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ABSTRACT 24 

 25 

Basal-like breast tumors have been proposed to originate from luminal progenitor cells. Yet how 26 

luminal cells transform into invasive cancer cells remains poorly understood. Here, we reconstitute the 27 

sequence of events leading luminal progenitor cells to tumor formation in a BRCA1-deficient context, 28 

studying mammary glands at single-cell resolution in mouse and human. Luminal progenitors can 29 

actually tolerate multiple genomic alterations, including TP53 loss, without transforming. Switch to 30 

tumoral state is rather initiated with a partial epithelial-to-mesenchymal (EMT) transition, following a 31 

senescent-like process. In humans, signature of such pre-tumoral states is detected in early stage 32 

basal-like tumors that rarely recur. Studying biopsies of BRCA1 carriers, we further show the existence 33 

of cells in abnormal luminal states with activated pre-tumoral signature. Our results support partial 34 

EMT as a player of initial epithelial transformation and open perspectives for detection of pre-tumoral 35 

events. 36 
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INTRODUCTION 42 

Triple-negative breast cancer (TNBC) refers to a subgroup of aggressive breast cancers defined by the 43 

lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 44 

receptor 2 (HER2) accounting for 15–20% of all breast tumors (Onitilo et al. 2009). Along with 45 

transcriptional heterogeneity, TNBC is characterized by complex genomes, dictated by high genetic 46 

instability and complex patterns of copy number alterations and chromosomal rearrangements (R. Gao 47 

et al. 2016; Engebraaten, Vollan, and Børresen-Dale 2013). Defects in double-stranded DNA repair 48 

mechanisms are indeed characteristic of TNBC, as a result of either germline or somatic mutations in 49 

BRCA1/2 and other genes involved in DNA repair (Timms et al. 2014; Stefansson et al. 2011). In this 50 

genetically unstable context, there is a chaotic de-structuration of the mammary gland, with recurrent 51 

loss of proper cell identity. Part of these cancers harbor basal-like phenotypes, expressing an 52 

incomplete set of basal markers but with high intra-tumor heterogeneity (Marra et al. 2020; Bianchini 53 

et al. 2016). Interestingly, BRCA1-deficient tumors are suspected to originate from luminal progenitor 54 

cells of the gland, implicating a recurrent switch or loss in cell identity during tumorigenesis (Molyneux 55 

et al. 2010; Lim et al. 2009). Recent data indicate that Brca1-deficiency in the mammary gland induces 56 

aberrant alveolar differentiation of luminal progenitors, suggesting early phenotypic defects in the 57 

mammary gland of a Brca1-deficient individual (Bach et al. 2021). However, the tumor-initiating events 58 

leading to the emergence of tumor cells per se remain unknown. 59 

Studying early steps of tumorigenesis is not feasible solely based on human tumor samples which are 60 

complex stacks of molecular alterations acquired over time. Animal models enable the isolation of a 61 

continuum of states from normal to pathologic gland to precisely map the evolution of the 62 

physiological mammary gland towards tumorigenesis. In the case of basal-like breast cancers, models 63 

with Brca1/Trp53 deficiency in luminal progenitors have been shown to mimic formation of human 64 

basal-like breast cancers (Selbert et al. 1998; Molyneux et al. 2010). TP53 mutations remain the most 65 

common genetic alteration in basal-like cancers (85%, (Cancer Genome Atlas Network 2012)). In 66 

BRCA1-germline carriers, TP53 mutation was actually shown to be among the earliest events in tumor 67 
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formation (Martins et al. 2012). In this context, a mouse model with conditional deletion of Trp53 and 68 

Brca1 in the luminal compartment of the mammary gland appears as an apropos model to catch the 69 

rare transforming events leading an HDR-deficient luminal progenitor to tumorigenesis. In contrast to 70 

humans, where these events are extremely rare, the deletion in the mouse of these genes in multiple 71 

cells of the mammary glands greatly enhances our ability to detect the transitioning states from 72 

aberrant luminal progenitor to basal-like breast cancer phenotype. 73 

Here, we first map steps of Brca1-tumorigenesis in vivo, with a focus on epithelial cells to catch rare 74 

pre-tumoral epithelial states. We combine single-cell transcriptomics and multiplex imaging in a Blg-75 

Cre Trp53Fl/Fl and Brca1Fl/Fl mouse model, where Trp53 and Brca1 are deleted in luminal progenitor 76 

cells (Molyneux et al. 2010). We identify cells transitioning from luminal progenitor to tumor 77 

phenotype, expressing p16 and with highly remodeled genomes. These cells are partially switching to 78 

a mesenchymal phenotype while retaining their epithelial characteristics and activating angiogenesis. 79 

We furthermore discover that these cells have undergone a major epigenomic crisis with a disruption 80 

of their heterochromatin through the accumulation of multiple heterochromatin foci. In human tumor 81 

cohorts, signature of such pre-tumoral states is found in basal-like tumors of low stage that rarely 82 

recur. Finally, studying juxta-tumoral tissue of BRCA1 carriers with single-nuclei transcriptomics, we 83 

show the existence of aberrant luminal states, attesting to the enhanced plasticity of the luminal 84 

compartment in BRCA1 carriers. We detect a population of luminal cells with abnormal activation of 85 

FOXC1 transcription factor, pivotal mesenchymal regulator in physiological development. We propose 86 

that partial EMT occurs at the initiation of BRCA1 tumorigenesis, and is not only restricted to its well-87 

known pivotal role in cell dissemination and metastasis of cells from tumors.  88 
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RESULTS  89 

Identification of p16-high luminal cells with mesenchymal traits 90 

Virgin Blg-Cre Trp53fl/fl Brca1fl/fl females develop mammary tumors at a median age of 5.2 months. In 91 

order to map early state transitions in the mammary gland, we profiled mammary epithelium from 92 

animals at various time points (2.7, 3.2 and 5.2 months, n=12), as well as from three tumors (Fig. 1A, 93 

n=15 mice in total). To maximize our chances of identifying tumor-initiating cells, among the n=15 94 

mice, we profiled the mammary epithelium of 2 mice at 5.2 months of age, with no apparent tumor, 95 

but belonging to a litter of an animal with a tumor. Among these individuals at 5.2 months of age, we 96 

observed multiple lesions - less than 0,5 mm - within the mammary epithelium (Fig. 1A, black arrows). 97 

Part of the collected samples were enriched for epithelial fraction to further increase our chances of 98 

identifying rare phenotypic states within the Brca1/Trp53 deficient mammary epithelium (see 99 

Methods). 100 

With single-cell transcriptomics, we identify n=11,113 epithelial cells (Fig. 1B) from all samples. Using 101 

reference lists of physiological markers (Bach et al. 2021, 2017; Watson and Khaled 2008), we identify, 102 

in 2.7-, 3-, and 5.2-month samples, physiological cell populations of the mammary gland: basal cells 103 

(Krt5) and clusters of luminal cells (Krt8) - luminal hormone-sensing (Luminal H-S, Prlr), luminal 104 

progenitor (LP, Aldh1a3) and secretory alveolar cells (Avd, Csn2) (Fig. 1C, Fig. S1A). The abnormal 105 

presence of secretory alveolar cells in the mammary gland of virgin mice at all timepoints, confirms 106 

the abnormal differentiation of luminal progenitors into alveolar cells in Brca1/Trp53 deficient 107 

mammary glands, which had recently been observed during Brca1 tumorigenesis (Bach et al. 2021).  108 

With the objective to disentangle the earliest steps of Brca1-tumorigenesis, we next focused on 109 

clusters of cells belonging to earliest time points prior to tumor detection and including the smallest 110 

tumor (Fig. 1D, n= 3,525 cells). With unsupervised clustering, we identify a cluster of cells in between 111 

normal luminal compartments and tumor cells (green cluster, Fig. 1D) characterized by an unequivocal 112 

activation of Cdkn2a/p16 compared to both LP and Avd (Fig. S1B-C, Table S1). This partition originates 113 
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mainly from pre-tumoral glands with lesions (at 5.2 months of age) (Fig. S1D, adj.p value < 5.0 10-2, 114 

Fisher’s test), but few cells also belong to mammary glands of 2.7 and 3 month-old animals.  115 

In terms of identity, these cells show a significant down-regulation of genes characteristic of luminal 116 

compartment, compared to LP and Avd cells - e.g Krt8, Krt18, Csn2 (Fig. 1E, Fig. S1B, Table S1). In 117 

addition to a partial repression of epithelial cytokeratins, a series of transcriptional changes testify of 118 

dampened epithelial characteristics and acquisition of mesenchymal features: (i) upregulation of Vim, 119 

Fn1 and Sparc (Fig. 1E, Table S1), indicative of changes in cytoskeleton and extracellular matrix, and (ii) 120 

down-regulation of Cdh1 and several Claudin genes (Cldn4, 3 and 1, Table S1), indicative of the 121 

dissolution of adherens and tight junctions. Such intermediary epithelial/mesenchymal state recalls 122 

partial EMT phenomena (Yang et al. 2021). In addition, cells from the p16-high cluster display a specific 123 

downregulation of Lmna (Table S1), indicative of diminished nuclear stiffness, potentially increasing 124 

their migration potential (Harada et al. 2014). This cell population also presents a higher cycling rate 125 

than normal epithelial cells, similar to that of tumor cells (Fig. S1E). 126 

We next sought to validate the detection of p16-high cycling cells in situ. We performed multiplex 127 

immunohistochemistry on paraffin-embedded formalin-fixed (FFPE) sections from mice with lesions 128 

or tumors, and control Cre- mammary gland, studying for over 70,090 cells: i) cell identity (Krt8, Krt5), 129 

ii) cell cycle status (p16, Ki67), and iii) epithelial to mesenchymal plasticity (EMP) (E-cadherin, N-130 

cadherin, Vim) (Fig. 1F, Fig. S1). In lesions, we could detect patches of p16-high cells and vimentin-131 

based filaments (Fig. 1F, Fig. S1I). In full grown tumors, in addition to p16 and vimentin, we also 132 

detected N-Cadherin and N-Cadherin/E-Cadherin-positive cells (Fig. S1F). While we did not observe 133 

any p16 positivie cells in the Cre- animals (Fig. 1G), they were found within juxta-tumoral tissues of 134 

tumor-bearing animals, as isolated single cells located in the inner part of the duct, within the luminal 135 

compartment. Such initial localization, in addition to the co-occurrence of p16 and Krt8 stainings (Fig. 136 

1F, Fig. S1G) confirms their luminal origin (89% of the total p16 positive cells). Within juxta-tumoral 137 

tissue and lesions, more than 32% of p16 positive cells are Ki67+, supporting their capacity to escape 138 

p16-mediated cell cycle arrest (Fig. S1H-I). The proliferative index of p16 positive cells is significantly 139 
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higher in juxta-tumoral duct and lesions, compared to p16 positive cells in tumors (15% Ki67+) and 140 

control mammary epithelial cells (6% Ki67+), suggesting that p16 positive cells at the onset of Brca1 141 

tumorigenesis are particularly proliferative (Fig. 1F, Fig. S1H). 142 

 143 

Partial EMT in luminal cells precedes tumor formation  144 

We then sought to reconstitute the potential timeline of state transitions leading luminal progenitors 145 

to tumor formation. With the algorithm PHATE (Moon et al. 2019) – which works without any specified 146 

root state – we first show the existence of a progression between the luminal towards the tumor cell 147 

state, identifying the p16-high EMT cell state as the intermediary cell state (Fig. S2A). With the PAGA 148 

algorithm, we further map and quantify connections between cell states (Wolf et al. 2019) and show 149 

that the p16-high EMT state is the most connected to all other cell states found in the dataset (Fig. 150 

2A). In addition, the tumor cell states are only reachable through this central hub. These results 151 

position the p16-high EMT state as a prerequisite for luminal progenitors to transform and become 152 

tumor cells. We will refer to this state as ‘pre-tumoral state’ for the rest of the study.  153 

We next further studied which biological pathways characterized the transition from luminal 154 

progenitor to the pre-tumoral state. We first used the Slingshot algorithm to infer a pseudotime 155 

ordering of the cells, taking the LP cluster as the root (Fig. 2B). Next, we identified the most correlated 156 

genes to Slingshot pseudo-time values and performed pathway enrichment and quantification using 157 

MsigDB Hallmark as a reference (Liberzon et al. 2015). We show that while transitioning from LP to 158 

tumor state, pre-tumoral cells activate angiogenesis and EMT (Fig. 2C), while inhibiting pathways of 159 

apoptosis and estrogen response (Fig. S2B). Such transcriptional signatures endorse the pre-tumoral 160 

nature of this intermediate state: angiogenesis and inhibition of apoptosis are canonical hallmarks of 161 

cancer cells (Hanahan and Weinberg 2016) - meant to enable fast growth of cells.  162 

As loss of BRCA1 impairs homologous repair (HR) mechanisms and leads to a major genomic crisis 163 

(Scully and Livingston 2000; Polak et al. 2017) - it appeared critical to understand when such a genomic 164 

crisis was occurring, and how it related to the state transitions we were observing. We used our 165 
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scRNAseq epithelial dataset to quantify Copy Number Variation (CNV) (Fig. S2C, Patel et al. 2014), 166 

taking the basal cells as reference, as the Cre is not expressed in these cells (Molyneux et al. 2010). For 167 

each cell, we calculated the percentage of their genome displaying CNVs (Fig. 2D). LP cells of tumor-168 

free & lesion-free animals already display a high percentage of CNVs (median 23 %), even at 2.7 months 169 

(median 22.4%), compared to basal cells (Fig. 2B). Such observations imply that the LP compartment 170 

can tolerate numerous CNVs following Brca1/Trp53 deletion, without any rapid phenotypic 171 

consequence. Rates of genome rearrangement in pre-tumoral cells are among the highest of the LP 172 

compartment (median 25%), yet their maximum rate does not exceed what is observed in the LP 173 

population (Fig. 2D). Our data show that the major outburst of CNVs occurs in the LP compartment 174 

prior to any tumor formation, and before the activation of p16 and partial EMT process. Such findings 175 

are in agreement with previous genomic studies which proposed that a large fraction of copy number 176 

alterations were acquired in short punctuated bursts at early stages of tumor formation (R. Gao et al. 177 

2016). In terms of clonality, if the LP compartment is multi-clonal and tumors rather poly-clonal, half 178 

of the pre-tumoral cell population is multi-clonal, (47%, Fig. S2C-D), showing that multiple cells can 179 

switch to the pre-tumoral state.  180 

To decipher the molecular mechanisms driving initial state transitions in vivo, we next examined gene 181 

regulatory networks using two complementary approaches. With SCENIC (Aibar et al. 2017), we 182 

inferred the master regulons - defined as expressed Transcription Factors (TFs) with their putative 183 

expressed direct targets- active in our scRNAseq in vivo clusters (Fig. S2E). Out of 12 regulons, Twist1 184 

regulon (set of 27 target genes) was the only regulon positively correlated to pseudotime values (Fig. 185 

2E) and had a significantly higher expression (adj. p-value= 3.0 10-14) in the pre-tumoral cluster as 186 

compared to the LP and Avd ones (Fig. S2F). We also performed a TF enrichment test on the markers 187 

of the pre-tumoral state (Table1, log2FC > 0.8) using Chea3 (Keenan et al. 2019) which, in contrast to 188 

SCENIC, does not rely on the expression of the TF itself, which can be hardly detected with scRNA-seq 189 

approaches. In addition to Twist1, previously identified, the top candidate TF predicted to drive the 190 

pre-tumoral expression programs (Fig. 2G) are key EMT-associated TF (Twist2, Snail2) as well as Prrx2, 191 
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a recently discovered EMT inducer in breast cancer (Lv et al. 2017), and several forkhead box (FOX) 192 

family of proteins.  193 

 194 

Pre-tumoral state displays scars of past senescent-like process 195 

The top marker of the pre-tumoral state is Cdkn2a/p16 (Fig. S1B; Table S1), a marker of cell-cycle arrest 196 

and senescence (Collado and Serrano 2010; Koppelstaetter et al. 2008; Di Micco et al. 2021; Campisi 197 

and d’Adda di Fagagna 2007). In line with this, the transcriptional profile of the pre-tumoral state is 198 

significantly enriched for senescence-related hallmark signatures (REACTOME_Senescence Associated 199 

Secretory Phenotype, adj. p-value < 2.0 10-2). In addition, cells from the pre-tumoral cluster express a 200 

pro-senescence secreted factor, Igfbp4 (Fig. 3), that can trigger senescence in neighboring cells 201 

(Severino et al. 2013). Yet, pre-tumoral cells are cycling (Fig. S1E, Fig. 1H), suggesting they have 202 

overcome cell cycle arrest. Combined over-expression in these cells of Cdk4 and Ccnd1 (Table S1; adj. 203 

p-value < 2.0 10-5), that together promote G1 to S transition, could for example help cells bypass cell-204 

cycle arrest imposed by p16 overexpression (Roupakia, Markopoulos, and Kolettas 2021).  205 

We looked for additional markers of senescence associated to p16 upregulation (Collado and Serrano 206 

2010) within tissues over different time points: presence of B-galactosidase (Bgal) and senescence-207 

associated heterochromatin foci (SAHF). We could not quantify any Bgal within juxta-tumoral or tumor 208 

sections (Fig. S3A), however we identified SAHF-like structure in lesions by immunofluorescence (Fig. 209 

3A). SAHF were initially defined as main cores enriched in H3K9me3 mark, coated by enriched rings in 210 

H3K27me3 (Aird and Zhang 2013; Paluvai, Di Giorgio, and Brancolini 2020). As H3K9me3 mark is 211 

already organized into foci, corresponding to chromocenters, in non-senescent cells in mice (Probst 212 

and Almouzni 2008), we chose H3K27me3 staining to study changes in heterochromatin organization 213 

during tumorigenesis.  214 

As expected, in control mammary glands from Cre- mice, H3K27me3 staining revealed one single foci 215 

per cell (Fig.3A-B), corresponding to the inactive X (Xi), whereas the remaining staining is 216 

homogeneously diffused in the nucleus (Fig. 3A-B). In lesions and tumors, we observed the 217 



 

9 

accumulation of multiple H3K27me3 foci (Fig. 3A-B), attesting a disruption of heterochromatin in these 218 

cells. In addition, H3K27me3-enriched foci tended to accumulate in ring-like structures, surrounding 219 

nuclear regions devoid of DNA as attested by negative DAPI staining - possibly corresponding to 220 

nucleoli (Cmarko et al. 2008).  221 

We next investigated whether this major nuclear reorganization was associated with changes in 222 

genomic distribution of H3K27me3 during tumorigenesis. First, when comparing breadth of peaks 223 

across autosomes from tumor and normal cells, we could not identify any significant spreading of the 224 

H3K37me3 marks in the autosomal regions in tumor samples (Fig. S3B). At a more local scale, when 225 

comparing the genomic distribution of H3K27me3 in  tumors versus cells of the physiological gland 226 

(Fig. S3E), we show that tumor cells present recurrent epigenomic differences with normal cells (Fig. 227 

S3C, PC1). In particular, several cell cycle genes (Cdkn2a, Cdk12, Cdk6) - both inhibitors and inducers - 228 

display a recurrent loss of repressive H3K27me3 enrichment in tumors (Fig. 3D), suggesting that local 229 

epigenomic remodeling could participate in the entry and exit of the cell cycle during tumorigenesis. 230 

Loss of H3K27me3 had already been shown to enable Cdkn2a transcriptional activation at the onset of 231 

senescence (Ito et al. 2018). Altogether, our data suggest that our pre-tumoral cells, now cycling, may 232 

have previously undergone a G1/S blockade and senescence-like phenomenon (Buj et al. 2021; 233 

Herranz and Gil 2018).  234 

 235 

Pre-tumoral signature of early luminal transformation is detected in low-stage basal-like human 236 

tumors  237 

We next wanted to investigate whether we could find traces of our pre-tumoral state in human breast 238 

cancers. To do so, we defined a “mouse-derived pre-tumoral signature”, as the top over-expressed 239 

genes (log2FC> 0.8 and adj. p-value < 5.0 10-2) in the pre-tumoral mouse cluster compared to both LP 240 

and Avd compartments and studied its expression in publicly available large bulk RNAseq cohorts 241 

(Berger et al. 2018, Xu et al. 2015). First, studying the Pan Cancer cohort, we show that basal-like 242 

tumors have higher pre-tumoral scores than other breast cancer subtypes (Fig. 4A). Among basal-like 243 
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tumors, BRCA1-deficient tumors displayed slightly higher scores than BRCA1 WT tumors (Fig. 4A). In 244 

addition, our mouse-derived pre-tumoral signature was significantly more expressed in early-stage (I) 245 

than late-stage tumors (II and III) (Fig. 4B). 246 

We next derived a human pre-tumoral signature from our mouse pre-tumoral signature, selecting the 247 

genes most predictive of early stages in Pan Cancer basal-like tumors (n=13 genes out of 38, Fig. 4C). 248 

This refined signature included genes involved in EMT (VIM, FN1 and COL9A3) and senescence-249 

associated processes (IGFBP4, SPP1). CDKN2A/p16 was not included in the human pre-tumoral 250 

signature: its overexpression is specific to basal-like tumors (Fig. S4A) but not predictive of early stages. 251 

CDKN2A is indeed over-expressed in most basal-like tumors (n=128, 75%), irrespective of the stage, 252 

suggesting that its activation might be an early event that is kept throughout the life of the tumor. In 253 

contrast, genes from the human derived signature might correspond to genes overexpressed more 254 

specifically in early stages. We next tested the relevance of the human pre-tumoral signature in an 255 

independent dataset (CPTAC (Xu et al. 2015)). We confirmed that the human pre-tumoral signature is 256 

specific to low-stage basal-like tumors (Fig. 4D, E). Focusing on survival, we demonstrate that patients 257 

who display high expression scores of such pre-tumoral signature exhibit longer progression-free 258 

survival (p=2.2 10-2, Pan-Cancer), and a tendency to longer overall survival (p=8.3 10-2, CPTAC) (Fig. 4F-259 

G). Overall, we demonstrate that the signature of initial luminal transformation - reflecting senescence 260 

and partial EMT processes -  is detected specifically in early-stage basal-like tumors that more rarely 261 

recur.  262 

 263 

Detection of abnormal luminal progenitors with pre-tumoral signature in BRCA1 carriers 264 

We next tested whether we could detect signs of pre-tumoral states directly in luminal cells from 265 

BRCA1 human carriers. In this context, in contrast to established human tumors and the mouse model 266 

presented above, only one copy of BRCA1 is deficient and TP53 is initially functional. We reasoned that 267 

the steps of early transformation would be detected in normal-like tissue of these patients, potentially 268 

looking (i) prior to tumor formation thanks to mastectomy samples, or (ii) in juxta-tumoral tissues. In 269 



 

11 

the latter case, we suspect that some luminal progenitors could be in a pre-tumoral state at that time, 270 

as at least one or a few of them had already transformed into a tumor.  271 

We used a published dataset to investigate mammary epithelial cells of BRCA1 carriers prior to tumor 272 

formation (Fig. S5, GSE161529, Pal et al. 2021). We performed the same semi-manual annotation 273 

procedure as in the first part of our study and focused solely on the mammary epithelial compartment 274 

from normal-like and BRCA1+/- pre-neoplastic samples (Fig. S5A). Studying all cells together, we could 275 

not detect clusters of epithelial cells specific to BRCA1 carriers. Neither could we detect a pool of cells 276 

with higher CNV or pre-tumoral scores compared to normal LPs (Fig. S5B-C). To further search for 277 

unexpected cell states, we next studied each compartment with an independent principal component 278 

analysis (PCA). We show that LPs are the most affected cell type by BRCA1 deficiency: the informative 279 

PCs with the highest explained variance were retrieved from the LP PCA projection (Fig. S5D, Methods). 280 

LPs in BRCA1 carriers display transcriptional defects, as they aberrantly activate genes involved in 281 

mammary stem cell signatures and in senescence associated secretory phenotype (SASP), including 282 

the chemokine IL6 and metalloproteinase MMP3 (Fig. S5E-F, Table S2). Altogether, we did not detect 283 

aberrant luminal states in BRCA1 deficient glands per se, prior to tumor formation, but identified 284 

activation of few senescence markers and pathways. In line with previous observations that BRCA1 285 

deficiency could lead to senescence-like states (Sedic et al. 2015). However, we could not detect signs 286 

of partial EMT or of our pre-tumoral state.  287 

We next studied cells from juxta-tumoral tissues of BRCA1 carriers, profiling 5 frozen biopsies using 288 

single nucleus RNA sequencing (Fig. 5A). All expected cell types and epithelial subtypes from a 289 

mammary gland were retrieved in the pooled datasets, averaging a total of 4,038 nuclei from the 5 290 

samples (Fig. 5B-C). Focusing on the epithelial compartment, we depicted the major subtypes using 291 

canonical markers; basal cells expressing KRT5 and KRT14, mature luminal cells expressing PRLR and 292 

ESR1, luminal progenitors characterized by the expression of ALDH1A3 and KIT (Fig. 5C). We also 293 

revealed the abnormal presence of alveolar differentiated cells (Avd, characterized by high ELF5 294 

expression) and a second cluster of LP (named LP_2). The presence of alveolar cells attests an abnormal 295 
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differentiation process of luminal progenitors in BRCA1 carriers, exactly as observed in vivo in mouse 296 

models above and by others (Bach et al. 2021). They were not detected in mastectomy samples, 297 

suggesting that aberrant differentiation either occurs only in some BRCA1 carriers and not others, 298 

and/or only at the last stages prior to tumor formation. 299 

The second cluster of luminal progenitors, LP_2 cells, originated from all profiled samples (Fig. 5D), 300 

and harbored significant higher levels of genomic alterations, as compared to the remaining epithelial 301 

cell populations (average fraction of altered genome 8.4%, Fig. 5E). These cells exhibited the highest 302 

scores of the human pre-tumoral signature (Fig. 5F), and displayed among their top ten markers 303 

(compared to LP and Avd cells, Table S3): FOXC1, a mesenchymal master regulator during physiological 304 

development (Ray, Ryusaki, and Ray 2021; Haldipur et al. 2014), INHBA/ActivinA a ligand of the TGF-305 

Beta pathway - a pathway known to trigger EMT (Zavadil and Böttinger 2005) - and CCND1/cyclin D1, 306 

just like mouse pre-tumoral cells (Fig. S5H). The TF FOXC1 is suspected to play a role in EMT in several 307 

types of cancer cells (Zhu et al. 2017; Bloushtain-Qimron et al. 2008). In addition, LP_2 cells partially 308 

lose their luminal identity, with a decreased expression of several luminal markers (KRT7, KRT15, ELF5 309 

& ALDH1A3, Fig. S5G), while others remain unchanged (KRT8 e.g). 310 

Altogether, LP_2 cells show several similarities with mouse pre-tumoral cells: partial loss of luminal ID, 311 

expression program potentially orchestrated by TFs involved in EMT, an elevated level of genomic 312 

alterations, and cyclin D1 overexpression. We envisage these cells could (i) either be originating from 313 

the pool of BRCA1+/- luminal progenitors – impacted potentially by the presence of a tumor - or (ii) 314 

from the tumor itself; the former hypothesis being supported by the transcriptional similarity of LP_2 315 

with LP_1 cells. 316 

 317 

  318 



 

13 

DISCUSSION  319 

Here we detect a continuum of rare state transitions occurring in epithelial cells prior to tumor 320 

formation, thanks to a mouse model launching tumorigenesis in multiple luminal progenitor cells. 321 

Luminal progenitor cells can tolerate multiple genomic alterations while not transforming and we 322 

actually show that partial epithelial to mesenchymal transition occurs at the initiation of tumor 323 

formation in these cells. In humans, despite the absence of such a continuum, we were still able to 324 

catch several abnormal luminal states in the mammary glands of BRCA1 carriers, giving us a glimpse of 325 

potential human pre-tumoral states. In both species, we detect luminal progenitors partially losing 326 

their luminal identity and displaying signs of partial epithelial to mesenchymal transition. In vivo, we 327 

show that luminal progenitors, after encountering a senescence-like state, undergo partial EMT - 328 

driven by a myriad of potential transcription factors (Twist1/2, Snail2, Fox family members, Prxx1/2) - 329 

before forming tumors. In humans, we caught luminal progenitors activating the transcription factor 330 

FOXC1, a regulator of mesenchymal state during normal development ((Ray, Ryusaki, and Ray 2021)) 331 

and suspected to play a role in cancer-associated EMT (Zhu et al. 2017; Yu et al. 2013; Li et al. 2018).  332 

Our data supports a role for EMT at the onset of tumorigenesis, suggesting it might not only be 333 

restricted to its well-known pivotal role in tumor cell dissemination and metastasis (Aggarwal et al. 334 

2021). Transient dampening of epithelial characteristics and acquisition of few mesenchymal-like 335 

features, could be essential for the rupture of the duct structure and formation of the initial tumor 336 

bud.  337 

In both human and mouse BRCA1 deficient contexts, we detect alveolar cells in mammary glands of 338 

non-gestating individuals, not only validating previous observations made in mice (Bach et al. 2021), 339 

but demonstrating the existence of such an aberrant differentiation process in humans. The 340 

unexpected presence of milk secreting cells could be a proxy of the extensive plasticity of the luminal 341 

progenitor compartment in such a context; as if in a BRCA1 deficient context, there was a relaxation 342 

of the control of cell state in luminal progenitors. The occurrence of partial EMT in luminal progenitors 343 

could be another manifestation of the extensive plasticity of this compartment. What triggers exactly 344 
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the extensive plasticity of the LP population and subsequent state transitions to alveolar or pEMT state 345 

remains to be understood. BRCA1 itself has recently been identified as a guardian of the epithelial 346 

states (Zhang et al. 2022) - inactivation of BRCA1 by CRISPR leads to increased epithelial-to-347 

mesenchymal plasticity in mammary cells. Alternatively, or in combination, state transitions could be 348 

driven by key TFs, as the ones detected in mouse and human pre-tumoral cells in our study (TWIST, 349 

SNAI or FOX family members). Another trigger of partial EMT could also be senescence - itself induced 350 

by extensive genomic rearrangements following Trp53 and Brca1 deletion. It has been proposed in 351 

vitro that EMT, driven by Twist1 and 2, could help override Ras-induced senescence in mouse 352 

fibroblasts (Ansieau et al. 2008). In a therapy-induced senescence phenotype, it was also shown that 353 

senescence promotes reprogramming and cancer stemness (Milanovic et al. 2018), suggesting that 354 

non-genetic mechanisms could be tightly associated to the entry and exit of the senescent state in 355 

various contexts.  356 

The time resolution of a mouse model was instrumental to partially bridge the gap between individual 357 

fixed observations made in humans from pre-tumoral and juxta-tumoral tissues and established basal-358 

like tumors. There might be several differences between the timing of events in a mouse model and in 359 

humans, that will need to be further investigated with complementary mouse models. Here in vivo, 360 

both Brca1 and Trp53 are inactivated simultaneously in luminal progenitors. In humans, it was shown 361 

for BRCA1 carriers that TP53 mutation was actually among the earliest events in tumor formation 362 

(Martins et al. 2012), yet full BRCA1 and TP53 inactivation remains a stepwise process. Regarding 363 

activation of CDKN2A/p16, if ultimately the majority of basal-like breast cancers will express 364 

CDKN2A/p16, the timing of CDKN2A activation could differ between mice and humans. CDKN2A 365 

activation could depend on the TP53 status of cells; cells undergoing major genomic rearrangement 366 

might rather over-express CDKN1A/p21 in a TP53 proficient context for example. In addition, our 367 

datasets suggest that pre-tumoral cells escape CDKN2A-associated cell cycle arrest through 368 

overexpression of Ccnd1 and Cdk4; in contrast, in humans, overexpression of CDKN2A is frequently 369 
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associated with a loss of RB1, which we have not observed at the protein nor expression level in pre-370 

tumoral cells (not shown). RB1 could be lost later during tumorigenesis. 371 

Finally, our work opens up several translational perspectives for the early interception of BRCA1 372 

tumorigenesis and potential patient stratification. Using mouse and human datasets, we were able to 373 

define a ‘pre-tumoral signature’, characteristic of the epithelial changes occurring at the onset of basal-374 

like tumorigenesis. In human tumors, we show that this signature is specific to basal-like cancers. In 375 

addition, we show that it has prognostic potential: with basal-like tumors, patients with high pre-376 

tumoral signature score have a significantly longer disease-free survival. Our results suggest that basal-377 

like tumors with a high pre-tumoral signature score might have been detected at an earlier stage, 378 

hence with a better outcome. Our pre-tumoral gene signatures could constitute candidate biomarkers 379 

to detect early epithelial transformation and be favorable prognostic markers.  380 

In terms of therapeutic targets, preventing the early state transitions occurring in the luminal 381 

progenitor compartment could be a relevant therapeutic avenue that we need to investigate. One 382 

strategy could be to target early epithelial-to-mesenchymal plasticity, targeting candidate TFs with 383 

proteolysis targeting chimeras, as shown for Brachyury or NF-KB (Samarasinghe and Crews 2021). 384 

Another Achilles heel of the pre-tumoral state could be the over-expression of Ccnd1 that promotes 385 

the switch from G1 to S phase. In this line, cycling pre-tumoral cells might be particularly sensitive to 386 

CDK4/6 inhibitors.   387 
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Methods 388 

Animal models. The generation of Brca1fl/fl and Trp53fl/fl mice has been previously described (Jonkers 389 

et al. 2001; Liu et al. 2007). Blg-Cre transgenic mice were purchased from The Jackson Laboratory. Mice 390 

strains were crossed to obtain Blg-Cre Trp53fl/fl Brca1fl/fl animals. Genotypes were determined by PCR 391 

(primers Cre: 3’ CGAGTGATGAGGTTCGCAAG 5’ - 3’ TGAGTGAACGAACCTGGTCG 5’; primer Brca1 : 392 

3’TATCACCACTGAATCTCTACC 5’ - 3’ GACCTCAAACTCTGAGATCCAC 5’; Trp53:  3’ 393 

AAGGGGTATGAGGGACAAGG 5’ - 3’ GAAGACAGAAAAGGGGAGGG 5’). Mice were sacrificed by cervical 394 

dislocation. For each sample (gland or tumor), one piece was fixed in 4% paraformaldehyde (15710, 395 

Euromedex) for histological analysis, one piece was snap frozen in dry ice and stored at -80°C and one 396 

piece was kept fresh for the desired experimentation.  397 

 398 

Ethics statement. All procedures used in the animal experimentations are in accordance with the 399 

European Community Directive (2010/63/EU) for the protection of vertebrate animals. The project has 400 

been approved by the ethics committee n°02265.02. We followed the international recommendations 401 

on containment, replacement and reduction proposed by the Guide for the Care and Use of Laboratory 402 

Animals (NRC 2011). We used as few animals as possible and minimized their suffering, no painful 403 

procedures were performed. The breeding, care and maintenance of the animals were performed by 404 

the Institut Curie animal facility (facility license #C75-05-18). Patients (n=5 juxta-tumoral tissue) gave 405 

informed consent for the use of their tissue in the study. 406 

 407 

Immunostaining. Glands and tumors were fixed in 4%PFA/PBS at 4°C overnight, then washed with PBS 408 

(Gibco, 10010023) a first time for 1h and a second time at 4°C overnight. The samples were then passed 409 

through consecutive (50%, 60%, 70%) ethanol baths for 30 min each at room temperature. Paraffin 410 

embedding and sectioning (5µm) was performed by the experimental pathology department of Institut 411 

Curie. At the staining time, the slides are dewaxed by heating at 65°C for 1h and wash 2 times in Xylene 412 

10min, then rehydrated via consecutive bath: 2x Ethanol 100% (VWR 20821,31) 10min, 1x Ethanol 90% 413 
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5min, 1x Ethanol 80% 5min, 1x Ethanol 70% 5min, 1x Ethanol 50% 5min, 2x Water 5min. Retrieval 414 

treatment was performed by incubation in citrate buffer (C9999) for 20min at 95°C. After a 1h room 415 

temperature cooling, the slides are cleaned in PBS and permeabilized in permeabilization buffer (BSA 416 

2%, FBS 5%, Triton 0,3% in PBS) for 2h at room temperature. Primary Antibody incubation was done 417 

on blocking buffer (BSA 2%, FBS 5%, PBS) at 4°C overnight with Chicken Krt5 antibody 1:500 (905901), 418 

Rat Krt8 antibody 1:500 (MABT329), Rabbit H3K27me3 antibody 1:20 (C36B11), Rabbit p16 antibody 419 

1:100 (Abcam, ab211542). After 3 washes in PBS for 10 min each, incubation of the antibodies was 420 

performed for 2h at room temperature with: goat anti-rabbit Cy3 1:1000 (A10520), goat anti-rat Cy5 421 

1:1000 (A10525), goat anti-chicken Alexa Fluor 488 (A11039) 1:500, DAPI 0,5µg/ml. After 3 wash in 422 

PBS 10min, sections were mounted in Aquapoly mount media. 423 

 424 

LacZ staining. Glands and tumors were directly fixed in PFA 4% for 2h and incubated in PBS, 30% 425 

Sucrose at least 24h. Samples were included in optimal cutting temperature OCT medium (23-730-751) 426 

in moulds and cooled on a metal support previously cooled on dry ice. The samples were stored at -427 

80°C before being cut in a cryostat at -20°C in a 6µm section. Slides were stored at -80°C before use. 428 

For the staining, the slides were equilibrated at room temperature for 10-20 min and washed 3 times 429 

for 5 min at room temperature in the washing buffer: PBS, 2mM MgCl2, 1x Na-DOC, 0,02% NP40. After 430 

that, slides were incubated in the LacZ Stain: Washing solution, 10mM K3Fe, 10mM K4FE, 1,5 mg/ml 431 

X-Gal in a humidified chamber in the dark at 37°C for 4h to overnight. Slides were washed in a 432 

consecutive bath of: PBS for 1 min then for 15 min at room temperature, water for 15 min at room 433 

temperature and (optionally) Nuclear fast red for 5 min and 2 times in water for 5 min each. Sections 434 

were mounted in Aquapoly mount media. 435 

 436 

Microscopy, image acquisition and analysis. Image acquisition of stained sections were done using a 437 

laser scanning confocal microscope (LSM780, Carl Zeiss) with a LD LCI PLAN-APO x40 or x65/08 NA oil 438 

objective. The acquisition parameters were: zoom 0.6; pixel size xy 554 nm; spectral emission filters 439 
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(bandwidth): 414-485 nm, 490-508 nm, 588-615 nm, 641-735 nm; laser wavelengths: 405, 488, 561 440 

and 633 nm. Images were captured using Metamorph. Image processing was performed using Fiji 441 

Software, version 1.0. The counting of µ-HF was done in Fiji with a custom macro, for each nucleus, we 442 

selected the most representative Z, then the counting was done automatically with the AutoThreshold 443 

MaxEntropy. 444 

 445 

Multiplex histological staining. Multiplexed IHC was performed according to the protocol developed 446 

by (Remark et al. 2016), with some adjustment. Tissues were baked at 60°C for 1h, deparaffinized in 447 

Xylene (Fisher Scientific, 10467270) and rehydrated. The heat-induced epitope retrieval was done with 448 

pH6.1 citrate buffer (Dako, S169984-2) or pH9 EDTA buffer (Dako, S236784-2) in a 95°C water bath for 449 

30 minutes for the first staining (otherwise 15min) followed by incubation in REAL peroxydase blocking 450 

solution (Agilent Dako, S202386-2) for 10 minutes. If the primary antibody was the same species as 451 

any antibody used in prior stains, another blocking step was added with Fab Fragment, only for anti-452 

rabbit (Jackson ImmunoResearch Europe Ltd, 711-007-003) during 20 minutes. Protein block serum 453 

free (Agilent Dako, X090930-2) was added for 10 minutes. Primary antibody was incubated for 1 or 2 454 

hours at room temperature or overnight at 4°C. The primary antibody was detected using a secondary 455 

antibody directed against the first one, conjugated with horseradish peroxydase (Anti-rabbit: Agilent 456 

Dako, K400311-2) (Anti-rat: BioTechne, VC005-050) followed by chromogenic revelation with 3-amino-457 

9-ethylcarabazole (AEC) (Agilent Dako, K3468). Slides were counterstained with hematoxylin (Thermo 458 

Scientific, 6765001) and mounted with Glycergel aqueous mounting medium (Dako, C056330-2). After 459 

scanning (Philips Ultra Fast Scanner 1.6 RA), tissues were bleached with ethanol baths and another 460 

cycle was performed starting with the heat induced epitope retrieval.  461 

 462 

Overlay of multiplex histological stainings. Histological analysis was performed using the open-source 463 

image analysis QuPath software (QuPath-0.3.2, http://qupath.github.io/) (Bankhead et al., n.d.) and 464 

ImageJ/Fiji. We created a new QuPath project containing all scans of each slide which allow us to crop 465 
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and export (BioFormats plugin) and then overlay the images using Fiji script following these different 466 

steps: 1. Color deconvolution (separation of hematoxylin and AEC signal); 2. Alignment on hematoxylin 467 

images; 3. Creation of transformation matrix on AEC images; 4. For a part of the staining (Edac, Vim, 468 

Ki67) an automatic threshold using MaxEntropy was done to remove background, for the rest of the 469 

stainings (p16, Krt5, Krt8, Ncad) different threshold was determined using control cell signal (cf. 470 

Computational part). Each staining was colored as desired. To further analysis, the composite image 471 

was transferred back to QuPath. By hand, the different structures of the gland/tumors were annotated 472 

(duct, stroma, juxta-lesion or juxta-tumoral duct, lesion, tumor). To identify all the cells, we used the 473 

‘cell detection’ function based on hematoxylin nucleus staining. We then used the ‘show detection 474 

measurement’ function to export the annotation and the intensity signal for all staining for each cell 475 

and analyzed it in R. 476 

 477 

Multiplex histological data analysis strategy. The resulting measurements were exported and 478 

analyzed in R (4.1.1). Briefly, high signal channels, corresponding to Ki67, Vim were thresholded by the 479 

Maximum Entropy algorithm, whereas the remaining channel markers were subjected to a custom 480 

thresholding approach. To identify true positive cells for each marker, mean “Cell” signal values were 481 

binarized as follows: - non-zero values of the Max Entropy thresholded markers were set to 1, whereas 482 

zero values were set to 0. To determine positive cells for p16, Ncad and Krt5, the local minimum after 483 

the highest peak was fitted on the density distribution of the merged cells from all the samples 484 

corresponding to each marker. Different thresholds were defined for each sample for the following 485 

markers: Krt8 and Ecad. Briefly, the “approxfunc” r interpolation function was applied on the density 486 

distribution of each marker on each sample, followed by an optimization step using the “optimize” r 487 

function to retrieve the local minimum within the interval of the density function. Higher values as 488 

compared to each threshold were set to 1, whereas smaller values were set to 0. basic r functions were 489 

used to calculate the percentages of positive cells for each or double positive for many markers, and 490 
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the ggplot package was used for graphical representations. Stromal cells were excluded in the 491 

analyses. 492 

 493 

Mammary gland / tumor dissociation and flow cytometry. Samples were cut roughly with dissecting 494 

scissors and then with 2 scalpels for approximative 10 min. Then single cell dissociation was done by 495 

enzymatic digestion with 3mg/ml collagenase I (Roche, 11088793001) and 100U/ml hyaluronidase 496 

(Sigma-Aldrich, H3506) in complete media (HBSS (24020117), 5% SVF) during 1h30 under agitation at 497 

170 rpm at 37°C. Cells were then dissociated in PBS 0,25% Trypsin-Versen (Thermo Fisher Scientific, 498 

15040-033) prewarmed at 37°C for 1min30s with pipetting for 45s. The cell suspension was then 499 

treated with dispase 5 mg/ml (Sigma-Aldrich, D4693) and DNase 0,1 mg/ml (Roche, 11284932001) in 500 

complete media for 5 min at 37°C. A treatment with Red Blood cell lysis buffer (Thermo Fisher 501 

Scientific, 00-4333-57) was carried out then the suspension was filtered at 40µM before counting and 502 

FACS staining. Cell suspensions were stained 20 min in dark at 4°C with anti-CD45-APC 1:100 503 

(BioLegend, 103112), anti-CD31-APC 1:100 (BioLegend, 102510), anti-CD24-BV421 1:50 (BioLegend, 504 

101826), anti-CD49f-PE 1:50 (BioLegend, 313622). Cells were resuspended in cytometry media (PBS, 505 

BSA, EDTA). For the mammary gland samples, we either recovered the total epithelium or the luminal 506 

and basal cells populations separately.  507 

 508 

Single-cell / single-nuclei RNA-seq. In accordance with the protocol of 10X Chromium manufacture, 509 

the cells were resuspended in PBS 0,04% BSA (Sigma, A8577). Depending on the samples, 510 

approximately 3000 or 4000 cells were loaded on the Chromium Single Cell Controller Instrument 511 

(Chromium single cell 3’ v3 or 3’ NextGem, 10X Genomics, PN-1000075) in accordance with the 512 

manufacturer's protocol. Libraries were prepared according to the same protocol. For the frozen 513 

samples, a nuclear extraction was performed before the microfluidic part.  514 

Nuclei from frozen samples (around 20mg) were directly mechanically dissociated using dounce with 515 

pestle (15-20 strokes) in buffer containing 0,2U Superase IN (ThermoFisher, AM2696); 0,01M Tris HCL 516 
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pH 7,4; 0,01M NaCL; 0,003M MgCL2, 0,1M Igepal CA-630; 0,1M Tween-20; 0,001x Digitonin; 0,225% 517 

Sucrose in water. After vortexing briefly and pipette up and down 5-10 times with a micropipette, 518 

nuclei suspension is filtered with a 30um strainer. After a last centrifugation at 500g for 5 min at 4°C, 519 

nucleus are resuspended in PBS 0,2U SuperaseIN, 0,04% BSA, counted and processed on 10x 520 

Chromium.  521 

 522 

Bulk and single-cell ChIP-seq. ChIP experiments were performed as previously described (Marsolier et 523 

al. 2022) using an anti-H3K27me3 antibody (Cell Signaling Technology, 9733 - C36B11). Bulk 524 

sequencing libraries were prepared using the NEBNext Ultra II DNA Library Prep Kit (NEB, E7645S) 525 

according to the manufacturer’s instructions. For single-cell experiments, cells were encapsulated on 526 

a custom microfluidic device as described before (Grosselin et al. 2019). Cells were stained with DAPI 527 

3µM or with 1µM CFSE during 15 min (CellTrace CFSE, ThermoFisher Scientific, Ref: C34554).  528 

 529 

COMPUTATIONAL ANALYSIS 530 

Code related to the following sections will be deposited on Github (https://github.com/vallotlab). 531 

 532 

Chromium 10X scRNAseq data pre-processing. scRNAseq data acquisition was performed using the 533 

10X toolkit. Briefly, the CellRanger Software Suite (version 3.0.1) was used for demultiplexing, cell 534 

barcode assignment and further UMI (Unique molecular Identifier) quantification. The pre-built mm10 535 

reference genome proposed by 10X Genomics ((https://support.10xgenomics.com/single-cell-gene-536 

expression/software/downloads/latest) was used to align the reads. All the in vivo mouse datasets 537 

were analyzed together, without performing any batch correction. Doublet removal step was included 538 

in the 10X workflow, and was performed by the “emptyDrops” function from DropletUtils at an FDR of 539 

0.01.   540 

 541 
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Quality Control (QC) for scRNAseq data analysis. Low quality cells were defined as having aberrant 542 

values for the type and number of genes/UMIs detected. We evaluated the distribution of the total 543 

number of genes, molecules (UMIs) and the fraction of UMIs mapped to mitochondrial (MT) genes and 544 

set up thresholds to filter out those cells. Three upper cutoffs of 30% UMIs mapped to MT genes, 545 

10,000 genes and 100,000 nUMIs were fixed to get rid of outliers. Additionally, cells with less than 546 

1000 detected genes were excluded. This resulted in a total of  17,330 high quality cells, which were 547 

used for further analysis. 548 

 549 
 550 
scRNAseq data Normalization. Normalization and variance stabilization were performed using the 551 

SCTransform method, implemented in the “SCTransform'' function from the Seurat Suit. SCTransform 552 

omits the need for heuristic steps comprising log-transformation and pseudo-count addition, and 553 

results in improved downstream analytical steps. More recently, SCTransform also supports using the 554 

glmGamPoi package. Briefly, this method fits a “Gamma-Poisson Generalized Linear Model” to the 555 

overdispersed count matrices due to the high sparsity of the scRNAseq data, and results in a substantial 556 

improvement of the variance stabilization. 557 

 558 

scRNAseq data dimension reduction and clustering. Principal Component Analysis (PCA) was 559 

performed on the top 3000 Highly variable genes of the SCT assay from the SCTransform step, to 560 

reduce the data dimensionality. The top 60 PCs were further used to perform graph-based clustering 561 

and community (cell cluster) detection. 562 

All the Uniform Manifold Approximation and Projection (UMAP) plots were computed using the 563 

“RunUMAP” Seurat function with default parameters (“uwot” as umap.method, n.neighbours=30, 564 

distance metric= “cosine”, min.dist=0.3) and “random.state=42”. The two-dimensional UMAP 565 

coordinates were calculated using the top 60 PCs previously computed on the SCT assay. For the sake 566 

of clarity, once the epithelial compartment is sub clustered, the same UMAP embeddings were used 567 
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to represent the “transitioning cell clusters”. Further “zoom ins” were performed using the 568 

corresponding umap coordinates of the cells of interest. 569 

 570 

Graph-based clustering and cell cluster identification. Cell clustering was performed using a two-step 571 

wise approach, using the “FIndNeighbours'' and “FindClusters'' respectively. Briefly, a k-Nearest 572 

Neighbours (kNN) graph is built on the dissimilarity matrix based on the pairwise euclidean distance 573 

between cells in the PCA space (using the previously computed 60 PCs). Edges are drawn between 574 

nodes (cells) with similar expression patterns (Jaccard Similarity). Edge weights are refined based on 575 

their shared overlap in their neighborhood.  576 

“FindClusters” function was used to cluster the cells, using the Louvain algorithm as default, setting 577 

the resolution parameter to 1.2 to ensure an optimal granularity and stability of the cell clusters. 578 

 579 

scRNAseq cluster annotation. Manual annotation of the cell clusters was performed on the merged 580 

samples on a two-steps basis. First, the cell clusters were annotated according to the major cell 581 

compartments, using well-established canonical markers. The latter included: Immune (Ptprc+, Cd68+, 582 

Cd52+), Epithelial (Epcam, Krt5, Krt8, Elf5), Endothelial (Pecam1, Fabp4, Apold1) and Fibroblasts (Mgp, 583 

Dpep1, Col3a1). Briefly, we computed the mean expression of each gene across the cells belonging to 584 

each cluster, to obtain a pseudo-bulked matrix containing only the genes of interest. A classical 585 

hierarchical clustering was performed on the clusters based on their correlation distance matrix to 586 

determine the cell cluster groups “Metaclusters” which displayed similar expression levels for each 587 

canonical gene signature. According to the dendrogram length, computed using the “ward.D” method, 588 

5 meta-clusters were identified. Each meta-cluster was assigned the cell type name for which the 589 

canonical genes were mostly expressed, as compared to the remaining genes. For instance, COl3a1 590 

displayed the highest expression level in the meta-cluster “1”. Therefore, all cell clusters previously 591 

defined (see Graph-based clustering and cell cluster identification section above) belonging to 592 

metacluster “1” are labeled as “Fibroblasts”. 593 



 

24 

 594 

Refined Epithelial clusters annotation. The epithelial compartment was further sub clustered to better 595 

explore the cell subtype/state heterogeneity between the control and the tumor samples. 596 

SCTrasnform, PCA dimension reduction and clustering steps were run on the subsetted clusters of 597 

interest. To achieve a high-resolutive cell subtype annotation, DIfferential expression (DE) was 598 

performed using the “FindAllMarkers” function. Briefly, a non-parametric Wilcoxon-Sum rank test was 599 

performed on a “1 cluster vs all” basis, setting a log2 Fold Change (FC) threshold at 0.5, and keeping 600 

only genes expressed in at least 30% of the cell clusters (to ensure expression homogeneity within the 601 

cluster). Associated p-values were corrected using the “Bonferroni” correction method, with a set 602 

threshold at 5%. 603 

An automated function was designed to annotate the clusters. It takes as input the top 10 logFC ranked 604 

geneset for each cluster, and initially computes the contribution percentage of each tumor size feature 605 

of our dataset (control, control with primary lesions, small tumor (ST), medium tumor (MT) and large 606 

tumor (LT)) to each cell cluster. For a given cluster, if the major contributor is the control dataset, the 607 

function intersects the corresponding top genes with a knowledge-driven gene list of the known 608 

epithelial cell types (including basal, luminal progenitor, alveolar-differentiated, hormone-sensing ...) 609 

and labels the cluster with the corresponding cell type. If most of the cells (> 60%) were from tumor 610 

samples, the subtype name would be the concatenation of the top gene name with the tumor size 611 

symbol (ST, MT or LT). 612 

 613 

Differential expression. Differential gene expression (DGE) analysis was performed using 614 

“FindMarkers” function. Non parametric Wilcoxon sum rank test was used to identify genes with an 615 

abs(FC)> 0.5 at an FDR of 0.05. To ensure cell cluster homogeneity, we set a lower cutoff of 30% of 616 

cells expressing a given gene. 617 

 618 
Pathway Enrichment Analysis (PEA). Pathway Enrichment Analysis was performed on the significantly 619 

differentially expressed gene lists using the Hallmark collection from the Molecular Signature Database 620 
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(MSigDB). The latter was loaded into the R session using the “msigdbr” package available on 621 

Bioconductor. Gene Set Enrichment Analysis was performed using the “enricher” function from the 622 

“msigdbr” package. Only significantly enriched pathways (adjusted P-values < 0.05) were considered. 623 

 624 

Signature construction. Transcriptional signatures were constructed from the gene lists contributing 625 

to each corresponding enriched pathway, using the “AUCell” package available on Github ( ). Briefly, 626 

the genes of a given  cell vs.gene data matrix are ranked based on their expression levels in each cell. 627 

UCell computes then a Mann-Whitney U statistic (which is similar to AUC Area Under Curve), which is 628 

further used to evaluate gene signatures on the gene expression ranks of individual cells. We 629 

computed the gene signatures using the wrapper function “AddModuleScore_UCell”, giving as input a 630 

list of features, along with the seurat object. 631 

 632 
Trajectory inference - Slingshot. Pseudotime ordering of cells was conducted using Slingshot (Github 633 

link), with default parameters, giving as input the UMAP coordinates and setting the starting cluster as 634 

the luminal progenitors “LP”, with stretch=2. 635 

To ease the interpretation of the trajectory, we performed SLingshot only on the transitioning 636 

compartment, including (“LP”, Alveolar differentiated “Avd”, Luminal differentiated hormone-sensing 637 

“Luminal H-S”, and the annotated clusters of the small tumor. Downstream analytical steps were 638 

performed only on the longest branch starting from the “LP” and ending in the “Fgf8+ ST” cluster. 639 

 640 

Contribution of genes to a branch tree. The aim of this section was to identify the most contributing 641 

genes to the transition observed from the Slingshot trajectory inference. To do so, a cell vs.gene 642 

expression matrix was created including the contributing cells to the longest branch, and the top 2000 643 

highly variable genes.  We then applied a random forest regression model using 500 trees to predict 644 

the genes which contribute the most to predict pseudotime values (the response variable). The 645 

features (genes) were sorted according to their “variable.importance”parameter after the model was 646 

fit. 647 
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 648 

Associated pathways to pseudotime values prediction. We computed the mean expression values of 649 

the selected top 200 most important predictive genes to get pseudo-bulked matrices for the 650 

transitioning cells. To cluster the genes according to their profile correlation with pseudotime values, 651 

a pairwise-correlation matrix, followed by a hierarchical clustering were performed. 5 gene groups 652 

were obtained, each having a distinct profile along pseudotime. PEA (see below) was performed on 653 

each gene set, followed by a signature construction step and ultimately visualized on the UMAP 654 

embeddings. 655 

 656 

Partition-based graph abstraction (PAGA). PAGA was performed using “scanpy” Python library loaded 657 

on RStudio using “reticulate” R package. Default parameters were used to construct the graph 658 

partition, and a threshold of 0.1 was set to preserve the highly connected nodes. Connectivity scores 659 

were extracted from the PAGA output, along with the nodes and edges connections. Centrality scores 660 

(number of edges) were computed by counting the number of edges that passed the cutoff (0.15) for 661 

each cell cluster. 662 

 663 

Potential of Heat-diffusion for Affinity-based Transition Embedding (PHATE). PHATE was used as a 664 

visualization method to investigate continual progressions, branches and clusters in our data. Briefly, 665 

PHATE uses an information-geometric distance between cells (data points) to capture both local and 666 

global nonlinear structures, setting knn = 20, t (diffusion parameter) =40 as input parameters.   667 

 668 
Copy Number Variation (CNV) inference from scRNAseq data. CNVs were inferred using inferCNV 669 

(https://github.com/broadinstitute/infercnv) with default parameters, taking as reference the basal 670 

cells. We extracted residual cell matrices, binarized the values using the 10th as lower and 90th 671 

percentile as higher thresholds, to get -1 (if the value < 10th percentile); +1 (if the value is higher than 672 

the 90th percentile) and 0 if the value is in between the two thresholds. To estimate the percentage 673 

of altered genome, we calculated the absolute value of binarized matrices, and counted the number 674 
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of 0s and 1s aggregated by chromosome. These values were added to the metadata of the scRNAseq 675 

Seurat object. 676 

 677 

TCGA_Breast cancer dataset. To compare the expression levels of CDKN2A, P16-signature, EMT and 678 

apoptosis pathway signatures, between non-diseased healthy tissues, tumor-adjacent normal tissue 679 

and tumor breast tissues, we harnessed breast tissues datasets from TCGA and GTEx consortia from 680 

normalized transcriptomic data available from Github 681 

(https://github.com/mskcc/RNAseqDB/tree/master/data/normalized). We constructed the gene 682 

signatures using the UCell package, and compared the tissue types using Wilcoxon T tests. 683 

 684 

scRNAseq data analysis of normal, preneoplastic and tumorigenic states in the human breast. We 685 

downloaded the dataset from GEO, using the accession number: GSE161529. Briefly, we selected only 686 

the normal epithelium samples from pre-menopausal women (n=6), tumor samples (labeled as Triple 687 

Negative tumor, and Triple negative (Brca) tumor) (ntotal=8), and the nulliparous, pre-menopausal 688 

pre-neoplastic Brca1 samples (n=2). After sample merging, SCT normalization, dimension reduction 689 

and graph-based clustering, we selected the cell clusters expressing epithelial markers (Epcam, Krt8, 690 

Krt5) for further analysis. The same procedure was conducted on the epithelial compartment, followed 691 

by a finer annotation of the cell clusters using canonical markers of epithelial sub-populations. To point 692 

out the epithelial population which underwent major transcriptional modifications upon Brca1 693 

deficiency as compared to the normal population, we subset the luminal progenitor (LP), Basal and 694 

mature luminal (ML) clusters. For each subpopulation, principal component analysis (PCA) was 695 

performed, and the top 20 variable PCs were kept. To identify the main PC drivers of a 696 

normal/preneoplastic gradient, we tested whether the cell distributions along each PC coordinate 697 

were the same, using a Kosmogorov Smirnov nonparametric test. We selected the PCs with a 698 

significant p-value (<0.05) and a D-value > quantile(D-value,0.8). Alternatively, a linear regression 699 

method was tested to select the top predictive PCs to separate cells labeled as preneoplastic from 700 
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normal ones. Both methods indicated similar PCs. Next, to identify the epithelial sub-population for 701 

which the PCs were the most discriminant, we ranked the top “informative” PCs according to their 702 

percentage of variance explained. Pathway enrichment analysis was performed on the top genes 703 

(ranked by eigenvalues) which contributed most to the PC part corresponding to preneoplastic cells. 704 

 705 

snRNAseq juxta-tumor data analysis 706 

Similar pre-processing steps were followed for the snRNAseq data analysis. Expression matrices from 707 

the 5 samples, obtained with the cellranger count suite were merged, filtered (setting 25% as the 708 

maximum rate of mitochondrial genes per cell), and integrated using Harmony algorithm. Similar semi-709 

automatic approach was used to annotate the cell clusters according to major cell types (epithelial, 710 

adipocytes, fibroblasts, immune, fibroblasts and endothelial). Downstream analyses were only focused 711 

on the epithelial compartment, in which a refined annotation was performed to retrieve epithelial 712 

subtypes. Similarly, fraction of altered genome and scoring of the human-derived pre-tumoral state 713 

were estimated using inferCNV and UCell algorithms, respectively. Stack violin plots were plotted using 714 

a custom function.    715 

 716 
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