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Abstract

We consider the distribution problem faced by a company that ships goods from a depot to multiple
customers. This distribution is outsourced to multiple carriers offering different transportation rates
and limited heterogeneous fleets of vehicles. Two shipping modes are used: in Less-Than-Truckload
(LTL) mode, a shipment cost depends on its size and destination; in Full-Truckload (FTL) mode,
routes should be designed for several fleets of heterogeneous vehicles, minimizing routing costs. This
problem is formulated as a variant of a vehicle routing problem with time windows with private fleet
and common carrier. To solve this problem, we use a matheuristic approach combining a Large
neighborhood Search (LNS) metaheuristic with a Set Partitioning component. This algorithm embeds
filtering strategies to efficiently integrate specific constraints in the LNS operators. We show that our
method is competitive on less general problems benchmarks from the literature and we introduce new
instances. We finally propose a case study arising from the French retail industry. We explore how
the combination of FTL and LTL shipments can achieve substantial savings compared to pure FTL or
LTL approaches.

Keywords: Vehicle routing, freight transportation, large neighborhood search

1. Introduction

Most industrial companies collaborate with several Logistics Service Providers (LSP) and carriers
to ship their products from their industrial facilities to their customers or points of sale. They are
traditionally called shippers. Designing a distribution network consists of defining all transportation
flows starting at the production centers, while optimizing one or several criteria (cost, service level,
environmental footprint). In practice, when a shipper collaborates with several carriers, the operational
routing decisions are meant to simultaneously optimize the routes and allocate these routes to a set of
carriers.

This paper studies the distribution policy of a shipper from one production facility or one ware-
houses to a set of customer facilities. We consider a single origin, hereafter called the depot, that
frequently delivers to a set of customers spread over hundreds of kilometers. The shipper does not
have its own fleet of vehicles for product distribution and the quantities to be shipped vary from one
day to another. Thus, on each shipping day, all the transportation orders of the day are dispatched to
several carriers, each having its own transportation rates, fleet of vehicles, and managerial constraints.

In this context, two very different shipping modes can be distinguished:
In Full-Truckload (FTL), the shipper books an entire vehicle to the carrier for a given predefined

route. FTL routes all start at the depot and deliver several orders to one or several customers within
their time windows. The shipper defines the route and the schedule of this vehicle while respecting a set
of operational constraints that can differ from one carrier to another. The most classical constraints
concern vehicle capacity or maximal load, and compatibility between vehicles and their cargo (e.g.
refrigerated transport, specific containers, transportation of hazardous material, etc.). The carrier
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may specify a maximal detour as an upper limit on out-of-route travel either as an absolute bound
or as a ratio with respect to the original lane distance (Lindsey et al., 2013). Then, the legislation
imposes constraints the legislation imposes constraints on the maximum duration of the routes. Finally,
carriers and customers have their own constraints related to the number of stopovers in a route, or to
the satisfaction of time windows and service times.

The FTL rates are either publicly available or have previously been established in a collaboration
contract. The FTL rate proposed by a carrier may be based on a cost per kilometer but several other
calculation methods are frequently used. For example, the cost may be determined by the farthest
area reached by the itinerary plus a constant stopover cost for each intermediate stop.

All carriers have their own calculation rules that depend on many internal factors (vehicle amor-
tization, drivers cost, fuel, tolls, etc.) as well as competitiveness factors (probability to find cargo for
the return trip, presence of competing carriers, etc.). The cost of a given route also depends on the
list of nodes visited and on the vehicle type.

Figure 1 shows an example of a zone-based fare. The cost is determined by the farthest area crossed
(425 e). Three stopovers’ costs (30 e) are added so the total cost of the route is 515 e.

425€

350€
225€

+30€

+30€
+30€

Figure 1: Example of an FTL rate determined by concentric areas around the depot and stopover costs

In Less-Than-Truckload (LTL) the carrier proposes a cost for each shipment according to the
distance from the depot to its destination and to the quantity (weight, volume) to be delivered. Within
this framework, the carrier organizes the optimization of the transports in its own network. As a result,
all constraints, such as time windows, related to delivery are handled by the carrier. The LTL rate
covers all shipment sizes but it is particularly attractive for small shipments. In return, the cost of
shipping the first few units is higher than the average unit cost in FTL. In practice, the LTL rates are
decreasing functions of the volume shipped. Figure 2 shows an example of such an LTL rate for one
given destination.
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Figure 2: LTL rate example based on a shipping cost per kg which varies depending on the shipment weight.

Each shipping mode has advantages and disadvantages for the shipper. FTL shipping is more
advantageous if the load is close to the capacity of a vehicle. On the other hand, it requires the
transportation of large quantities which can be incompatible with the quantities ordered by customers.
It also requires the shipper to have defined the routes to be taken and to manage the execution of these
routes. Therefore, a certain expertise in vehicle routing and load planning is required. In contrast,
LTL shipping allows the shipper to outsource the entire transport to its carriers but a full LTL strategy
is often quite expensive.
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The relationship between shippers and carriers establish a set of business constraints which are
related to fleet management and practical transportation constraints. One of the main challenges for
shippers is to find available trucks in increasingly tight transportation markets. The challenge for
carriers is to ensure that a certain quantity of flow is entrusted to them in a repetitive manner and
to optimally plan the necessary vehicles. Thus, both parties generally agree on a maximal number
of trucks that can be guaranteed on every shipping day. For each carrier, a carrier limit defines the
maximal number of vehicles that can be used by the shipper for each day of a given period. This
carrier limit guarantees shippers that a number of trucks are reserved for them. It also helps carriers
to control the number of vehicles chartered to their customers. It can also be used to model complex
transportation rates. For example, when in a given fleet, the first vehicles are available at a low
price and the following vehicles at a higher price. The OR literature generally considers the use of
non-binding subcontracted resources (infinite capacity, no volume commitments) and a single fleet of
homogeneous or heterogeneous vehicles (see e.g. Chu (2005); Bolduc et al. (2008); Dabia et al. (2019)).
In this paper, we consider multiple fleets each one having its own limited number of vehicles. Another
feature is that carriers own heterogeneous fleets of vehicles, i.e. fleets composed of different types of
vehicles. Each type of vehicle is available in a limited quantity; it has with its own cost model and
may be subject to its own specific constraints.

This work relies on a real case encountered by the CRC Services company which helps shippers to
optimize their transport organization through organizational tools and optimization algorithms. Our
challenge is to integrate these real-life constraints as well as realistic rates arising from real-life practices
between shippers and carriers. The key contributions of this paper are the following:

• We introduce the VRP-FLC in which orders have to be served via FTL or LTL routes and where
FTL shipping is subcontracted to several carriers with a limited heterogeneous fleet.

• We propose an LNS-SPP matheuristic that combines Large neighborhood Search (LNS) and a
set-partitioning problem (SPP).

• Multiple route cost models and realistic constraints are integrated as an external code combining
both incremental and static information to efficiently evaluate insertions with respect to their
costs and feasibility.

• The LNS-SPP algorithm maintains a list of all vehicles compatible with a given route and embeds
filtering strategies to efficiently integrate specific constraints in the LNS operators.

• We show that our method is competitive on less general problems benchmarks from the literature
and introduce a new benchmark integrating multiple carriers and carrier limits.

• We explore how the combination of FTL and LTL shipments can achieve substantial savings
compared to pure FTL or LTL approaches.

This paper is structured as follows: A review of the literature is proposed in Section 2, focusing
on two features: private fleet and common carrier and limited heterogeneous fleet. Section 3 presents
the problem settings and the corresponding mathematical model. Section 4 describes the proposed
solution method. In Section 5, the proposed algorithm is evaluated on benchmark instances for very
similar optimization problems. Then we present numerical results on new instances. Finally, Section
7 provides concluding remarks and suggests future research directions.

2. Literature review

The optimization problem considered in this paper belongs to the very broad category of Vehi-
cle Routing Problems (VRP). It addresses two major features of shipper distribution problems: the
presence of a limited heterogeneous fleet and the possibility of choosing between two shipping modes
(FTL or LTL). In the literature, VRPs with the latter feature are called VRP with Private Fleet and
Common Carrier (VRPPC). The heterogeneous fleet VRP and the VRPPC are detailed in Sections
2.1 and 2.2, respectively.
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2.1. Heterogeneous Fleet Vehicle Routing Problems
There are two main variants of VRPs with heterogeneous fleets: the Fleet Size and Mix VRP

(FSMVRP) and the Heterogeneous Fixed Fleet VRP (HFFVRP). The FSMVRP, introduced by Golden
et al. (1984), considers several vehicle types which are available in an unlimited quantity. The objective
is to define a set of routes and to assign them to vehicle types in order to lexicographically minimize
the number of vehicles used and then the operating costs of the fleet. In the HFFVRP (Taillard, 1999),
the number of vehicles of each type is limited. Since the composition of the fleet is already determined,
the objective to be minimized is no longer the number of vehicles but the cost of operating the fleet to
deliver the goods. The literature on vehicle routing problems with heterogeneous fleet is abundant. For
a survey on FSMVRP and HFFVRP one can refer to Koç et al. (2016). Recently, several FSMVRP and
HFFVRP variants have been solved in Penna et al. (2019) by a matheuristic which combines Iterated
Local Search and a Set Partitioning component. Below, we focus on contributions that integrate time
windows.

Many authors consider the presence of time windows in the FSMVRP. In contrast, very few papers
consider HFFVRP with Time Windows (HFFVRPTW). Paraskevopoulos et al. (2008) propose a two-
phase heuristic hybridizing Variable Neighborhood Search (VNS) and Tabu Search. The authors use
the instances of Liu and Shen (1999), limiting the fleet according to the solutions reported by Liu
and Shen (1999) on the FSMVRPTW. The objective is to minimize the total distribution time. Koç
et al. (2015) propose a meta-heuristic called “Hybrid Evolutionary Algorithm”. The solutions are
represented by a giant tour and the split algorithm proposed by Prins (2009) is enriched to assign a
vehicle type to each route. The authors use the instances of Paraskevopoulos et al. (2008) and consider
two objectives: minimization of the total en-route duration or minimization of the travelled distance.
Fachini and Armentano (2020) propose two exact methods (Logic-Based Benders Decomposition and
Branch-and-Check) based on a Benders decomposition to solve the HFFVRPTW where the total
distance is minimized.

2.2. Vehicle Routing Problem with Private Fleet and Common Carrier (VRPPC)
The VRPPC, introduced by Chu (2005) is a generalization of the VRP in which orders can be

delivered either by the private fleet or by an external carrier. Two factors can influence the choice of
orders that are entrusted to the external carrier: the limited size of the private fleet and the potential
savings of not using private vehicles for the delivery of remote customers. In our case, the private
fleet is actually made up of different fleets offered by different FTL carriers and the external carrier
corresponds to LTL rates. The VRPPC can be assimilated to a special case of the VRP with profits
(see Archetti et al. (2014) for a survey): decision makers can choose either to deliver to their customers
through FTL routes or not to deliver them by outsourcing the transportation (LTL routes).

Heuristic methods
Chu (2005) proposes an adaption of the savings heuristic of Clarke and Wright (1964) followed

by a local search. This method is tested on five instances. Bolduc et al. (2007) propose a heuristic
called Selection-Routing-Improvement to solve the VRPPC. It consists of selecting the requests to
be served by the external carrier then constructing an initial solution before improving it with local
search. Bolduc et al. (2008) show that the VRPPC can be reformulated as a VRP with Heterogeneous
Fixed Fleet (HFFVRP) by replacing the external carrier by a dummy vehicle. The cost of an arc to a
customer is equal to the cost of delivery by the external carrier. A meta-heuristic called Randomized
Construction - Improvement - Perturbation (RIP) is proposed and applied on new instances with
homogeneous or heterogeneous fleet. Côté and Potvin (2009) propose a Tabu Search (TS) algorithm to
solve the VRPPC with a homogeneous fleet using two neighborhoods: 0-1 exchange and 1-1 exchange.
Potvin and Naud (2011) and Euchi (2017) use neighborhoods based on ejection chains within a Tabu
Search. Liu et al. (2010) study a variant of an arc-routing problem faced by a carrier. A first set
of orders coming from shippers must be served by the private fleet of the carrier or outsourced to
an external carrier at a given cost. A second set of orders that comes from other carriers can be
served by the private fleet for a compensative payment. The problem is reformulated as an equivalent
full-truckload node routing problem and solved with a memetic algorithm. Solutions are represented
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as a giant tour and the split procedure is adapted to determine which requests are outsourced to an
external carrier. Experiments are conducted on new instances featuring up to 400 requests.

Ceschia et al. (2011) study a rich VRPPC variant in which the heterogeneous fleet is composed
of vehicles proposed by various carriers. In order to handle the different cost models proposed by the
carriers, the authors suggest a Tabu Search approach in which the cost of the routes can be evaluated
by calling external code. The authors identify and implement four different types of cost functions
that they encountered in practice (cost based on the traveled distance or on the farthest point to the
depot, costs depending on vehicle fill rate).

Vidal et al. (2015) propose a model unifying several variants of VRP with profits. A so-called
exhaustive solution representation is used: customers are always placed on one of the private fleet
routes, even if they are delivered by the external carrier. To determine which customers of a route
are delivered by the external carrier, the authors solve a Resource-Constrained Shortest Path Problem
(RCSPP). This solution representation is integrated with the UHGS meta-heuristic (Vidal et al. (2014))
and applied to VRPPC instances with homogeneous fleet. Gahm et al. (2017) investigate a variant of
the VRPPC with several LTL carriers which offer discounts based on the total amount of cargo they
are in charge of. It is also possible to charter vehicles from an external carrier to perform routes. The
authors propose an ILP modeling and three variants of a Variable Neighborhood Search (VNS), which
is tested on instances adapted from Bolduc et al. (2008). Bulhões et al. (2018) introduce the VRP
with Service Level Constraints (VRPSL) in which service level constraints require delivery to part of
the customers with the private fleet. The VRPPC can be described as a VRPSL with a zero service
level constraint. A branch-and-price algorithm and a genetic algorithm based on the Unified Hybrid
Genetic Search (UHGS) framework (Vidal et al. (2012)) are proposed.

Goeke et al. (2019) propose an LNS meta-heuristic with a decomposition strategy such that the
removal and repair operators are only applied to a subproblem. A subproblem Pr is defined for each
route r of the current solution. Each subproblem Pr only considers customers currently assigned to
route r, customers of a random number of routes that are closest to r, and customers close to r that
are currently assigned to the private carrier. A Variable Neighborhood Descent (VND) is also included
and applied on promising solutions.

Exact Methods
Some exact methods have also been proposed to address the VRPPC. Goeke et al. (2019) use

a branch-and-cut-and-price (BCP) approach. The master problem is a route-based Set Partitioning
Problem (SPP). The pricing problem is an Elementary Shortest-Path Problem with Resource Con-
straints (ESPPRC) ; it is solved with a dynamic programming algorithm. This method can find
optimal solutions for 8 of out 34 instances with homogeneous fleets and for 5 out of 34 instances with
heterogeneous fleets.

Dabia et al. (2019) study a rich variant of the VRPPC with a limited heterogeneous fleet, time
windows, and discounts offered by the external carrier. These discounts take the form of a piecewise
linear function depending on the total quantity of goods entrusted to the external carrier. The authors
propose an exact method relying on a route-based Set Partitioning Problem (SPP). Two formulations
are proposed: with or without variables indicating the customers delivered by the external carrier.
Both models are solved with a Branch-and-Cut-and-Price algorithm, which is evaluated on instances
of Liu and Shen (1999), that were adapted to handle the case of subcontracting costs and a fleet limited
to three units of each vehicle type.

Baller et al. (2020) study the VRP with Partial Outsourcing (VRPPO), in which delivery to any
customer can be split between the private fleet and external carriers. Two route-based SPP formulations
are proposed as well as a Branch-and-Cut-and-Price to solve them. The interest of partial delivery is
evaluated on instances of Dabia et al. (2019), with or without partial outsourcing.

Table 1 summarizes the main references listed in this section and positions the present paper.
Column 2 classifies the references according to the problem variant, with a distinction between problems
with a homogeneous fleet or heterogeneous fleet. Columns 3 and 4 list the exact methods or heuristic
methods used to solve these problems. Column 5 indicates when time windows are considered. All the
papers cited in this table model subcontracted LTL shipments with the VRP with profit paradigm.
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Reference Problem Exact Heuristic TW
variant methods methods

Homogeneous fleet
Côté and Potvin (2009) VRPPC TS
Liu et al. (2010) ARP-PC MA
Vidal et al. (2015) VRPPC UHGS
Bulhões et al. (2018) VRP-SL HGS

Heterogeneous fleet
Chu (2005) VRPPC Savings + LS
Bolduc et al. (2007) VRPPC SRI
Bolduc et al. (2008) VRPPC RIP
Potvin and Naud (2011) VRPPC TS
Ceschia et al. (2011) VRPPC [1] TS ✓
Gahm et al. (2017) VRPPCdR [2], [3] RVND
Euchi (2017) VRPPC TS
Dabia et al. (2019) VRPPC [2] BPC ✓
Goeke et al. (2019) VRPPC BPC LNS+VND
Baller et al. (2020) VRP-PO BPC ✓
This work VRP-FLC [1] LNS-SPP ✓

LS = Local Search, TS = Tabu Search, MA = Memetic Algorithm, HGS = Hybrid Genetic Search,
SRI = Selection, Routing and Improvement, RIP = Randomized construction - Improvement –
Perturbation, (U)HGS = (Unified) Hybrid Genetic Search, RVND = Randomized Variable Neigh-
borhood Descent, BPC = Branch and Price and Cut
[1] With multiple FTL Carriers, [2] With volume discounts, [3] With multiple LTL Carriers

Table 1: Papers related to the VRP with Private Fleet and Common Carrier (VRPPC).

One contribution of the problem introduced in this paper is the consideration of multiple FTL
carriers. For LTL carriers we consider that a preliminary analysis allows to select which carrier is better
for each order. Hence, the multiple LTL carriers case is not treated explicitly in the optimization. The
new variant of the VRPPC problem introduced in this paper is called the Vehicle Routing Problem
with FTL and LTL carriers (VRP-FLC).

3. Problem settings and mathematical formulation

The VRP-FLC considers a shipper and a set of customers to be delivered to. Let N = {1, ..., |N |}
be the set of orders placed by these customers. An order is a set of products which must be delivered
at once. It is characterized by the address of the delivery location, a size (number of pallets, and/or
weight), a release date, and a time window in which the customer can be delivered to. Each order can
be shipped either in FTL or in LTL mode. In LTL mode, the shipping cost cLTL

n is given a priori for
each order n ∈ N .

When shipped in FTL mode, orders are delivered by a set of routes. A route r ∈ Ω starts from
the depot and delivers a given subset of orders to their respective customers. All routes satisfy a
number of constraints imposed by shippers, carriers, and the legislation (e.g., maximum number of
stopovers, maximum duration or detours, access to customers’ facilities). They also satisfy the time
window constraints. Let us denote by Ω the set of all feasible routes. The total number of routes in
the set Ω can be large and potentially lead to untractable MIP models. This is not problematic since
our solution method does not explicitly handle the whole set Ω.

Let K = {1, ..., |K|} be the set of FTL carriers, each offering a heterogeneous fleet. For each carrier
k ∈ K, the set Vk = {1, ..., |Vk|} describes the different available vehicles types. Additionally, we define
V =

⋃
k∈Vk

as the whole set of vehicle types. We note kv the carrier associated with the vehicle type

v ∈ V. All vehicle types are assumed to have the same traveling speed.
Due to the capacity constraints, and the various real-life and business constraints, the routes are

not compatible with every vehicle type. We denote by Ωv the subset of routes that can be performed
by a vehicle of type v ∈ V and Vr the compatibility list of a route r, i.e., the list of vehicle types that
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can perform the route r. In addition, we denote by Ωn the subset of routes that can deliver an order
n ∈ N .

The cost of route r ∈ Ω operated by a vehicle of type v ∈ V is denoted cr,v. As in Ceschia et al.
(2011), our proposed matheuristic method calls external code to compute this value.

We consider a limited fleet size for any carrier k ∈ K and any vehicle type v ∈ V. The total
number of available vehicles of type v ∈ V is denoted Qv.

We also consider the carrier limit, defined as follows.

Definition 1 (Carrier limit). For any carrier k ∈ K, the total number of vehicles belonging to k
used in the solution is upper bounded by the quantity ubk, called the "carrier limit".

From the definition it is straightforward that ubk ≤
∑

v∈Vk Qv.
The VRP-FLC considers two types of decision variables. For any route r ∈ Ω and any vehicle type

v ∈ V r, the binary variable xr,v takes the value 1 if a vehicle of type v is assigned to route r, and 0
otherwise. For any order n ∈ N , the variable yn takes the value 1 if the order n is delivered in LTL
mode, and 0 otherwise.

The VRP-FLC is modeled by the following linear programming formulation with binary variables
(1)–(6).

min z =
∑
r∈Ω

∑
v∈Vr

cr,vxr,v +
∑
n∈N

cLTL
n yn (1)

s.t. ∑
r∈Ωn

∑
v∈Vr

xr,v + yn = 1 ∀n ∈ N (2)

∑
r∈Ωv

xr,v ⩽ Qv ∀v ∈ V (3)

∑
v∈Vk

∑
r∈Ωv

xr,v ⩽ ubk ∀k ∈ K (4)

xr,v ∈ {0, 1} ∀r ∈ Ω,∀v ∈ Vr (5)
yn ∈ {0, 1} ∀n ∈ N (6)

This compact route-based model highlights the two main contributions (two types of routes and
carrier limit). The objective function minimizes the set of transportation costs. The first sum represents
the cost of FTL routes. The second sum represents the cost of LTL shipments.

Constraints (2) state that each order is delivered exactly once. This delivery can be done either in
LTL or in FTL mode. Constraints (3) model the fleet size limit for each type of vehicle. Constraints
(4) model the carrier limits for each carrier.

A solution to the VRP-FLC is a set of FTL routes starting from the depot and delivering a subset
of orders, such that each route is assigned to a vehicle type in a way that the fleet size limits and the
carrier limits are satisfied. Note that there is at least one feasible solution consisting of using LTL
mode for all orders.

4. LNS-SPP algorithm

This section describes the LNS-SPP matheuristic and its adaptation to solve the VRP-FLC. LNS
has been first introduced by Shaw (1998). It consists of exploring large neighborhoods by iteratively
applying so-called removal and repair operators (Ropke and Pisinger, 2006a) also known as ruin and
recreate heuristics (Schrimpf et al., 2000). The removal operators are heuristic algorithms that select
a certain quantity of orders and simply remove them from the current solution. Their output is an
incomplete solution and a request bank, where the removed orders are stored. The repair operators are
heuristic algorithms that re-insert orders contained in the request bank into the incomplete solution
with the objective to obtain a new feasible solution. The removal and repair operators are called until

7



a stopping criterion is met, e.g., a number of iterations or a time limit. The potential of LNS for
solving a broad variety of VRPs was emphasized by Ropke and Pisinger (2006a,b); Pisinger and Ropke
(2007), and in the survey (Pisinger and Ropke, 2019).

We highlight three major characteristics of our implementation. First, one source of inspiration is
the recent ruin-and-recreate meta-heuristic of Christiaens and Vanden Berghe (2020), based on small
removals and fast greedy insertion heuristics as repair operators. Thanks to these two factors, LNS
can perform a very large number of iterations which somehow compensates the lack of a local search.
Christiaens and Vanden Berghe’s algorithm competes with state-of-the-art algorithms on many VRPs
including the fundamental and intensively-studied VRPTW. These operators are listed in Section 4.2.

Second, one specificity of the proposed algorithm is that the repair operators do not directly assign
the routes to some vehicle type. Following the approach of Tellez et al. (2018), we maintain a list of
compatible vehicle types for each route. In order to account for the carrier limit and the fleet size limit,
the list of possible vehicle types for each route is filtered by extending a filtering algorithm proposed
in Régin (1996). Once all orders have been reinserted, each route is assigned to a vehicle type with a
heuristic assignment algorithm. The fleet management is detailed in Section 4.3.

Third, a Set Partitioning Problem (SPP) is solved at regular intervals during the LNS execution
in order to recombine routes that are produced at different iterations. The use of SPP as a post-
optimization technique is reported in (Mancini, 2017; Gschwind and Drexl, 2019). The hybridization
with heuristics is reported in many papers including (Prescott-Gagnon et al., 2009; Groër et al., 2011;
Mendoza and Villegas, 2013; Subramanian et al., 2013; Parragh and Schmid, 2013; Yıldırım and Çatay,
2015; Grangier et al., 2017; Tellez et al., 2018; Dumez et al., 2021).

4.1. Detail of the LNS-SPP algorithm
The proposed LNS-SPP algorithm is described in Algorithm 1.

Algorithme 1 : LNS-SPP algorithm
Parameters : Σ−,Σ+ // Sets of ruin and repair operators
Input : s // Initial solution

1: Ω← routes(s) // Pool of routes
2: sbest ← s
3: while termination criterion is not met do
4: σ− ← selectRemovalOperator(Σ−)
5: σ+ ← selectRepairOperator(Σ+)
6: ϕ← U(ϕmin, ϕmax) // Randomly select a destruction size
7: s′ ← σ+(σ−(s, ϕ))
8: lb← lowerBound(s′)
9: if AcceptanceCriterion(lb, sbest) then

10: s′ ← AssignV ehiclesToRoutes(s′)
11: if AcceptanceCriterion(z(s′), sbest) then
12: Ω← Ω ∪ routes(s′)
13: s← s′

14: if z(s) < z(sbest) then
15: sbest ← s
16: end
17: end
18: end
19: if |Ω| ⩾ η then
20: sbest ← SPP (Ω)
21: Ω← routes(sbest)
22: s← sbest
23: end
24: end
25: return sbest

An initial solution s is obtained by using the Farthest Insertion repair operator (see Section 4.2.2)
from an empty solution. The routes of the initial solution are saved in the pool Ω. (line 1). The best
solution sbest is initialized as a copy of the initial solution (line 2).
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The main loop (lines 3–24) is repeated until a termination criterion is satisfied. The termination
criterion can be based on computation time, a maximum number of iterations, or a maximum number
of iterations without improvement of the best solution. At each iteration, a removal and a repair
operator are randomly chosen with a biased roulette wheel (lines 4 and 5). A destruction size ϕ is
also randomly selected according to a uniform distribution in the interval [ϕmin, ϕmax] (line 6). Then,
the removal and the repair operator are applied to the current solution and the result is saved in
a temporary copy s′ (line 7). During this phase, all insertions in a route r are evaluated using the
cheapest available vehicle that is compatible with r after insertion.

Before calling the assignment heuristic, a naive lower bound lb is computed in line 8. It is calculated
by considering an idealistic assignment of routes to vehicles where each route is assigned to its cheapest
compatible vehicle type, regardless of the fleet size limit and carrier limit.

We then check whether this lower bound passes the acceptance criterion. The acceptance criterion
in lines 9 and 11 is based on the record-to-record principle (Dueck, 1993). If the objective function
z(s′) of the new solution s′ is not T % worse than that of sbest, then s′ is accepted as the new current
solution. As suggested in Dumez et al. (2021), T is periodically updated in order to keep the ratio of
accepted solutions between αmin% and αmax. If the ratio of accepted solutions in the last µ iterations
is lower than αmin%, T is multiplied by 1.5. If it is larger than αmax%, T is divided by 1.5.

If s′ passes this preliminary test, then all routes in s′ are assigned to a vehicle type so that all
VRP-FLC constraints are satisfied. The assignment heuristic will be detailed in Section 4.3. If this full
solution passes the acceptance criterion, then routes in s′ are appended to Ω (line 12) and the values
of the current and best solutions are updated (lines 13–16).

The lines 19–23 correspond to the Set Partitioning component. When the size of the pool Ω reaches
a predetermined number of routes η, an SPP instance containing all routes of the pool is built. Instead
of solving an SPP formulation, we solve a Set Covering Problem (SCP) formulation. The solution
obtained is repaired if a customer is served more than once. Yıldırım and Çatay (2015) showed that
solving an SCP instead of an SPP slightly shortens solving time. Additionally, an exact reparation is
rarely needed and a greedy procedure generally finds the optimal reparation. The SPP is solved by
a MIP solver with a time limit of 30 seconds. Afterwards, the pool is then cleared and re-initialized
with the routes of the best solution found.

4.2. LNS operators
The efficiency of LNS algorithms relies on a set of well-chosen removal and repair operators. We

implemented twelve removal operators and ten repair operators. After preliminary experiments on a
representative set of instances, this set was reduced to the six removal operators presented in Section
4.2.1 and the five repair operators presented in Section 4.2.2. The selection of these operators is based
on experiments with the irace package (López-Ibáñez et al. (2016)), allowing the weight of each operator
to take an integer value between zero and two. Only operators with a positive weight were kept. A
second round of tuning with irace was used to set the weight of each operator. The corresponding
values, between 1 and 4, are reported in Table 2. At each iteration, these weights are used in a biased
roulette to determine which operator will be used.

4.2.1. Removal operators
Removal operators are parametrized with a destruction size ϕ drawn in the interval [ϕmin, ϕmax] ⊂

[0, 1] at each iteration. For all removal operators listed below except the string removal and random
removal, the orders are ranked according to some criterion and the ⌈ϕ× |N |⌉ first orders are removed
from the current solution and placed into a request bank.

The removal operators used in line 4 of Algorithm 1 are the following:

• Random Removal: random removal of orders;

• (Split) String Removal (Christiaens and Vanden Berghe (2020)): This operator selects several
small sequences of order in different close routes. For each selected sequence, either the sequence
is removed from the solution or it is kept (split case) and the other customers of the route are
removed. The method was implemented as described by Christiaens and Vanden Berghe (2020)
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with the suggested parameters except for c̄, the average number of customers to remove, which
is set to ⌈ϕ× |N |⌉;

• Least LTL Cost Removal : removal of orders having the cheapest LTL cost;

• Distance Related Removal (Shaw (1998)): removal of a randomly selected order and its nearest
orders according to the traveled distance;

• Largest Request Removal: removal of orders with the largest shipment size;

• Greatest Waiting Time Removal: removal of orders which generate the greatest waiting time,
i.e., that are served the most ahead of their time window.

4.2.2. Repair operators
Since all orders can be shipped in LTL mode, it is always possible (and easy) to rebuild feasible

solutions. We use fast repair operators taken from or inspired by those proposed by Christiaens
and Vanden Berghe (2020). They consist of sorting the request bank once at the beginning of the
reconstruction phase, then, according to this sorting, all orders in the request bank are sequentially
inserted in the solution at their best possible position. Another advantage of using these heuristics
is that they necessitate an order of magnitude fewer evaluations of routing costs than traditional
heuristics such as greedy or regret-based insertions.

To further reduce the time spent on calculating routing costs, we designed the cost evaluation and
the route feasibility functions to accept a list of parameters that are incrementally calculated. The
parameters that need to be calculated depend on the types of costs for the instance at hand. For the
costs found in instances of the literature, only the route’s load, length, and duration suffice. Other
information, such as product types or the list of nodes visited, is computed if needed for more complex
cost functions.

The repair operators used in line 5 of Algorithm 1 are the following:

• Random: the sequence of orders insertion is random;

• Request Size: the orders with larger shipment size are inserted first;

• Farthest: the orders with the farthest delivery location from the depot are inserted first;

• Nearest: the orders with the nearest delivery location are inserted first;

• Time Window Width: the orders with the tightest time windows are inserted first.

As in Christiaens and Vanden Berghe (2020), when evaluating the cost of inserting an order at
different positions in a route, each position has a probability pblink not to be considered.

In the repair step (line 7 of Algorithm 1), inserting an order in an incomplete solution requires
evaluating the cost increase generated by the use of each vehicle type at each insertion position.
Checking the feasibility of an order insertion in an existing route r ∈ Ω amounts to check that,
after insertion, (i) the route is still valid with respect to time windows, (ii) the list of vehicles types
compatible with r is not empty and, (iii) constraints (3)–(4) hold.

The feasibility of an order insertion with respect to time windows can be checked in constant time
by using the forward time slacks (Savelsbergh (1985)). Note that all vehicles travel at the same speed,
thus the satisfaction of time windows does not depend on the vehicle that performs the tour.

Then, we check if the new solution is still compatible with the vehicle fleet. The calculation of the
cost of a route is based on the cheapest compatible vehicle. After an order insertion, this calculation
includes a possible change of vehicle type. This is why Algorithm 1 needs to carefully manage vehicle
types, as explained in Section 4.3.
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4.3. Management of carriers with limited fleet
This section details the feasibility checking of order insertion with respect to the fleet and to the

carrier limit constraints. Example 1 illustrates the case where some route - vehicle type assignment is
rendered impossible by the combination of the fleet size and the carrier limit.

Example 1. Let us consider two carriers k1 and k2. Carrier k1 has a fleet of 10 vehicles: 9 of type
A and 1 of type B. Carrier k2 has a fleet of 4 vehicles: 2 of type C and 2 of type D but has only 2
drivers available; therefore only 2 vehicles can be used.

Carriers
k1 (10) k2 (2)

Vehicle
types A B C D

# vehicles
available 9 1 2 2

•
•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

••

••
r1

r2

r3

r4

Vr1 = {A,B,C,D}

Vr2 = {B,C,D}

Vr3 = {C,D}

Vr4 = {B,C,D}

Figure 3: Example of vehicle type filtering during the repair phase

Let us consider the incomplete solution depicted in Figure 3, with four routes denoted r1, r2, r3, and
r4. The unserved orders, placed in the request bank, are not represented. Route r1 can be executed
by all vehicle types (Vr1 = {A,B,C,D}). The other routes have a limited set of compatible vehicles:
Vr2 = {B,C,D}, Vr3 = {C,D} and Vr4 = {B,C,D}. Since routes r2, r3, and r4 are compatible with
vehicle types B, C, and D only, and that at most three vehicles of these types can be used, these routes
will take all available vehicles B, C, and D. Consequentially even though route r1 is compatible with all
vehicle types, it can only be performed by a vehicle of type A. Therefore, route r1 must be assigned to
a vehicle of type A.

In Section 4.3.1, we describe the filtering algorithm used to define a restricted set of possible vehicle
types for each route. In Section 4.3.2, we detail the heuristic algorithm used to assign one vehicle type
for each route.

4.3.1. Filtering algorithm
As illustrated in the previous example, some filtering of the routes compatibility lists can be deduced

for each route, depending on the other routes compatibility lists and from the fleet sizes and carrier
limits. The objective of this filtering is twofold: first, it allows the prevention of insertions that would
result in an infeasible solution (in the example, performing an insertion that would remove A from Vr1)
or to early detect an infeasible solution (i.e., empty compatibility list). Second, it supports a better
estimation when calculating the cost lower bound in the algorithm.

During the repair phase of Algorithm 1, let us consider an incomplete solution s defined by a set
of routes Ω(s) and a request bank containing a set of orders that are still not served.

Inserting an order in a route r ∈ Ω(s) is likely to restrict its compatibility list Vr. Assigning a
vehicle type to route r can also restrict the list of vehicle types compatible with all other routes r′ ̸= r.
We introduce the notation Vs

r to define the filtered compatibility list of a route r in solution s, with
Vs
r ⊆ Vr. This list is obtained by a filtering algorithm that is adapted from Régin (1996) in order to

jointly constrain the number of vehicles of each type and the maximum number of vehicles chartered
to each carrier. Régin (1996) proposed a filtering algorithm for the global cardinality constraint which
enforces that a minimum and maximum number of occurrences of a set of values can be assigned to a
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list of variables. Our filtering algorithm relies on a layered graph G = (X,E), where X contains three
layers of vertices representing the carriers t ∈ T , the vehicle types v ∈ V and the routes r ∈ Ω(s),
respectively. It also includes a source node o and a sink node o′. The arc set E contains an arc
(o, k) of capacity ubk for each carrier k ∈ K, an arc (k, v) of capacity Qv for each vehicle type v of
a carrier k, and arcs (v, r) of capacity 1 between routes and compatible vehicle types in the solution
((v, r) ∈ E ⇐⇒ v ∈ Vs

r ). The nodes corresponding to the routes are connected to the sink node by
arcs (r,o′) of capacity 1.

Example 2. The filtering graph corresponding to the case presented in Example 1 is represented by
Figure 4.

o’

r1

r2

r3

r4

A

B

C

D

k1

k2

o

Carriers Vehicles Routes

1

1

1

1

1

1

1

1

9

1

2

2

10

2

Figure 4: Graph representing the possible assignments of routes to vehicle types

Let f be a maximal flow from source to sink in graph G. Because there is one arc with a capacity of
1 per route that is connected to the sink o′, the value of f is less than or equal to the number of routes.
If this value is equal to the number of routes, then, by construction, each route is associated with one
single vehicle type. Therefore, the arcs used in the flow between the vehicles and routes vertices define
a feasible assignment of routes to vehicle types.

Indeed, from left to right in the example, the first and second layers of arcs guarantee respectively
that the carrier limit and fleet size constraints are verified. The third layer guarantees that each route
is assigned to a vehicle from its compatibility list. Given a maximal flow f , we build a residual graph
R(f). It is a directed graph for which the vertex set is the same as that of graph G and where the arcs
capacities are the quantities by which the flow f can be either increased or decreased.

Régin (1996) shows the following property:

Property 1. If the flow on an arc connecting two vertices is null and if these two vertices do not
belong to the same strongly connected component in R(f), then there cannot exist another maximal
flow with a non-zero flow on this arc.

Given Property 1, if for a vehicle type k ∈ K and a route r ∈ Ω(s) there exists a maximal flow f
with f(k, u) = 0 and if k and u don’t belong to the same strongly connected component of R(f), then
we cannot find an assignment of all the routes to a vehicle type if route r is assigned to vehicle type
k. The filtering method consists of computing a maximal flow, its residual graph, and identifying the
strongly connected components on the residual graph. Then, for each route r ∈ Ω(s) and each vehicle
v ∈ Vr, we check if Property 1 is verified on arc (v, r). If it is the case, v is removed from the route
compatibility list Vs

r

Figure 5 shows an example of a maximal flow that corresponds to the assignment of a vehicle of
type A (resp. B, C, D) to routes r1 (resp. r2, r3, r4).

Figure 6 shows the residual graph of this flow. It has four strongly connected components -
{o, k1, A}, {k2, B,C,D, r2, r3, r4}, {r1}, and {o′}, which are indicated by different colors on the graph.
Since r1 and B (resp. C and D) do not belong to the same strongly connected component in R(f) and
the flow on arcs connecting them is null in f , r1 can only be assigned to vehicle type A.
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Figure 5: Maximal flow corresponding to a feasible
assignment
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Figure 6: Residual graph and strongly connected com-
ponents of a maximum flow

4.3.2. Assignment of routes to vehicle types
After inserting all orders from the request bank, line 10 of Algorithm 1 assigns all routes in the

solution s′ to a vehicle type. This amounts to solving the VRP-FLC (1)-(6) with Ω restricted to the
set of routes Ω(s′).

Before looking for an assignment, we check that a lower bound on the value of the assignment
verifies the acceptance criterion. This bound consists of solving the VRP-FLC without considering
the fleet size and carrier limit constraints (3) and (4). In such a solution, each route is automatically
assigned to its cheapest compatible vehicle type. Then, routes are selected if and only if their cost
does not exceed the sum of the LTL delivery cost of its orders.

If this bound verifies the acceptance criterion, then we solve the generalized assignment problem
with the MTHG regret-based heuristic (Martello, 1990) to obtain a complete feasible solution to the
VRP-FLC. We define the regret associated to a route as the difference in the route cost between the
two cheapest compatible vehicles. If a route can be assigned to a single vehicle type, its regret is defined
as the difference between the cost of outsourcing all of its orders to the LTL carrier minus the cost of
the route with its vehicle type. Iteratively, we assign the route with the highest regret to its cheapest
vehicle type. When a vehicle type cannot be assigned anymore because of its limited availability or
because of the limits on the carrier’s fleet, the regrets for routes that relied on this vehicle type are
recalculated.

5. Numerical experiments

This section presents the computational results conducted on a cluster running with Ubuntu 20.04.2
LTS and using Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz. The LNS-SPP algorithm is coded as
a single-threaded program in Julia. IBM Ilog CPLEX 20.1.0 is used as a MIP solver, with standard
tuning and parameter CPXPARAM_Threads set to value 1. Algorithm 1 contains a number of parameters
that were tuned with the irace package (López-Ibáñez et al., 2016) on a representative set of instances.
Table 2 lists the value of these parameters.

Since there are no instances for the VRP-FLC problem in the literature, we evaluate the effi-
ciency of our approach on instances of closely related problems. Section 5.1 relates the computational
experiments on the Heterogeneous Fixed Fleet Vehicle Routing Problem with Times Windows (HFF-
VRP-TW). Section 5.2 presents results on the HFF-VRP-TW with Private fleet and Common carrier
(HFF-VRP-TW-PC). Section 5.3 introduces some new instances generated for the VRP-FLC. These
instances are solved by the LNS-SPP algorithm and used to provide managerial insights on the problem.

5.1. Results on HFF-VRP-TW benchmark instances
Paraskevopoulos et al. (2008) built HFF-VRP-TW instances from a subset of the FSM-VRP-TW

instances proposed by Liu and Shen (1999). They consider 4 instances in each category of Liu and
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Parameter Value

General parameters

initial acceptance threshold 1%
αmin 4%
αmax 14%
ϕmin 10%
ϕmax 20%
pblink 0.01
µ 300

Set partitioning η 3000

Weight of removal operators

Random Removal 2
(Split) String Removal 4
Least LTL Cost Removal 1
Distance Related Removal 1
Largest Request Removal 1
Greatest Waiting Time Removal 2

Weight of repair operators

Random 3
Request Size 1
Farthest 2
Nearest 2
Time Window Width 2

Table 2: List of LNS-SPP parameters

Shen’s instances. In these instances, the fleet size is set equal to that found in the best known solutions
of the FSM-VRP-TW. The vehicle fixed costs are high (type A). The objective to be minimized is a
sum of vehicles fixed costs and total travel and waiting time. Service time, which is constant for any
solution is not counted in the objective. Using the same instances, Koç et al. (2015) use a Hybrid
Evolutionary Algorithm (HEA) and present results for two objective functions: time minimization and
distance minimization.

In order to assess the impact of the filtering procedure described in Section 4.3.1, we ran two sets
of experiments using these instances. In the first one, vehicle compatibility lists are filtered after an
insertion is performed in a route that makes it infeasible for at least one vehicle type. In the second one,
vehicle compatibility lists are not filtered and always contain all the vehicle types that are compatible
with the route. On average, the solutions obtained using the filtering procedure are 0.40% better than
those obtained without filtering. If we compare the best solutions obtained out of 10 runs, the filtering
procedure improves the results by 0.10% on average. The results presented in the remainder of this
paper integrate the filtering procedure.

Table 3 compares our results with those obtained by Koç et al. (2015) for distance minimization.
The first column contains the instance names. Then, for each method, the columns entitled Mix

and zbest describe the number of vehicles of each type used in the best found solution and the value of
the objective function, respectively. The column entitled gap (%) gives the relative gap between the
proposed LNS-SPP algorithm and the best known solutions for each instance.

According to these experiments, we find that with smaller solving times, LNS-SPP outperforms
HEA on instances with short routes (instance groups R1, C1 and RC1) and that it is very close to
HEA on instances with long routes. The results were improved in 9 out of 24 instances ; identical
solutions are found for 8 instances and slightly worse results were obtained for 7 instances. Most of
the improvements are obtained through a modification of the vehicle mix. Besides, for all instances
where HEA outperforms LNS-SPP, both algorithms find the same vehicle mix.

Table 4 compares our results with those obtained by Paraskevopoulos et al. (2008) and by Koç
et al. (2015) for time minimization. Here again, LNS-SPP obtains competitive results with respect to
Paraskevopoulos et al. (2008) and Koç et al. (2015). The best known solutions were improved in 14 out
of 24 instances ; identical solutions are found for 5 instances and slightly worse results were obtained
for 5 instances.
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HEA Koç et al. (2015) LNS-SPP
Instance Mix zbest Time (min) Mix zbest gap (%)
R101A B10C11D1 4355.41 5.19 A1B11C10D1 4333.36 -0.51
R102A B4C13D2 4356.44 6.24 A1B4C14D1 4187.93 -3.87
R103A B6C15 4080.16 6.57 B7C14 4038.72 -1.02
R104A B7C14 3954.72 5.89 B7C14 3952.75 -2.58
C101A B10 8828.94 4.25 B10 8828.94 0.0
C102A A19 7080.17 3.97 A19 7080.17 0.14
C103A A19 7079.21 3.99 A19 7079.21 0.0
C104A A19 7075.06 2.98 A19 7075.06 0.0

RC101A A4B7C7 5162.28 6.41 A4B7C7 5162.25 0.0
RC102A A2B6C8 5018.05 5.24 A4B5C8 4986.61 -0.63
RC103A A10B2C8 4926.55 4.39 A10B2C8 4897.08 -0.60
RC104A A2B13C3D1 4995.91 4.88 A1B13C3D1 4950.62 -0.91
R201A A5 3448.76 6.74 A5 3463.27 0.42
R202A A5 3308.16 8.13 A5 3314.89 0.20
R203A A4B1 3382.39 7.49 A4B1 3392.79 0.31
R204A A5 3018.14 5.47 A5 3022.23 0.14
C201A A4B1 6082.38 4.21 A4B1 6082.38 0.0
C202A A1C3 7618.62 3.69 A1C3 7618.62 0.0
C203A C2D1 7303.37 3.67 C2D1 7303.37 0.0
C204A A5 5677.66 5.11 A5 5677.66 0.0

RC201A C1E3 5344.47 6.72 C1E3 5294.8 -0.93
RC202A A1C1D1E2 4856.02 6.48 A1C1D1E2 4865.98 0.21
RC203A A1B1C5 4246.25 6.93 A1B1C5 4212.44 -0.80
RC204A A14B2 4195.32 6.17 A14B2 4198.68 0.08

Average 5224.77 5.45 5209.16 -0.43
Runs 10 10

Processor Xe 2.6 GHz Xe Gold 6230 2.10GHz

Table 3: Results on HFF-VRP-TW instances, minimization of the distance traveled, 2 minutes per run

ReVNTS HEA
Paraskevopoulos et al. (2008) Koç et al. (2015) LNS-SPP

Instance Mix z Mix zbest Mix zbest gap (%)
R101A B10C11D1 4583.99 B10C11D1 4588.76 A1, B9, C11, D1 4626.66 0.931
R102A B3C14D2 4420.680 A1B4C13D2 4376.54 A1, B4, C14, D1 4394.16 0.403
R103A B6C15 4195.05 B6C15 4201.71 B7, C14 4149.94 -1.075
R104A B8C14 4065.52 B9C13 4027.69 B7, C14 3970.2 -1.427
C101A B10 8828.93 B10 8828.93 B10 8828.94 0.0
C102A A19 7137.79 A19 7153.13 A19 7119.35 -0.258
C103A A19 7143.88 A19 7122.57 A19 7102.86 -0.277
C104A A19 7104.96 A19 7083.74 A19 7081.51 -0.031

RC101A A4B7C7 5279.92 A4B7C7 5266.36 A4, B7, C7 5221.81 -0.846
RC102A A4B5C8 5149.95 A4B5C8 5099.55 A4, B5, C8 5043.57 -1.098
RC103A A10B2C8 5002.41 A10B2C8 4991.29 A10, B2, C8 4924.08 -1.347
RC104A A2B13C3D1 5024.25 A2B13C3D1 5016.97 A1, B13, C3, D1 4952.61 -1.283
R201A A5 3779.12 A5 3782.49 A5 3839.82 1.606
R202A A5 3578.91 A5 3583.92 A5 3556.41 -0.629
R203A A4B1 3582.54 A4B1 3553.92 A4, B1 3550.46 -0.097
R204A A5 3143.68 A5 3081.80 A5 3079.58 -0.072
C201A A4B1 6140.64 A4B1 6140.64 A4, B1 6140.64 0.0
C202A A1C3 7752.88 A1C3 7623.96 A1, C3 7623.96 0.0
C203A C2D1 7303.37 C2D1 7303.37 C2, D1 7303.37 0.0
C204A A5 5721.09 A5 5680.46 A5 5680.46 0.0

RC201A C1E3 5523.15 C1E3 5534.59 C1, E3 5536.76 0.246
RC202A A1C1D1E2 5132.08 A1C1D1E2 5150.23 A1, C1, D1, E2 5189.71 1.123
RC203A A1B1C5 4508.27 A1B1C5 4471.92 A1, B1, C5 4466.48 -0.122
RC204A A14B2 4252.87 A14B2 4241.83 A14, B2 4229.25 -0.297

Average 5348.16 5326.74 5317.19 -0,19

Average time (min) 20 5.61 2
Runs 1 10 10
Processor PIV 1.5GHz Xe 2.6GHz Xe Gold 6230 2.10GHz

Table 4: Results on HFF-VRP-TW instances, minimization of the time, 2 minutes per run
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5.2. Results on HFF-VRP-TW-PC benchmark instances
We benchmarked the results of the LNS-SPP algorithm against the most recent works on the HFF-

VRP-TW-PC. Baller et al. (2020) derive instances from those of Dabia et al. (2019) and propose two
categories of instances with high and low outsourcing costs, respectively. As in the original instances,
they were adapted from Solomon’s instances (Solomon, 1987). They feature different fleets as defined
by Liu et al. (2010) but the fleet size of each type of vehicle is set to 3. The original instance have
100 customers. Smaller instances built from the first 25 or 50 customers of each instance are also
considered.

Table 5 compares our results to the exact results obtained by Baller et al. (2020) on the VRPPC.
Each line aggregates the results for one category of instances. The letters A, B, and C represent
instances with high, medium, and low fixed vehicle cost, respectively. The values 25, 50, and 100
represent the number of customers. Each category of instances is made up of 56 instances.

Instances BCP LNS-SPP
# z∗avg tavg (s) # opt zbestavg gapbestavg (%) gapavgavg(%) time (s)

High Outsourcing Costs
A/25 22 1233.03 10 22 1233.03 0 0.06 30
A/50 15 2402.88 185 14 2402.81 -0.002 0.41 60
A/100 5 5050.96 149 3 5051.52 0.01 0.14 300
B/25 34 586.36 9 34 586.36 0 0.26 30
B/50 25 1115.96 262 24 1116.35 0.037 0.28 60
B/100 11 2597.60 420 7 2599.27 0.07 0.25 300
C/25 37 470.84 9 34 471.36 0.11 0.14 30
C/50 28 890.25 330 26 890.82 0.06 0.15 60
C/100 10 2129.36 127 8 2129.80 0.02 0.24 300

Low Outsourcing Costs
A/25 13 1012.79 2 12 1012.86 0.0 0.25 30
A/50 12 2107.9 153 7 2109.85 0.094 0.47 60
A/100 3 4297.67 228 1 4323.60 0.6 1.06 300
B/25 25 585.23 4 25 585.23 0 0.19 30
B/50 19 1096.34 179 16 1096.91 0.05 0.22 60
B/100 6 2243.65 532 4 2244.70 0.05 0.25 300
C/25 29 483.61 23 28 483.72 0.023 0.29 30
C/50 20 920.57 289 19 921.125 0.060 0.23 60
C/100 6 1949.58 562 4 1951.60 0.12 0.45 300

Table 5: Comparison to optimal solutions: results of LNS-SPP on VRP-PC instances compared to the branch-and-cut-
and-price of Baller et al. (2020)

The column entitled # shows the number of instances (out of 56) solved to optimality by the BCP
algorithm of Baller et al. (2020) within the one hour time limit. Note that these results ignore instances
for which the optimal solution consists in shipping all orders in LTL. Full results for instances with 100
clients are available in the Appendix (Tables A.8 and A.9)1 Column 4 indicates the average CPU time
(in seconds) necessary to get optimal solutions, for all instances that could be solved to optimality
(otherwise, the CPU is 1h.

The LNS-SPP algorithm is run five times on each instance. The column entitled #opt indicates the
number of instances for which the optimal solution was found on at least one of the runs. Column 5
(zbestavg ) represents the average of the best objective function (out of 5 runs) obtained on each instance.

1The slightly negative gap comes from different rounding procedure in Dabia et al. (2019) and in this work, but the
solutions found in both works are the same (Baller et al., 2021). Despite a constructive discussion with the authors and
a careful examination of the optimal solutions we have not been able to find the precise origin of the difference.
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The column entitled gapbestavg indicates the optimality gap associated with the value zbestavg while the
column gapavgavg indicates the average gap across all runs. The computation time (column 8) was set to
30, 60, and 300 seconds respectively for the 25, 50, and 100 customer instances.

This table shows that the LNS-SPP algorithm is able to find near optimal or optimal solutions for
most instances in all categories, including half of the instances with 100 customers.

5.3. Instances and results for the VRP-FLC
We propose new VRP-FLC instances adapted from those of Dabia et al. (2019) by considering two

new features of the VRP-FLC: the presence of several carriers and a limitation on the total number of
vehicles chartered to each carrier. The vehicle fleets are composed of 3 to 6 types of vehicles with high,
medium, and low fixed costs (instances of type A, B, and C) and fleet size set to 3. We assign the first
half of the vehicle types (rounded up to the nearest integer value) to one carrier and the remaining
vehicle types to a second carrier. The carrier limits are set as follows: carriers that have 2 vehicle
types can use at most 5 out of their 6 vehicles ; carriers that have 3 vehicle types can use at most 7
out of their 9 vehicles. A VRP-FLC instance is generated for each VRPPC instance with high or low
outsourcing cost, amounting to a total of 336 instances.

Tables 6 and 7 summarizes the results on these new instances, for instances with high outsourcing
costs and low outsourcing costs, respectively.

In these tables, we compare the results of the LNS-SPP algorithm on the two following variants
of the VRPPC: the original VRPPC instances (columns 2-4) and the VRP-FLC including the carrier
limit (columns 5-8). For each category of instance, we report the value of the best objective function
zmin found out of 5 runs and the average value zavg. Columns 4 and 8 show the cost breakdown in
three categories: from left to right the percentage of fixed costs of the FTL fleet, the percentage of
variable costs which depend on the distance traveled, and the percentage of LTL shipping costs.

Column 6 reports the relative gap between the best solutions found in both cases. This indicator
shows the impact of carrier constraints on the routing costs.

When the vehicle fixed cost is high (type A instances), most optimal solutions use less than the
carrier limit which has a limited impact in this case. The VRP-FLC solution uses more LTL shipping
but a part of the additional cost is offset by the fixed vehicle costs that are not paid anymore.

When the vehicle fixed costs are low (type C instances), the fleet is fully utilized and routing costs
represent the main costs. In this case, the carrier limit has a significant impact.

Little impact is observed on clustered instances. When the outsourcing cost is low, the whole flow
is shipped in LTL mode so that the fleet limitation has no impact (clustered instances in Table 7).

6. Case study : combining FTL and LTL shipments

In this section we study how the combination of FTL and LTL shipments can achieve savings
compared with a pure FTL or LTL approach.

6.1. Description
The instances were generated based on the experience of CRC Services to reflect typical situations

faced by their clients. We consider the distribution of a shipper over an 18000 km2 territory in France.
The instances feature around 60 orders per day on average, distributed over 25 customer locations.
The total average demand represents approximately 300 pallets per day. This quantity represents a
little less than 9 full truckloads, but more vehicles are needed due to tight time windows and release
dates.

For this set of experiments, we consider a single LTL carrier and a single FTL carrier. We use
realistic LTL and FTL rates with two types of vehicles of capacity 33 pallets and 19 pallets, respectively.
The cost of an FTL route follows the following model: (i) a route can serve at most three customers,
(ii) an FTL delivery cost is given for each customer, (iii) the cost of a route is equal to the highest
FTL delivery cost among the customers served by the route (plus a stopover cost per intermediate
customer between the shipper and the last served customer), (iv) the total length of a route is equal to
the distance traveled from the depot to the last customer of the route (i.e., we consider open routes),
and (v) the maximum possible detour (difference between the route length and the distance between
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VRPPC VRP-FLC

Inst z min z avg Cost distribution
Fix | Var | LTL z min ∆ (%) z avg Cost distribution

Fix | Var | LTL

R1A 4426.8 4456 4622.3 4.4 4648.2

R1B 1967.6 2001.8 2463.2 25.2 2491.9

R1C 1661.5 1692.1 2194.2 32.1 2221.9

RC1A 4987.8 5000.4 5090.4 2.1 5098.2

RC1B 2685.3 2696.5 3086.2 14.9 3096.9

RC1C 2400.2 2410.8 2830.6 17.9 2842

C1A 3620 3620 3620 0.0 3620

C1B 2519.5 2528.7 2584.2 2.6 2598.4

C1C 1783.7 1794.7 1882.3 5.5 1896.3

R2A 3425.2 3463.6 3434.1 0.3 3466.9

R2B 1413.2 1450.9 1415 0.1 1455.8

R2C 1154.8 1187 1154.6 0.0 1186.4

RC2A 4160.7 4211.3 4222.4 1.5 4283.2

RC2B 1705.7 1729 1708 0.1 1733

RC2C 1365.1 1389.1 1364 -0.1 1385.5

C2A 3620 3620 3620 0.0 3620

C2B 1648.7 1668.7 1648.5 0.0 1668.9

C2C 1167.9 1184.1 1168.4 0.0 1185

Table 6: Results for high outsourcing cost instances
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VRPPC VRP-FLC

Inst z min z avg Cost distribution
Fix | Var | LTL z min ∆ (%) z avg Cost distribution

Fix | Var | LTL

R1A 4230 4249.7 4239 0.2 4253.6

R1B 1897.2 1919.4 2144.3 13.0 2161.7

R1C 1592.5 1612.5 1872.5 17.6 1891.9

RC1A 3448 3448 3448 0.0 3448

RC1B 2194.2 2200.5 2313.2 5.4 2319

RC1C 1907 1913.1 2061.6 8.1 2068.9

C1A 905 905 905 0.0 905

C1B 905 905 905 0.0 905

C1C 905 905 905 0.0 905

R2A 3307.4 3363.9 3306.1 0.0 3359.8

R2B 1412.7 1456.3 1413.8 0.1 1453

R2C 1153.4 1188.1 1153.2 0.0 1189.7

RC2A 3448 3448 3448 0.0 3448

RC2B 1682 1722 1684.1 0.1 1725.8

RC2C 1342.6 1377.8 1343.7 0.1 1370.2

C2A 905 905 905 0.0 905

C2B 905 905 905 0.0 905

C2C 905 905 905 0.0 905

Table 7: Results for low outsourcing cost instances
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Figure 7: Evolution of the total cost and FTL trucks fill rate according to shipping policy and carrier limit. The cost is
expressed in percentage with the minimum cost scenario (carrier limit 13) taken as a reference.

the shipper and the farthest customer in the route) is limited to 50 km. The LTL rate is a concave
increasing function of the number of pallets to be shipped. It differs for each region. Distances and
travel times between each pair of sites are obtained with OSRM (Open Source Routing Machine) using
a truck routing profile.

6.2. Experiments
We first compare three different shipping strategies: shipping all orders with LTL rates, or with

FTL rates, or allowing a mix of both. Figure 7 synthesizes the results.
We first run the experiments without any carrier limit; the minimum cost was obtained with a fleet

of 13 vehicles. Thus, we set a carrier limit (represented on the horizontal axis) to values ranging from
1 to 13. The horizontal axis also includes two extreme scenarios: full LTL distribution on the left and
full FTL distribution on the right. The vertical axis represents costs. The cost with a carrier limit
set to 13 is considered as a reference cost (100%) and all other cost are expressed as percentages with
respect to this reference cost.

In the full LTL scenario (on the left), the high LTL rates cause a 51% increase of the shipping
costs. The full FTL scenario (on the right) suffers from the transportation of small shipments over
a relatively large territory: many small vehicles are necessary to respect the time windows and route
duration constraints. With this strategy, between 20 and 24 trucks are used per day, 88% of which
have a capacity of 19 pallets. This causes a 42% increase of the total shipping cost, with a 60% average
fill rate of the FTL trucks.

When mixing FTL and LTL shipping modes without limiting the number of FTL vehicles, the
average number of trucks used for FTL routes drops to 11.5, the percentage of 19-pallets trucks drops
to 66% and the average fill rate of FTL trucks increases to 94%.

For each scenario, the blue part represents the LTL costs and the green parts represents the FTL
costs of the 19- and 33-pallets vehicles.

The figure shows that selecting an appropriate mix of FTL and LTL shipments is critical in terms
of cost. Once a good vehicle mix has been determined, it seems to remain quite robust with respect
to variations in the carrier limit. Indeed, decreasing the carrier limit from 13 to 10 has very limited
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impact on the overall cost but it slightly modifies the vehicle mix. Below ten, the carrier limit drastically
reduces the use of 19-pallet vehicles and the shipper resorts to more expensive LTL shipments.

7. Conclusions

In this paper, we investigate an extension of the vehicle routing problem with heterogeneous fleet
arising in distribution networks, when shippers work with different FTL and LTL carriers. We introduce
the VRP-FLC and propose an integer linear programming formulation of this problem as a variant of
the Vehicle Routing Problem with Private Fleet and Common Carrier (VRPPC), in which the private
fleet consists of different fleets offered by various FTL carriers. In addition to the classical features
of the VRP problem with heterogeneous fleet, we introduce the carrier limit bounding the maximum
number of vehicles available at a carrier.

We propose a Large Neighborhood Search based matheuristic to solve this problem. In order to
manage vehicles and carriers related constraints, a key point in this algorithm is to maintain the list of
vehicle types compatible with each route of the current solution during the rebuild phase of the LNS.
The numerical experiments show that our algorithm produces good results on several variants of the
VRP with heterogeneous fleet. It shows that mixing FTL and LTL shipments in a distribution plan
clearly outperforms pure FTL or LTL transportation strategies. Our algorithm helps identify which
orders should be sent with each transportation mode. Our approach is also able to assess the impact
of the carrier limit constraint and thus can help shippers agree with carriers on the right number of
trucks to be chartered.

This work can be expanded in several ways.
Firstly, a natural expansion would be to consider multiple LTL carriers and integrate the LTL trucks

into the carrier limit. Secondly, if we consider a multi-commodity case, the cost of delivering multiple
commodities to the same client via LTL would impact the LTL rate which would make it impossible to
determine the LTL cost of an order a priori. This cost could however be integrated as part of the already
existing black box cost evaluation function. Another realistic expansion concerns a logistic network
with multiple shippers and customers, with the possibility to deliver orders at transshipment facilities
where the incoming flow coming from each shipper depot could be consolidated. This organization
introduces the possibility to ship orders in two successive legs that can be either in FTL or LTL.

In a mixed FTL-LTL context, LTL shipment can be viewed as a way to outsource “complicated”
deliveries. For example, deliveries to remote customer or with tight time windows. From a managerial
point of view, it would be interesting to further analyze the typology of customer orders that are
typically shipped in FTL or LTL mode.
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Appendix A. Detailed results

VRPPC VRPFLC

Instance z∗ zmin zavg Fleet Fixed LTL zmin zavg Fleet Fixed LTL
Cost Cost Cost Cost

R101A 5053.9 5054.2 5060.2 A3B3C3D3E2 2560 1390 5138.9 5153.0 A1B3C3D3E2 2460 1695
R102A 4585.5 4608.8 A2B3C3D3E3 3010 365 4683.1 4717.7 A1B3C3D2E3 2710 1005
R103A 4353.1 4394.4 A3B3C3D3E3 3060 190 4546.4 4571.6 A1B3C3D2E3 2710 1005
R104A 4267.7 4296.3 A3B3C3D3E3 3060 125 4519.0 4549.1 A1B3C3D2E3 2710 990
R105A 4622.0 4657.6 A2B3C3D3E3 3010 430 4753.4 4782.0 A1B3C3D2E3 2710 1400
R106A 4403.4 4442.8 A2B3C3D3E3 3010 270 4610.1 4635.0 A1B3C3D2E3 2710 1000
R107A 4298.0 4333.2 A3B3C3D3E3 3060 155 4532.0 4551.2 A1B3C3D2E3 2710 1005
R108A 4242.7 4271.8 A3B3C3D3E3 3060 115 4509.4 4529.6 A1B3C3D2E3 2710 1000
R109A 4393.8 4427.9 A3B3C3D3E3 3060 160 4562.1 4615.8 A1B3C3D2E3 2710 1005
R110A 4327.5 4360.3 A3B3C3D3E3 3060 155 4550.7 4577.6 A1B3C3D2E3 2710 1005
R111A 4311.3 4336.8 A3B3C3D3E3 3060 155 4531.0 4543.3 A1B3C3D2E3 2710 990
R112A 4262.1 4282.4 A3B3C3D3E3 3060 115 4502.0 4540.4 A1B3C3D2E3 2710 1010

R201A 3668.6 3726.3 A2B2 2300 310 3716.2 3775.4 A2B2 2300 300
R202A 3526.5 3601.2 A2B2 2300 295 3507.3 3584.0 A2B2 2300 290
R203A 3436.7 3476.7 A2B2 2300 295 3412.4 3468.9 A2B2 2300 10
R204A 3285.6 3317.2 A1B3 2550 10 3300.7 3321.9 A1B3 2550 5
R205A 3520.4 3551.5 A2B2 2300 305 3471.1 3528.6 A2B2 2300 305
R206A 3409.8 3462.2 A2B2 2300 290 3438.3 3473.9 A2B2 2300 15
R207A 3375.3 3399.4 A1B3 2550 0 3363.5 3391.0 A1B3 2550 10
R208A 3264.9 3280.6 A1B3 2550 5 3270.5 3276.1 A1B3 2550 5
R209A 3438.1 3452.2 A1B3 2550 5 3404.6 3452.5 A2B2 2300 10
R210A 3436.4 3489.6 A2B2 2300 300 3436.1 3486.4 A2B2 2300 15
R211A 3314.5 3342.3 A1B3 2550 5 3309.9 3328.3 A1B3 2550 5

RC101A 5161.7 5161.7 5168.1 A3B3C3D3 2880 1144.5 5186.5 5190.3 A2B3C3D2 2370 1977.5
RC102A 5012.2 5016.5 5025.0 A3B3C3D3 2880 1123.5 5115.4 5126.2 A2B3C3D2 2370 1949.5
RC103A 4954.5 4967.2 A3B3C3D3 2880 1120 5073.4 5082.5 A2B3C3D2 2370 1949.5
RC104A 4908.0 4927.6 A3B3C3D3 2880 1113 5043.2 5050.1 A2B3C2D3 2520 1792
RC105A 5046.1 5046.1 5059.3 A3B3C3D3 2880 1144.5 5131.2 5137.4 A2B3C3D2 2370 1956.5
RC106A 4980.9 4980.9 4995.2 A3B3C3D3 2880 1113 5084.2 5093.4 A2B3C3D2 2370 1946
RC107A 4930.4 4944.1 A3B3C3D3 2880 1113 5050.1 5060.9 A2B3C2D3 2520 1771
RC108A 4904.3 4916.9 A3B3C3D3 2880 1113 5040.1 5048.3 A2B3C2D3 2520 1778

RC201A 4385.9 4423.9 A3B2C3 2800 451.5 4484.9 4547.4 A2B2C3 2650 451.5
RC202A 4239.4 4299.6 A3B2C3 2800 458.5 4370.1 4427.2 A1B3C3 2850 462
RC203A 4087.9 4142.7 A2B3C3 3000 108.5 4173.9 4237.7 A3B2C2D1 3050 115.5
RC204A 3983.6 4033.4 A2B3C3 3000 101.5 4046.0 4112.8 A3B2C2D1 3050 115.5
RC205A 4262.6 4332.2 A3B2C3 2800 451.5 4365.3 4424.5 A1B3C3 2850 455
RC206A 4210.3 4261.3 A2B3C3 3000 101.5 4281.9 4363.4 A1B3C3 2850 444.5
RC207A 4135.3 4186.2 A2B3C3 3000 101.5 4210.9 4308.1 A1B3C3 2850 444.5
RC208A 3980.7 4010.8 A2B3C3 3000 91 4108.5 4156.8 A1B3C3 2850 448

C101A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C102A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C103A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C104A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C105A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C106A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C107A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C108A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C109A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620

C201A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C202A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C203A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C204A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C205A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C206A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C207A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620
C208A 3620.0 3620.0 0 3620 3620.0 3620.0 0 3620

R101B 2647.7 2660.6 A3B3C3D3E3 612 840 3170.9 3176.6 A1B3C3D3E2 492 1650
R102B 2129.7 2155.3 A3B3C3D3E3 612 220 2515.6 2542.7 A1B3C3D2E3 542 1025
R103B 1886.0 1926.8 A3B3C3D3E3 612 180 2374.4 2408.0 A1B3C3D2E3 542 1000
R104B 1794.1 1812.9 A3B3C3D3E3 612 115 2332.5 2360.4 A1B3C3D2E3 542 995
R105B 2163.7 2200.6 A3B3C3D3E3 612 225 2598.7 2619.5 A1B3C3D2E3 542 1060
R106B 1951.8 1994.2 A3B3C3D3E3 612 185 2433.8 2456.8 A1B3C3D2E3 542 995
R107B 1832.0 1874.2 A3B3C3D3E3 612 140 2360.5 2387.2 A1B3C3D2E3 542 1005
R108B 1779.6 1821.1 A3B3C3D3E3 612 135 2332.2 2359.4 A1B3C3D2E3 542 1005
R109B 1927.1 1957.8 A3B3C3D3E3 612 165 2424.9 2443.3 A1B3C3D2E3 542 1005
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Instance z∗ zmin zavg Fleet Fixed LTL zmin zavg Fleet Fixed LTL
Cost Cost Cost Cost

R110B 1862.3 1906.1 A3B3C3D3E3 612 125 2394.0 2409.4 A1B3C3D2E3 542 1005
R111B 1844.7 1870.0 A3B3C3D3E3 612 135 2356.2 2370.7 A1B3C3D2E3 542 995
R112B 1792.6 1841.8 A3B3C3D3E3 612 130 2348.7 2366.7 A1B3C3D2E3 542 1000

R201B 1725.1 1740.5 A3B2 550 30 1716.1 1732.5 A3B2 550 30
R202B 1562.0 1595.9 A3B2 550 30 1561.0 1587.6 A1B3 510 30
R203B 1412.8 1450.4 A1B3 510 0 1415.7 1451.4 A1B3 510 10
R204B 1266.5 1307.3 A3C1 510 5 1251.3 1290.6 A1B3 510 5
R205B 1490.5 1536.1 A1B3 510 15 1489.6 1517.8 A1B3 510 20
R206B 1399.9 1429.8 A1B3 510 15 1410.8 1435.9 A1B3 510 15
R207B 1337.0 1376.3 A3C1 510 0 1339.6 1375.7 A3C1 510 10
R208B 1250.4 1293.1 A3C1 510 5 1230.6 1279.6 A1B3 510 5
R209B 1384.5 1427.1 A1B3 510 15 1379.0 1405.9 A1B3 510 10
R210B 1440.0 1471.9 A1B3 510 15 1438.9 1468.9 A1B3 510 15
R211B 1276.8 1331.3 A1B3 510 5 1274.1 1305.8 A1B3 510 20

RC101B 2857.7 2865.4 A3B3C3D3 576 1144.5 3211.1 3213.6 A2B3C2D3 504 1802.5
RC102B 2710.7 2715.3 A3B3C3D3 576 1116.5 3109.5 3117.7 A2B3C2D3 504 1767.5
RC103B 2650.5 2658.6 A3B3C3D3 576 1127 3059.5 3070.5 A2B3C2D3 504 1764
RC104B 2607.4 2622.2 A3B3C3D3 576 1116.5 3027.7 3034.3 A2B3C2D3 504 1785
RC105B 2749.6 2760.0 A3B3C3D3 576 1116.5 3123.8 3134.7 A2B3C2D3 504 1785
RC106B 2678.0 2702.3 A3B3C3D3 576 1113 3076.5 3088.5 A2B3C2D3 504 1774.5
RC107B 2630.4 2636.5 A3B3C3D3 576 1120 3044.1 3049.9 A2B3C2D3 504 1785
RC108B 2598.1 2611.3 A3B3C3D3 576 1109.5 3023.1 3032.0 A2B3C2D3 504 1771

RC201B 1952.8 1991.3 A3B3C3 630 0 1972.0 1993.1 A2B3C2D1 650 17.5
RC202B 1794.0 1819.2 A2B3C2D1 650 0 1787.2 1815.8 A1B2C3D1 660 0
RC203B 1635.2 1648.5 A1B2C3D1 660 0 1632.1 1656.8 C2D3 700 0
RC204B 1512.5 1522.5 C2D3 700 0 1512.5 1532.4 C2D3 700 0
RC205B 1845.5 1863.4 A3B3C3 630 0 1839.3 1880.9 A2B3C2D1 650 73.5
RC206B 1748.0 1788.4 A1B2C3D1 660 7 1750.6 1789.8 A1C3D2 680 0
RC207B 1667.3 1690.0 A1B2C3D1 660 0 1660.8 1695.4 A1B2C3D1 660 0
RC208B 1490.1 1508.4 C2D3 700 0 1491.9 1510.5 C2D3 700 0

C101B 2609.8 2609.8 A3B3C3 1470 400 2695.0 2695.2 A2B3C3 1410 640
C102B 2541.7 2550.0 A3B3C3 1470 260 2609.7 2615.9 A2B3C3 1410 480
C103B 2471.4 2484.2 A3B3C3 1470 160 2533.8 2544.0 A2B3C3 1410 360
C104B 2413.2 2429.5 A3B3C3 1470 160 2424.1 2472.5 A2B3C3 1410 280
C105B 2548.8 2548.8 A3B3C3 1470 340 2630.3 2630.3 A2B3C3 1410 540
C106B 2570.1 2570.9 A3B3C3 1470 340 2651.6 2651.6 A2B3C3 1410 560
C107B 2537.7 2551.0 A3B3C3 1470 280 2616.0 2618.4 A2B3C3 1410 500
C108B 2527.2 2531.7 A3B3C3 1470 260 2575.5 2588.8 A2B3C3 1410 460
C109B 2455.7 2482.0 A3B3C3 1470 160 2512.7 2525.6 A2B3C3 1410 340

C201B 1663.0 1675.8 A2B2 960 20 1660.8 1677.7 A2B2 960 20
C202B 1656.1 1661.0 A2B2 960 40 1655.4 1673.4 A2B2 960 40
C203B 1637.7 1646.6 A2B2 960 20 1638.4 1646.2 A2B2 960 20
C204B 1634.6 1657.6 A2B2 960 20 1632.2 1642.6 A2B2 960 40
C205B 1653.5 1663.6 A2B2 960 40 1654.9 1676.3 A2B2 960 20
C206B 1652.1 1679.9 A2B2 960 20 1652.8 1667.4 A2B2 960 20
C207B 1643.3 1685.5 A2B2 960 20 1643.3 1643.6 A2B2 960 20
C208B 1649.5 1679.3 A2B2 960 20 1649.5 1665.2 A2B2 960 20

R101C 2341.7 2341.7 2344.3 A3B3C3D3E3 306 840 2901.7 2908.1 A1B3C3D2E3 271 1645
R102C 1825.8 1855.1 A3B3C3D3E3 306 255 2241.2 2269.6 A1B3C3D2E3 271 1015
R103C 1585.6 1629.2 A3B3C3D3E3 306 165 2103.9 2129.2 A1B3C3D2E3 271 1005
R104C 1492.7 1518.0 A3B3C3D3E3 306 130 2067.8 2092.3 A1B3C3D2E3 271 990
R105C 1845.1 1884.3 A3B3C3D3E3 306 230 2326.9 2362.2 A1B3C3D2E3 271 1040
R106C 1643.8 1679.8 A3B3C3D3E3 306 190 2151.4 2177.8 A1B3C3D2E3 271 1005
R107C 1516.5 1551.6 A3B3C3D3E3 306 110 2092.2 2125.8 A1B3C3D2E3 271 1000
R108C 1478.9 1505.6 A3B3C3D3E3 306 140 2067.2 2075.7 A1B3C3D2E3 271 995
R109C 1637.5 1663.3 A3B3C3D3E3 306 135 2128.6 2166.5 A1B3C3D2E3 271 1005
R110C 1551.6 1593.6 A3B3C3D3E3 306 150 2116.5 2134.2 A1B3C3D2E3 271 1010
R111C 1528.0 1555.5 A3B3C3D3E3 306 140 2087.9 2110.9 A1B3C3D2E3 271 995
R112C 1491.2 1524.6 A3B3C3D3E3 306 135 2069.7 2095.0 A1B3C3D2E3 271 1005

R201C 1444.5 1460.3 A3B2 275 30 1439.1 1457.8 A3B2 275 15
R202C 1293.9 1327.8 A3B2 275 30 1296.4 1314.9 A3B2 275 30
R203C 1156.8 1187.4 A1B3 255 10 1177.7 1204.5 A3B2 275 10
R204C 1001.4 1041.7 A1B3 255 5 1010.8 1037.7 A1B3 255 5
R205C 1227.0 1264.6 A1B3 255 15 1230.2 1243.6 A3B2 275 15
R206C 1136.9 1160.2 A3C1 255 15 1153.8 1178.3 A1B3 255 15
R207C 1085.3 1126.4 A1B3 255 0 1078.1 1120.8 A1B3 255 0
R208C 1004.4 1022.2 A1C2 285 5 999.8 1024.5 A3C1 255 5
R209C 1127.4 1171.1 A1B3 255 20 1127.9 1149.1 A1B3 255 0
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Instance z∗ zmin zavg Fleet Fixed LTL zmin zavg Fleet Fixed LTL
Cost Cost Cost Cost

R210C 1190.2 1208.4 A1B3 255 15 1180.6 1191.1 A1B3 255 20
R211C 1035.2 1086.6 A1B3 255 15 1027.8 1051.7 A1B3 255 10

RC101C 2569.7 2569.7 2574.0 A3B3C3D3 288 1144.5 2959.1 2962.4 A2B3C2D3 252 1802.5
RC102C 2420.2 2422.7 2431.3 A3B3C3D3 288 1116.5 2861.4 2867.3 A2B3C2D3 252 1778
RC103C 2361.5 2378.4 A3B3C3D3 288 1113 2810.2 2817.2 A2B3C2D3 252 1774.5
RC104C 2321.2 2329.5 A3B3C3D3 288 1109.5 2773.0 2781.8 A2B3C2D3 252 1774.5
RC105C 2454.1 2461.8 2471.2 A3B3C3D3 288 1127 2871.8 2880.0 A2B3C2D3 252 1785
RC106C 2388.9 2404.2 2420.2 A3B3C3D3 288 1113 2822.7 2832.9 A2B3C2D3 252 1785
RC107C 2341.6 2348.9 A3B3C3D3 288 1120 2781.3 2796.1 A2B3C2D3 252 1778
RC108C 2319.2 2333.2 A3B3C3D3 288 1113 2770.9 2776.7 A2B3C2D3 252 1767.5

RC201C 1625.8 1645.8 A1B2C3D1 330 21 1637.8 1651.9 A2B3C2D1 325 10.5
RC202C 1444.1 1471.4 A1B2C3D1 330 17.5 1457.3 1480.9 A1B2C3D1 330 17.5
RC203C 1280.4 1300.2 C2D3 350 0 1280.4 1299.9 C2D3 350 0
RC204C 1163.6 1185.9 C3D1E1 355 0 1163.6 1188.5 C3D1E1 355 0
RC205C 1505.9 1523.5 A1B2C3D1 330 28 1506.3 1532.7 A1B2C3D1 330 28
RC206C 1418.2 1447.3 A1C3D2 340 24.5 1410.6 1442.2 A1C3D2 340 24.5
RC207C 1336.4 1351.5 A1C3D2 340 0 1337.5 1357.5 A1C3D2 340 7
RC208C 1146.2 1186.8 C2D3 350 0 1147.1 1186.6 C2D3 350 0

C101C 1874.8 1874.8 1874.8 A3B3C3 735 400 1990.0 1990.9 A2B3C3 705 640
C102C 1806.7 1820.4 A3B3C3 735 260 1904.7 1910.7 A2B3C3 705 460
C103C 1736.4 1754.9 A3B3C3 735 160 1837.2 1854.2 A2B3C3 705 380
C104C 1670.7 1703.4 A3B3C3 735 140 1758.5 1776.5 A2B3C3 705 300
C105C 1813.8 1813.8 1813.8 A3B3C3 735 340 1925.3 1925.3 A2B3C3 705 540
C106C 1835.1 1835.1 1835.1 A3B3C3 735 340 1946.6 1946.6 A2B3C3 705 560
C107C 1802.7 1802.7 1810.2 A3B3C3 735 280 1911.0 1919.0 A2B3C3 705 500
C108C 1792.6 1792.2 1794.1 A3B3C3 735 260 1887.0 1890.7 A2B3C3 705 460

C109C 1720.7 1746.0 A3B3C3 735 160 1807.7 1821.9 A2B3C3 705 340
C201C 1183.0 1183.6 A2B2 480 20 1182.1 1184.5 A2B2 480 40
C202C 1172.1 1193.3 A3C1 500 20 1172.1 1175.4 A3C1 500 40
C203C 1157.7 1176.3 A2B2 480 20 1158.4 1163.5 A2B2 480 20
C204C 1148.5 1159.4 A2B2 480 20 1151.1 1158.3 A2B2 480 20
C205C 1174.9 1179.7 A2B2 480 20 1174.9 1176.2 A2B2 480 20
C206C 1173.7 1194.7 A2B2 480 20 1172.1 1174.3 A2B2 480 20
C207C 1163.3 1202.2 A2B2 480 20 1163.3 1163.6 A2B2 480 20
C208C 1169.5 1184.0 A2B2 480 20 1169.5 1174.7 A2B2 480 20

Table A.8: Results on VRPPC and VRP-FLC instances, High Outsourcing Costs
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Instance z∗ zmin zavg Fleet Fixed LTL zmin zavg Fleet Fixed LTL
Cost Cost Cost Cost

R101A 4376.8 4378.8 4384.3 A3B3C3D3 1560 2187.5 4409.5 4422.9 A1B3C3D3 1460.0 2387
R102A 4283.9 4291.5 A2B3C3D3E1 2010 1585.5 4312.5 4326.0 A1B3C3D3E1 1960.0 1008
R103A 4198.9 4218.4 A2B3C3D3E2 2510 906.5 4221.9 4238.2 A1B3C3D3E2 2460.0 987
R104A 4189.0 4200.4 A3B3C3D3E2 2560 773.5 4194.3 4214.9 A1B3C3D3E2 2460.0 980
R105A 4309.6 4317.1 4334.6 A3B3C3D3E1 2060 1494.5 4345.8 4365.2 A1B3C3D3E1 1960.0 1683.5
R106A 4227.7 4265.2 A2B3C3D3E2 2510 882 4263.3 4278.9 A1B3C3D3E2 2460.0 990.5
R107A 4201.5 4214.0 A3B3C3D3E2 2560 787.5 4210.3 4233.7 A1B3C3D3E2 2460.0 987
R108A 4167.9 4191.2 A3B3C3D3E2 2560 773.5 4191.0 4217.3 A1B3C3D3E2 2460.0 973
R109A 4206.6 4231.8 4262.1 A3B3C3D3E2 2560 787.5 4246.9 4273.6 A1B3C3D3E2 2460.0 980
R110A 4197.8 4225.9 A2B3C3D3E2 2510 885.5 4229.2 4244.2 A1B3C3D3E2 2460.0 987
R111A 4195.9 4213.5 A3B3C3D3E2 2560 784 4212.7 4224.8 A1B3C3D3E2 2460.0 990.5
R112A 4169.2 4194.8 A2B3C3D3E2 2510 882 4192.5 4213.1 A1B3C3D3E2 2460.0 980

R201A 3518.8 3605.5 A3B1 2050 560 3535.5 3631.7 A3B1 2050.0 567
R202A 3390.0 3463.0 A3B1 2050 560 3463.3 3512.8 A3B1 2050.0 556.5
R203A 3318.7 3358.1 A2B2 2300 210 3320.1 3422.3 A3B1 2050.0 556.5
R204A 3187.8 3250.9 A2B2 2300 203 3213.3 3251.3 A2B2 2300.0 206.5
R205A 3406.7 3500.9 A3B1 2050 560 3383.4 3423.9 A3B1 2050.0 217
R206A 3296.0 3368.2 A3B1 2050 556.5 3286.1 3359.1 A2B2 2300.0 553
R207A 3253.5 3276.2 A3B1 2050 556.5 3239.3 3295.0 A2B2 2300.0 220.5
R208A 3186.5 3220.6 A2B2 2300 210 3155.1 3193.6 A2B2 2300.0 203
R209A 3303.4 3351.0 A2B2 2300 206.5 3294.4 3361.4 A2B2 2300.0 210
R210A 3305.0 3363.2 A2B2 2300 206.5 3327.6 3395.3 A2B2 2300.0 553
R211A 3214.9 3245.5 A2B2 2300 203 3187.2 3220.6 A2B2 2300.0 206.5

RC101A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC102A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC103A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC104A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC105A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC106A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC107A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC108A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448

RC201A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC202A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC203A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC204A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC205A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC206A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC207A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448
RC208A 3448.0 3448.0 0 3448 3448.0 3448.0 0.0 3448

C101A 905.0 905.0 0 905 905.0 905.0 0.0 905
C102A 905.0 905.0 0 905 905.0 905.0 0.0 905
C103A 905.0 905.0 0 905 905.0 905.0 0.0 905
C104A 905.0 905.0 0 905 905.0 905.0 0.0 905
C105A 905.0 905.0 0 905 905.0 905.0 0.0 905
C106A 905.0 905.0 0 905 905.0 905.0 0.0 905
C107A 905.0 905.0 0 905 905.0 905.0 0.0 905
C108A 905.0 905.0 0 905 905.0 905.0 0.0 905
C109A 905.0 905.0 0 905 905.0 905.0 0.0 905

C201A 905.0 905.0 0 905 905.0 905.0 0.0 905
C202A 905.0 905.0 0 905 905.0 905.0 0.0 905
C203A 905.0 905.0 0 905 905.0 905.0 0.0 905
C204A 905.0 905.0 0 905 905.0 905.0 0.0 905
C205A 905.0 905.0 0 905 905.0 905.0 0.0 905
C206A 905.0 905.0 0 905 905.0 905.0 0.0 905
C207A 905.0 905.0 0 905 905.0 905.0 0.0 905
C208A 905.0 905.0 0 905 905.0 905.0 0.0 905

R101B 2393.3 2393.8 A3B3C3D3E3 612 602 2655.0 2656.8 A1B3C3D3E2 492.0 1274
R102B 2044.4 2060.9 A3B3C3D3E3 612 220.5 2200.4 2243.5 A1B3C3D2E3 542.0 749
R103B 1843.8 1869.9 A3B3C3D3E3 612 154 2083.8 2103.7 A1B3C3D2E3 542.0 703.5
R104B 1756.4 1777.5 A3B3C3D3E3 612 122.5 2042.9 2061.8 A1B3C3D2E3 542.0 696.5
R105B 2083.8 2102.9 A3B3C3D3E3 612 241.5 2273.3 2295.9 A1B3C3D2E3 542.0 801.5
R106B 1906.9 1934.6 A3B3C3D3E3 612 140 2129.4 2144.9 A1B3C3D2E3 542.0 717.5
R107B 1786.9 1822.5 A3B3C3D3E3 612 101.5 2062.6 2088.7 A1B3C3D2E3 542.0 700
R108B 1742.6 1754.9 A3B3C3D3E3 612 91 2037.3 2053.7 A1B3C3D2E3 542.0 696.5
R109B 1863.7 1886.3 A3B3C3D3E3 612 168 2099.0 2129.3 A1B3C3D2E3 542.0 717.5
R110B 1817.0 1845.7 A3B3C3D3E3 612 143.5 2081.8 2096.3 A1B3C3D2E3 542.0 703.5
R111B 1793.8 1817.5 A3B3C3D3E3 612 119 2045.1 2079.0 A1B3C3D2E3 542.0 703.5
R112B 1734.1 1766.6 A3B3C3D3E3 612 108.5 2047.9 2068.5 A1B3C3D2E3 542.0 707
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Instance z∗ zmin zavg Fleet Fixed LTL zmin zavg Fleet Fixed LTL
Cost Cost Cost Cost

R201B 1710.2 1757.0 A3B2 550 73.5 1718.0 1728.9 A3B2 550.0 63
R202B 1542.9 1601.1 A1B3 510 45.5 1544.6 1572.8 A1B3 510.0 73.5
R203B 1409.9 1443.0 A3C1 510 10.5 1414.1 1441.6 A3C1 510.0 49
R204B 1259.5 1278.2 A3C1 510 3.5 1267.8 1315.6 A1B3 510.0 3.5
R205B 1513.0 1556.5 A3C1 510 45.5 1477.8 1508.9 A1B3 510.0 24.5
R206B 1399.3 1453.0 A3C1 510 21 1405.3 1435.0 A1B3 510.0 31.5
R207B 1336.0 1400.0 A1B3 510 14 1327.1 1365.4 A1B3 510.0 0
R208B 1255.9 1296.9 A3C1 510 3.5 1258.7 1300.1 A1B3 510.0 3.5
R209B 1389.4 1426.5 A1B3 510 14 1378.6 1410.5 A1B3 510.0 14
R210B 1442.6 1466.0 A1B3 510 42 1433.8 1456.1 A1B3 510.0 38.5
R211B 1281.3 1340.6 A3C1 510 10.5 1273.1 1298.4 A1B3 510.0 21

RC101B 2344.1 2345.6 A3B3C3D3 576 744 2420.2 2424.4 A2B3C2D3 504.0 1086
RC102B 2221.1 2223.4 A3B3C3D3 576 680 2344.1 2350.0 A2B3C2D3 504.0 1034
RC103B 2164.9 2175.7 A3B3C3D3 576 670 2294.9 2301.8 A2B3C2D3 504.0 1016
RC104B 2122.0 2128.3 A3B3C3D3 576 650 2263.7 2270.9 A2B3C2D3 504.0 1026
RC105B 2241.5 2246.9 A3B3C3D3 576 678 2355.5 2357.9 A2B3C2D3 504.0 1036
RC106B 2198.2 2204.8 A3B3C3D3 576 674 2308.5 2318.9 A2B3C2D3 504.0 1042
RC107B 2144.3 2151.0 A3B3C3D3 576 664 2267.9 2276.3 A2B3C2D3 504.0 1024
RC108B 2117.6 2128.6 A3B3C3D3 576 658 2253.6 2264.7 A2B3C2D3 504.0 1022

RC201B 1918.7 1954.9 A1B1C2D2 640 178 1908.9 1935.4 B2C3D1 630.0 120
RC202B 1756.5 1778.5 A1B1C3D1 590 268 1739.8 1779.7 B2C3D1 630.0 162
RC203B 1604.4 1637.4 C3D2 650 58 1601.6 1618.1 C3D2 650.0 104
RC204B 1497.5 1533.3 C3D2 650 66 1476.4 1503.5 C3D2 650.0 64
RC205B 1792.9 1851.9 A1B3C3 570 280 1788.0 1824.4 A2B1C3D1 620.0 140
RC206B 1768.0 1794.3 C3D2 650 60 1749.4 1769.2 B2C3D1 630.0 74
RC207B 1641.1 1695.6 B2C3D1 630 70 1628.0 1673.4 B2C3D1 630.0 72
RC208B 1476.5 1529.9 C3D2 650 66 1477.5 1501.1 C3D2 650.0 52

C101B 905.0 905.0 0 905 905.0 905.0 0.0 905
C102B 905.0 905.0 0 905 905.0 905.0 0.0 905
C103B 905.0 905.0 0 905 905.0 905.0 0.0 905
C104B 905.0 905.0 0 905 905.0 905.0 0.0 905
C105B 905.0 905.0 0 905 905.0 905.0 0.0 905
C106B 905.0 905.0 0 905 905.0 905.0 0.0 905
C107B 905.0 905.0 0 905 905.0 905.0 0.0 905
C108B 905.0 905.0 0 905 905.0 905.0 0.0 905
C109B 905.0 905.0 0 905 905.0 905.0 0.0 905

C201B 905.0 905.0 0 905 905.0 905.0 0.0 905
C202B 905.0 905.0 0 905 905.0 905.0 0.0 905
C203B 905.0 905.0 0 905 905.0 905.0 0.0 905
C204B 905.0 905.0 0 905 905.0 905.0 0.0 905
C205B 905.0 905.0 0 905 905.0 905.0 0.0 905
C206B 905.0 905.0 0 905 905.0 905.0 0.0 905
C207B 905.0 905.0 0 905 905.0 905.0 0.0 905
C208B 905.0 905.0 0 905 905.0 905.0 0.0 905

R101C 2087.3 2087.3 2090.0 A3B3C3D3E3 306 602 2397.2 2399.1 A1B3C3D2E3 271.0 1214.5
R102C 1740.7 1753.1 A3B3C3D3E3 306 238 1923.5 1942.8 A1B3C3D2E3 271.0 724.5
R103C 1532.4 1559.6 A3B3C3D3E3 306 126 1802.0 1819.8 A1B3C3D2E3 271.0 714
R104C 1443.3 1462.2 A3B3C3D3E3 306 98 1763.0 1785.0 A1B3C3D2E3 271.0 696.5
R105C 1758.5 1776.0 1789.7 A3B3C3D3E3 306 297.5 2009.9 2021.0 A1B3C3D2E3 271.0 742
R106C 1580.6 1609.9 A3B3C3D3E3 306 178.5 1850.3 1879.0 A1B3C3D2E3 271.0 717.5
R107C 1480.9 1518.2 A3B3C3D3E3 306 87.5 1783.7 1809.0 A1B3C3D2E3 271.0 696.5
R108C 1447.1 1458.0 A3B3C3D3E3 306 98 1763.8 1780.9 A1B3C3D2E3 271.0 700
R109C 1577.8 1596.6 A3B3C3D3E3 306 133 1824.6 1852.8 A1B3C3D2E3 271.0 710.5
R110C 1513.2 1536.9 A3B3C3D3E3 306 126 1805.2 1821.8 A1B3C3D2E3 271.0 714
R111C 1482.4 1514.4 A3B3C3D3E3 306 101.5 1769.8 1803.1 A1B3C3D2E3 271.0 707
R112C 1448.2 1461.2 A3B3C3D3E3 306 126 1758.3 1777.5 A1B3C3D2E3 271.0 700

R201C 1432.9 1474.9 A3B2 275 108.5 1441.8 1451.8 A3B2 275.0 84
R202C 1277.3 1303.9 A3B2 275 45.5 1272.4 1303.2 A3B2 275.0 45.5
R203C 1159.5 1191.5 A1B3 255 28 1156.4 1170.2 A3B2 275.0 28
R204C 1003.2 1039.7 A1B3 255 10.5 995.9 1040.6 A1B3 255.0 3.5
R205C 1227.5 1259.0 A3C1 255 14 1219.7 1246.7 A3B2 275.0 21
R206C 1138.7 1195.0 A1B3 255 21 1143.2 1182.0 A1B3 255.0 10.5
R207C 1087.8 1120.9 A1B3 255 7 1084.9 1110.6 A1B3 255.0 28
R208C 1001.6 1022.2 A1C2 285 3.5 997.0 1019.2 A1C2 285.0 7
R209C 1134.9 1163.9 A1B3 255 7 1122.7 1136.0 A1B3 255.0 14
R210C 1177.6 1206.5 A1B3 255 10.5 1180.6 1198.2 A1B3 255.0 49
R211C 1046.8 1091.0 A1B3 255 14 1034.5 1062.6 A1B3 255.0 24.5

RC101C 2056.1 2056.1 2057.0 A3B3C3D3 288 744 2166.5 2171.5 A2B3C2D3 252.0 1086
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VRPPC VRPFLC

Instance z∗ zmin zavg Fleet Fixed LTL zmin zavg Fleet Fixed LTL
Cost Cost Cost Cost

RC102C 1933.1 1934.4 1938.1 A3B3C3D3 288 676 2091.9 2096.0 A2B3C2D3 252.0 1046
RC103C 1877.7 1884.3 A3B3C3D3 288 652 2042.9 2046.0 A2B3C2D3 252.0 1030
RC104C 1839.0 1846.5 A3B3C3D3 288 672 2008.3 2017.7 A2B3C2D3 252.0 1032
RC105C 1953.5 1953.5 1957.8 A3B3C3D3 288 678 2103.5 2105.6 A2B3C2D3 252.0 1036
RC106C 1909.0 1910.2 1921.5 A3B3C3D3 288 674 2056.5 2066.8 A2B3C2D3 252.0 1042
RC107C 1855.4 1859.2 A3B3C3D3 288 648 2019.6 2027.1 A2B3C2D3 252.0 1042
RC108C 1829.6 1840.0 A3B3C3D3 288 652 2008.4 2012.7 A2B3C2D3 252.0 1022

RC201C 1585.8 1607.1 A1B3C2D1 310 126 1598.4 1613.6 B2C3D1 315.0 126
RC202C 1433.9 1460.9 C3D2 325 108 1417.7 1438.0 C3D2 325.0 144
RC203C 1260.1 1318.2 C3D2 325 58 1266.2 1291.6 C2D3 350.0 58
RC204C 1146.8 1163.6 C3D2 325 54 1159.0 1174.0 C1D1E2 355.0 70
RC205C 1469.7 1488.1 A2B1C2D2 335 78 1476.1 1495.0 A2B1C2D2 335.0 58
RC206C 1392.9 1467.1 C3D2 325 88 1408.2 1439.9 B2C2D2 340.0 12
RC207C 1310.4 1351.0 C3D2 325 78 1319.2 1340.0 B2C2D2 340.0 98
RC208C 1141.5 1166.4 C2D3 350 6 1140.7 1165.3 C2D3 350.0 6

C101C 905.0 905.0 0 905 905.0 905.0 0.0 905
C102C 905.0 905.0 0 905 905.0 905.0 0.0 905
C103C 905.0 905.0 0 905 905.0 905.0 0.0 905
C104C 905.0 905.0 0 905 905.0 905.0 0.0 905
C105C 905.0 905.0 0 905 905.0 905.0 0.0 905
C106C 905.0 905.0 0 905 905.0 905.0 0.0 905
C107C 905.0 905.0 0 905 905.0 905.0 0.0 905
C108C 905.0 905.0 0 905 905.0 905.0 0.0 905
C109C 905.0 905.0 0 905 905.0 905.0 0.0 905

C201C 905.0 905.0 0 905 905.0 905.0 0.0 905
C202C 905.0 905.0 0 905 905.0 905.0 0.0 905
C203C 905.0 905.0 0 905 905.0 905.0 0.0 905
C204C 905.0 905.0 0 905 905.0 905.0 0.0 905
C205C 905.0 905.0 0 905 905.0 905.0 0.0 905
C206C 905.0 905.0 0 905 905.0 905.0 0.0 905
C207C 905.0 905.0 0 905 905.0 905.0 0.0 905
C208C 905.0 905.0 0 905 905.0 905.0 0.0 905

Table A.9: Results on VRPPC and VRP-FLC instances, Low Outsourcing Costs
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