receiver message
spirR ∈ {0, 1}O(w) and an internal state st; without loss of generality, we
assume st contains all the coins used by corrSPIRR as well as ~b.

• corrSPIRS : On input the security parameter 1λ, a receiver message spirR,
and k N -bit databases ~m1, . . . , ~mk ∈ {0, 1}N , corrSPIRS outputs a sender
message spirS ∈ {0, 1}O(k).
• corrSPIRD : On input a sender message spirS and an internal state st,
corrSPIRD outputs a vector of messages (m̃1, . . . , m̃k) ∈ {0, 1}k.

17

– Correctness.

∀~b = (b1, . . . , bw) ∈ {0, 1}w,∀ ~M = (~m1, . . . , ~mk) ∈ {0, 1}N ·k,

Pr

(m̃1, . . . , m̃k) = (~m1[x1], . . . , ~mk[xk]) :

(spirR, st)
$← corrSPIRR(1

λ,~b)

spirS
$← corrSPIRS(1

λ, spirR, ~M)

(m̃1, . . . , m̃k)
$← corrSPIRD(spirS , st)

 = 1

where (x1, . . . , xk) := MixAndMatch(~b).

– Security. The following protocol securely realises FcorrSPIR (fig. 2) in the
presence of a semi-honest adversary: the receiver computes (spirR, st)

$←
corrSPIRR(1

λ,~b) and sends spirR to the sender, who in turn computes spirS
$←

corrSPIRS(1
λ, spirR, ~M) and returns spirS; finally, the receiver computes and

outputs (m̃1, . . . , m̃k)
$← corrSPIRD(spirS , st).

Functionality FcorrSPIR

The functionality FcorrSPIR is parameterised by the number k of SPIRs in
the batch, the size N of each database, and the number w of selection bits.
Furthermore, it is parameterised by a public T -balanceable “mix and match”
function (definition 8) MixAndMatch : {0, 1}w → [N]k. FcorrSPIR interacts
with an ideal sender S and an ideal receiver R via the following queries.

1. On input (sender, ~M = (~mi)i∈[k]) from S, with ~mi = (mi,j)j∈[N] ∈
{0, 1}N store ~M .

2. On input (receiver, (bj)j∈[w]) from R, check if a tuple of in-
puts ~M has already been recorded; if so, compute (x1, . . . , xk) :=
MixAndMatch(b1, . . . , bw) ∈ [N]k, send (mi,xi)i∈[k] to R, and halt.

If the functionality receives an incorrectly formatted input, it aborts.

Fig. 2: Ideal Functionality FcorrSPIR for Batch SPIR with Correlated “Mix and
Match” Queries

Batch SPIR with Correlated “Mix and Match” Queries

Parameters: k, N , n := logN , w, T , a T -balanceable
MixAndMatch : {0, 1}w → [N]k (parameterised by subsets Sj =
(sj,1, . . . , sj,n) ∈ [w]n for j ∈ [k]) and an associated list of number
of occurrences (t1, . . . , tw) with ti = ti,1 + · · · + ti,n, a two-round batch
rep-OT protocol rep-OT = (rep-OTR, rep-OTS, rep-OTD).

corrSPIRR: On input the security parameter 1λ and a vector of selection
bits ~b = (b1, . . . , bw) ∈ {0, 1}w :

18

1. Set ~b′ ← b
‖dt1/Te
1 ‖ . . . ‖b‖dtw/Tew .

2. Compute (spirR, st)
$← OTR(1λ,~b′), and output (spirR, st‖~b).

corrSPIRS: On input the security parameter 1λ, a receiver message spirR,
and k databases ~m1, . . . , ~mk ∈ [N]:

1. Set (DB1,1, . . . , DB1,k) := (~m1, . . . , ~mk).
2. For d = 1, . . . , n:

(a) For i = 1, . . . , w:

Set repd,i ←

{
T ‖dti,d/Te‖0‖dti/Te−dti,d/Te if T |ti,d
T ‖bti,d/Tc‖ti,d%T‖0‖dti/Te−dti,d/Te if T 6 |ti,d

(b) Set repd ← repd,1‖ . . . ‖repd,w .
(c) Initialise Xd ← ∅ .
(d) For j = 1, . . . , k:

For x = 0, . . . , N/2d − 1:
Xd.append(((DBd,j [2x], DBd,j [2x+ 1]), sj,d, x, j)) .

(e) Sort Xd according to the lexicographic order which first sorts by in-
creasing fourth element (the “j ∈ [k]”) and then, in case of equality,
by increasing third element (the “x ∈ [0, N/2d − 1]”).

(f) Greedily partition Xd as Xd = Xd,1 t · · · tXd,(N/2d) such that for
each ` ∈ [N/2d] and each i ∈ [w], Xd,` contains (up to) ti,d elements
of the form ((·, ·), i, ·, ·); “greedily” is here taken to mean that the
first ti,d elements of the form ((·, ·), i, ·, ·) are placed in Xd,1, the
next ti,d in Xd,2, and so on.

(g) For ` = 1, . . . , N/2d:
– Sort Xd,` according to the second element in increasing order,

breaking ties with the fourth, and then if necessary the third
element of the 4-tuples.

– Set DB′d,` ← (Sd,`[0].first, . . . , Sd,`[(
∑w
i=1 ti,d) − 1].first) ∈

{0, 1}2|Sd,`|.
– Set (ots?d,`, ots

dec
d,`)

$← rep-OTS(1λ, spirR, DB
′
d,`, repd) .

(h) If d < n:
– For j = 1, . . . , k:

Initialise DBd+1,j ← 0‖N/2
d

.
– For ` = 1, . . . , N/2d:

For `′ = 0, . . . , (
∑w
i=1 ti,d)− 1:

Parse Xd,`[`
′] as ((·, ·), ·, x, j), with x ∈ [N/2d] and j ∈

[k].
Set DBd+1,j [x]← otsdecd,` [`

′] .
(i) Set ots?d ← (ots?d,1, . . . , ots

?
d,N/2d) .

3. Set spirS := ((ots?1, . . . , ots
?
n), ots

dec
n), and output spirS .

corrSPIRD: On input a sender message spirS and an internal state st:

19

1. Parse spirS as spirS = ((ots?1, . . . , ots
?
n), ots

dec
n), and parse st as st′‖~b .

2. Set (y1, . . . , yk)← MixAndMatch(~b) (i.e. yj ← bsj,1 . . . bsj,n for j ∈ [n]).
3. Initialise (m̃1, . . . , m̃k)← otsdecn .
4. For d = 1, . . . , n :

(a) Initialise Xd ← ∅ .
(b) Initialise Xd ← ((⊥, sj,d, x, j))j∈[k],x∈[0,N/2d−1]
(c) Sort Xd according to the lexicographic order which first sorts by in-

creasing fourth element (the “j ∈ [k]”) and then, in case of equality,
by increasing third element (the “x ∈ [0, N/2d − 1]”).

(d) Greedily partition Xd as Xd = Xd,1 t · · · t Xd,N/2d such that for
each ` ∈ [N/2d] and each i ∈ [w], Xd,` contains exactly ti,d elements
of the form (·, i, ·, ·); “greedily” is here taken to mean that the first
ti,d elements of the form (·, i, ·, ·) are placed in Xd,1, the next ti,d in
Xd,2, and so on.

(e) For ` = 1, . . . , N/2d:
Sort Xd,` according to the second element in increasing order,
breaking ties with the fourth, and then if necessary the third
element of the 4-tuples.

(f) Parse ots?d as ots?d = (ots?d,1, . . . , ots
?
d,N/2d)

(g) For j = 1, . . . , k:
– Set `j,d to be the unique ` ∈ [N/2d] such that

(⊥, sj,d, (bsj,n . . . bsj,d), j) ∈ Xd,` .
– Set indj,d to be the index of (⊥, sj,d, (bsj,n . . . bsj,d), j) in Xd,` .
– Update m̃j ← rep-OTD({indj,d}, (ots?d,`j,d , m̃j), rep, st)

5. Output (m̃1, . . . , m̃k) .

Fig. 3: corrSPIR from rep-OT.

Theorem 11. Assume that rep-OT is a semi-honest two-round decomposable
batch OT protocol with α(·)-overhead and T -bounded query repetitions. Then
construction (corrSPIRR, corrSPIRS , corrSPIRD) from fig. 3 is a two-round batch
SPIR protocol with correlated “mix and match” queries. Furthermore the size of
the receiver message is linear in w + k · n/T and the size of the sender message
is upper bounded by k + (logN) · (N − 1) · α(w + k · n/T) (where k is the batch
number and N is the size of each of the k databases).

3.5 Sublinear Computation of log log-Depth Circuits from corrSPIR

In this section theorem 12 shows how to build sublinear secure computation for
shallow (roughly log log-depth) circuits from corrSPIR, with an explicit protocol
provided in fig. 4. Main theorem 1 combines all of the previous theorems and
shows that sublinear secure computation for shallow circuits can be based on
QR+ LPN.

20

Protocol Π2PC

Functionality:

– Parameters: C : {0, 1}n → {0, 1}m is a boolean circuit of depth k. For
j ∈ [m], Sj = {sj,1, . . . , sj,2k} is the subseta of the inputs on which
depends the jth output of f , and for i ∈ [n] we denote ti the number
of outputs of C on which the ith variable depends. (πj)j∈[m] ∈ (S2k)

m

is a family of m permutations on [2k], such that the following is a
(T = polylog(n))-balanced “mix and match” function:

MixAndMatchC : {0, 1}w → [2k]m

(x1, . . . , xw) 7→ (xsj,πj(1)‖ . . . ‖xsj,πj(2k)
)j∈[m]

– Inputs: Parties P0 and P1 hold additive shares (~x0, ~x1) of an input
~x ∈ {0, 1}n.

– Outputs: The parties output C(~x).
– Requires: corrSPIR = (corrSPIRR, corrSPIRS , corrSPIRD) is a two-

round batch SPIR protocol with correlated “mix and match” queries.

Protocol:

1. P0 samples ~y0
$← {0, 1}m and for j ∈ [m] sets DBj ∈ {0, 1}2

2k

to be the
truth table of the following function:

gj : {0, 1}2k → {0, 1}
(X1, . . . , X2k) 7→ Cj((Xπj(1) ⊕ ~x0[πj(1)]‖ . . . ‖Xπj(2k) ⊕ ~x0[πj(2k)]))⊕ ~y0[j]

where Cj is the jth output of C.

2. P1 sets ~x′1 ← (~x1[1])
‖dt′1/Te‖ . . . ‖b‖dt

′
w/Te

w .
3. P1 samples (spirR, st)

$← corrSPIRR(1
λ, ~x1) and sends spirR to P0.

4. P0 samples spirS
$← corrSPIRS(1

λ, spirR, (DBj)j∈[m]) and sends
(spirS , ~y0) to P1.

5. P1 recovers ~y1 ← corrSPIRD(spirS , st).
6. P1 sets ~y ← ~y0 ⊕ ~y1, and sends ~y to P0.
7. Each party Pσ outputs ~y.
a Because C has depth k and each of its gate has fan-in at most 2, each output
value only depends on at most 2k inputs. Without loss of generality we can
assume each output depends on exactly 2k (by allowing for trivial “dependen-
cies”).

Fig. 4: Secure Computation of Low-Depth Circuits from corrSPIR

21

Theorem 12. If corrSPIR is a two-round batch SPIR protocol with correlated
“mix and match” queries, then Π2PC from fig. 4 securely computes the randomized
functionality (~x0, ~x1) 7→ {(~r, C(~x0 ⊕ ~x1)⊕ ~r) : ~r $← {0, 1}m} in the presence of a
semi-honest adversary corrupting (at most) one of the two parties.

The proof of theorem 12 is deferred to the full version of this paper.

Our first main theorem follows from the combination of theorem 5—which in-
stantiates dec-OT from QR+LPN—, lemma 7—which provides a construction of
rep-OT from dec-OT—, theorem 11—which provides a construction of corrSPIR
from rep-OT, and theorem 12—which provides a secure computation protocol
from corrSPIR.

Main Theorem 1 (Sublinear Secure Computation from QR + LPN). Assume
the QR assumption and the binary LPN assumption LPN(dim, num, ρ) with di-
mension dim = poly(λ), number of samples num = (n + m)1/3 · poly(λ), and
noise rate ρ = numε−1 (for some constant ε < 1). Then for any n-input m-
output boolean circuit C of size s and depth k, there is a two-party protocol for
securely computing C using only O(n +m + 2k+2k · polylog(n) · poly(λ) · ((n +

m)2/3 + (n+m)(1+2ε)/3)) bits of communication, and computation poly(λ, 22
k

).

The discussion on the parameters is deferred to the full version of this paper.

Corollary 13 (Sublinear Secure Computation of log log-Depth Cir-
cuits). Assume the QR assumption and the binary LPN assumption
LPN(dim, num, ρ) with dimension dim = poly(λ), number of samples num =
(n+m)1/3 ·poly(λ), and noise rate ρ = num−1/2. Then for any n-input m-output
boolean circuit C of polynomial size s and depth log log s/4, there is a two-party
protocol for securely computing C using only O(n+m+

√
s ·poly(λ) · (n+m)2/3)

bits of communication, and polynomial computation.

3.6 Extension to Layered Circuits

Layered circuits are boolean circuits whose gates can be arranged into lay-
ers such that any wire connects adjacent layers. It is well-known from previ-
ous works [BGI16,Cou19,CM21] that sublinear protocols for low-depth circuits
translate to sublinear protocols for general layered circuits: the parties simply
cut the layered circuit into low-depth “chunks”, and securely evaluate it chunk-
by-chunk. We refer to the full version of this paper for the extension of our
protocol to layered circuits.

4 Polylogarithmic PIR from CDH

A private information retrieval is a two-party protocol between a server S holding
a string z (the database) and a client C holding an integer i, where only the client
receives an output. The security parameter λ and the length n(λ) = poly(λ) =

22

|z| of the server database are a common (public) input. We let ViewS(λ, z, i)
denote the view of S during its interaction with C on respective inputs (z, i)
with common input (λ, n = |z|), and by OutC(λ, z, i) the output of C after the
interaction.

Definition 14 (Private Information Retrieval). A private information re-
trieval for database size n = n(λ) (n-PIR) is an interactive protocol between a
PPT server S holding a string z ∈ {0, 1}n and a PPT client C holding an index
i ≤ n which satisfies the following properties:
– Correctness: there exists a negligible function µ such that for every λ ∈ N,
z ∈ {0, 1}n, i ∈ [n]:

Pr[OutC(λ, z, i) = zi] ≥ 1− µ(λ).
– Security: there exists a negligible function µ such that for every PPT ad-

versary A, large enough λ ∈ N, (i, j) ∈ [n]2, and z ∈ {0, 1}n:

|Pr[A(1λ+n,ViewS(λ, z, i)) = 1]−Pr[A(1λ+n,ViewS(λ, z, j)) = 1]| ≤ µ(λ, n).
– Efficiency: A PIR is polylogarithmic if its communication complexity
c(λ, n), measured as the worst-case number of bits exchanged between S
and C (over their inputs (z, i) and their random coins), satisfies c(λ, n) =
poly(λ, log n).

Main Theorem 2. Assuming the hardness of the computational Diffie-Hellman
assumption against poly(n)-time adversaries, there exists a polylogarithmic n-
PIR protocol, with polylogarithmic client computation, and O(log n) rounds.

4.1 Laconic Private Set Intersection

Definition 15 (Laconic PSI [ABD+21]). An `PSI scheme LPSI =
(Setup,R1,S,R2) is defined as follows:
– Setup(1λ): Take as input a security parameter 1λ and outputs a common

reference string crs.
– R1(crs, SR): takes as input a crs and a receiver set SR. Outputs a first PSI

message psi1 and a state st.
– S(crs, SS , psi1): takes as input a crs, a sender set SS, and a first PSI message

psi1. Outputs a second PSI message psi2.
– R2(crs, st, psi2): takes as input a crs, a state st, and a second PSI message

psi2. Outputs a set X .
An `PSI protocol satisfies the following properties:
– Correctness: for every sets (SR, SS), given crs

$← Setup(1λ), (psi1, st)
$←

R1(crs, SR), psi2
$← S(crs, SS , psi1), and X

$← R2(crs, st, psi2), it holds that
X = SR ∩ SS with probability 1.

– Security: the two-round protocol defined by LPSI = (Setup,R1,S,R2) imple-
ments the PSI functionality given on Figure 5 in the semi-honest model.

– Efficiency: there exists a fixed polynomial poly such that both the length of
psi1 and the running time of S are bounded by poly(λ, log |SR|).

23

Functionality Fpsi

Parameters: The PSI functionality Fpsi is parameterised with a universe
U .
Setup Phase: The functionality waits until it receives SR with SR ⊆ U
from R. Ignores subsequent messages from R.
Send Phase: The functionality waits until it receives SS with SS ⊆ U
from S. Sends SR ∩ SS to R. Ignores subsequent messages from R.

Fig. 5: PSI functionality Fpsi

Lemma 16 (`PSI from CDH [ABD+21]). Assuming the security of
the computational Diffie-Hellman assumption against poly(n)-time adversaries,
there exists an `PSI protocol for receiver sets of size n with statistical receiver
security and computational (semi-honest) sender security.

4.2 From Laconic PSI to Half-PIR

We define the notion of half-PIR, first introduced in [BIP18] (under the name
Rand 1

2PIR). Informally, a half-PIR behaves as a regular PIR with probability 1/2;
otherwise, correctness and security might not hold. The receiver gets notified
when the scheme successfully worked as intended.

Definition 17. A half-PIR protocol is defined as an n-PIR (Definition 14)
where the correctness and security properties are modified as follows:

– Correctness: there exists a negligible function µ such that for every λ ∈ N,
z ∈ {0, 1}n, i ∈ [n]:

Pr[OutC(λ, z, i) = (zi, success)] ≥ 1/2− µ(λ).

– Security: there exists a negligible function µ such that for every PPT ad-
versary A, large enough λ ∈ N, (i, j) ∈ [n]2, and z ∈ {0, 1}n, it holds that
|pi − pj | ≤ µ(n, λ), where for an integer k ∈ [n], pk denotes the conditional
probability Pr[A(1λ+n,ViewS(λ, z, k)) = 1 | OutC(λ, z, k)2 = success].

Below, we recall the definition of pseudorandom functions (PRFs), first intro-
duced in the seminal work of [GGM84]. For simplicity, we restrict our attention
to PRFs with key length and output length equal to the security parameter λ.

Definition 18 (Pseudorandom function [GGM84, NR95]). A pseudo-
random function with input size m is syntactically defined by a function family
F = {FK : {0, 1}m(λ) 7→ {0, 1}λ}λ∈N,K∈{0,1}λ , where the output FK(x) can be
computed from (K,x) in polynomial time, and which satisfies the following se-
curity property: for every λ ∈ N and every oracle PPT attacker A, it holds
that ∣∣∣Pr

K
[A(1λ)FK(·) = 1]− Pr

R
[A(1λ)R(·) = 1]

∣∣∣ ≤ negl(λ),

24

where K $← {0, 1}λ, and R : {0, 1}m 7→ {0, 1}λ is a truly random function. Fur-
thermore, we say that the PRF is T (λ)-secure if the above inequality still holds
when A is additionally given 1T as input.

For a high-level intuition of the protocol provided in fig. 6, we refer to the full
version of this paper.

Half-PIR from Laconic PSI and PRF.

Parameters: The protocol is parameterised with a security parameter λ,
and a database size n = n(λ) ≤ 2λ · negl(λ). {FK}K∈{0,1}λ is a family of
n(λ)-secure PRFs with input size m = log n + 1. The protocol operates
in the Fpsi-hybrid model, where the universe U is defined as {0, 1}λ. The
server holds an input string z ∈ {0, 1}n and a the client holds an index
i ≤ n.

Protocol: The protocol operates in three steps.

1. The server picks a random PRF key K $← {0, 1}λ and sends it to the
client. The client samples a uniformly random bit b $← {0, 1}, and sets
y ← FK(i||b).

2. The server constructs the set SR = {FK(1||z1), · · · , FK(n||zn)}, and
queries (sid, SR) to Fpsi, playing the role of the receiver. The client
constructs the set SS = {y} and queries SS to Fpsi, playing the role of
the sender. The server receives SR ∩ SS .

3. The server indicates whether SR ∩ SS is empty by sending a bit to the
client. If SR∩SS is empty, the client outputs (1− b, success); otherwise,
the client outputs (b, fail).

Fig. 6: Half-PIR from Laconic PSI and PRF.

Security analysis. The security analysis is deferred to the full version of this
paper.

Instantiating the functionalities. Pseudorandom functions can be constructed
from one-way functions [GGM84]. Instantiating the functionality Fpsi with the
CDH-based laconic PSI protocol of [ABD+21] involves communication and client
computation poly(λ, log |SR|) = poly(λ, log n) (since |SR| = n). Summing up, we
have:

Lemma 19. Assuming the hardness of the computational Diffie-Hellman as-
sumption against poly(n)-time adversaries, there exists a (constant-round) poly-
logarithmic half-PIR protocol for databases of size n (where the client computa-
tion is also polylogarithmic).

25

4.3 From Polylogarithmic Half-PIR to Polylogarithmic PIR

We now describe a simple generic transformation from Half-PIR to PIR.

Random-index PIR. First, we recall the definition of random-index PIR
from [GHM+21]:

Definition 20 (Random-Index PIR). A random-index PIR for database of
size n is a two-party protocol between a server and a client which implements the
random-index PIR functionality given on Figure 7 in the semi-honest model.

Functionality Frpir

Parameters: The functionality is parameterised with a database size n.
Server Message: The functionality waits until it receives z ∈ {0, 1}n from
the server.
Output: If the client is honest, sample i $← [n] and output (i, zi) to the
client. Otherwise, output z to the client.

Fig. 7: Random-index PIR functionality Frpir.

Interestingly, random-index PIR was recently shown to imply full-fledged
PIR, with only a logarithmic (in n) blowup in communication and rounds,
in [GHM+21]:

Lemma 21. If there exists a random-index PIR protocol for databases of size n
with communication complexity c(λ, n) and round complexity r(λ, n), then there
exists an n-PIR protocol with communication complexity O(c(λ, n) · log n) and
round complexity O(r(λ, n) · log n).

We refer to the full version of this paper for a high-level explanation, and
to [GHM+21] for a formal proof of Lemma 21.

From half-PIR to random-index PIR. By the above, constructing PIR from
half-PIR is reduced to constructing random-index PIR from half-PIR. The lat-
ter, however, is straightforward: the client and the server can simply execute a
half-PIR, where the client picks its input uniformly at random. At the end of
the protocol, if the client receives fail, both parties simply restart the protocol.
By the correctness of the half-PIR, a successful execution will happen after an
expected O(1) number of restarts. Below, we describe a slight variant of this
where the client runs λ half-PIRs in parallel, and outputs the lexicographically
first successful output.

26

Random-Index PIR from Half-PIR.

Parameters: The protocol is parameterised with a security parameter λ,
and a database size n = n(λ) ≤ 2λ · negl(λ). The server holds an input
string z ∈ {0, 1}n; the client has no input.

Protocol: The client samples λ uniformly random integers
(i1, · · · , iλ) $← [n]λ. The client and the server run in parallel λ in-
stances of a half-PIR protocol with respective client inputs ij and server
input z. The client receives outputs OutC(λ, z, ij).

Output: The client sets j∗ to be the lexicographically first j such
that OutC(λ, z, ij) = (zj , success) for some bit zj . The client outputs
(zj∗ , success). If there is no such j, the client outputs ⊥ instead.

The security analysis is deferred to the full version of this paper. Combining this
protocol with Lemma 21, we get:

Lemma 22. If there exists a half-PIR protocol for databases of size n with com-
munication complexity c(λ, n) and round complexity r(λ, n), then there exists an
n-PIR protocol with communication complexity O(λ · c(λ, n) · log n) and round
complexity O(r(λ, n) · log n).

Putting together Lemmas 19 and 22 finishes the proof of Theorem 2.

Acknowledgments

Elette Boyle and Pierre Meyer were supported by AFOSR Award FA9550-21-
1-0046, a Google Research Award, and ERC Project HSS (852952). Geoffroy
Couteau was supported by the ANR SCENE.

References

ABD+21. Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad
Hajiabadi, and Sihang Pu. Laconic private set intersection and applications.
In Theory of Cryptography Conference, pages 94–125. Springer, 2021.

ADOS22. Damiano Abram, Ivan Damgård, Claudio Orlandi, and Peter Scholl. An
algebraic framework for silent preprocessing with trustless setup and active
security. Cryptology ePrint Archive, 2022.

AJL+12. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low com-
munication, computation and interaction via threshold FHE. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012.

BBDP22. Zvika Brakerski, Pedro Branco, Nico Döttling, and Sihang Pu. Batch-ot
with optimal rate. To appear at Eurocrypt 2022, 2022.

27

BCG+19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT ex-
tension and more. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518. Springer,
Heidelberg, August 2019.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Pe-
ter Scholl. Correlated pseudorandom functions from variable-density LPN.
In 61st FOCS, pages 1069–1080. IEEE Computer Society Press, November
2020.

BFKR91. Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Rogaway. Security
with low communication overhead. In Alfred J. Menezes and Scott A. Van-
stone, editors, CRYPTO’90, volume 537 of LNCS, pages 62–76. Springer,
Heidelberg, August 1991.

BGI16. Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier
for secure computation under DDH. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509–539.
Springer, Heidelberg, August 2016.

BGI17. Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation:
Optimizing rounds, communication, and computation. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part II, vol-
ume 10211 of LNCS, pages 163–193. Springer, Heidelberg, April / May
2017.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May 1988.

BI05. Omer Barkol and Yuval Ishai. Secure computation of constant-depth cir-
cuits with applications to database search problems. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 395–411. Springer,
Heidelberg, August 2005.

BIP18. Elette Boyle, Yuval Ishai, and Antigoni Polychroniadou. Limits of practical
sublinear secure computation. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 302–332.
Springer, Heidelberg, August 2018.

BKS19. Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing
from lattices without FHE. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 3–33. Springer,
Heidelberg, May 2019.

BLSV18. Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan.
Anonymous IBE, leakage resilience and circular security from new as-
sumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 535–564. Springer,
Heidelberg, April / May 2018.

CCD88. David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty uncondi-
tionally secure protocols (extended abstract). In 20th ACM STOC, pages
11–19. ACM Press, May 1988.

CG97. Benny Chor and Niv Gilboa. Computationally private information retrieval
(extended abstract). In 29th ACM STOC, pages 304–313. ACM Press, May
1997.

CGKS95. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private
information retrieval. In 36th FOCS, pages 41–50. IEEE Computer Society
Press, October 1995.

28

Cha04. Yan-Cheng Chang. Single database private information retrieval with log-
arithmic communication. In Huaxiong Wang, Josef Pieprzyk, and Vijay
Varadharajan, editors, ACISP 04, volume 3108 of LNCS, pages 50–61.
Springer, Heidelberg, July 2004.

CLTV15. Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Ob-
fuscation of probabilistic circuits and applications. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS,
pages 468–497. Springer, Heidelberg, March 2015.

CM21. Geoffroy Couteau and Pierre Meyer. Breaking the circuit size barrier for
secure computation under quasi-polynomial LPN. In Anne Canteaut and
François-Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume
12697 of LNCS, pages 842–870. Springer, Heidelberg, October 2021.

CMS99. Christian Cachin, Silvio Micali, and Markus Stadler. Computationally pri-
vate information retrieval with polylogarithmic communication. In Jacques
Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 402–414.
Springer, Heidelberg, May 1999.

Cou19. Geoffroy Couteau. A note on the communication complexity of multiparty
computation in the correlated randomness model. In Yuval Ishai and Vin-
cent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS,
pages 473–503. Springer, Heidelberg, May 2019.

DFH12. Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party com-
putation with low communication. In Ronald Cramer, editor, TCC 2012,
volume 7194 of LNCS, pages 54–74. Springer, Heidelberg, March 2012.

DG17a. Nico Döttling and Sanjam Garg. From selective IBE to full IBE and selective
HIBE. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume
10677 of LNCS, pages 372–408. Springer, Heidelberg, November 2017.

DG17b. Nico Döttling and Sanjam Garg. Identity-based encryption from the Diffie-
Hellman assumption. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 537–569. Springer,
Heidelberg, August 2017.

DGI+19. Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour,
and Rafail Ostrovsky. Trapdoor hash functions and their applications.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 3–32. Springer, Heidelberg, August
2019.

DNNR17. Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranel-
lucci. The TinyTable protocol for 2-party secure computation, or: Gate-
scrambling revisited. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 167–187. Springer,
Heidelberg, August 2017.

FGJI17. Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith
III. Homomorphic secret sharing from paillier encryption. In Provable Secu-
rity - 11th International Conference, ProvSec 2017, Xi’an, China, October
23-25, 2017, Proceedings, volume 10592, pages 381–399, 2017.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions (extended abstract). In 25th FOCS, pages 464–479. IEEE
Computer Society Press, October 1984.

29

GHM+21. Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and
Sophia Yakoubov. Random-index pir and applications. In Theory of Cryp-
tography Conference, pages 32–61. Springer, 2021.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM Press, May
1987.

IKM+13. Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and Anat
Paskin-Cherniavsky. On the power of correlated randomness in secure com-
putation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages
600–620. Springer, Heidelberg, March 2013.

JLS22. Ayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from lpn over Fp, dlin, and prgs in nc0. To appear at Eurocrypt 2022, 2022.

Kil00. Joe Kilian. More general completeness theorems for secure two-party com-
putation. In 32nd ACM STOC, pages 316–324. ACM Press, May 2000.

KO97. Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SIN-
GLE database, computationally-private information retrieval. In 38th
FOCS, pages 364–373. IEEE Computer Society Press, October 1997.

Lip05. Helger Lipmaa. An oblivious transfer protocol with log-squared communi-
cation. In Jianying Zhou, Javier Lopez, Robert H. Deng, and Feng Bao,
editors, ISC 2005, volume 3650 of LNCS, pages 314–328. Springer, Heidel-
berg, September 2005.

NN01. Moni Naor and Kobbi Nissim. Communication preserving protocols for
secure function evaluation. In 33rd ACM STOC, pages 590–599. ACM
Press, July 2001.

NR95. Moni Naor and Omer Reingold. Synthesizers and their application to the
parallel construction of pseudo-random functions. In 36th FOCS, pages
170–181. IEEE Computer Society Press, October 1995.

OS07. Rafail Ostrovsky and William E. Skeith III. A survey of single-database
private information retrieval: Techniques and applications (invited talk). In
Tatsuaki Okamoto and Xiaoyun Wang, editors, PKC 2007, volume 4450 of
LNCS, pages 393–411. Springer, Heidelberg, April 2007.

OSY21. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier:
Homomorphic secret sharing and public-key silent OT. In Anne Canteaut
and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume
12696 of LNCS, pages 678–708. Springer, Heidelberg, October 2021.

RS21. Lawrence Roy and Jaspal Singh. Large message homomorphic secret sharing
from DCR and applications. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part III, volume 12827 of LNCS, pages 687–717, Virtual
Event, August 2021. Springer, Heidelberg.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

30

	Sublinear Secure Computation from New Assumptions
	Introduction
	Our Results

	Technical Overview
	Sublinear 2PC for Layered Circuits from Decomposable Batch OT
	Polylogarithmic PIR from CDH

	Sublinear Computation for loglog-Depth Circuits
	Decomposable Two-Round Batch Oblivious Transfer
	Instantiation under QR +LPN, Adapted from EC:BBDP22
	Bounded Query Repetitions
	Two-Round Batch SPIR with Correlated Queries
	Sublinear Computation of loglog-Depth Circuits from corrSPIR
	Extension to Layered Circuits

	Polylogarithmic PIR from CDH
	Laconic Private Set Intersection
	From Laconic PSI to Half-PIR
	From Polylogarithmic Half-PIR to Polylogarithmic PIR

